1
|
Deng H, Guo L, Wu G, Chen Z, Abbas F, Yin Q. Preparation and evaluation of ozone micro-nano bubbles ice for Litchi precooling. Food Chem 2025; 472:142945. [PMID: 39826517 DOI: 10.1016/j.foodchem.2025.142945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/08/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Ozone (O3) is an effective agent for post-harvest fruit preservation against diverse microorganisms. In this study, a cost-effective ozone micro-nano bubbles ice (O3-MNBI) was prepared, characterized, and subsequently used to precool litchi. The optimal protocols for O3-MNBI production were as follows: water (2 °C, pH = 7) was pumped into a micro-nano O3 bubble generator for 10 min aeration treatment. The water was then contained in a box and immersed in the supercooled NaCl solution (-20 °C) to form O3-MNBI. The microscope image confirmed that the sizes of the ultrafine bubbles were predominantly less than 100 μm. The stable release duration of O3 was 168 h. Litchi precooled by O3-MNBI for 20 min exhibited significantly (p < 0.05) elevated L*, a*, b* values, reduced total microbial colony count, respiration rate, relative conductance, and stable total soluble solids, thereby maintaining superior color and qualities. This study could provide a promising alternative to conventional ice-water precooling of litchi.
Collapse
Affiliation(s)
- Hao Deng
- Key Laboratory of Tropical Fruit and Vegetable Cold-Chain of Hainan Province, Institute of Agro-products of Processing and Design, Hainan Academy of Agricultural Sciences, Haikou 571100, China; Sanya Institute of Hainan Academy of Agricultural Sciences, Sanya 572025, China; Key Laboratory of Genetic Resources Evaluation and Utilization of Tropical Fruits and Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Li Guo
- Key Laboratory of Tropical Fruit and Vegetable Cold-Chain of Hainan Province, Institute of Agro-products of Processing and Design, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Guang Wu
- Key Laboratory of Tropical Fruit and Vegetable Cold-Chain of Hainan Province, Institute of Agro-products of Processing and Design, Hainan Academy of Agricultural Sciences, Haikou 571100, China; Sanya Institute of Hainan Academy of Agricultural Sciences, Sanya 572025, China; Key Laboratory of Genetic Resources Evaluation and Utilization of Tropical Fruits and Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Zhe Chen
- Key Laboratory of Genetic Resources Evaluation and Utilization of Tropical Fruits and Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Farhat Abbas
- Key Laboratory of Genetic Resources Evaluation and Utilization of Tropical Fruits and Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Tropical Fruit Trees, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Qingchun Yin
- Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Institute of Food Testing, Hainan Academy of Inspection and Testing, Haikou 570314, China.
| |
Collapse
|
2
|
Maity S, Dokania P, Goenka M, Rahul S, Are RP, Sarkar A. Techno-economic feasibility and life cycle assessment analysis for a developed novel biosorbent-based arsenic bio-filter system. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:79. [PMID: 38367087 DOI: 10.1007/s10653-023-01839-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/18/2023] [Indexed: 02/19/2024]
Abstract
Significant aquifers around the world is contaminated by arsenic (As), that is regarded as a serious inorganic pollution. In this study, a biosorbent-based bio-filter column has been developed using two different plant biomasses (Colocasia esculenta stems and Artocarpus heterophyllus seeds) to remove total As from the aqueous system. Due to its natural origin, affordability, adaptability, removal effectiveness, and possibility for integration with existing systems, the biosorbent-based bio-filter column presents an alluring and promising method. It offers a practical and eco-friendly way to lessen the damaging impacts of heavy metal contamination on ecosystems and public health. In this system, As (III) is oxidized to As (V) using chlorine as an oxidant, after this post-oxidized As-contaminated water is passed through the bio-filter column to receive As-free water (or below World Health Organization permissible limit for As in drinking water). Optimization of inlet flow rate, interference of co-existing anions and cations, and life cycle of the column were studied. The maximum removal percent of As was identified to be 500 µg L-1 of initial concentration at a flow rate of 1.5 L h-1. Furthermore, the specifications of the biosorbent material was studied using elemental analysis and Zeta potential. The particle size distribution, morphological structures, and chemical composition before and after binding with As were studied using dynamic light scattering (DLS), scanning electron microscope-energy dispersive X-Ray spectroscopy (SEM-EDX), and fourier's transform infrared spectroscopy (FTIR) analysis, respectively. SuperPro 10 software was used to analyze the techno-economic viability of the complete unit and determine its ideal demand and potential. Life cycle assessment was studied to interpret the environmental impacts associated alongside the process system. Therefore, this bio-filtration system could have a potential application in rural, urban, and industrial sectors.
Collapse
Affiliation(s)
- Sourav Maity
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Puja Dokania
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Manav Goenka
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - S Rahul
- Department of Biotechnology, Indian Institute of Technology, Madras, 600036, India
| | - Ramakrishna P Are
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Angana Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
3
|
Mao Y, Xie Z, Shen D, Qi S. Influence of static pressure on toluene oxidation efficiency in groundwater by micro-nano bubble ozonation. CHEMOSPHERE 2024; 347:140708. [PMID: 37967678 DOI: 10.1016/j.chemosphere.2023.140708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023]
Abstract
Micro-nano bubble ozonation has been widely applied in the purification of drinking water due to its superior characteristics such as high mass transfer rate and long resistance time. However, its application in groundwater remediation is limited, partially due to the unclear effect of static water pressure on the oxidation efficiency. This study constructed a batch reactor to investigate the influence of static pressure on toluene oxidation by ozone micro-nano bubble water. To achieve constant pressure, weight was added above the mobile reactor roof, and the initial concentrations of toluene and dissolved ozone were 1.00 mg L-1 and 0.68 mg L-1 respectively. Experimental results demonstrated that as the static water pressure increased from 0.0 to 2.5 m, the average microbubble diameter decreased significantly from 62.3 to 36.0 μm. Simultaneously, the oxidation percentage of toluene increased from 40.3% to 58.7%, and the reaction rate between toluene and hydroxyl radical (OH·) increased from 9.3 × 109 to 1.39 × 1010 M-1 s-1, indicating that the shrinkage of micro-nano bubbles generated an abundance of OH· that quickly oxidized toluene adsorbed at the bubble interface. A greater enhancement of oxidation efficiency for nitrobenzene, as compared to p-xylene, was observed after the addition of 2.5 m water pressure, which verified the larger contribution of OH· under static pressure. Although the improvement of oxidation efficiency was reduced under acid and alkaline environments, as well as in practical groundwater matrices, the overall results still demonstrated the promising application of micro-nano bubble ozonation in groundwater remediation.
Collapse
Affiliation(s)
- Yuqin Mao
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Zeming Xie
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Dongsheng Shen
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Shengqi Qi
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Engineering Research Center of Non-ferrous Metal Waste Recycling, Zhejiang Gongshang University, Hangzhou, 310012, China.
| |
Collapse
|
4
|
Liu M, Tian H, Chen T, Sun J, Sun R, Kong Q, Zhao Z, Zhang S, Xu F. Spatiotemporal evolution of dissolved organic matter (DOM) and its response to environmental factors and human activities. PLoS One 2023; 18:e0292705. [PMID: 37819935 PMCID: PMC10566700 DOI: 10.1371/journal.pone.0292705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
The South-to-North Water Diversion East Project (SNWDP-E) is an effective way to realize the optimal allocation of water resources in China. The North Dasha River (NDR) is the reverse recharge section that receives water from the Yufu River to the Wohushan Reservoir transfer project line in the SNWDP. However, the dissolved organic matter (DOM) evolution mechanism of seasonal water transfer projects on tributary waters has not been fully elucidated. In this paper, the NDR is the main object, and the changes in the composition and distribution of spectral characteristics during the winter water transfer period (WT) as well as during the summer non-water transfer period (NWT) are investigated by parallel factor analysis (PARAFAC). The results showed that the water connectivity caused by water transfer reduces the environmental heterogeneity of waters in the basin, as evidenced by the ammonia nitrogen (NH4+-N) and total phosphorus (TP) in the water body were significantly lower (p<0.05, p<0.01) during the water transfer period than the non-water transfer period. In addition, the fluorescence intensity of DOM was significantly lower in the WT than the NWT (p<0.05) and was mainly composed of humic substances generated from endogenous sources with high stability. While the NWT was disturbed by anthropogenic activities leading to significant differences in DOM composition in different functional areas. Based on the redundancy analysis (RDA) and multiple regression analysis, it was found that the evolution of the protein-like components is dominated by chemical oxygen demand (COD) and NH4+-N factors during the WT. While the NWT is mainly dominated by total nitrogen (TN) and TP factors for the evolution of the humic-like components. This study helps to elucidate the impact of water transfer projects on the trunk basin and contribute to the regulation and management of inter-basin water transfer projects.
Collapse
Affiliation(s)
- Mengyu Liu
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong, PR China
| | - Haihan Tian
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong, PR China
| | - Tao Chen
- The Natural Resources and Planning Bureau of Weishan, Jining, PR China
| | - Jingyao Sun
- The Natural Resources and Planning Bureau of Weishan, Jining, PR China
| | - Ruipeng Sun
- Shandong Provincial GEO-MINERAL Engineering Co., Ltd., Jinan, PR China
| | - Qiang Kong
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong, PR China
- Dongying Institute, Shandong Normal University, Dongying, Shandong, PR China
| | - Zheng Zhao
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong, PR China
| | - Siju Zhang
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong, PR China
| | - Fei Xu
- College of Geography and Environment, Shandong Normal University, Jinan, Shandong, PR China
| |
Collapse
|