1
|
Wang R, Wang R, Chen Z, Li L, Zong X, Wang J, Zong Z. A stable Zn-coordination polymer for the quantitative and selective detection of biomarker phenylglyoxylic acid in urine. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025. [PMID: 40420830 DOI: 10.1039/d5ay00405e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Developing stable sensing materials for the selective detection of phenylglyoxylic acid (PGA) in biological samples is highly important for the early diagnosis and treatment of various diseases. In this work, a Zn(II)-based coordination polymer (CP), {[Zn(L)(bibp)]·bibp·2H2O}n (1) (H2L = 2,6-di(4-carboxylphenyl)-4-(4-(triazol-1-ylphenyl))pyridine and bibp = 4,4'-bis(imidazolyl)biphenyl), with good chemical and thermal stabilities was solvothermally synthesized. It showed an excellent fluorescence turn-off response capability for the detection of the styrene biomarker PGA with outstanding sensitivity, selectivity, recoverability and anti-interference ability. Moreover, experimental and DFT calculations suggested that the mechanism of fluorescence quenching could be attributed to the synergistic effect of the internal filter effect (IFE) and photo-induced electron transfer (PET) process between the complex and PGA.
Collapse
Affiliation(s)
- Rongqi Wang
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P. R. China
- Key Laboratory of Biomedical Material Research of Guangxi (Cultivation), Baise, Guangxi 533000, P. R. China
| | - Ruxue Wang
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, P. R. China
| | - Zeqin Chen
- Key Laboratory of Research on Environmental Pollution and Health Risk Assessment, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P. R. China.
| | - Laiwen Li
- Key Laboratory of Research on Environmental Pollution and Health Risk Assessment, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P. R. China.
| | - Xinyu Zong
- School of Public Health, Guilin Medical University, Guilin, Guangxi 541199, P. R. China
| | - Jing Wang
- Key Laboratory of Research on Environmental Pollution and Health Risk Assessment, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P. R. China.
| | - Ziao Zong
- Key Laboratory of Research on Environmental Pollution and Health Risk Assessment, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P. R. China.
| |
Collapse
|
2
|
Lopez GL, Lamarre A. The impact of micro- and nanoplastics on immune system development and functions: Current knowledge and future directions. Reprod Toxicol 2025; 135:108951. [PMID: 40412669 DOI: 10.1016/j.reprotox.2025.108951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/16/2025] [Accepted: 05/18/2025] [Indexed: 05/27/2025]
Abstract
The prevalence of microplastics (MPs)/ nanoplastics (NPs) in the environment has raised significant concerns regarding their potential toxicity, particularly their impact on biological systems. These particles, particularly NPs, possess unique properties due to their small size and high surface area, enabling them to more easily cross biological barriers and accumulate in tissues. Among various types of plastic materials, polystyrene (PS) is one of the most studied for its toxicological effects, given its widespread use and environmental persistence. This narrative review examines current research on the effects of MPs/NPs, on the immune system, with a focus on both the development of the immune system and its functional responses. Evidence from in vitro and in vivo studies suggests that MP/NP exposure can disrupt immune function, including hematopoiesis, immune cell activation, and the production of inflammatory cytokines. Although in vitro studies highlight cellular toxicity and altered immune cell behavior, in vivo studies reveal more complex outcomes, with some findings suggesting significant effects on organ systems such as the spleen and intestines, while others indicate minimal or no impact under environmentally relevant exposure conditions. Here, we aim to consolidate and summarize the current evidence on the topic, highlight key limitations in the field, and identify areas that warrant further investigation for immunotoxicologists. In addition, we emphasize the importance of using relevant exposure concentrations and complex in vitro or in vivo models to better understand the potential risks associated with MP/NP exposure and their long-term implications for immune health.
Collapse
Affiliation(s)
- Guillaume L Lopez
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Laval, QC, Canada
| | - Alain Lamarre
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Laval, QC, Canada.
| |
Collapse
|
3
|
Viana M, Tonin FS, Ladeira C. Assessing the Impact of Nanoplastics in Biological Systems: Systematic Review of In Vitro Animal Studies. J Xenobiot 2025; 15:75. [PMID: 40407539 PMCID: PMC12101406 DOI: 10.3390/jox15030075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2025] [Revised: 05/08/2025] [Accepted: 05/14/2025] [Indexed: 05/26/2025] Open
Abstract
Nanoplastic (NP) pollution has emerged as a growing concern due to its potential impact on human health, although its adverse effects on different organ systems are not yet fully understood. This systematic scoping review, conducted in accordance with international guidelines, aimed to map the current evidence on the biological effects of NPs. In vitro animal studies assessing cellular damage caused by exposure to any type of NP were searched on PubMed, Web of Science, and Scopus. Data on primary outcomes related to genotoxicity and cytotoxicity (cell viability, oxidative stress, inflammation, DNA and cytoplasmic damage, apoptosis) were extracted from the included studies, and overall reporting quality was assessed. A total of 108 articles published between 2018 and 2024, mostly by China (54%), Spain (14%), and Italy (9%), were included. Polystyrene (PS) was the most frequently studied polymer (85%). NP sizes in solution ranged from 15 to 531 nm, with a higher prevalence in the 40-100 nm range (38%). The overall quality of studies was rated as moderate (60%), with many lacking essential details about cell culture conditions (e.g., pH of the medium, passage number, substances used). A higher frequency of negative effects from NP exposure was observed in respiratory cell lines, while immune, digestive, and hepatic cell lines showed greater resistance. Nervous, urinary, and connective tissue systems were impacted by NPs. Positively charged and smaller PS particles were consistently associated with higher toxicity across all systems. In summary, this review highlights the multifactorial nature of NP toxicity, influenced by size, surface charge, and polymer type. It also reveals a significant knowledge gap, stemming from the predominant use of immortalized monocultures exposed to commercially available PS NPs, the limited use of environmentally relevant particles, and the underutilization of advanced experimental models (e.g., organ-on-chip systems) that better mimic physiological conditions.
Collapse
Affiliation(s)
- Maria Viana
- ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal;
| | - Fernanda S. Tonin
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal;
- Pharmacy and Pharmaceutical Technology Department, Social and Legal Pharmacy Section, University of Granada, 18071 Granada, Spain
| | - Carina Ladeira
- ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal;
- H&TRC-Health & Technology Research Center, ESTeSL-Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, 1990-096 Lisbon, Portugal;
- NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal
| |
Collapse
|
4
|
Wu X, Zhang H, Chen J, Tan F, Cai R, Wang Y. Photoaging Promotes Toxic Micro/Nanoplastics Release from PLA/PBAT Biodegradable Plastic in Gastrointestinal Condition. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2025; 3:446-457. [PMID: 40400546 PMCID: PMC12090009 DOI: 10.1021/envhealth.4c00209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 05/23/2025]
Abstract
The release of micro/nanoplastics (MNPs) from biodegradable plastics in gastrointestinal environments due to photoaging, along with their associated mechanisms and potential cytotoxicity, is largely unknown. Here, we show that poly(lactic acid)/poly(butylene adipate-co-terephthalate) (PLA/PBAT) films undergo ultraviolet photoaging, resulting in increased surface roughness and a higher quantity of MNPs on the surface. This aging process involves the generation of carbon- and oxygen-centered free radicals, chain scission, and the formation of oxidation products with hydroxyl and carbonyl groups. These MNPs can be released under water shear force, significantly increasing the normalized mass loss of aged films to approximately 0.128 mg/cm2 (18 times higher than that of unaged films in water). In the gastrointestinal environment, the normalized mass loss further increases to about 0.196 mg/cm2 (28 times higher), likely due to potential enzymatic digestion and ion-swelling effects. These MNPs, primarily composed of PLA, are smaller and carry more negative charges under gastrointestinal conditions. In the THP-1 cell model, these MNPs affect cell viability in a dose-dependent manner. MNPs obtained through ultrafiltration, compared to those collected via centrifugation, display a broader size distribution and induce more pronounced toxicity in THP-1 cells, with an EC50 of 243 mg/L. Preliminary comparative analysis indicates that PLA/PBAT-derived MNPs present toxicity risks comparable to, or greater than, those of conventional plastic MNPs. These findings underscore the potential hazards associated with biodegradable plastics.
Collapse
Affiliation(s)
- Xuri Wu
- Key
Laboratory of Industrial Ecology and Environmental Engineering (MOE),
School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Han Zhang
- Key
Laboratory of Industrial Ecology and Environmental Engineering (MOE),
School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key
Laboratory of Industrial Ecology and Environmental Engineering (MOE),
School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Feng Tan
- Key
Laboratory of Industrial Ecology and Environmental Engineering (MOE),
School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Rui Cai
- Instrumental
Analysis Center, Dalian University of Technology, Dalian 116024, China
| | - Yan Wang
- Key
Laboratory of Industrial Ecology and Environmental Engineering (MOE),
School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
5
|
Wang T, Perelló Amorós M, Lopez Llao G, Porte C. Distinctive lipidomic responses induced by polystyrene micro- and nano-plastics in zebrafish liver cells. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 281:107291. [PMID: 39999695 DOI: 10.1016/j.aquatox.2025.107291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/27/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
Despite growing awareness of the size-dependent toxicity caused by micro- and nano-plastics (MNPs) in fish, the modulation of the liver lipidome as a function of particle size has not been thoroughly investigated. This study explores the subcellular and molecular responses induced by polystyrene microplastics (MPs, 1 µm) and nano-plastics (NPs, 52 nm) in zebrafish liver (ZFL) cells, with a focus on the modulation of the cell's lipidome and gene expression profiles. Both particle sizes are readily internalized by ZFL cells; however, NPs had a more pronounced impact compared to MPs. Lipidomic analysis revealed that MPs decreased polyunsaturated phospholipids, while NPs increased ether-linked phosphatidylcholines (PC-Ps/PCOs). Gene expression analysis showed that high concentrations of MPs down-regulated the expression of fatty acid synthesis related genes, and significantly downregulated the microsomal triglyceride transfer protein (mtp) gene, indicating a perturbation in lipid storage metabolism, which was not observed for NP exposure. In contrast, NPs induced a dose-dependent accumulation of lipids, suggesting increased lipid droplet formation and an activation of ceramide-mediated apoptosis pathway. These findings provide new insights into the molecular mechanisms of MNP toxicity and emphasize the importance of considering particle size when assessing environmental and health risks. Furthermore, this study highlights the potential of lipidomics for elucidating the mechanisms underlying MNP toxicity, prompting further research into of the long-term consequences of exposure.
Collapse
Affiliation(s)
- Tiantian Wang
- Environmental Chemistry Department, IDAEA -CSIC-, C/ Jordi Girona, 18-26, 08034, Barcelona, Spain; PhD Program Aquaculture, University of Barcelona, Spain.
| | - Miquel Perelló Amorós
- Environmental Chemistry Department, IDAEA -CSIC-, C/ Jordi Girona, 18-26, 08034, Barcelona, Spain
| | - Gemma Lopez Llao
- Environmental Chemistry Department, IDAEA -CSIC-, C/ Jordi Girona, 18-26, 08034, Barcelona, Spain; PhD Program Aquaculture, University of Barcelona, Spain
| | - Cinta Porte
- Environmental Chemistry Department, IDAEA -CSIC-, C/ Jordi Girona, 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
6
|
Zhu T, Yao C, Hong S, Song W, Zanuri NM, Lv W, Jiang Q. Multi-omics reveal toxicity mechanisms underpinning nanoplastic in redclaw crayfish (Cherax quadricarinatus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175680. [PMID: 39173758 DOI: 10.1016/j.scitotenv.2024.175680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
We investigated the effects of different nanoplastic (NP, size = 100 nm) concentrations on red crayfish (Cherax quadricarinatus) and examined toxicity mechanisms. We established four concentration groups (control (CK): 0 μg/L; Low: 100 μg/L; Medium: 500 μg/L; and High: 1000 μg/L) and analyzed toxicity effects in C. quadricarinatus hepatopancreas using histopathological, transcriptomic, metabolomic, and fluorescence methods. NP exposure caused histological lesions and oxidative stress in hepatopancreas, and also significantly decreased glutathione (GSH) (P < 0.05) but significantly increased malondialdehyde content (MDA) (P < 0.05) in NP-treated groups. By analyzing different metabolic indicators, total cholesterol (T-CHO) content significantly increased (P < 0.05) and triglyceride (TG) content significantly decreased in Medium and High (P < 0.05). Transcriptomic analyses revealed that NPs influenced apoptosis, drug metabolism-cytochrome P450, and P53 signaling pathways. Metabolomic analyses indicated some metabolic processes were affected by NPs, including bile secretion, primary bile acid biosynthesis, and cholesterol metabolism. Caspase 3, 8, and 9 distribution levels in hepatopancreatic tissues were also determined by immunofluorescence; positive caspase staining increased with increased NP concentrations. Additionally, by examining relative Bcl-2, Bax, Apaf-1, and p53 mRNA expression levels, Bcl-2 expression was significantly decreased with increasing NP concentrations; and the expression of Bcl-2 was increasing significantly with the NPs concentration increasing. Bax expression in Low, Medium, and High groups was also significantly higher when compared with the CK group (P < 0.05); with High group levels significantly higher than in Low and Medium groups (P < 0.05). P53 expression was significantly increased in Low, Medium, and High groups (P < 0.05). Thus, NPs induced apoptosis in C. quadricarinatus hepatopancreatic cells, concomitant with increasing NP concentrations. Therefore, we identified mechanisms underpinning NP toxicity in C. quadricarinatus and provide a theoretical basis for exploring NP toxicity in aquatic organisms.
Collapse
Affiliation(s)
- Tian Zhu
- Centre for Marine and Coastal Studies, Universiti Sains Malaysia, Minden, Penang 11700, Malaysia
| | - Chunxia Yao
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Shuang Hong
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Weiguo Song
- Institute for Agri-food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Norlaila Mohd Zanuri
- Centre for Marine and Coastal Studies, Universiti Sains Malaysia, Minden, Penang 11700, Malaysia
| | - Weiwei Lv
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, No. 79 Chating East Rd, Nanjing 210017, China.
| |
Collapse
|
7
|
Casella C, Ballaz SJ. Genotoxic and neurotoxic potential of intracellular nanoplastics: A review. J Appl Toxicol 2024; 44:1657-1678. [PMID: 38494651 DOI: 10.1002/jat.4598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/18/2024] [Accepted: 02/24/2024] [Indexed: 03/19/2024]
Abstract
Plastic waste comprises polymers of different chemicals that disintegrate into nanoplastic particles (NPLs) of 1-100-nm size, thereby littering the environment and posing a threat to wildlife and human health. Research on NPL contamination has up to now focused on the ecotoxicology effects of the pollution rather than the health risks. This review aimed to speculate about the possible properties of carcinogenic and neurotoxic NPL as pollutants. Given their low-dimensional size and high surface size ratio, NPLs can easily penetrate biological membranes to cause functional and structural damage in cells. Once inside the cell, NPLs can interrupt the autophagy flux of cellular debris, alter proteostasis, provoke mitochondrial dysfunctions, and induce endoplasmic reticulum stress. Harmful metabolic and biological processes induced by NPLs include oxidative stress (OS), ROS generation, and pro-inflammatory reactions. Depending on the cell cycle status, NPLs may direct DNA damage, tumorigenesis, and lately carcinogenesis in tissues with high self-renewal capabilities like epithelia. In cells able to live the longest like neurons, NPLs could trigger neurodegeneration by promoting toxic proteinaceous aggregates, OS, and chronic inflammation. NPL genotoxicity and neurotoxicity are discussed based on the gathered evidence, when available, within the context of the intracellular uptake of these newcomer nanoparticles. In summary, this review explains how the risk evaluation of NPL pollution for human health may benefit from accurately monitoring NPL toxicokinetics and toxicodynamics at the intracellular resolution level.
Collapse
Affiliation(s)
- Claudio Casella
- Department Chemical and Environmental Engineering, University of Oviedo, Oviedo, Spain
| | | |
Collapse
|
8
|
Banaei G, Abass D, Tavakolpournegari A, Martín-Pérez J, Gutiérrez J, Peng G, Reemtsma T, Marcos R, Hernández A, García-Rodríguez A. Teabag-derived micro/nanoplastics (true-to-life MNPLs) as a surrogate for real-life exposure scenarios. CHEMOSPHERE 2024; 368:143736. [PMID: 39542373 DOI: 10.1016/j.chemosphere.2024.143736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/26/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
The potential health implications of environmental micro/nanoplastics (MNPLs) are increasingly concerning. Beyond environmental exposure, other sources such as food packaging, including herbal/teabags, may also be significant. This study investigates the release of MNPLs from three commercially available teabags. By simulating tea preparation, MNPL samples were extracted and characterized using a range of analytical techniques: scanning electron microscopy (SEM), transmission electron microscopy (TEM), attenuated total reflectance/Fourier transform infrared spectroscopy (ATR-FTIR), dynamic light scattering (DLS), laser Doppler velocimetry (LDV), and nanoparticle tracking analysis (NTA). The results confirmed that the teabags were made of nylon-6 (NY6), polypropylene (PP), and cellulose (CL) and that microfibers and nano-range particles (NPLs) were present in the leachates. NTA data revealed that the number of released NPLs was 1.20 × 109/mL (PP; 136.7 nm), 1.35 × 108/mL (CL; 244 nm), and 8.18 × 106/mL (NY6; 138.4). The leachate particles were then stained with iDye Poly-Pink and used to expose three human intestine-derived cell types (Caco-2, HT29, and HT29-MTX) to assess their biointeractions and the role of the mucosubstances in vitro. The results demonstrated that after 24 h of exposure to 100 μg/mL NPLs, there was significant uptake of PP-NPLs in HT29-MTX cells, as a model of cells segregating high amount of mucus. A similar uptake was observed for CL-NPLs in HT29 and HT29-MTX cells, while NY6-NPLs were internalized preferentially in Caco-2 cells. These findings underscore the importance of identifying new environmentally relevant MNPL exposure sources, for developing realistic MNPLs samples, and further investigating their potential human health effects.
Collapse
Affiliation(s)
- Gooya Banaei
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
| | - Doaa Abass
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain; Zoology Department, Faculty of Science, Sohag University, 82524, Sohag, Egypt
| | - Alireza Tavakolpournegari
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
| | - Joan Martín-Pérez
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
| | - Javier Gutiérrez
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain
| | - Guyu Peng
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Analytical Chemistry, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Thorsten Reemtsma
- Helmholtz Centre for Environmental Research - UFZ, Department of Environmental Analytical Chemistry, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Ricard Marcos
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain.
| | - Alba Hernández
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain.
| | - Alba García-Rodríguez
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Spain.
| |
Collapse
|
9
|
Villacorta A, Cazorla-Ares C, Fuentes-Cebrian V, Valido IH, Vela L, Carrillo-Navarrete F, Morataya-Reyes M, Mejia-Carmona K, Pastor S, Velázquez A, Arribas Arranz J, Marcos R, López-Mesas M, Hernández A. Fluorescent labeling of micro/nanoplastics for biological applications with a focus on "true-to-life" tracking. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135134. [PMID: 38986413 DOI: 10.1016/j.jhazmat.2024.135134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/24/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
The increased environmental presence of micro-/nanoplastics (MNPLs) and the potential health risks associated with their exposure classify them as environmental pollutants with special environmental and health concerns. Consequently, there is an urgent need to investigate the potential risks associated with secondary MNPLs. In this context, using "true-to-life" MNPLs, resulting from the laboratory degradation of plastic goods, may be a sound approach. These non-commercial secondary MNPLs must be labeled to track their presence/journeys inside cells or organisms. Because the cell internalization of MNPLs is commonly analyzed using fluorescence techniques, the use of fluorescent dyes may be a sound method to label them. Five different compounds comprising two chemical dyes (Nile Red and Rhodamine-B), one optical brightener (Opticol), and two industrial dyes (Amarillo Luminoso and iDye PolyPink) were tested to determine their potential for such applications. Using commercial standards of polystyrene nanoplastics (PSNPLs) with an average size of 170 nm, different characteristics of the selected dyes such as the absence of impact on cell viability, specificity for plastic staining, no leaching, and lack of interference with other fluorochromes were analyzed. Based on the overall data obtained in the wide battery of assays performed, iDye PolyPink exhibited the most advantages, with respect to the other compounds, and was selected to effectively label "true-to-life" MNPLs. These advantages were confirmed using a proposed protocol, and labeling titanium-doped PETNPLs (obtained from the degradation of milk PET plastic bottles), as an example of "true-to-life" secondary NPLs. These results confirmed the usefulness of iDye PolyPink for labeling MNPLs and detecting cell internalization.
Collapse
Affiliation(s)
- Aliro Villacorta
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Iquique, Chile
| | - Camila Cazorla-Ares
- GTS Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Victor Fuentes-Cebrian
- GTS Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Iris H Valido
- GTS Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Lourdes Vela
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Faculty of Health Sciences Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Fernando Carrillo-Navarrete
- Institut d'Investigació Tèxtil i Cooperació Industrial de Terrassa (INTEXTER) and Department of Chemical Engineering, Universitat Politècnica de Catalunya, Terrassa 08222, Barcelona, Spain
| | - Michelle Morataya-Reyes
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Karen Mejia-Carmona
- Institut Català de Nanociència i Nanotecnologia (ICN2-UAB-CSIC-BIST), Cerdanyola del Vallès, Spain
| | - Susana Pastor
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Antonia Velázquez
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Jéssica Arribas Arranz
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Ricard Marcos
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Montserrat López-Mesas
- GTS Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain.
| | - Alba Hernández
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain.
| |
Collapse
|
10
|
Choi H, Kaneko S, Suzuki Y, Inamura K, Nishikawa M, Sakai Y. Size-Dependent Internalization of Microplastics and Nanoplastics Using In Vitro Model of the Human Intestine-Contribution of Each Cell in the Tri-Culture Models. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1435. [PMID: 39269097 PMCID: PMC11397364 DOI: 10.3390/nano14171435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Pollution by microplastics and nanoplastics (MNPs) raises concerns, not only regarding their environmental effects, but also their potential impact on human health by internalization via the small intestine. However, the detailed pathways of MNP internalization and their toxicities to the human intestine have not sufficiently been understood, thus, further investigations are required. This work aimed to understand the behavior of MNPs, using in vitro human intestine models, tri-culture models composed of enterocyte Caco-2 cells, goblet-like HT29-MTX-E12 cells, and microfold cells (M cells) induced by the lymphoblast cell line Raji B. Three sizes (50, 100, and 500 nm) of polystyrene (PS) particles were exposed as MNPs on the culture model, and size-dependent translocation of the MNPs and the contributions of each cell were clarified, emphasizing the significance of the tri-culture model. In addition, potential concerns of MNPs were suggested when they invaded the circulatory system of the human body.
Collapse
Affiliation(s)
- Hyunjin Choi
- Department of Chemical System Engineering, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| | - Shohei Kaneko
- Department of Chemical System Engineering, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| | - Yusei Suzuki
- Department of Chemical System Engineering, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| | - Kosuke Inamura
- Department of Chemical System Engineering, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| | - Masaki Nishikawa
- Department of Chemical System Engineering, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| | - Yasuyuki Sakai
- Department of Chemical System Engineering, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
11
|
Subramanian D, Ponnusamy Manogaran G, Dharmadurai D. A systematic review on the impact of micro-nanoplastics on human health: Potential modulation of epigenetic mechanisms and identification of biomarkers. CHEMOSPHERE 2024; 363:142986. [PMID: 39094707 DOI: 10.1016/j.chemosphere.2024.142986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Epigenetic-mediated modifications, induced by adverse environmental conditions, significantly alter an organism's physiological mechanisms. Even after elimination of the stimulus, these epigenetic modifications can be inherited through mitosis, thereby triggering transgenerational epigenetics. Plastics, with their versatile properties, are indispensable in various aspects of daily life. However, due to mismanagement, plastics have become so ubiquitous in the environment that no ecosystem on Earth is free from micro-nanoplastics (MNPs). This situation has raised profound concerns regarding their potential impact on human health. Recently, both in vivo animal and in vitro human cellular models have shown the potential to identify the harmful effects of MNPs at the genome level. The emerging epigenetic impact of MNP exposure is characterized by short-term alterations in chromatin remodelling and miRNA modulation. However, to understand long-term epigenetic changes and potential transgenerational effects, substantial and more environmentally realistic exposure studies are needed. In the current review, the intricate epigenetic responses, including the NHL-2-EKL-1, NDK-1-KSR1/2, and WRT-3-ASP-2 cascades, wnt-signalling, and TGF- β signalling, established in model organisms such as C. elegans, mice, and human cell lines upon exposure to MNPs, were systematically examined. This comprehensive analysis aimed to predict human pathways by identifying human homologs using databases and algorithms. We are confident that various parallel miRNA pathways, specifically the KSR-ERK-MAPK pathway, FOXO-Insulin cascade, and GPX3-HIF-α in humans, may be influenced by MNP exposure. This influence may lead to disruptions in key metabolic and immune pathways, including glucose balance, apoptosis, cell proliferation, and angiogenesis. Therefore, we believe that these genes and pathways could serve as potential biomarkers for future studies. Additionally, this review emphasizes the origin, dispersion, and distribution of plastics, providing valuable insights into the complex relationship between plastics and human health while elaborating on the epigenetic impacts.
Collapse
Affiliation(s)
- Darshini Subramanian
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, 560064, Karnataka, India.
| | | | - Dhanasekaran Dharmadurai
- Department of Microbiology, Bharathidasan University, Tiruchirappalli, 620024, Tamil Nadu, India.
| |
Collapse
|
12
|
García-Rodríguez A, Gutiérrez J, Villacorta A, Arribas Arranz J, Romero-Andrada I, Lacoma A, Marcos R, Hernández A, Rubio L. Polylactic acid nanoplastics (PLA-NPLs) induce adverse effects on an in vitro model of the human lung epithelium: The Calu-3 air-liquid interface (ALI) barrier. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134900. [PMID: 38878440 DOI: 10.1016/j.jhazmat.2024.134900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/04/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
The expected increments in the production/use of bioplastics, as an alternative to petroleum-based plastics, require a deep understanding of their potential environmental and health hazards, mainly as nanoplastics (NPLs). Since one important exposure route to NPLs is through inhalation, this study aims to determine the fate and effects of true-to-life polylactic acid nanoplastics (PLA-NPLs), using the in vitro Calu-3 model of bronchial epithelium, under air-liquid interphase exposure conditions. To determine the harmful effects of PLA-NPLs in a more realistic scenario, both acute (24 h) and long-term (1 and 2 weeks) exposures were used. Flow cytometry results indicated that PLA-NPLs internalized easily in the barrier (∼10 % at 24 h and ∼40 % after 2 weeks), which affected the expression of tight-junctions formation (∼50 % less vs control) and the mucus secretion (∼50 % more vs control), both measured by immunostaining. Interestingly, significant genotoxic effects (DNA breaks) were detected by using the comet assay, with long-term effects being more marked than acute ones (7.01 vs 4.54 % of DNA damage). When an array of cellular proteins including cytokines, chemokines, and growth factors were used, a significant over-expression was mainly found in long-term exposures (∼20 proteins vs 5 proteins after acute exposure). Overall, these results described the potential hazards posed by PLA-NPLs, under relevant long-term exposure scenarios, highlighting the advantages of the model used to study bronchial epithelium tissue damage, and signaling endpoints related to inflammation.
Collapse
Affiliation(s)
- Alba García-Rodríguez
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Javier Gutiérrez
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Aliro Villacorta
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Iquique, Chile
| | - Jéssica Arribas Arranz
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | | | - Alicia Lacoma
- Institut d'Investigació Germans Trias i Pujol, Badalona, Spain
| | - Ricard Marcos
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
| | - Alba Hernández
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
| | - Laura Rubio
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
| |
Collapse
|
13
|
Martín-Pérez J, Villacorta A, Banaei G, Morataya-Reyes M, Tavakolpournegari A, Marcos R, Hernández A, García-Rodriguez A. Hazard assessment of nanoplastics is driven by their surface-functionalization. Effects in human-derived primary endothelial cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173236. [PMID: 38761522 DOI: 10.1016/j.scitotenv.2024.173236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/14/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
During plastic waste degradation into micro/nanoplastics (MNPLs) their physicochemical characteristics including surface properties (charge, functionalization, biocorona, etc.) can change, potentially affecting their biological effects. This paper focuses on the surface functionalization of MNPLs to determine if it has a direct impact on the toxicokinetic and toxicodynamic interactions in human umbilical vein endothelial cells (HUVECs), at different exposure times. Pristine polystyrene nanoplastics (PS-NPLs), as well as their carboxylated (PS-C-NPLs) and aminated (PS-A-NPLs) forms, all around 50 nm, were used in a wide battery of toxicological assays. These assays encompassed evaluations on cell viability, cell internalization, induction of intracellular reactive oxygen species (iROS), and genotoxicity. The experiments were conducted at a concentration of 100 μg/mL, chosen to ensure a high internalization rate across all treatments while maintaining a sub-toxic concentration. Our results show that all PS-NPLs are internalized by HUVECs, but the internalization dynamic depends on the particle's functionalization. PS-NPLs and PS-C-NPLs internalization modify the morphology of the cell increasing its inner complexity/granularity. Regarding cell toxicity, only PS-A-NPLs reduced cell viability. Intracellular ROS was induced by the three different PS-NPLs but at different time points. Genotoxic damage was induced by the three PS-NPLs at short exposures (2 h), but not for PS-C-NPLs at 24 h. Overall, this study suggests that the toxicological effects of PSNPLs on HUVEC cells are surface-dependent, highlighting the relevance of using human-derived primary cells as a target.
Collapse
Affiliation(s)
- Joan Martín-Pérez
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Aliro Villacorta
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Iquique, Chile
| | - Gooya Banaei
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Michelle Morataya-Reyes
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Alireza Tavakolpournegari
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Ricard Marcos
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain.
| | - Alba Hernández
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain.
| | - Alba García-Rodriguez
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain.
| |
Collapse
|
14
|
Adler MY, Issoual I, Rückert M, Deloch L, Meier C, Tschernig T, Alexiou C, Pfister F, Ramsperger AF, Laforsch C, Gaipl US, Jüngert K, Paulsen F. Effect of micro- and nanoplastic particles on human macrophages. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134253. [PMID: 38642497 DOI: 10.1016/j.jhazmat.2024.134253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/27/2024] [Accepted: 04/08/2024] [Indexed: 04/22/2024]
Abstract
Micro- and nanoplastics (MNPs) are ubiquitous in the environment, resulting in the uptake of MNPs by a variety of organisms, including humans, leading to particle-cell interaction. Human macrophages derived from THP-1 cell lines take up Polystyrene (PS), a widespread plastic. The question therefore arises whether primary human macrophages also take up PS micro- and nanobeads (MNBs) and how they react to this stimulation. Major aim of this study is to visualize this uptake and to validate the isolation of macrophages from peripheral blood mononuclear cells (PBMCs) to assess the impact of MNPs on human macrophages. Uptake of macrophages from THP-1 cell lines and PBMCs was examined by transmission electron microscopy (TEM), scanning electron microscopy and live cell imaging. In addition, the reaction of the macrophages was analyzed in terms of metabolic activity, cytotoxicity, production of reactive oxygen species (ROS) and macrophage polarization. This study is the first to visualize PS MNBs in primary human cells using TEM and live cell imaging. Metabolic activity was size- and concentration-dependent, necrosis and ROS were increased. The methods demonstrated in this study outline an approach to assess the influence of MNP exposure on human macrophages and help investigating the consequences of worldwide plastic pollution.
Collapse
Affiliation(s)
- Maike Y Adler
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Insaf Issoual
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Chair of Machine Learning and Data Analytics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Rückert
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Lisa Deloch
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Carola Meier
- Institute of Anatomy and Cell Biology, Saarland University, Homburg/Saar, Germany
| | - Thomas Tschernig
- Institute of Anatomy and Cell Biology, Saarland University, Homburg/Saar, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Felix Pfister
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Christian Laforsch
- Animal Ecology I and Bay CEER, University of Bayreuth, Bayreuth, Germany
| | - Udo S Gaipl
- Translational Radiobiology, Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Katharina Jüngert
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Friedrich Paulsen
- Department of Functional and Clinical Anatomy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
15
|
Tavakolpournegari A, Villacorta A, Morataya-Reyes M, Arribas Arranz J, Banaei G, Pastor S, Velázquez A, Marcos R, Hernández A, Annangi B. Harmful effects of true-to-life nanoplastics derived from PET water bottles in human alveolar macrophages. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123823. [PMID: 38513942 DOI: 10.1016/j.envpol.2024.123823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/08/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
The increasing presence of secondary micro/nanoplastics (MNPLs) in the environment requires knowing if they represent a real health concern. To such end, an important point is to test representative MNPLs such as the denominated true-to-life MNPLs, resulting from the degradation of plastic goods in lab conditions. In this study, we have used polyethylene terephthalate (PET) NPLs resulting from the degradation of PET water bottles. Since inhalation is an important exposure route to environmental MNPLS, we have used mouse alveolar macrophages (MH-S) as a target cell, and the study focused only on the cells that have internalized them. This type of approach is novel as it may capture the realistic adverse effects of PETNPLs only in the internalized cells, thereby mitigating any biases while assessing the risk of these MNPLs. Furthermore, the study utilized a set of biomarkers including intracellular reactive oxygen species (ROS) levels, variations on the mitochondrial membrane potential values, and the macrophage polarization to M1 (pro-inflammatory response) and M2 (anti-proinflammatory response) as possible cellular effects due to PETNPLs in only the cells that internalized PETNPLs. After exposures lasting for 3 and 24 h to a range of concentrations (0, 25, 50, and 100 μg/mL) the results indicate that no toxicity was induced despite the 100% internalization observed at the highest concentration. Significant intracellular levels of ROS were observed, mainly at exposures lasting for 24 h, in an indirect concentration-effect relationship. Interestingly, a reduction in the mitochondrial membrane potential was observed, but only at exposures lasting for 24 h, but without a clear concentration-effect relationship. Finally, PETNPL exposure shows a significant polarization from M0 to M1 and M2 subtypes. Polarization to M1 (pro-inflammatory stage) was more marked and occurred at both exposure times. Polarization to M2 (anti-inflammatory stage) was only observed after exposures lasting for 24 h. Due to the relevance of the described biomarkers, our results underscore the need for further research, to better understand the health implications associated with MNPL exposure.
Collapse
Affiliation(s)
- Alireza Tavakolpournegari
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Aliro Villacorta
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain; Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Iquique, Chile
| | - Michelle Morataya-Reyes
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Jéssica Arribas Arranz
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Gooya Banaei
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Susana Pastor
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Antonia Velázquez
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Ricard Marcos
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain.
| | - Alba Hernández
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Balasubramanyam Annangi
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
16
|
Chen CY, Lin Z. Exploring the potential and challenges of developing physiologically-based toxicokinetic models to support human health risk assessment of microplastic and nanoplastic particles. ENVIRONMENT INTERNATIONAL 2024; 186:108617. [PMID: 38599027 DOI: 10.1016/j.envint.2024.108617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/05/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024]
Abstract
Microplastics (MPs) and nanoplastics (NPs) pollution has emerged as a significant and widespread environmental issue. Humans are inevitably exposed to MPs and NPs via ingestion, inhalation, and dermal contacts from various sources. However, mechanistic knowledge of their distribution, interaction, and potency in the body is still lacking. To address this knowledge gap, we have undertaken the task of elucidating the toxicokinetic (TK) behaviors of MPs and NPs, aiming to provide mechanistic information for constructing a conceptual physiologically based toxicokinetic (PBTK) model to support in silico modeling approaches. Our effort involved a thorough examination of the existing literature and data collation on the presence of MPs in the human body and in vitro/ex vivo/in vivo biodistribution across various cells and tissues. By comprehending the absorption, distribution, metabolism, and excretion mechanisms of MPs and NPs in relation to their physicochemical attributes, we established a foundational understanding of the link between external exposure and internal tissue dosimetry. We observed that particle size and surface chemistry have been thoroughly explored in previous experimental studies. However, certain attributes, such as polymer type, shape, and biofilm/biocorona, warrant attention and further examination. We discussed the fundamental disparities in TK properties of MPs/NPs from those of engineered nanoparticles. We proposed a preliminary PBTK framework with several possible modeling approaches and discussed existing challenges for further investigation. Overall, this article provides a comprehensive compilation of existing TK data of MPs/NPs, a critical overview of TK processes and mechanisms, and proposes potential PBTK modeling approaches, particularly regarding their applicability to the human system, and outlines future perspectives for developing PBTK models and their integration into human health risk assessment of MPs and NPs.
Collapse
Affiliation(s)
- Chi-Yun Chen
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, United States; Center for Environmental and Human Toxicology, University of Florida, FL 32608, United States
| | - Zhoumeng Lin
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, United States; Center for Environmental and Human Toxicology, University of Florida, FL 32608, United States.
| |
Collapse
|
17
|
Jain Y, Govindasamy H, Kaur G, Ajith N, Ramasamy K, R S R, Ramachandran P. Microplastic pollution in high-altitude Nainital lake, Uttarakhand, India. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123598. [PMID: 38369088 DOI: 10.1016/j.envpol.2024.123598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Microplastics (MPs) contamination has been reported in all environmental compartments, but very limited information is available at higher-altitude lakes. Nainital Lake, located at a high altitude in the Indian Himalayas, has various ecosystem services and is the major source of water for Nainital town, but the MP abundance is still unknown. This study presents the first evidence of the abundance and distribution of MP in Nainital Lake. Surface water and sediment samples were analysed from 16 different sites in and around the catchment area of Nainital Lake. The MP were observed in all the samples, and their abundance in surface water was 8.6-56.0 particles L-1 in the lake and 2.4-88.0 particles L-1 in hotspot sites. In the surface sediment, MP abundance ranged from 0.4-10.6 particles g-1, while in the hotspot sediment, the mean abundance was 0.6 ± 0.5 particles g-1. Fibers were the dominant MP, while 0.02-1 mm were the predominant size of MP particles. The results of chemical characterization showed the presence of six polymers, among which high-density polyethylene was the most abundant. The Polymer Hazard Index assessment classified the identified polymers as low-to high-risk categories, with a higher abundance of low- (polypropylene) and medium- (polyethylene)-risk polymers. Tourist activities and run-off catchments can be considered the major sources of MP, which can affect the ecosystem. Minimal concentrations of MP were observed in the tube well and drinking water, which depicts the direct risks to humans and, thus, the need for remedial measures to prevent MP contamination in drinking water. This study improves the knowledge of MP contamination in the higher-altitude freshwater lake, which can be the major pathway for the transport of MP to the rivers, and also emphasizes the need for waste management in Nainital town.
Collapse
Affiliation(s)
- Yashi Jain
- School of Life Sciences, Department of Ecology and Environmental Science, Pondicherry University. India.
| | - Hariharan Govindasamy
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai. India
| | - Gurjeet Kaur
- School of Life Sciences, Department of Ecology and Environmental Science, Pondicherry University. India
| | - Nithin Ajith
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai. India
| | - Karthik Ramasamy
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai. India
| | - Robin R S
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai. India
| | - Purvaja Ramachandran
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai. India
| |
Collapse
|
18
|
Zeng G, Li J, Wang Y, Su J, Lu Z, Zhang F, Ding W. Polystyrene microplastic-induced oxidative stress triggers intestinal barrier dysfunction via the NF-κB/NLRP3/IL-1β/MCLK pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123473. [PMID: 38301820 DOI: 10.1016/j.envpol.2024.123473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/03/2024]
Abstract
Emerging evidence has demonstrated the association between microplastics (MPs) with a diameter of <5 mm and the risk of intestinal diseases. However, the molecular mechanisms contributing to MP-induced intestinal barrier dysfunction have not been fully appreciated. In this study, C57BL/6 J mice were exposed to polystyrene microplastics (PS-MPs, 0.2, 1 or 5 μm) at 1 mg/kg body weight daily by oral gavage for 28 days. We found that PS-MPs exposure induced oxidative stress and inflammatory cell infiltration in mice colon, leading to an increased expression of pro-inflammatory cytokine. Moreover, there were an increase in intestinal permeability and decrease in mucus secretion, accompanied by downregulation of tight junction (TJ)-related zonula occluden-1 (ZO-1), occluding (OCLN) and claudin-1 (CLDN-1) in mice colon. Especially, 5 μm PS-MPs (PS5)-induced intestinal epithelial TJ barrier damage was more severe than 0.2 μm PS-MPs (PS0.2) and 1 μm PS-MPs (PS1). In vitro experiments indicated that PS5-induced oxidative stress upregulated the expression of nuclear factor kappa B (NF-κB), nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome, and myosin light chain kinase (MLCK). Meanwhile, pre-treatment with the antioxidant NAC, NLRP3 inhibitor MCC950 and MLCK inhibitor ML-7 considerably reduced PS5-triggered reactive oxygen species (ROS) production and inflammatory response, inhibited the activation of the NF-κB/NLRP3/MLCK pathway, and upregulated ZO-1, OCLN and CLDN-1 expression in Caco-2 cells. Taken together, our study demonstrated that PS-MPs cause intestinal barrier dysfunction through the ROS-dependent NF-κB/NLRP3/IL-1β/MLCK pathway.
Collapse
Affiliation(s)
- Guodong Zeng
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyi Li
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanli Wang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingran Su
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongbing Lu
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Zhang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjun Ding
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
19
|
Liu Z, Wang G, Sheng C, Zheng Y, Tang D, Zhang Y, Hou X, Yao M, Zong Q, Zhou Z. Intracellular Protein Adsorption Behavior and Biological Effects of Polystyrene Nanoplastics in THP-1 Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2652-2661. [PMID: 38294362 DOI: 10.1021/acs.est.3c05493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Micro(nano)plastics (MNPs) are emerging pollutants that can adsorb pollutants in the environment and biological molecules and ultimately affect human health. However, the aspects of adsorption of intracellular proteins onto MNPs and its biological effects in cells have not been investigated to date. The present study revealed that 100 nm polystyrene nanoplastics (NPs) could be internalized by THP-1 cells and specifically adsorbed intracellular proteins. In total, 773 proteins adsorbed onto NPs with high reliability were identified using the proteomics approach and analyzed via bioinformatics to predict the route and distribution of NPs following cellular internalization. The representative proteins identified via the Kyoto Encyclopedia of Genes and Genomes pathway analysis were further investigated to characterize protein adsorption onto NPs and its biological effects. The analysis revealed that NPs affect glycolysis through pyruvate kinase M (PKM) adsorption, trigger the unfolded protein response through the adsorption of ribophorin 1 (RPN1) and heat shock 70 protein 8 (HSPA8), and are chiefly internalized into cells through clathrin-mediated endocytosis with concomitant clathrin heavy chain (CLTC) adsorption. Therefore, this work provides new insights and research strategies for the study of the biological effects caused by NPs.
Collapse
Affiliation(s)
- Zijia Liu
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Guozhen Wang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Clinical Laboratory, China-Japan Friendship Hospital, Beijing 100124, China
| | - Chao Sheng
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yuchen Zheng
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Duo Tang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yuchen Zhang
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Xiaonan Hou
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Mengfei Yao
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Qi Zong
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Zhixiang Zhou
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
20
|
Kiran NS, Yashaswini C, Chatterjee A. Noxious ramifications of cosmetic pollutants on gastrointestinal microbiome: A pathway to neurological disorders. Life Sci 2024; 336:122311. [PMID: 38043908 DOI: 10.1016/j.lfs.2023.122311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/10/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
On exposure to cosmetic pollutants, gastrointestinal dysbiosis, which is characterised by a disturbance in the gut microbiota, has come into focus as a possible contributor to the occurrence of neurotoxic consequences. It is normal practice to use personal care products that include parabens, phthalates, sulphates, triclosans/triclocarbans and micro/nano plastics. These substances have been found in a variety of bodily fluids and tissues, demonstrating their systemic dispersion. Being exposed to these cosmetic pollutants has been linked in recent research to neurotoxicity, including cognitive decline and neurodevelopmental problems. A vital part of sustaining gut health and general well-being is the gut flora. Increased intestinal permeability, persistent inflammation, and impaired metabolism may result from disruption of the gut microbial environment, which may in turn contribute to neurotoxicity. The link between gastrointestinal dysbiosis and the neurotoxic effects brought on by cosmetic pollutants may be explained by a number of processes, primarily the gut-brain axis. For the purpose of creating preventative and therapeutic measures, it is crucial to comprehend the intricate interactions involving cosmetic pollutants, gastrointestinal dysbiosis, and neurotoxicity. This review provides an in-depth understanding of the various hazardous cosmetic pollutants and its potential role in the occurrence of neurological disorders via gastrointestinal dysbiosis, providing insights into various described and hypothetical mechanisms regarding the complex toxic effects of these industrial pollutants.
Collapse
Affiliation(s)
- Neelakanta Sarvashiva Kiran
- Department of Biotechnology, School of Applied Sciences, REVA University, Kattigenahalli, Yelahanka, Bangalore, Karnataka 560064, India
| | - Chandrashekar Yashaswini
- Department of Biotechnology, School of Applied Sciences, REVA University, Kattigenahalli, Yelahanka, Bangalore, Karnataka 560064, India
| | - Ankita Chatterjee
- Department of Biotechnology, School of Applied Sciences, REVA University, Kattigenahalli, Yelahanka, Bangalore, Karnataka 560064, India.
| |
Collapse
|
21
|
Rajendran D, Chandrasekaran N. Journey of micronanoplastics with blood components. RSC Adv 2023; 13:31435-31459. [PMID: 37901269 PMCID: PMC10603568 DOI: 10.1039/d3ra05620a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/09/2023] [Indexed: 10/31/2023] Open
Abstract
The entry of micro- and nanoplastics (MNPs) into the human body is inevitable. They enter blood circulation through ingestion, inhalation, and dermal contact by crossing the gut-lung-skin barrier (the epithelium of the digestive tract, the respiratory tract, and the cutaneous layer). There are many reports on their toxicities to organs and tissues. This paper presents the first thorough assessment of MNP-driven bloodstream toxicity and the mechanism of toxicity from the viewpoint of both MNP and environmental co-pollutant complexes. Toxic impacts include plasma protein denaturation, hemolysis, reduced immunity, thrombosis, blood coagulation, and vascular endothelial damage, among others, which can lead to life-threatening diseases. Protein corona formation, oxidative stress, cytokine alterations, inflammation, and cyto- and genotoxicity are the key mechanisms involved in toxicity. MNPs change the secondary structure of plasma proteins, thereby preventing their transport functions (for nutrients, drugs, oxygen, etc.). MNPs inhibit erythropoiesis by influencing hematopoietic stem cell proliferation and differentiation. They cause red blood cell and platelet aggregation, as well as increased adherence to endothelial cells, which can lead to thrombosis and cardiovascular disease. White blood cells and immune cells phagocytose MNPs, provoking inflammation. However, research gaps still exist, including gaps regarding the combined toxicity of MNPs and co-pollutants, toxicological studies in human models, advanced methodologies for toxicity analysis, bioaccumulation studies, inflammation and immunological responses, dose-response relationships of MNPs, and the effect of different physiochemical characteristics of MNPs. Furthermore, most studies have analyzed toxicity using prepared MNPs; hence, studies must be undertaken using true-to-life MNPs to determine the real-world scenario. Additionally, nanoplastics may further degrade into monomers, whose toxic effects have not yet been explored. The research gaps highlighted in this review will inspire future studies on the toxicity of MNPs in the vascular/circulatory systems utilizing in vivo models to enable more reliable health risk assessment.
Collapse
Affiliation(s)
- Durgalakshmi Rajendran
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore 632014 Tamil Nadu India +91 416 2243092 +91 416 2202624
| | - Natarajan Chandrasekaran
- Centre for Nanobiotechnology, Vellore Institute of Technology Vellore 632014 Tamil Nadu India +91 416 2243092 +91 416 2202624
| |
Collapse
|
22
|
Zingaro F, Gianoncelli A, Ceccone G, Birarda G, Cassano D, La Spina R, Agostinis C, Bonanni V, Ricci G, Pascolo L. Morphological and lipid metabolism alterations in macrophages exposed to model environmental nanoplastics traced by high-resolution synchrotron techniques. Front Immunol 2023; 14:1247747. [PMID: 37744340 PMCID: PMC10515218 DOI: 10.3389/fimmu.2023.1247747] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/14/2023] [Indexed: 09/26/2023] Open
Abstract
The release of nanoplastics (NPs) in the environment is a significant health concern for long-term exposed humans. Although their usage has certainly revolutionized several application fields, at nanometer size, NPs can easily interact at the cellular level, resulting in potential harmful effects. Micro/Nanoplastics (M/NPs) have a demonstrated impact on mammalian endocrine components, such as the thyroid, adrenal gland, testes, and ovaries, while more investigations on prenatal and postnatal exposure are urgently required. The number of literature studies on the NPs' presence in biological samples is increasing. However, only a few offer a close study on the model environmental NP-immune system interaction exploited by advanced microscopy techniques. The present study highlights substantial morphological and lipid metabolism alterations in human M1 macrophages exposed to labeled polypropylene and polyvinyl chloride nanoparticles (PP and PVC NPs) (20 μg/ml). The results are interpreted by advanced microscopy techniques combined with standard laboratory tests and fluorescence microscopy. We report the accurate detection of polymeric nanoparticles doped with cadmium selenide quantum dots (CdSe-QDs NPs) by following the Se (L line) X-ray fluorescence emission peak at higher sub-cellular resolution, compared to the supportive light fluorescence microscopy. In addition, scanning transmission X-ray microscopy (STXM) imaging successfully revealed morphological changes in NP-exposed macrophages, providing input for Fourier transform infrared (FTIR) spectroscopy analyses, which underlined the chemical modifications in macromolecular components, specifically in lipid response. The present evidence was confirmed by quantifying the lipid droplet (LD) contents in PP and PVC NPs-exposed macrophages (0-100 μg/ml) by Oil Red O staining. Hence, even at experimental NPs' concentrations and incubation time, they do not significantly affect cell viability; they cause an evident lipid metabolism impairment, a hallmark of phagocytosis and oxidative stress.
Collapse
Affiliation(s)
| | | | - Giacomo Ceccone
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | | | - Rita La Spina
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Chiara Agostinis
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | | | - Giuseppe Ricci
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Lorella Pascolo
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| |
Collapse
|
23
|
Møller P, Roursgaard M. Exposure to nanoplastic particles and DNA damage in mammalian cells. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108468. [PMID: 37666295 DOI: 10.1016/j.mrrev.2023.108468] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
There is concern about human exposure to nanoplastics from intentional use or degradation of plastics in the environment. This review assesses genotoxic effects of nanoplastics, defined as particles with a primary size of less than 1000 nm. The majority of results on genotoxicity come from studies on polystyrene (PS) particles in mammalian cell cultures. Most studies have measured DNA strand breaks (standard comet assay), oxidatively damaged DNA (Fpg-modified comet assay) and micronuclei. Twenty-nine out of 60 results have shown statistically significant genotoxic effects by PS exposure in cell cultures. A statistical analysis indicates that especially modified PS particles are genotoxic (odds ratio = 8.6, 95 % CI: 1.6, 46) and immune cells seems to be more sensitive to genotoxicity than other cell types such as epithelial cells (odds ratio = 8.0, 95 % CI: 1.6, 39). On the contrary, there is not a clear association between statistically significant effects in genotoxicity tests and the primary size of PS particles, (i.e. smaller versus larger than 100 nm) or between the type of genotoxic endpoint (i.e. repairable versus permanent DNA lesions). Three studies of PS particle exposure in animals have shown increased level of DNA strand breaks in leukocytes and prefrontal cortex cells. Nanoplastics from polyethylene, propylene, polyvinyl chloride and polyethylene terephthalate have been investigated in very few studies and it is currently not possible to draw conclusion about their genotoxic hazard. In summary, there is some evidence suggesting that PS particles may be genotoxic in mammalian cells.
Collapse
Affiliation(s)
- Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark.
| | - Martin Roursgaard
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| |
Collapse
|
24
|
Banaei G, García-Rodríguez A, Tavakolpournegari A, Martín-Pérez J, Villacorta A, Marcos R, Hernández A. The release of polylactic acid nanoplastics (PLA-NPLs) from commercial teabags. Obtention, characterization, and hazard effects of true-to-life PLA-NPLs. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131899. [PMID: 37354720 DOI: 10.1016/j.jhazmat.2023.131899] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/30/2023] [Accepted: 06/18/2023] [Indexed: 06/26/2023]
Abstract
This study investigates MNPLs release from commercially available teabags and their effects on both undifferentiated monocultures of Caco-2 and HT29 and in the in vitro model of the intestinal Caco-2/HT29 barrier. Teabags were subjected to mechanical and thermodynamic forces simulating the preparation of a cup of tea. The obtained dispersions were characterized using TEM, SEM, DLS, LDV, NTA, and FTIR. Results confirmed that particles were in the nano-range, constituted by polylactic acid (PLA-NPLs), and about one million of PLA-NPLs per teabag were quantified. PLA-NPLs internalization, cytotoxicity, intracellular reactive oxygen species induction, as well as structural and functional changes in the barrier were assessed. Results show that PLA-NPLs present high uptake rates, especially in mucus-secretor cells, and bio-persisted in the tissue after 72 h of exposure. Although no significant cytotoxicity was observed after the exposure to 100 µg/mL PLA-NPLs during 48 h, a slight barrier disruption could be detected at short-time periods. The present work reveals new insights into the safety of polymer-based teabags, the behavior of true-to-life MNPLs in the human body, as well as new questions on how repeated and prolonged exposures could affect the structure and function of the human intestinal epithelium.
Collapse
Affiliation(s)
- Gooya Banaei
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Alba García-Rodríguez
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Alireza Tavakolpournegari
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Juan Martín-Pérez
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Aliro Villacorta
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Iquique, Chile
| | - Ricard Marcos
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
| | - Alba Hernández
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
| |
Collapse
|
25
|
Lee Y, Cho S, Park K, Kim T, Kim J, Ryu DY, Hong J. Potential lifetime effects caused by cellular uptake of nanoplastics: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121668. [PMID: 37087090 DOI: 10.1016/j.envpol.2023.121668] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Plastics have been used for about 100 years, and daily-use products composed of plastics are now prevalent. As a result, humans are very easily exposed to the plastic particles generated from the daily-use plastics. However, studies on cellular uptake of nanoplastics in "human cells" have only recently begun to attract attention. In previous studies, definitions of nanoplastics and microplastics were vague, but recently, they have been considered to be different and are being studied separately. However, nanoplastics, unlike plastic particles of other sizes such as macro- and microplastics, can be absorbed by human cells, and thus can cause various risks such as cytotoxicity, inflammation, oxidative stress, and even diseases such as cancer82, 83. and diabetes (Fan et al., 2022; Wang et al., 2023). Thus, in this review, we defined microplastics and nanoplastics to be different and described the potential risks of nanoplastics to human caused by cellular uptake according to their diverse factors. In addition, during and following plastic product usage a substantial number of fragments of different sizes can be generated, including nanoplastics. Fragmentation of microplastics into nanoplastics may also occur during ingestion and inhalation, which can potentially cause long-term hazards to human health. However, there are still few in vivo studies conducted on the health effect of nanoplastics ingestion and inhalation.
Collapse
Affiliation(s)
- Yoojin Lee
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Seongeun Cho
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Kyungtae Park
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Taihyun Kim
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jiyu Kim
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Du-Yeol Ryu
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jinkee Hong
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|