1
|
Yang Z, Jiang L, Yang H, Chang H, Wan Y, Yu H, Rong H, Qu F. Anaerobic membrane distillation bioreactors for saline organic wastewater treatment: Impacts of salt accumulation on methanogenesis and microbial community. WATER RESEARCH 2025; 281:123695. [PMID: 40311351 DOI: 10.1016/j.watres.2025.123695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/10/2025] [Accepted: 04/21/2025] [Indexed: 05/03/2025]
Abstract
Anaerobic membrane distillation bioreactor (AnMDBR), which possesses several distinctive advantages such as high-quality water production, desalination and methanogenesis, shows enormous potential in saline organic wastewater (SAOW) treatment. However, salt accumulation in the reactor may deactivate anaerobic organisms and impede methanogenesis. In this work, effects of salt accumulation were comprehensively investigated regarding pollutant removal performance and methanogenesis in AnMDBRs over a 30-d operation. The investigative influent salinity was in the range of 0.0-2.0 %. The results demonstrated that AnMDBR achieved excellent chemical oxygen demand (COD) rejection (> 97 %) in the stabilization phase regardless of influent salinity. Moreover, the methane production was as high as 267 mL/gCOD, when the influent salinity did not exceed 1.0 %. When the influent salinity increased to 2.0 %, the methane production was significantly restricted, because salt stress altered the microbial community, resulting in a more sensitive and fragile ecosystem. Thermophilic and halophilic bacteria genera (Bacillus and Caproiciproducens) were selectively enriched in AnMDBR, promoting short-chain fatty acids generation. Meanwhile, these bacteria severely suppressed methanogenic archaea Methanosarcina, leading to an 80 % reduction in species abundance compared to a robust reactor. Furthermore, the salt stress inactivated key enzymes (mtr and mcr), disrupting methanogenic metabolism.
Collapse
Affiliation(s)
- Zhimeng Yang
- School of Civil Engineering and Transportation, Guangzhou University, Guangzhou, 510006, China
| | - Linjiang Jiang
- School of Civil Engineering and Transportation, Guangzhou University, Guangzhou, 510006, China
| | - Haiyang Yang
- School of Civil Engineering and Transportation, Guangzhou University, Guangzhou, 510006, China.
| | - Haiqing Chang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China
| | - Yuxuan Wan
- School of Civil Engineering and Transportation, Guangzhou University, Guangzhou, 510006, China
| | - Huarong Yu
- School of Civil Engineering and Transportation, Guangzhou University, Guangzhou, 510006, China
| | - Hongwei Rong
- School of Civil Engineering and Transportation, Guangzhou University, Guangzhou, 510006, China
| | - Fangshu Qu
- School of Civil Engineering and Transportation, Guangzhou University, Guangzhou, 510006, China; School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| |
Collapse
|
2
|
Ao TJ, Wu J, Li K, Chandra R, Zhao XQ, Tang YQ, Liu CG, Bai FW. Cellulosic ethanol stillage for methane production by integrating single-chamber anaerobic digestion and microbial electrolysis cell system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175814. [PMID: 39197773 DOI: 10.1016/j.scitotenv.2024.175814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
Anaerobic digestion provides a solution to the inefficient use of carbon resources caused by improper disposal of corn stover-based ethanol stillage (CES). In this regard, we developed a single-chamber anaerobic digestion integrated microbial electrolysis cells system (AD-MEC) to convert CES into biogas while simultaneously upgrading biogas in-situ by employing voltages ranging from 0 to 2.5 V. Our results demonstrated that applying 1.0 V increased the CH4 yield by 55 % and upgraded the CH4 content in-situ to 82 %. This voltage also promoted the well-formed biofilm on the electrodes, resulting in a 20-fold increase in current. However, inhibition was observed at high voltages (1.5-2.5 V), suppressing syntrophic organic acid-oxidizing bacteria (SOB). The dissociation between SOB and methanogens led to accumulation of propionic and butyric acid, which, in turn, inhibited methanogens. The degradation of CES was accelerated by unclassified_o_norank_c_Desulfuromonadia on the anode, likely leading to an increase in mixotrophic methanogenesis due to the synergistic interaction among Aminobacterium, Sedimentibacter, and Methanosarcina. Furthermore, the enrichment of electroactive bacteria (EB) such as Enterococcus and Desulfomicrobium likely facilitates direct interspecies electron transfer to Methanobacterium, thereby promoting the conversion of CO2 to CH4 through hydrogenotrophic methanogenesis. Rather than initially stimulating the EB in the bulk solution to accelerate the start-up process of AD, our study revealed that applying mild voltage up to 1.0 V tended to mitigate the negative impact on the original microorganisms, as it gradually enriched EB on the electrode, thereby enhancing biogas production.
Collapse
Affiliation(s)
- Tian-Jie Ao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Forest Product Biotechnology, Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Jie Wu
- Forest Product Biotechnology, Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada; Advanced Renewable Materials Lab, Department of Wood Science, University of British Columbia, 2424 main mall, Vancouver V6T 1N4, Canada
| | - Kai Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Richard Chandra
- Forest Product Biotechnology, Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada; Trinity Western University, 22500 University Dr, Langley, BC V2Y 1Y1, Canada.
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Feng-Wu Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Song Y, Zhang Z, Liu Y, Peng F, Feng Y. Enhancement of anaerobic treatment of antibiotic pharmaceutical wastewater through the development of iron-based and carbon-based materials: A critical review. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135514. [PMID: 39243542 DOI: 10.1016/j.jhazmat.2024.135514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/23/2024] [Accepted: 08/12/2024] [Indexed: 09/09/2024]
Abstract
The extensive use of antibiotics has created an urgent need to address antibiotic wastewater treatment, posing significant challenges for environmental protection and public health. Recent advances in the efficacy and mechanisms of conductive materials (CMs) for enhancing the anaerobic biological treatment of antibiotic pharmaceutical wastewater are reviewed. For the first time, the focus is on the various application forms of iron-based and carbon-based CMs in strengthening the anaerobic methanogenic system. This includes the use of single CMs such as zero-valent iron (ZVI), magnetite, biochar (BC), activated carbon (AC), and graphene (GP), as well as iron-based and carbon-based composite CMs with diverse structures. These structures include mixed, surface-loaded, and core-shell combinations, reflecting the development of CMs. Iron-based and carbon-based CMs promote the rapid removal of antibiotics through adsorption and enhanced biodegradation. They also mitigate the inhibitory effects of toxic pollutants on microbial activity and reduce the expression of antibiotic resistance genes (ARGs). Additionally, as effective electron carriers, these CMs enrich microorganisms with direct interspecies electron transfer (DIET) functions, accelerate interspecies electron transfer, and facilitate the conversion of organic matter into methane. Finally, this review proposes the use of advanced molecular detection technologies to clarify microbial ecology and metabolic mechanisms, along with microscopic characterization techniques for the modification of CMs. These methods can provide more direct evidence to analyze the mechanisms underlying the cooperative anaerobic treatment of refractory organic wastewater by CMs and microorganisms.
Collapse
Affiliation(s)
- Yanfang Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Zhaohan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73, Huanghe Road, Nangang District, Harbin 150090, China.
| | - Yanbo Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Fangyue Peng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73, Huanghe Road, Nangang District, Harbin 150090, China
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No.73, Huanghe Road, Nangang District, Harbin 150090, China.
| |
Collapse
|
4
|
Wang Y, Hui X, Wang H, Chen H. Boosting Volatile fatty acids (VFAs) production in fermentation microorganisms through genes expression control: Unraveling the role of iron homeostasis transcription factors. WATER RESEARCH 2024; 259:121850. [PMID: 38851109 DOI: 10.1016/j.watres.2024.121850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/06/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
Iron (Fe0, Fe (II), and Fe (III)) has been previously documented to upregulate the expression of key genes, enhancing the production of volatile fatty acids (VFAs) to achieve waste/wastewater resource recovery. However, the precise mechanism by why iron influences gene expression remains unclear. This study applied iron-assisted fermentation systems to explore the behind enhancing mechanism by constructing regulon networks among genes, microbes, and transcription factors. In iron-conditioned systems, a significant enhancement in VFAs production and upregulation of genes expression (1.19-3.92 folds) related to organic conversion and the electron transfer chain was observed. Besides, gene co-expression network and Procrustes analysis identified ten hub transcription factors (e.g., arsR, crp, iscR, perR) and their major contributors (genus) (e.g., Paludibacter, Acinetobacter, Tolumonas). Further analysis suggested that most of hub transcription factors were implicated in iron homeostasis regulation, which speculated that the induced iron homeostasis transcription factors probably effectively regulated the expression of genes encoding enzymes involving in VFAs production and electron transfer of functional microbes, in the case of Paludibacter, Acinetobacter, and Tolumonas while regulating the iron homeostasis, resulting in the efficient production of VFAs in iron-conditioned systems. This study might contribute to an enhanced understanding of the underlying genetic mechanisms by why iron influences gene expression regulation of microbes, which also provides a genetic theoretical basis for improving system VFAs production and resource recovery.
Collapse
Affiliation(s)
- Yanqiong Wang
- National Engineering Research Center for Urban Pollution Control, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xuesong Hui
- National Engineering Research Center for Urban Pollution Control, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hongwu Wang
- National Engineering Research Center for Urban Pollution Control, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Tongji University, Shanghai 200092, China.
| | - Hongbin Chen
- National Engineering Research Center for Urban Pollution Control, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
5
|
Xu Q, Lu Q, Zhou W, Du M, Liu X, Wang D. Tris (2-chloroethyl) phosphate presence inhibits methane production from anaerobic digestion: Alterations in organic matter transformation, cell physiological status, and microbial community. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134731. [PMID: 38797078 DOI: 10.1016/j.jhazmat.2024.134731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/23/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Organophosphate flame retardants (OPFRs) are widely used in consumer products, leading to their unavoidable release into the environment, especially accumulation in anaerobic environments and posing potential risks. This study focused on Tris(2-chloroethyl) phosphate (TCEP), a representative OPFR, to investigate its effects on carbon transformation and methane production in anaerobic digestion. Increasing TCEP concentrations from control to 16 mg/L resulted in decreased cumulative methane yield (from 235.4 to 196.3 mL/g COD) and maximum daily methane yield (from 40.8 to 16.17 mL/(g COD·d)), along with an extended optimal anaerobic digestion time (from 15 to 20 days). Mechanistic analysis revealed TCEP binding to tyrosine-like proteins in extracellular polymeric substances, causing cell membrane integrity impairment. The TCEP-caused alteration of the physiological status of cells was demonstrated to be a significant contribution to the inhibited bioprocesses including acidogenesis, acetogenesis, and methanogenesis. Illumina Miseq sequencing showed TCEP decreasing the relative abundance of acidogens (58.8 % to 46.0 %) and acetogens (7.1 % to 5.0 %), partly shifting the methanogenesis pathway from acetoclastic to hydrogenotrophic methanogenesis. These findings enhance understanding of TCEP's impact on anaerobic digestion, emphasizing the environmental risk associated with its continued accumulation.
Collapse
Affiliation(s)
- Qing Xu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Qi Lu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Wenneng Zhou
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Mingting Du
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China
| | - Xuran Liu
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, SAR, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, PR China.
| |
Collapse
|
6
|
Zhuravleva EA, Shekhurdina SV, Laikova A, Kotova IB, Loiko NG, Popova NM, Kriukov E, Kovalev AA, Kovalev DA, Katraeva IV, Vivekanand V, Awasthi MK, Litti YV. Enhanced thermophilic high-solids anaerobic digestion of organic fraction of municipal solid waste with spatial separation from conductive materials in a single reactor volume. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 363:121434. [PMID: 38861886 DOI: 10.1016/j.jenvman.2024.121434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/22/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
Despite benefits such as lower water and working volume requirements, thermophilic high solids anaerobic digestion (THSAD) often fails due to the rapid build-up of volatile fatty acids (VFAs) and the associated drop in pH. Use of conductive materials (CM) can promote THSAD through stimulation of direct interspecies electron transfer (DIET), while the need for their constant dosing due to poor separation from effluent impairs economic feasibility. This study used an approach of spatially separating magnetite and granular activated carbon (GAC) from the organic fraction of municipal solid waste (OFMSW) in a single reactor for THSAD. GAC and magnetite addition could both mitigate the severe inhibition of methanogenesis after VFAs build-up to ∼28-30 g/L, while negligible methane production was observed in the control group. The highest methane yield (286 mL CH4/g volatile solids (VS)) was achieved in magnetite-added reactors, while the highest maximum CH4 production rates (26.38 mL CH4/g VS/d) and lowest lag-phase (2.83 days) were obtained in GAC-added reactors. The enrichment of GAC and magnetite biofilms with various syntrophic and potentially electroactive microbial groups (Ruminiclostridium 1, Clostridia MBA03, Defluviitoga, Lentimicrobiaceae) in different relative abundances indicates the existence of specific preferences of these groups for the nature of CM. According to predicted basic metabolic functions, CM can enhance cellular processes and signals, lipid transport and metabolism, and methane metabolism, resulting in improved methane production. Rearrangement of metabolic pathways, formation of pili-like structures, enrichment of biofilms with electroactive groups and a significant improvement in THSAD performance was attributed to the enhancement of the DIET pathway. Promising results obtained in this work due to the spatial separation of the bulk OFMSW and CM can be useful for modeling larger-scale THSAD systems with better recovery of CM and cost-effectiveness.
Collapse
Affiliation(s)
- Elena A Zhuravleva
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2 117312 Moscow, Russia.
| | - Svetlana V Shekhurdina
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2 117312 Moscow, Russia.
| | - Aleksandra Laikova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2 117312 Moscow, Russia.
| | - Irina B Kotova
- Department of Biology, Lomonosov Moscow State University, Vorob'jovy gory, 119899 Moscow, Russia.
| | - Natalia G Loiko
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2 117312 Moscow, Russia.
| | - Nadezhda M Popova
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS, 31, bld.4, Leninsky prospect, 119071 Moscow, Russia.
| | - Emil Kriukov
- Sechenov First Moscow State Medical University, 8-2 Trubetskaya str. 119435 Moscow, Russia.
| | - Andrey A Kovalev
- Federal Scientific Agroengineering Center VIM, 1st Institutsky proezd, 5,109428 Moscow, Russia.
| | - Dmitriy A Kovalev
- Federal Scientific Agroengineering Center VIM, 1st Institutsky proezd, 5,109428 Moscow, Russia.
| | - Inna V Katraeva
- Department of Water Supply, Sanitation, Engineering Ecology and Chemistry, Nizhny Novgorod State University of Architecture and Civil Engineering, Nizhny Novgorod, 603000, Russia.
| | - Vivekanand Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, Rajasthan, India.
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environmental, Northwest A&F University, Taicheng Road 3#, Yangling, Shaanxi, 71200, China.
| | - Yuriy V Litti
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7, bld. 2 117312 Moscow, Russia.
| |
Collapse
|
7
|
Nguyen TH, Nguyen DV, Hatamoto M, Takimoto Y, Watari T, Do KU, Yamaguchi T. Harnessing iron materials for enhanced decolorization of azo dye wastewater: A comprehensive review. ENVIRONMENTAL RESEARCH 2024; 258:119418. [PMID: 38897434 DOI: 10.1016/j.envres.2024.119418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Highly colored azo dye-contaminated wastewater poses significant environmental threats and requires effective treatment before discharge. The anaerobic azo dye treatment method is a cost-effective and environmentally friendly solution, while its time-consuming and inefficient processes present substantial challenges for industrial scaling. Thus, the use of iron materials presents a promising alternative. Laboratory studies have demonstrated that systems coupled with iron materials enhance the decolorization efficiency and reduce the processing time. To fully realize the potential of iron materials for anaerobic azo dye treatment, a comprehensive synthesis and evaluation based on individual-related research studies, which have not been conducted to date, are necessary. This review provides, for the first time, an extensive and detailed overview of the utilization of iron materials for azo dye treatment, with a focus on decolorization. It assesses the treatment potential, analyzes the influencing factors and their impacts, and proposes metabolic pathways to enhance anaerobic dye treatment using iron materials. The physicochemical characteristics of iron materials are also discussed to elucidate the mechanisms behind the enhanced bioreduction of azo dyes. This study further addresses the current obstacles and outlines future prospects for industrial-scale application of iron-coupled treatment systems.
Collapse
Affiliation(s)
- Thu Huong Nguyen
- Department of Science of Technology Innovation, Nagaoka University of Technology, Niigata, Japan
| | - Duc Viet Nguyen
- Centre for Environmental and Energy Research, Ghent University Global Campus, Incheon, Republic of Korea; Department of Green Chemistry and Technology, Ghent University, Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Ghent, Belgium
| | - Masashi Hatamoto
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Niigata, Japan
| | - Yuya Takimoto
- Department of Mechanical Engineering, Nagaoka University of Technology, Niigata, Japan
| | - Takahiro Watari
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Niigata, Japan; School of Chemistry and Life Sciences, Hanoi University of Science and Technology, Hanoi, Viet Nam.
| | - Khac-Uan Do
- School of Environmental Science and Technology, Hanoi University of Science and Technology, Hanoi, Viet Nam
| | - Takashi Yamaguchi
- Department of Science of Technology Innovation, Nagaoka University of Technology, Niigata, Japan; Department of Civil and Environmental Engineering, Nagaoka University of Technology, Niigata, Japan
| |
Collapse
|
8
|
Zhu R, Chen Y, Huang Y, Tang Z, Li H, Gu L. Improving anaerobic digestion performance after severe acidification: Unveiling the impacts of Fe 3O 4-bentonite composites in co-digestion of waste activated sludge and food waste. BIORESOURCE TECHNOLOGY 2024; 402:130775. [PMID: 38701984 DOI: 10.1016/j.biortech.2024.130775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Acidification recovery in anaerobic digestion of food waste is challenging. This study explored its in-situ recovery using a co-substrate of food waste and waste activated sludge. Fe3O4 and bentonite were used as conductor and carrier, respectively, to enhance AD performance under severe acidification. The application of Fe3O4-bentonite resulted in a 152% increase in cumulative methane in the Fe3O4-bentonite 10 digester, demonstrating its effectiveness in restoring the acidified AD system. In acidified systems, bentonite enhanced the diversity and richness of microbial communities due to its buffering capacity. The excessive non-conductive polysaccharides excreted by bacteria in extracellular polymeric substances reduced the possibility of electron transfer by Fe3O4. However, in the synergistic application of Fe3O4 and bentonite, this resistance was alleviated, increasing the possibility of direct interspecies electron transfer, and accelerating the consumption of volatile fatty acids. This approach of integrating carrier and conductive materials is significant for in-situ restoration of acidified systems.
Collapse
Affiliation(s)
- Ruilin Zhu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, College of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, China
| | - Yongdong Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, College of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, China
| | - Yangrui Huang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhenzhen Tang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Huaizheng Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Li Gu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, College of Environment and Ecology, Chongqing University, 174 Shapingba Road, Chongqing 400045, China.
| |
Collapse
|
9
|
Zhao W, Chen X, Ma H, Li D, Yang H, Hu T, Zhao Q, Jiang J, Wei L. Impact of co-substrate molecular weight on methane production potential, microbial community dynamics, and metabolic pathways in waste activated sludge anaerobic co-digestion. BIORESOURCE TECHNOLOGY 2024; 400:130678. [PMID: 38588784 DOI: 10.1016/j.biortech.2024.130678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/10/2024]
Abstract
Proteins and carbohydrates are important organics in waste activated sludge, and greatly affect methane production and microbial community composition in anaerobic digestion systems. Here, a series of co-substrates with different molecular weight were applied to investigate the interactions between microbial dynamics and the molecular weight of co-substrates. Biochemical methane production assays conducted in batch co-digesters showed that feeding high molecular weight protein and carbohydrate substrates resulted in higher methane yield and production rates. Moreover, high-molecular weight co-substrates increased the microbial diversity, enriched specific microbes including Longilinea, Anaerolineaceae, Syner-01, Methanothrix, promoted acidogenic and acetoclastic methanogenic pathways. Low-molecular weight co-substrates favored the growth of JGI-0000079-D21, Armatimonadota, Methanosarcina, Methanolinea, and improved hydrogenotrophic methanogenic pathway. Besides, Methanoregulaceae and Methanolinea were indicators of methane yield. This study firstly revealed the complex interactions between co-substrate molecular weight and microbial communities, and demonstrated the feasibility of adjusting co-substrate molecular weight to improve methane production process.
Collapse
Affiliation(s)
- Weixin Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinwei Chen
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hao Ma
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dan Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Haizhou Yang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tianyi Hu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
10
|
Buenaño-Vargas C, Gagliano MC, Paulo LM, Bartle A, Graham A, van Veelen HPJ, O'Flaherty V. Acclimation of microbial communities to low and moderate salinities in anaerobic digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167470. [PMID: 37778560 DOI: 10.1016/j.scitotenv.2023.167470] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
In recent years anaerobic digestion (AD) has been investigated as suitable biotechnology to treat wastewater at elevated salinities. However, when starting up AD reactors with inocula that are not adapted to salinity, low concentrations of sodium (Na+) in the influent can already cause disintegration of microbial aggregates and wash-out. This study investigated biomass acclimation to 5 g Na+/L of two different non-adapted inocula in two lab-scale hybrid expanded granular sludge bed (EGSB)-anaerobic filter (AF) reactors fed with synthetic wastewater. After an initial biomass disintegration, new aggregates were formed relatively fast (i.e., after 95 days of operation), indicating microbial community adaptation. The newly formed microbial aggregates accumulated Na+ at the expense of calcium (Ca2+), but this did not hamper biomass retention or process performance. The hybrid reactor configuration, including a pumice stone filter in the upper section, and the low up-flow velocities applied, were key features for retaining the biomass within the system. This reactor configuration can be easily applied and represents a low-cost alternative for acclimating biomass to saline effluents, even in existing digesters. When the acclimated biomass was transferred from EGSB to an up-flow anaerobic sludge blanket (UASB) reactor configuration also fed with saline synthetic wastewater, more dense aggregates in the form of granules were obtained. The performances of the UASB inoculated with the acclimated biomass were comparable to another reactor seeded with saline-adapted granular sludge from a full-scale plant. Regardless of the inoculum origin, a defined core microbiome of Bacteria (Thermovirga, Bacteroidetes vadinHA17, Blvii28 wastewater-sludge group, Mesotoga, and Synergistaceae) and Archaea (Methanosaeta and Methanobacterium) was detected, highlighting the importance of these microbial groups in developing halotolerance and maintaining AD process stability.
Collapse
Affiliation(s)
- Claribel Buenaño-Vargas
- Microbial Ecology Laboratory, School of Biological and Chemical Sciences and Ryan Institute, University of Galway, University Road, Ireland
| | - M Cristina Gagliano
- Wetsus - European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911MA Leeuwarden, the Netherlands
| | - Lara M Paulo
- Microbial Ecology Laboratory, School of Biological and Chemical Sciences and Ryan Institute, University of Galway, University Road, Ireland
| | - Andrew Bartle
- Microbial Ecology Laboratory, School of Biological and Chemical Sciences and Ryan Institute, University of Galway, University Road, Ireland
| | - Alison Graham
- Microbial Ecology Laboratory, School of Biological and Chemical Sciences and Ryan Institute, University of Galway, University Road, Ireland
| | - H Pieter J van Veelen
- Wetsus - European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911MA Leeuwarden, the Netherlands
| | - Vincent O'Flaherty
- Microbial Ecology Laboratory, School of Biological and Chemical Sciences and Ryan Institute, University of Galway, University Road, Ireland.
| |
Collapse
|
11
|
Qu Y, Guan Q, Du Y, Shi W, Zhao M, Huang Z, Ruan W. Insight into the effect of rice-straw ash on enhancing the anaerobic digestion performance of high salinity organic wastewater. CHEMOSPHERE 2023; 340:139920. [PMID: 37611754 DOI: 10.1016/j.chemosphere.2023.139920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/02/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
Anaerobic digestion is an economic method for treating high salinity organic wastewater (HSOW), but performance enhancement is needed because of the inhibitory effect of high salinity. In this study, rice-straw ash (RSA) was applied to alleviate the inhibitory effect during HSOW anaerobic digestion. The results showed that, when the NaCl content increased from 0% to 3.0%, the methane production decreased by 87.35%, and the TOC removal rate decreased to 34.12%. As a K+ and alkalinity source, RSA addition enhanced the anaerobic digestion performance, and the optimal dosage was 0.88 g/L. Under this dosage, the methane production increased by 221.60%, and TOC removal rate reached 66.42% at 3.0% salinity. The addition of RSA increased the proportion of living cells in the high salinity environment, and enhanced the activity of key enzymes and electron transfer efficiency in the anaerobic digestion process. The addition of RSA with a dosage of 0.88 g/L promoted the accumulation of acetoclastic methanogen Methanothrix. The abundance of substrate transporters, ion transporters and electron transfer related functional genes were enriched, which might be key for promoting HSOW anaerobic digestion performance. The results also showed that RSA addition played an important role in maintaining the stability of the anaerobic digestion system, and it could be a potential strategy for enhancing the anaerobic digestion performance under high salinity conditions.
Collapse
Affiliation(s)
- Yunhe Qu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China
| | - Qiuyue Guan
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China
| | - Yang Du
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China
| | - Wansheng Shi
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China.
| | - Mingxing Zhao
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhenxing Huang
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology & Material, Suzhou, 215009, China
| | - Wenquan Ruan
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology & Material, Suzhou, 215009, China
| |
Collapse
|
12
|
Li J, Xu X, Chen C, Xu L, Du Z, Gu L, Xiang P, Shi D, Huangfu X, Liu F. Conductive materials enhance microbial salt-tolerance in anaerobic digestion of food waste: Microbial response and metagenomics analysis. ENVIRONMENTAL RESEARCH 2023; 227:115779. [PMID: 36967003 DOI: 10.1016/j.envres.2023.115779] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 05/08/2023]
Abstract
Previous studies have shown that high salinity environments can inhibit anaerobic digestion (AD) of food waste (FW). Finding ways to alleviate salt inhibition is important for the disposal of the growing amount of FW. We selected three common conductive materials (powdered activated carbon, magnetite, and graphite) to understand their performance and individual mechanisms that relieve salinity inhibition. Digester performances and related enzyme parameters were compared. Our data revealed that under normal and low salinity stress conditions, the anaerobic digester ran steady without significant inhibitions. Further, the presence of conductive materials promoted conversion rate of methanogenesis. This promotion effect was highest from magnetite > powdered activated carbon (PAC) > graphite. At 1.5% salinity, PAC and magnetite are beneficial in maintaining high methane production efficiency while control and the graphite added digester acidified and failed rapidly. Additionally, metagenomics and binning were used to analyze the metabolic capacity of the microorganisms. Some species enriched by PAC and magnetite possessed higher cation transport capacities and were to accumulate compatible solutes. PAC and magnetite promoted direct interspecies electron transference (DIET) and syntrophic oxidation of butyrate and propionate. Also, the microorganisms had more energy available to cope with salt inhibition in the PAC and magnetite added digesters. Our data imply that the promotion of Na+/H+ antiporter, K+ uptake, and osmoprotectant synthesis or transport by conductive materials may be crucial for their proliferation in highly stressful environments. These findings will help to understand the mechanisms of alleviate salt inhibition by conductive materials and help to recover methane from high-salinity FW.
Collapse
Affiliation(s)
- Jianhao Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| | - Xiaofeng Xu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| | - Cong Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| | - Linji Xu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| | - Zexuan Du
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| | - Li Gu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China.
| | - Ping Xiang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China.
| | - Dezhi Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| | - Xiaoliu Huangfu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| | - Feng Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, PR China
| |
Collapse
|
13
|
Mu L, Wang Y, Xu F, Li J, Tao J, Sun Y, Song Y, Duan Z, Li S, Chen G. Emerging Strategies for Enhancing Propionate Conversion in Anaerobic Digestion: A Review. Molecules 2023; 28:3883. [PMID: 37175291 PMCID: PMC10180298 DOI: 10.3390/molecules28093883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Anaerobic digestion (AD) is a triple-benefit biotechnology for organic waste treatment, renewable production, and carbon emission reduction. In the process of anaerobic digestion, pH, temperature, organic load, ammonia nitrogen, VFAs, and other factors affect fermentation efficiency and stability. The balance between the generation and consumption of volatile fatty acids (VFAs) in the anaerobic digestion process is the key to stable AD operation. However, the accumulation of VFAs frequently occurs, especially propionate, because its oxidation has the highest Gibbs free energy when compared to other VFAs. In order to solve this problem, some strategies, including buffering addition, suspension of feeding, decreased organic loading rate, and so on, have been proposed. Emerging methods, such as bioaugmentation, supplementary trace elements, the addition of electronic receptors, conductive materials, and the degasification of dissolved hydrogen, have been recently researched, presenting promising results. But the efficacy of these methods still requires further studies and tests regarding full-scale application. The main objective of this paper is to provide a comprehensive review of the mechanisms of propionate generation, the metabolic pathways and the influencing factors during the AD process, and the recent literature regarding the experimental research related to the efficacy of various strategies for enhancing propionate biodegradation. In addition, the issues that must be addressed in the future and the focus of future research are identified, and the potential directions for future development are predicted.
Collapse
Affiliation(s)
- Lan Mu
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| | - Yifan Wang
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Fenglian Xu
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Jinhe Li
- Tianjin Capital Environmental Protection Group Co., Ltd., Tianjin 300133, China
| | - Junyu Tao
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| | - Yunan Sun
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| | - Yingjin Song
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China;
| | - Zhaodan Duan
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| | - Siyi Li
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| | - Guanyi Chen
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China; (L.M.)
| |
Collapse
|