1
|
Chu S, de Solla SR, Smythe TA, Eng M, Lavoie R, Letcher RJ. Per- and polyfluoroalkyl substance profiles revealed by targeted and non-targeted screening in European starling eggs from sites across Canada. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 376:126414. [PMID: 40355069 DOI: 10.1016/j.envpol.2025.126414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/19/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are environmental contaminants including in wildlife but are a fraction of the growing 1000s of PFAS that are being produced. Our study objective was to determine and compare PFAS profiles using targeted analysis and non-targeted analysis (NTA) methods in European starling (Sturnus vulgaris) eggs collected in April/May of 2023 from 11 nesting box sites across Canada at locations described as landfills, near parks, forest, urban, near wastewater facilities, rural, waste management facilities and urban industrial. NTA revealed 41 PFAS at variable detection frequencies in eggs samples and up to 29 PFAS were quantifiable by targeted method analysis. The Σ29PFAS mean concentration (range) (1048 (991-1078) ng/g ww) at the lone landfill site at Brantford were the highest whereas all other sites were <151 ng/g w.w. Σ29PFAS concentrations were not significantly different (p < 0.05) among the 10 non-Brantford landfill sites including the Nova Scotia hospital site (range of 58.0-152 ng/g ww). Two side-chain fluorinated polymer surfactants for a sub-set of egg pools, and 4 emerging PFAS including GenX (or HFPO-DA), F-53B components and ADONA for all pools were not detectable. Confirmed against in-house synthesized standards, 8:2 FTOH sulfate, was detected in 93 % of all samples, and 6:2, 10:2, and 12:2 FTOH sulfates were also detected only in Brantford landfill site eggs. FTOHs, which are likely precursors of FTOH sulfate metabolites, were not detectable in any samples. This suggested that FTOH sulfate metabolites may be suitable biomarkers of exposure to FTOHs and perhaps other PFAS. Among all nest box locations, other additional NTA detected PFAS in eggs were e.g. branched isomers of PFOA, PFHpS, PFNS and PFDS and 6:2 diPAP. Overall, more targeted PFAS candidates should be monitored in starling eggs.
Collapse
Affiliation(s)
- Shaogang Chu
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science, Environment and Climate Change Canada, National Wildlife Research Centre, 1125 Colonel By Drive, Carleton University, Ottawa, ON, Canada, K1A 0H3
| | - Shane R de Solla
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science, Environment and Climate Change Canada, Canada Centre for Inland Waters, 867 Lakeshore Blvd, Burlington, ON, Canada, L7S 1A1
| | - Tristan A Smythe
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science, Environment and Climate Change Canada, National Wildlife Research Centre, 1125 Colonel By Drive, Carleton University, Ottawa, ON, Canada, K1A 0H3
| | - Margaret Eng
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science, Environment and Climate Change Canada, 45 Alderney Dr, Dartmouth, NS, Canada, B2Y 2N6
| | - Raphaël Lavoie
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science, Environment and Climate Change Canada, 801-1550 d'Estimauville, Québec, QC, Canada, G1J 0C3
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science, Environment and Climate Change Canada, National Wildlife Research Centre, 1125 Colonel By Drive, Carleton University, Ottawa, ON, Canada, K1A 0H3.
| |
Collapse
|
2
|
Jouanneau W, Boulinier T, Herzke D, Nikiforov VA, Gabrielsen GW, Chastel O. Legacy and emerging per- and polyfluoroalkyl substances in eggs of yellow-legged gulls from Southern France. MARINE POLLUTION BULLETIN 2025; 216:117941. [PMID: 40220546 DOI: 10.1016/j.marpolbul.2025.117941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/03/2025] [Accepted: 04/03/2025] [Indexed: 04/14/2025]
Abstract
More than 70 years of industrial production of per- and polyfluoroalkyl substances (PFAS) have resulted in their ubiquitous presence in the environment on a global scale, although differences in sources, transport and fate lead to variability of occurrence in the environment. Gull eggs are excellent bioindicators of environmental pollution, especially for persistent organic pollutants such as PFAS, known to bioaccumulate in organisms and to be deposited in bird eggs by maternal transfer. Using yellow-legged gull (Larus michahellis) eggs, we investigated the occurrence of more than 30 PFAS, including the most common chemicals (i.e., legacy PFAS) as well as their alternatives (i.e., emerging PFAS) in the Bay of Marseille, the second largest city in France. Compared to eggs from other colonies along the Mediterranean coast, those from Marseille had PFAS concentrations ranging from slightly higher to up to four times lower, suggesting that this area cannot be specifically identified as a hotspot for these compounds. We also found several emerging PFAS including 8:2 and 10:2 FTS, 7:3 FTCA or PFECHS in all collected eggs. Although the scarcity in toxicity thresholds for seabirds, especially during embryogenesis, does not enable any precise statement about the risks faced by this population, this study contributes to the effort in documenting legacy PFAS contamination on Mediterranean coasts while providing valuable novel inputs on PFAS of emerging concern. Identifying exposure in free-ranging species also participate to determine the main target for toxicity testing in wildlife.
Collapse
Affiliation(s)
- William Jouanneau
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS - La Rochelle Université, 17031 La Rochelle, France; Norwegian Polar Institute, Fram Centre, NO-9296 Tromsø, Norway.
| | - Thierry Boulinier
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), CNRS - Université de Montpellier - Université Paul-Valéry Montpellier - EPHE, Montpellier, France
| | | | | | | | - Olivier Chastel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS - La Rochelle Université, 17031 La Rochelle, France
| |
Collapse
|
3
|
Meng Z, Wilsey MK, Müller AM. Complete Aqueous Defluorination of GenX (Hexafluoropropylene Oxide Dimer Acid Anion) by Pulsed Electrolysis with Polarity Reversal. CHEMSUSCHEM 2025; 18:e202402093. [PMID: 39752578 DOI: 10.1002/cssc.202402093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/18/2024] [Indexed: 01/18/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are extremely stable chemicals that are essential for modern life and decarbonization technologies. Yet PFAS are persistent pollutants that are harmful to human health. Hexafluoropropylene oxide dimer acid (GenX), a replacement for the PFAS chemical perfluorooctanoic acid, continues to pollute waterways. In this study, we report the complete defluorination of GenX through electrocatalysis in aqueous LiOH electrolytes, utilizing high surface area anodes consisting of pulsed laser in liquid synthesized [NiFe]-(OH)₂ nanocatalysts on hydrophilic carbon fiber paper. Additional experiments with industrial nickel-iron alloy demonstrated exceptional stability for >100 hours. Including a brief interval of reversed polarity in pulsed electrolysis and optimizing the pulse train sequence enabled the complete defluorination of GenX. Our facile approach employs only nonprecious materials, does not require bisulfate or other auxiliary chemical agents that are consumed, and thus provides a promising strategy for alleviating the environmental impact of PFAS pollutants.
Collapse
Affiliation(s)
- Ziyi Meng
- Materials Science Program, University of Rochester, Rochester, NY, 14627, United States
| | - Madeleine K Wilsey
- Materials Science Program, University of Rochester, Rochester, NY, 14627, United States
| | - Astrid M Müller
- Materials Science Program, University of Rochester, Rochester, NY, 14627, United States
- Department of Chemical Engineering, University of Rochester, Rochester, NY, 14627, United States
- Department of Chemistry, University of Rochester, Rochester, NY, 14627, United States
| |
Collapse
|
4
|
Lin T, He L, Liu S, Li Y, Huang Z, Cai D, Wang Y, Mo Z, Zhu Y, Chen Z, Xu P, Lou X, Sheng J, Chen G, Wang X. Per- and polyfluoroalkyl substances mixture impairs intestinal barrier function through microbiota-derived 21-deoxycortisol and cortisol metabolism dysregulation. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138378. [PMID: 40359747 DOI: 10.1016/j.jhazmat.2025.138378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/28/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are persistent environmental pollutants linked to various health risks, including intestinal disorders. However, the effect of real-world PFASs mixture on intestinal health remains unclear. Therefore, this study aimed to investigate the effects of a PFASs mixture by mimicking the exposure composition in a population on intestinal homeostasis in rats. Although the colon showed no significant morphological alterations, transcriptomic analysis revealed dose-dependent changes in gene expression levels related to cell-cell and tight junctions. Immunofluorescence and immunohistochemistry further confirmed these findings, demonstrating a dose-dependent decrease in key tight junction proteins, occludin and claudin-1, in the colonic epithelium. Integrative analysis revealed that PFASs mixture exposure disrupted the growth and metabolism of gut bacteria, such as Ruminococcus, leading to increased production of 21-deoxycortisol (21-DF). 21-DF inhibited cortisol to cortisone conversion, elevating cortisol levels in intestinal epithelial cells. Consequently, the increased cortisol levels suppressed the expression of tight junction proteins and disrupted the intestinal barrier function. Our findings provide novel insights into the underlying mechanisms by which real-world PFASs mixture disrupt intestinal barrier function through the gut microbiome-metabolome-epithelial cell axis, highlighting the need to consider the complex interplay between environmental pollutants, gut microbiota, and host health in risk assessment and development of intervention strategies.
Collapse
Affiliation(s)
- Tingting Lin
- Institute of Environmental Medicine, Zhejiang University School of Public Health, Hangzhou 310058, China; Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Luyang He
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Sishuo Liu
- Institute of Environmental Medicine, Zhejiang University School of Public Health, Hangzhou 310058, China
| | - Yahui Li
- School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang 310012, China
| | - Zhi Huang
- Institute of Environmental Medicine, Zhejiang University School of Public Health, Hangzhou 310058, China
| | - Delei Cai
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Yiming Wang
- Institute of Environmental Medicine, Zhejiang University School of Public Health, Hangzhou 310058, China
| | - Zhe Mo
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Yi Zhu
- Institute of Environmental Medicine, Zhejiang University School of Public Health, Hangzhou 310058, China
| | - Zhijian Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Peiwei Xu
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Xiaoming Lou
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Jinghao Sheng
- Institute of Environmental Medicine, Zhejiang University School of Public Health, Hangzhou 310058, China.
| | - Guangdi Chen
- Institute of Environmental Medicine, Zhejiang University School of Public Health, Hangzhou 310058, China.
| | - Xiaofeng Wang
- Institute of Environmental Medicine, Zhejiang University School of Public Health, Hangzhou 310058, China; Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China.
| |
Collapse
|
5
|
Michel L, Zhang J, Asimakopoulos A, Austad M, Bustamante P, Cecere JG, Cianchetti-Benedetti M, Colominas-Ciuró R, Dell’Omo G, De Pascalis F, Jaspers VLB, Quillfeldt P. Assessing perfluoroalkyl substance pollution in Central Mediterranean breeding shearwaters. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:420-431. [PMID: 39919229 PMCID: PMC11816322 DOI: 10.1093/etojnl/vgae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 08/19/2024] [Indexed: 02/09/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetic organofluorine compounds used in various products, which are highly durable in the environment and may pose risks to wildlife health. We investigated the blood cell concentrations of PFAS in breeding Scopoli's shearwaters (Calonectris diomedea) from three different colonies in the central and southern Mediterranean (Linosa, Malta, and La Maddalena). Shearwaters are flexible, high trophic level foragers, and foraging areas may differ according to sex and breeding stage. We examined inter- and intracolony differences in PFAS blood concentrations and compared them with exploited foraging areas and dietary tracers. Per- and polyfluoroalkyl substances were detected in all samples, with the major congeners detected in descending order being perfluoroctanesulfonic acid (PFOS), perfluoroundecanoic acid (PFuNA), perfluorododecanoic acid (PFDoDA), and perfluorotridecanoic acid (PFTriDA). The mean sum of PFAS during the chick-rearing phase was highest in the birds from Malta (145.1 ng/g dry wt, 95% confidence interval [CI] of the mean 106.8, 183.5) compared with Linosa (91.5 ng/g dry wt, 95% CI 72.9, 110.1) and La Maddalena (84.5 ng/g dry wt, 95% CI 61.7, 107.3), and the PFAS blood composition of shearwaters from La Maddalena and Malta differed. The PFAS concentrations in shearwaters from Linosa were higher during incubation than during chick-rearing, and males had higher PFAS concentrations than females during incubation. Some PFAS were associated with carbon and nitrogen stable isotope values. After baseline adjustment of stable isotope values, no differences were observed for adjusted δ15N and δ13C between the three colonies, suggesting that differences in PFAS levels attributed to diet were minor compared with regional differences. Our study highlights that shearwaters are useful biomonitors of PFAS exposure in remote marine areas.
Collapse
Affiliation(s)
- Lucie Michel
- Animal Ecology and Systematics, University of Giessen, Giessen, Germany
| | - Junjie Zhang
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Alexandros Asimakopoulos
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Martin Austad
- Animal Ecology and Systematics, University of Giessen, Giessen, Germany
- BirdLife Malta, Ta’ Xbiex, Malta
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - Jacopo G Cecere
- Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Ozzano dell'Emilia, Italy
| | | | | | | | - Federico De Pascalis
- Area Avifauna Migratrice, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Ozzano dell'Emilia, Italy
| | - Veerle L B Jaspers
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Petra Quillfeldt
- Animal Ecology and Systematics, University of Giessen, Giessen, Germany
| |
Collapse
|
6
|
Lu R, Colomer-Vidal P, Muñoz-Arnanz J, García-Barcelona S, Zheng X, Mai B, González-Solís J, Jiménez B. A 20-year study reveal decrease in per- and polyfluoroalkyl substances (PFAS) in a pelagic seabird from the Western Mediterranean Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125025. [PMID: 39326827 DOI: 10.1016/j.envpol.2024.125025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Despite the first ban on perfluorooctane sulfonic acid (PFOS) in 2009, it remains unclear whether Europe, a key regulator, has effectively reduced per- and polyfluoroalkyl substances (PFAS) in the environment over the past 20 years. This study investigates the levels and temporal trends of 19 PFAS compounds in the livers of 62 Scopoli's shearwaters (Calonectris diomedea) collected from the Mediterranean basin during 2003-2022. Over the past two decades, PFAS concentrations showed an overall significant decrease of 77%. PFOS was the most frequently and predominantly detected chemical in livers, closely followed by perfluorotridecanoic acid (PFTrDA) and perfluoroundecanoic acid (PFUnDA). However, the contribution of PFTrDA (32.4%) surpassed that of PFOS (30.3%) in 2009-2014, which can be attributed to its increased use as a substitute following the regulation on PFOS in 2009. Perfluoroalkyl carboxylic acids (PFCAs), along with PFOS, showed a general decline over the study periods, with the largest decrease occurring after 2015, corresponding to the regulations on PFCAs. An odd-numbered, long-chain PFCAs accumulation trend was observed in samples. Principal component analysis showed a shift from PFOS to PFCAs in Scopoli's shearwater PFAS patterns over 20 years. Our results offer valuable insights into the environmental behavior of PFAS, the complex interactions between regulations and compounds and their transfer to the marine ecosystems. Despite widespread declines, their persistent detection underscores the need for enhanced international cooperation efforts to comprehensively mitigate PFAS emissions, including those from developing regions and unregulated sources.
Collapse
Affiliation(s)
- Ruifeng Lu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Pere Colomer-Vidal
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - Juan Muñoz-Arnanz
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | | | - Xiaobo Zheng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Jacob González-Solís
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Av. Diagonal 643, 08028, Barcelona, Spain; Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Begoña Jiménez
- Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain.
| |
Collapse
|
7
|
Humann-Guilleminot S, Blévin P, Gabrielsen GW, Herzke D, Nikiforov VA, Jouanneau W, Moe B, Parenteau C, Helfenstein F, Chastel O. PFAS Exposure is Associated with a Lower Spermatic Quality in an Arctic Seabird. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19617-19626. [PMID: 39441666 PMCID: PMC11542889 DOI: 10.1021/acs.est.4c04495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Several studies have reported an increasing occurrence of poly- and perfluorinated alkyl substances (PFASs) in Arctic wildlife tissues, raising concerns due to their resistance to degradation. While some research has explored PFAS's physiological effects on birds, their impact on reproductive functions, particularly sperm quality, remains underexplored. This study aims to assess (1) potential association between PFAS concentrations in blood and sperm quality in black-legged kittiwakes (Rissa tridactyla), focusing on the percentage of abnormal spermatozoa, sperm velocity, percentage of sperm motility, and morphology; and (2) examine the association of plasma levels of testosterone, corticosterone, and luteinizing hormone with both PFAS concentrations and sperm quality parameters to assess possible endocrine disrupting pathways. Our findings reveal a positive correlation between the concentration of longer-chain perfluoroalkyl carboxylates (PFCA; C11-C14) in blood and the percentage of abnormal sperm in kittiwakes. Additionally, we observed that two other PFAS (i.e., PFOSlin and PFNA), distinct from those associated with sperm abnormalities, were positively correlated with the stress hormone corticosterone. These findings emphasize the potentially harmful substance-specific effects of long-chain PFCAs on seabirds and the need for further research into the impact of pollutants on sperm quality as a potential additional detrimental effect on birds.
Collapse
Affiliation(s)
- Ségolène Humann-Guilleminot
- Department
of Environmental Science, Radboud Institute for Biological and Environmental
Sciences (RIBES), Faculty of Science, Radboud
University, Nijmegen 6500, the Netherlands
- Laboratory
of Evolutionary Ecophysiology, Institute of Biology, University of Neuchâtel, Neuchâtel 2000, Switzerland
| | - Pierre Blévin
- Centre
d’Etudes Biologiques de Chizé, UMR 7372 CNRS - Université de La Rochelle, Villiers-en-Bois 79360, France
- Akvaplan
niva AS, Fram Centre, Tromsø NO-9296, Norway
| | | | - Dorte Herzke
- Norwegian
Institute for Air Research, Fram Centre, Tromsø NO-9296, Norway
| | | | - William Jouanneau
- Centre
d’Etudes Biologiques de Chizé, UMR 7372 CNRS - Université de La Rochelle, Villiers-en-Bois 79360, France
| | - Børge Moe
- Norwegian
Institute for Nature Research, Trondheim NO-7034, Norway
| | - Charline Parenteau
- Centre
d’Etudes Biologiques de Chizé, UMR 7372 CNRS - Université de La Rochelle, Villiers-en-Bois 79360, France
| | - Fabrice Helfenstein
- Laboratory
of Evolutionary Ecophysiology, Institute of Biology, University of Neuchâtel, Neuchâtel 2000, Switzerland
- Norwegian
Institute for Nature Research, Trondheim NO-7034, Norway
- Department
of Clinical Research, University of Bern, Bern 3010, Switzerland
| | - Olivier Chastel
- Centre
d’Etudes Biologiques de Chizé, UMR 7372 CNRS - Université de La Rochelle, Villiers-en-Bois 79360, France
| |
Collapse
|
8
|
Léandri-Breton DJ, Jouanneau W, Legagneux P, Tarroux A, Moe BR, Angelier F, Blévin P, Bråthen VS, Fauchald P, Gabrielsen GW, Herzke D, Nikiforov VA, Elliott KH, Chastel O. Winter Tracking Data Suggest that Migratory Seabirds Transport Per- and Polyfluoroalkyl Substances to Their Arctic Nesting Site. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12909-12920. [PMID: 38991194 DOI: 10.1021/acs.est.4c02661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Seabirds are often considered sentinel species of marine ecosystems, and their blood and eggs utilized to monitor local environmental contaminations. Most seabirds breeding in the Arctic are migratory and thus are exposed to geographically distinct sources of contamination throughout the year, including per- and polyfluoroalkyl substances (PFAS). Despite the abundance and high toxicity of PFAS, little is known about whether blood concentrations at breeding sites reliably reflect local contamination or exposure in distant wintering areas. We tested this by combining movement tracking data and PFAS analysis (nine compounds) from the blood of prelaying black-legged kittiwakes (Rissa tridactyla) nesting in Arctic Norway (Svalbard). PFAS burden before egg laying varied with the latitude of the wintering area and was negatively associated with time upon return of individuals at the Arctic nesting site. Kittiwakes (n = 64) wintering farther south carried lighter burdens of shorter-chain perfluoroalkyl carboxylates (PFCAs, C9-C12) and heavier burdens of longer chain PFCAs (C13-C14) and perfluorooctanesulfonic acid compared to those wintering farther north. Thus, blood concentrations prior to egg laying still reflected the uptake during the previous wintering stage, suggesting that migratory seabirds can act as biovectors of PFAS to Arctic nesting sites.
Collapse
Affiliation(s)
- Don-Jean Léandri-Breton
- Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC H9X 3 V9, Canada
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372-CNRS & La Rochelle Université, 79360 Villiers-en-Bois, France
| | - William Jouanneau
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372-CNRS & La Rochelle Université, 79360 Villiers-en-Bois, France
- Norwegian Polar Institute, Fram Centre, 9296 Tromso̷, Norway
| | - Pierre Legagneux
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372-CNRS & La Rochelle Université, 79360 Villiers-en-Bois, France
- Département de Biologie, Université Laval, Québec, QC G1 V0A6, Canada
| | - Arnaud Tarroux
- Norwegian Institute for Nature Research, Fram Centre, 9296 Tromso̷, Norway
| | - Bo Rge Moe
- Norwegian Institute for Nature Research, 7485, Trondheim, Norway
| | - Frédéric Angelier
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372-CNRS & La Rochelle Université, 79360 Villiers-en-Bois, France
| | | | - Vegard S Bråthen
- Norwegian Institute for Nature Research, 7485, Trondheim, Norway
| | - Per Fauchald
- Norwegian Institute for Nature Research, Fram Centre, 9296 Tromso̷, Norway
| | | | - Dorte Herzke
- Norwegian Institute for Air Research (NILU), Fram Centre, 9296 Tromso̷, Norway
| | | | - Kyle H Elliott
- Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC H9X 3 V9, Canada
| | - Olivier Chastel
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372-CNRS & La Rochelle Université, 79360 Villiers-en-Bois, France
| |
Collapse
|
9
|
Soerensen AL, Benskin JP, Faxneld S. Four Decades of Spatiotemporal Variability of Per- and Polyfluoroalkyl Substances (PFASs) in the Baltic Sea. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10806-10816. [PMID: 38829301 PMCID: PMC11192033 DOI: 10.1021/acs.est.4c03031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/05/2024]
Abstract
Temporal and spatial variability of per- and polyfluoroalkyl substances (PFASs) in herring, cod, eelpout, and guillemot covering four decades and more than 1000 km in the Baltic Sea was investigated to evaluate the effect of PFAS regulations and residence times of PFASs. Overall, PFAS concentrations responded rapidly to recent regulations but with some notable basin- and homologue-specific variability. The well-ventilated Kattegat and Bothnian Bay showed a faster log-linear decrease for most PFASs than the Baltic Proper, which lacks a significant loss mechanism. PFOS and FOSA, for example, have decreased with 0-7% y-1 in the Baltic Proper and 6-16% y-1 in other basins. PFNA and partly PFOA are exceptions and continue to show stagnant or increasing concentrations. Further, we found that Bothnian Bay herring contained the highest concentrations of >C12 perfluoroalkyl carboxylic acids (PFCAs), likely from rivers with high loads of dissolved organic carbon. In the Kattegat, low PFAS concentrations, but a high FOSA fraction, could be due to influence from the North Sea inflow below the halocline and possibly a local source of FOSA and/or isomer-specific biotransformation. This study represents the most comprehensive spatial and temporal investigation of PFASs in Baltic wildlife while providing new insights into cycling of PFASs within the Baltic Sea ecosystem.
Collapse
Affiliation(s)
- Anne L. Soerensen
- Department
of Environmental Monitoring and Research, Swedish Museum of Natural History, 114 18 Stockholm, Sweden
| | - Jonathan P. Benskin
- Department
of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
| | - Suzanne Faxneld
- Department
of Environmental Monitoring and Research, Swedish Museum of Natural History, 114 18 Stockholm, Sweden
| |
Collapse
|
10
|
Vardy S, Baddiley B, Braun C, Limpus C, Limpus DJ, Du Plessis M, Nilsson S, Gonzalez-Astudillo V, Beale D. Partitioning of PFAS to serum, tissues, eggs, and hatchlings of an Australian freshwater turtle. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133885. [PMID: 38484658 DOI: 10.1016/j.jhazmat.2024.133885] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 04/07/2024]
Abstract
Turtles are a potential sentinel species of aquatic ecosystem health as they inhabit aquatic ecosystems, are long lived, and potentially have high exposure to anthropogenic chemicals via food and water. This study investigated per- and polyfluoroalkyl substances (PFAS) tissue partitioning in female Emydura macquarii macquarii turtle, and the maternal offloading of (PFAS) into eggs and then hatchlings as well as the accumulation of PFAS in male and female Emydura macquarii macquarii serum. Significantly higher levels of perfluorosulfonic acids (PFSAs) and perfluorocarboxylic acids (PFCAs) were measured in the male serum compared to the female turtle serum, whereas perfluoroalkane sulfonamides (FASAs) were significantly higher in the female turtle serum. Perfluorooctane sulfonate (PFOS) was the predominant PFAS in the turtles whereas PFHxA was the predominant PFAS found in the surrounding water. PFHxA was not reported in any turtle tissue or the serum. The short-chain PFSAs and FASAs appeared to be highly associated with blood; long-chain PFSAs and PFCAs were more likely to be associated with tissue. Half of the PFHxS and all the long-chain PFSAs and PFCAs reported in the yolks were transferred into the hatchlings (by mass), suggesting a potential intergenerational effect.
Collapse
Affiliation(s)
- Suzanne Vardy
- Water Quality and Investigations, Science Division, Department of Environment and Science, Queensland Government, Australia; Environment, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park, QLD 4102, Australia.
| | - Brenda Baddiley
- Water Quality and Investigations, Science Division, Department of Environment and Science, Queensland Government, Australia
| | - Christoph Braun
- Water Quality and Investigations, Science Division, Department of Environment and Science, Queensland Government, Australia
| | - Col Limpus
- Aquatic Threatened Species, Wildlife and Threatened Species Operations, Department of Environment and Science, Queensland Government, Australia
| | - Duncan J Limpus
- Aquatic Threatened Species, Wildlife and Threatened Species Operations, Department of Environment and Science, Queensland Government, Australia
| | - Martha Du Plessis
- Organic Chemistry, Forensic and Scientific Services, Department of Health, Queensland Government, Australia
| | - Sandra Nilsson
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | | | - David Beale
- Environment, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park, QLD 4102, Australia
| |
Collapse
|
11
|
Mollier M, Bustamante P, Martinez-Alvarez I, Schull Q, Labadie P, Budzinski H, Cherel Y, Carravieri A. Blood Kinetics of Lipophilic and Proteinophilic Pollutants during Two Types of Long-Term Fast in King Penguins. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6138-6148. [PMID: 38533664 DOI: 10.1021/acs.est.3c10822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
In vertebrates, fasting is an intricate physiological process associated with strong metabolic changes, yet its effect on pollutant residue variation is poorly understood. Here, we quantified long-term changes in plasma concentrations of 20 organochlorine and 16 perfluoroalkyl pollutants in king penguins Aptenodytes patagonicus during the breeding and molting fasts, which are marked by low and high levels of protein catabolism, respectively, and by strong lipid use. The profile of measured pollutants in plasma was dominated by perfluorooctanesulfonic acid (PFOS, initial relative contribution of 60%). Initial total pollutant concentrations were similar in molting (3.3-5.7 ng g-1 ww) and breeding penguins (range of 4.2-7.3 ng g-1 wet weight, ww). Long-term fasting (25 days) for molting and breeding led, respectively, to a 1.8- and 2.2-fold increase in total plasma pollutant concentrations, although the rate and direction of change were compound-specific. Hexachlorbenzene (HCB) and PFOS concentrations increased in plasma (net mobilization) during both types of fasting, likely due to lipid use. Plasma perfluoroundecanoate (PFUnDA) and perfluorotridecanoate (PFTrDA) concentrations increased in breeders (net mobilization) but decreased in molting individuals (net excretion), suggesting a significant incorporation of these pollutants into feathers. This study is a key contribution to our understanding of pollutant variation in blood during long-term fasting in wildlife.
Collapse
Affiliation(s)
- Margaux Mollier
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Ignacio Martinez-Alvarez
- CNRS, UMR 5805 EPOC (LPTC Research Group), Université de Bordeaux, 351 Cours de la Libération, F-33405 Cedex Talence, France
| | - Quentin Schull
- MARBEC, Université de Montpellier, IFREMER, IRD, CNRS, Avenue Jean Monnet CS 30171, 34203 Sète, France
| | - Pierre Labadie
- CNRS, UMR 5805 EPOC (LPTC Research Group), Université de Bordeaux, 351 Cours de la Libération, F-33405 Cedex Talence, France
| | - Hélène Budzinski
- CNRS, UMR 5805 EPOC (LPTC Research Group), Université de Bordeaux, 351 Cours de la Libération, F-33405 Cedex Talence, France
| | - Yves Cherel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 405 Route de Prissé la Charrière, 79360 Villiers-en-Bois, France
| | - Alice Carravieri
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 405 Route de Prissé la Charrière, 79360 Villiers-en-Bois, France
| |
Collapse
|
12
|
Wells MR, Coggan TL, Stevenson G, Singh N, Askeland M, Lea MA, Philips A, Carver S. Per- and polyfluoroalkyl substances (PFAS) in little penguins and associations with urbanisation and health parameters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169084. [PMID: 38056658 DOI: 10.1016/j.scitotenv.2023.169084] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Per- and Polyfluoroalkyl substances (PFAS) are increasingly detected in wildlife and present concerning and unknown health risks. While there is a growing body of literature describing PFAS in seabird species, knowledge from temperate Southern Hemisphere regions is lacking. Little penguins (Eudyptula minor) can nest and forage within heavily urbanised coastal environments and hence may be at risk of exposure to pollutants. We analysed scat contaminated nesting soils (n = 50) from 17 colonies in lutruwita/Tasmania for 16 PFAS, plasma samples (n = 45) from nine colonies, and three eggs for 49 PFAS. We detected 14 PFAS across the sample types, with perfluorooctanesulfonic acid (PFOS) and perfluorohexanesulfonic acid (PFHxS) most commonly detected. Mean concentration of PFOS in plasma was 2.56 ± 4.3 ng/mL (
Collapse
Affiliation(s)
- Melanie R Wells
- Department of Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart 7001, Tasmania, Australia; Institute for Marine and Antarctic Studies, Battery Point 7004, Tasmania, Australia.
| | - Timothy L Coggan
- Environment Protection Authority Victoria, 200 Victoria Street, Carlton 3053, Victoria, Australia; ADE Consulting Group, U 4/95 Salmon Street, Port Melbourne 3207, Victoria, Australia
| | - Gavin Stevenson
- Australian Ultra-Trace Laboratory, National Measurement Institute, North Ryde 2113, New South Wales, Australia
| | - Navneet Singh
- ADE Consulting Group, U 4/95 Salmon Street, Port Melbourne 3207, Victoria, Australia
| | - Matthew Askeland
- ADE Consulting Group, U 4/95 Salmon Street, Port Melbourne 3207, Victoria, Australia
| | - Mary-Anne Lea
- Institute for Marine and Antarctic Studies, Battery Point 7004, Tasmania, Australia; Centre for Marine Socioecology, University of Tasmania, Hobart 7001, Tasmania, Australia
| | - Annie Philips
- Wildlife Veterinary Consultant, Hobart 7000, Tasmania, Australia
| | - Scott Carver
- Department of Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart 7001, Tasmania, Australia; Odum School of Ecology, University of Georgia, GA, USA 30602; Center for the Ecology of Infectious Diseases, University of Georgia, GA, USA 30602
| |
Collapse
|
13
|
Granby K, Ersbøll BK, Olesen PT, Christensen T, Sørensen S. Per- and poly-fluoroalkyl substances in commercial organic eggs via fishmeal in feed. CHEMOSPHERE 2024; 346:140553. [PMID: 37944762 DOI: 10.1016/j.chemosphere.2023.140553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023]
Abstract
Chicken eggs can be a significant source of human PFAS exposure. A survey of PFAS in commercial eggs from larger farms across Denmark showed the absence or low contents of PFAS in free-range and barn eggs. However, organic eggs from eight farms collected in September 2022 had a similar profile of nine PFASs with a predominance of odd over even carbon length PFCAs. Farm 11-13 e.g. had egg yolk ng/g concentrations of PFOA 0.07 ± 0.02; PFNA 0.37 ± 0.04; PFDA 0.13 ± 0.00; PFUnDA 0.22 ± 0.04; PFDoDA 0.06 ± 0.02; PFTrDA 0.15 ± 0.04; PFTeDA 0.02 ± 0.02; PFHxS 0.10 ± 0.04; PFOS 2.62 ± 0.11. Normalised to PFOS, the relative sum of other PFAS showed no difference between the eight organic egg samples, but significant differences between mean individual PFASs (p = 1.4E-25), reflecting a similar profile. The PFAS found in two fishmeal samples with the same origin as the fishmeal used for the organic feed production, could account for the contents in the eggs via estimated transfer from the feed. Furthermore, the estimated transfer from concentration in feed to concentration in egg increased with the carbon length of the PFCA. Exposure (95th percentile) of ∑4PFAS (PFOA, PFNA, PFHxS, PFOS) solely from consumption of 311 g ∼ 5-6 organic eggs/week was for children 4-9 years 10.4 ng/kg bw, i.e. a significant exceedance of the tolerable weekly intake of 4.4 ng/kg bw established by the European Food Safety Authority. Based on the PFAS exposures from organic egg consumption, the organic egg producers decided voluntarily to cease adding fishmeal to the feed. Since the feed-to-egg half-lives are ≤1 week for PFOA, PFOS, and PFHxS, the removal of fishmeal as a feed ingredient should eliminate PFAS after 1-2 months. This was demonstrated in analyses of ten organic egg samples collected by the authorities without PFAS in eight and with 0.1 and 0.4 ng/g ∑4PFAS in two samples.
Collapse
Affiliation(s)
- Kit Granby
- Technical University of Denmark, National Food Institute, Kemitorvet 4, DK-2800, Kgs. Lyngby, Denmark.
| | - Bjarne Kjær Ersbøll
- Technical University of Denmark, Department of Applied Mathematics and Computer Science, Richard Petersens Plads, Building 324, DK-2800, Kgs. Lyngby, Denmark
| | - Pelle Thonning Olesen
- Technical University of Denmark, National Food Institute, Kemitorvet 4, DK-2800, Kgs. Lyngby, Denmark
| | - Tue Christensen
- Technical University of Denmark, National Food Institute, Kemitorvet 4, DK-2800, Kgs. Lyngby, Denmark
| | - Søren Sørensen
- Danish Veterinary and Food Administration, Division of Residues, Søndervang 4, DK-4100, Ringsted, Denmark
| |
Collapse
|