1
|
Liu Q, Fang J, Liu Z, Chen Y, Chen Q, Chen Z, Yuan S, Yu H, Yao W. Influence of different food matrices on the abundance, characterization, migration kinetics and hazards of microplastics released from plastic packaging (PP and PET). Food Chem 2025; 478:143691. [PMID: 40058265 DOI: 10.1016/j.foodchem.2025.143691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/07/2025] [Accepted: 02/28/2025] [Indexed: 04/06/2025]
Abstract
The effect of food matrix on the release of microplastics from plastic packaging was investigated by treating plastic samples with various food simulants. MPs were released during simulated conditions, and their main source was the separation of plastic samples subjected to ageing. Acidic high oil simulants resulted in the greatest abundance of MPs (1311.33 ± 262.22 and 1414.00 ± 214.52 items/piece). Dual constant kinetic model and Elovich kinetic model described the process well (R2 > 0.9019), indicating the release rate of MPs was mainly controlled by characteristics of plastics and environment. Characterization showed the morphology of plastics became rougher, carbonyl index increased, crystalline shapes changed and proportion of O increased. The release mechanism was deduced to be deterioration of the plastic by oxidative reactions. Finally, hazard assessment methodologies were developed, the results showed these MPs are hazardous to humans. It is hoped that this study will draw more attention to the harmful effects of MPs.
Collapse
Affiliation(s)
- Qingrun Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore
| | - Jingkai Fang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Zitian Liu
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membrane, School of Materials Science and Engineering, Tiangong University, Tianjin, China
| | - Yulun Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Qiwen Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Zhe Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Shaofeng Yuan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Hang Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China.
| |
Collapse
|
2
|
Liu Y, Zhan Y, Wang G, Jia X, Zhou J, Li H, Chang H, Jin Z, Li K, Li Z. Size-matching effects in quantitative detection of PS nanoplastics using controllable and reusable Ag nanoarrays SERS substrates. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138550. [PMID: 40373410 DOI: 10.1016/j.jhazmat.2025.138550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 05/07/2025] [Accepted: 05/07/2025] [Indexed: 05/17/2025]
Abstract
This study proposes a strategy for the highly sensitive detection of polystyrene nanoplastics (PS NPs) with varying particle sizes. Ag nanoarrays (AgNAs) with different inter-column spacings and heights are fabricated via thermal deposition of Ag in anodized aluminum oxide (AAO) templates. The size-matching effects between PS NPs and the parameters of the AgNAs (inter-column spacing and height) are investigated. Utilizing this size-matching effect, the AgNAs substrate enables sensitive detection of PS NPs with particle sizes of 130 nm, 180 nm, and 230 nm, with limits of detection (LODs) of 10 μg/mL. In real water samples (river water, rainwater, and tap water), the AgNAs substrate also demonstrates good performance, achieving a LOD of 10 μg/mL for detecting 130 nm PS NPs. Additionally, toluene is used to remove PS NPs from the AgNAs surface, allowing the substrate to be reused across multiple cycles. After at least 30 detection cycles, the surface-enhanced Raman scattering (SERS) performance of the AgNAs shows no significant decline, with a relative standard deviation (RSD) of 6.8 %. The AgNAs exhibit excellent stability and reusability in detecting PS NPs, indicating strong potential for practical applications.
Collapse
Affiliation(s)
- Yansheng Liu
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou City, Guangxi 545006, China.
| | - Yunjie Zhan
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou City, Guangxi 545006, China
| | - Guofu Wang
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou City, Guangxi 545006, China.
| | - Xiaobo Jia
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou City, Guangxi 545006, China
| | - Jin Zhou
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou City, Guangxi 545006, China
| | - Hongqi Li
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou City, Guangxi 545006, China
| | - Haixin Chang
- School of Electronic Engineering, Guangxi University of Science and Technology, No.2, Wenchang Road, Liuzhou City, Guangxi 545006, China; Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zhicheng Jin
- Natural Science Center, 50 Decatur Street SE, Atlanta, GA 30303, USA
| | - Kang Li
- Faculty of Computing, Engineering & Science, University of South Wales, Wales CF37 1DL, UK
| | - Zhaoxu Li
- Hospital of Guangxi Zhuang Autonomous Region, No.2, Diecai Road, Diecai Direction, Guangxi, China
| |
Collapse
|
3
|
Lan G, Huang X, Li T, Huang Y, Liao Y, Zheng Q, Zhao Q, Yu Y, Lin J. Effect of microplastics on carbon, nitrogen and phosphorus cycle in farmland soil: A meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 370:125871. [PMID: 39971082 DOI: 10.1016/j.envpol.2025.125871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/14/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
Farmland soil is a major sink for microplastics (MPs). Despite recognized potential impacts on soil ecosystems, comprehensive assessments of MPs' effects on carbon (C), nitrogen (N), and phosphorus (P) cycling in agricultural soils are limited. Data from 102 peer-reviewed studies were analyzed to elucidate the effects of MPs exposure on the C, N, and P cycles in soil. Results showed increased concentrations of soil organic carbon (SOC), dissolved organic carbon, microbial biomass carbon, and microbial biomass nitrogen, accompanied by elevated emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) after MPs introduction. A random forest model revealed that soil C, N, and P cycles are driven by MPs characteristics (biodegradability, size, concentration), soil properties (initial pH, SOC, total N, clay content), and experimental conditions (incubation period, soil moisture). Complex interactions between MPs and soil C, N, and P were illustrated, with increased CO2, CH4, and N2O emissions due to C mineralization and enhanced denitrification rates caused by MPs. These negative effects imply a need for strengthened management of C, N, and P cycles in agricultural soil to reduce farmland ecosystems' contributions to greenhouse gas emissions.
Collapse
Affiliation(s)
- Guoxin Lan
- Three Gorges Reservoir Area Environment and Ecology of Chongqing Observation and Research Station, Chongqing Three Gorges University, Wanzhou, 404020, PR China
| | - Xiaohang Huang
- Three Gorges Reservoir Area Environment and Ecology of Chongqing Observation and Research Station, Chongqing Three Gorges University, Wanzhou, 404020, PR China
| | - Tongqing Li
- Upper Changjiang River Bureau of Hydrological and Water Resources Survey, Bureau of Hydrology, Changjiang Water Resources Commission, Chongqing, 400025, PR China
| | - Yingjie Huang
- Three Gorges Reservoir Area Environment and Ecology of Chongqing Observation and Research Station, Chongqing Three Gorges University, Wanzhou, 404020, PR China
| | - Yang Liao
- Three Gorges Reservoir Area Environment and Ecology of Chongqing Observation and Research Station, Chongqing Three Gorges University, Wanzhou, 404020, PR China
| | - Qiushi Zheng
- Three Gorges Reservoir Area Environment and Ecology of Chongqing Observation and Research Station, Chongqing Three Gorges University, Wanzhou, 404020, PR China
| | - Qin Zhao
- Three Gorges Reservoir Area Environment and Ecology of Chongqing Observation and Research Station, Chongqing Three Gorges University, Wanzhou, 404020, PR China
| | - Yue Yu
- Three Gorges Reservoir Area Environment and Ecology of Chongqing Observation and Research Station, Chongqing Three Gorges University, Wanzhou, 404020, PR China
| | - Junjie Lin
- School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310023, PR China.
| |
Collapse
|
4
|
Zhou R, Huang X, Ni Y, Ma Z, Wei H, Jin Q, Ding Z. Physicochemical behavior and ecological risk of biofilm-mediated microplastics in aquatic environments. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107209. [PMID: 39708762 DOI: 10.1016/j.aquatox.2024.107209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
The prevalence of microplastics (MPs) in aquatic environments has become the core of environmental pollution. In recent years, the inevitable biological aging process of MPs in natural environments has attracted researchers' attention. Such biofilm-mediated MPs, colonized by microorganisms, affect the physicochemical behavior and potential ecological risks of MPs. Therefore, it is critical to understand the impact of MPs' biofilm formation on the environmental fate and toxicity of MPs. This review presented a comprehensive discussion of the impact of biofilm formation on unique carrier effects and toxicological effects of MPs in aquatic environments. First, the biofilm formation process on MPs, the compositions of microorganisms in biofilm and the factors influencing biofilm formation were briefly summarized. Second, the sorption of pollutants and enrichment of antibiotic resistance genes onto biofilm-mediated MPs were discussed. Third, the potential effects of biofilm-mediated MPs on gut microbiota were analyzed. Finally, gaps in the field that require further investigations were put forward. This review emphasized that biofilm-mediated MPs have higher environmental risks and ecotoxicity, which is helpful in providing new insights for pollution prevention and control of new pollutant MPs.
Collapse
Affiliation(s)
- Ranran Zhou
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China
| | - Xirong Huang
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China
| | - Yongtao Ni
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China
| | - Zewei Ma
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China
| | - Hengchen Wei
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China
| | - Qijie Jin
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China
| | - Zhuhong Ding
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China.
| |
Collapse
|
5
|
Wu XN, Feng JC, Chen X, Lin YL, Huang Y, Zhong S, Li CR, Zhu MZ, Zhang S. Effects of Different Types of Microplastics on Cold Seep Microbial Diversity and Function. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1322-1333. [PMID: 39763234 DOI: 10.1021/acs.est.4c08102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The massive production and widespread use of plastics have resulted in a growing marine plastic pollution problem. Cold seep ecosystems are maintained by microorganisms related to nitrogen and carbon cycling that occur in deep-sea areas, where cold hydrocarbon-rich water seeps from the ocean floor. Little is known about plastic pollution in this ecosystem. To fill this knowledge gap, we collected sediment and seawater samples from the Haima cold seep and conducted laboratory cultivation experiments, simulating in situ environmental conditions. Environmental factors and microbial genetics were analyzed at different stages over a 2-month cultivation period. Our main conclusions are as follows: (1) When microplastics (MPs) were added to sediment and seawater environments, the microbial communities most closely resembled those of the original habitat. The changes in the plastisphere communities were mainly associated with the culture time. (2) The co-occurrence network of the plastisphere was more fragile than that of environments. (3) Multiple environmental factors determined the community composition, whereas a small number of environmental variables drove the community function. MPs affected nitrogen cycling and methane metabolism and might aggregate pathogenic species. This work provides a better perspective of the effect of MPs on the community structure and function in cold seeps.
Collapse
Affiliation(s)
- Xiao-Nan Wu
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou 510006, China
- Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Guangdong University of Technology, Guangzhou 510006, China
| | - Jing-Chun Feng
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou 510006, China
- Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiao Chen
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou 510006, China
- Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Guangdong University of Technology, Guangzhou 510006, China
| | - Yi-Lei Lin
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou 510006, China
- Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Guangdong University of Technology, Guangzhou 510006, China
| | - Yongji Huang
- Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Guangdong University of Technology, Guangzhou 510006, China
| | - Song Zhong
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou 510006, China
- Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Guangdong University of Technology, Guangzhou 510006, China
| | - Can-Rong Li
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou 510006, China
- Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Guangdong University of Technology, Guangzhou 510006, China
| | - Meng-Zhuo Zhu
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou 510006, China
- Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Guangdong University of Technology, Guangzhou 510006, China
| | - Si Zhang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou 510006, China
- Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
6
|
Tang KHD, Li R. The effects of plastisphere on the physicochemical properties of microplastics. Bioprocess Biosyst Eng 2025; 48:1-15. [PMID: 38960926 DOI: 10.1007/s00449-024-03059-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
The plastisphere is the microbial communities that grow on the surface of plastic debris, often used interchangeably with plastic biofilm or biofouled plastics. It can affect the properties of the plastic debris in multiple ways. This review aims to present the effects of the plastisphere on the physicochemical properties of microplastics systematically. It highlights that the plastisphere modifies the buoyancy and movement of microplastics by increasing their density, causing them to sink and settle out. Smaller and film microplastics are likely to settle sooner because of larger surface areas and higher rates of biofouling. Biofouled microplastics may show an oscillating movement in waterbodies when settling due to diurnal and seasonal changes in the growth of the plastisphere until they come close to the bottom of the waterbodies and are entrapped by sediments. The plastisphere enhances the adsorption of microplastics for metals and organic pollutants and shifts the adsorption mechanism from intraparticle diffusion to film diffusion. The plastisphere also increases surface roughness, reduces the pore size, and alters the overall charge of microplastics. Charge alteration is primarily attributed to changes in the functional groups on microplastic surfaces. The plastisphere introduces carbonyl, amine, amide, hydroxyl, and phosphoryl groups to microplastics, causing an increase in their surface hydrophilicity, which could alter their adsorption behaviors for heavy metals. The plastisphere may act as a reactive barrier that enhances the leaching of polar additives. It may anchor bacteria that can break down plastic additives, resulting in decreased crystallinity of microplastics. This review contributes to a better understanding of how the plastisphere alters the fate, transport, and environmental impacts of microplastics. It points to the possibility of engineering the plastisphere to improve microplastic biodegradation.
Collapse
Affiliation(s)
- Kuok Ho Daniel Tang
- Department of Environmental Science, University of Arizona, Tucson, AZ, 85721, USA.
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
7
|
Liu W, Li S, Zhou Y, Cai Y, Liu C, Yang Z. Characteristics, drivers and ecological risk assessment of microplastics in the surface water of urban rivers in Guangdong-Hong Kong-Macao Greater Bay Area cities - A case study of Dongguan city. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125024. [PMID: 39322107 DOI: 10.1016/j.envpol.2024.125024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 09/27/2024]
Abstract
In the Guangdong-Hong Kong-Macao Greater Bay Area (GBA), microplastic pollution in urban rivers is a prominent problem due to the developed economy and high industrial intensity. Using the Xiaohai River, Hanxi River and Dongguan Canal in Dongguan City, an important node city in the GBA, as an example, microplastic characteristics, drivers and ecological risks in the surface water of three rivers were investigated. Results showed that the average abundance of rivers in the wet period (1646.22 ± 154.73 items/m3) was 4.7 times higher than that in the dry period (351.09 ± 34.2 items/m3). Microplastics were mainly in the form of fragments and fibers, with a size range of 30-500 μm, and appeared transparent with white color. The microplastic polymer types PE, PP, PET and PA accounted for more than 70%. There are large differences in the characteristics of microplastic pollution during different hydrological periods. Redundancy analysis showed that the distribution of plastics, chemical materials, packaging and printing industries along the rivers dominated the differences in microplastic abundance. The electronic information industry contributed most to the composition of microplastic polymer types. The polymer hazard index, pollution load index, and potential ecological risk index for rivers indicate a medium-high risk classification or higher. Therefore, the industrial layout along the urban rivers should be rationalized, the disposal of microplastics in wastewater should be increased, and the use of green plastic products should be promoted. This study provides support for the management of microplastic pollution in urban surface water in the GBA.
Collapse
Affiliation(s)
- Weining Liu
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Siyang Li
- South China Institute of Environmental Science, MEE, Guangzhou, 510655, China
| | - Ya Zhou
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Yanpeng Cai
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Chang Liu
- South China Institute of Environmental Science, MEE, Guangzhou, 510655, China
| | - Zhifeng Yang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
8
|
Rezaei Z, Dinani AS, Moghimi H. Cutting-edge developments in plastic biodegradation and upcycling via engineering approaches. Metab Eng Commun 2024; 19:e00256. [PMID: 39687771 PMCID: PMC11647663 DOI: 10.1016/j.mec.2024.e00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/25/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
The increasing use of plastics has resulted in the production of high quantities of plastic waste that pose a serious risk to the environment. The upcycling of plastics into value-added products offers a potential solution for resolving the plastics environmental crisis. Recently, various microorganisms and their enzymes have been identified for their ability to degrade plastics effectively. Furthermore, many investigations have revealed the application of plastic monomers as carbon sources for bio-upcycling to generate valuable materials such as biosurfactants, bioplastics, and biochemicals. With the advancement in the fields of synthetic biology and metabolic engineering, the construction of high-performance microbes and enzymes for plastic removal and bio-upcycling can be achieved. Plastic valorization can be optimized by improving uptake and conversion efficiency, engineering transporters and enzymes, metabolic pathway reconstruction, and also using a chemo-biological hybrid approach. This review focuses on engineering approaches for enhancing plastic removal and the methods of depolymerization and upcycling processes of various microplastics. Additionally, the major challenges and future perspectives for facilitating the development of a sustainable circular plastic economy are highlighted.
Collapse
Affiliation(s)
- Zeinab Rezaei
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Amir Soleimani Dinani
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Hamid Moghimi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
9
|
Stabili L, Quarta E, Giotta L. The seaweed Chaetomorpha linum cultivated in an integrated multitrophic aquaculture system: A new tool for microplastic bioremediation? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176262. [PMID: 39278482 DOI: 10.1016/j.scitotenv.2024.176262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/07/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Microplastics (MPs) are emerging pollutants with detrimental impacts on ecosystems and human health. Due to their adverse effects, new strategies to mitigate MP pollution in the marine environment need to be developed urgently. In this context, the capability of the seaweed Chaetomorpha linum (Chlorophyta, Cladophorales) to trap MPs, as well as the effectiveness of a simple washing procedure to clean up the harvested seaweed biomass, were investigated. This algal species was grown in an integrated multitrophic aquaculture system (IMTA), where bioremediator organisms such as macroalgae, polychaetes, sponges and mussels were farmed in the vicinity of the fish cages. MPs trapped in C. linum were classified based on shape and size, and representative samples of each shape were analysed by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy to evaluate their chemical composition. Fibre MPs were the most abundant (97.3 %), while the size ranged from 0.025 to 2.00 mm, with most samples being in the size range 0.80-1.00 mm. MPs were composed mainly of polypropylene, polystyrene, and polyethylene. They were efficiently removed from the cultured seaweeds by a simple density separation procedure, consisting of three extractions with hypersaline solutions of sodium chloride. These results suggest that C. linum cultivated in an IMTA system can be proposed as a bioremediator to capture MPs from the surrounding environment. At the same time, harvested and cleaned green seaweeds may be considered a co-product of the bioremediation process and can find application in several biotechnological fields, including the use as a food source for human consumption.
Collapse
Affiliation(s)
- Loredana Stabili
- Institute of Water Research (IRSA) C.N.R, 74123 Taranto, Italy; Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100 Lecce, Italy; National Biodiversity Future Center (NBFC), 90133 Palermo, Italy.
| | - Elisa Quarta
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100 Lecce, Italy.
| | - Livia Giotta
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 73100 Lecce, Italy.
| |
Collapse
|
10
|
Mishra S, Ren Y, Sun X, Lian Y, Singh AK, Sharma N, Shikhar KC. Microplastics-biofilm in aquatic ecosystem: Formation, pollutants complexation, greenhouse gas emission and ecotoxicology. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122930. [PMID: 39423625 DOI: 10.1016/j.jenvman.2024.122930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/20/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
The omnipresent microplastics (MPs) have gradually become a significant environmental problem due to its adverse consequences for ecological systems. MPs serve as substrates for biofilms colonization, which enhances adsorption of harmful contaminants on MPs surface in the aquatic ecosystem. The present study provides a critical discussion on the mechanism involved in MPs-biofilm formation, microbial colonization and the robust factors influencing the process in the aquatic ecosystem. Subsequently, the impact of MPs-biofilm on adsorption of inorganic and organic contaminants is explored. The ecological significance of MPs-biofilm associated pollutant complex for promoting greenhouse gases (GHGs) emissions from aquatic ecosystem is extensively discussed for understanding the climatic risk. Furthermore, the discussion is extended over ecotoxicological impact of MPs-biofilm on aquatic biodiversity and humans. The protective extracellular polymeric substances secreted by colonised bacteria over MPs during biofilm formation creates sticky MPs surface for heteroaggregates formation with swift adsorption of chemical compounds and microorganisms. MPs with functional aromatic groups facilitate the bacterial adhesion on the surface, but affect formation of biofilm. Alternatively, MPs-biofilm promotes the Mn and Fe hydrous oxides formation that can co-precipitate with heavy metal ions and facilitate in remediation measures. However, MPs biodegradation generates GHGs emission per unit mass, comparably more from freshwater than marine ecosystem. Considering the toxicity, MPs-biofilm induces the oxidative response in fishes, causing painful death and thus, destroys aquatic biodiversity. This study will be useful to address MPs-biofilm associated pollution scenario via trace, test and treat strategy involving future engineering research framework for ecological restoration.
Collapse
Affiliation(s)
- Saurabh Mishra
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China; Institute of Water Science and Technology, Hohai University, Nanjing, Jiangsu, 210098, China; The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, Jiangsu, China
| | - Yuling Ren
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China
| | - Xiaonan Sun
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China
| | - Yanqing Lian
- Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, Jiangsu, China; Institute of Water Science and Technology, Hohai University, Nanjing, Jiangsu, 210098, China; The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, Jiangsu, China.
| | - Anurag Kumar Singh
- Transport Planning and Environment Division, CSIR-Central Road Research Institute, New Delhi, 110025, India
| | - Niraj Sharma
- Transport Planning and Environment Division, CSIR-Central Road Research Institute, New Delhi, 110025, India
| | - K C Shikhar
- Institute of Water Resources and Hydropower, Hohai University, Nanjing, 210098, China
| |
Collapse
|
11
|
Pan Y, Zhang H, Zhu L, Tan J, Wang B, Li M. The role of gut microbiota in MP/NP-induced toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124742. [PMID: 39153541 DOI: 10.1016/j.envpol.2024.124742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Microplastics (MPs) and nanoplastics (NPs) are globally recognized as emerging environmental pollutants in various environmental media, posing potential threats to ecosystems and human health. MPs/NPs are unavoidably ingested by humans, mainly through contaminated food and drinks, impairing the gastrointestinal ecology and seriously impacting the human body. The specific role of gut microbiota in the gastrointestinal tract upon MP/NP exposure remains unknown. Given the importance of gut microbiota in metabolism, immunity, and homeostasis, this review aims to enhance our current understanding of the role of gut microbiota in MP/NP-induced toxicity. First, it discusses human exposure to MPs/NPs through the diet and MP/NP-induced adverse effects on the respiratory, digestive, neural, urinary, reproductive, and immune systems. Second, it elucidates the complex interactions between the gut microbiota and MPs/NPs. MPs/NPs can disrupt gut microbiota homeostasis, while the gut microbiota can degrade MPs/NPs. Third, it reveals the role of the gut microbiota in MP/NP-mediated systematic toxicity. MPs/NPs cause direct intestinal toxicity and indirect toxicity in other organs via regulating the gut-brain, gut-liver, and gut-lung axes. Finally, novel approaches such as dietary interventions, prebiotics, probiotics, polyphenols, engineered bacteria, microalgae, and micro/nanorobots are recommended to reduce MP/NP toxicity in humans. Overall, this review provides a theoretical basis for targeting the gut microbiota to study MP/NP toxicity and develop novel strategies for its mitigation.
Collapse
Affiliation(s)
- Yinping Pan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China
| | - Haojie Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China
| | - Liancai Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China.
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological & Chemical engineering, Chongqing University of Education, Chongqing, 400067, PR China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China
| | - Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China; Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China.
| |
Collapse
|
12
|
Anjulal H, Singhvi M, Zinjarde S. Insights into the biodegradation of polyhydroxyalkanoates by the tropical marine isolate, Nocardiopsis dassonvillei NCIM 5124. 3 Biotech 2024; 14:240. [PMID: 39310033 PMCID: PMC11415560 DOI: 10.1007/s13205-024-04079-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024] Open
Abstract
In the current study, the ability of an indigenous marine Actinomycete Nocardiopsis dassonvillei (NCIM 5124) to degrade poly(3-hydroxybutyrate)-PHB was examined. From the whole genome sequencing data of the organism, information regarding the PHB depolymerase gene and amino acid sequence (Accession number: MCK9871921.1) was retrieved. In silico studies indicated the presence of a signal peptide characteristic of extracellular enzymes. ProtParam tool predicted that the protein had a molecular mass of 42.46 kDa with an isoelectric point of 4.51. Aliphatic and instability index values suggested that the protein was stable and the observed GARVY value indicated its hydrophilic nature. 3D structure prediction and multiple sequence alignments revealed the presence of Type I catalytic domain [including the oxyanion histidine towards the N terminal, the catalytic triad with serine (as a part of GLSAG pentapeptide), aspartate and histidine], substrate binding and linker domain. The organism was able to grow on PHB in solid and liquid media and effectively degrade it. Maximum enzyme activity (1.8 U/mL/min) was observed after 5 d of incubation in Bushnell Hass Medium containing 0.1% PHB, 1.5% sodium chloride, at 30 °C, pH 7.5 with agitation at 130 rpm. Application of the organism in disintegrating films of PHB and its copolymers was successfully demonstrated on the basis of weight loss and scanning electron microscope analysis. To the best of our knowledge, this is the first report on production of PHB depolymerase with high efficiency by N. dassonvillei, an organism that holds promise in degrading PHB-derived waste material. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04079-3.
Collapse
Affiliation(s)
- H. Anjulal
- Department of Biotechnology with Jointly Merged Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, 411007 India
| | - Mamata Singhvi
- Department of Biotechnology with Jointly Merged Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, 411007 India
| | - Smita Zinjarde
- Department of Biotechnology with Jointly Merged Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, 411007 India
| |
Collapse
|
13
|
Meng L, Liang L, Shi Y, Yin H, Li L, Xiao J, Huang N, Zhao A, Xia Y, Hou J. Biofilms in plastisphere from freshwater wetlands: Biofilm formation, bacterial community assembly, and biogeochemical cycles. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134930. [PMID: 38901258 DOI: 10.1016/j.jhazmat.2024.134930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/10/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
Microorganisms can colonize to the surface of microplastics (MPs) to form biofilms, termed "plastisphere", which could significantly change their physiochemical properties and ecological roles. However, the biofilm characteristics and the deep mechanisms (interaction, assembly, and biogeochemical cycles) underlying plastisphere in wetlands currently lack a comprehensive perspective. In this study, in situ biofilm formation experiments were performed in a park with different types of wetlands to examine the plastisphere by extrinsic addition of PVC MPs in summer and winter, respectively. Results from the spectroscopic and microscopic analyses revealed that biofilms attached to the MPs in constructed forest wetlands contained the most abundant biomass and extracellular polymeric substances. Meanwhile, data from the high-throughput sequencing showed lower diversity in plastisphere compared with soil bacterial communities. Network analysis suggested a simple and unstable co-occurrence pattern in plastisphere, and the null model indicated increased deterministic process of heterogeneous selection for its community assembly. Based on the quantification of biogeochemical cycling genes by high-throughput qPCR, the relative abundances of genes involving in carbon degradation, carbon fixation, and denitrification were significantly higher in plastisphere than those of soil communities. This study greatly enhanced our understanding of biofilm formation and ecological effects of MPs in freshwater wetlands.
Collapse
Affiliation(s)
- Liang Meng
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China; Key Laboratory of Environment Remediation and Ecological Health, Zhejiang University, Ministry of Education, Hangzhou 310058, China; Yangtze River Delta Urban Wetland Ecosystem National Field Scientific Observation and Research Station, Shanghai 201722, China
| | - Longrui Liang
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yansong Shi
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Haitao Yin
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Li Li
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jiamu Xiao
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Nannan Huang
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Angang Zhao
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yangrongchang Xia
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jingwen Hou
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
14
|
Liu J, Han S, Wang P, Zhang X, Zhang J, Hou L, Zhang Y, Wang Y, Li L, Lin Y. Soil microorganisms play an important role in the detrimental impact of biodegradable microplastics on plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:172933. [PMID: 38703855 DOI: 10.1016/j.scitotenv.2024.172933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/05/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Biodegradable plastics were developed to mitigate environmental pollution caused by conventional plastics. Research indicates that biodegradable microplastics still have effects on plants and microorganisms as their non-biodegradable counterparts, yet the effects on vegetable crops are not well-documented. Additionally, the function of soil microorganisms affected by biodegradable microplastics on the fate of microplastics remains unverified. In this study, Brassica chinensis was cultivated in soil previously incubated for one year with low-density polyethylene (LDPE-MPs) and poly (butylene adipate-co-terephthalate) microplastics (PBAT-MPs) at 0.05 % and 2 % concentrations. High concentrations of PBAT-MPs significantly reduced the biomass to 5.83 % of the control. The abundance of Methyloversatilis, IS-44, and UTCFX1 in the rhizosphere bacterial community increased significantly in the presence of PBAT-MPs. Moreover, these microplastics significantly enhanced soil enzyme activity. Incubation tests were performed with three PBAT plastic sheets to assess the function of the altered bacterial community in the soil of control (Control-soil) and soil treated with high concentrations of PBAT-MPs (PBAT-MPs-soil). Scanning Electron Microscopy and Atomic Transfer Microscopy (SEM/ATM) results confirmed enhanced PBAT degradation in the PBAT-MPs-soil. PICRUST2 analysis revealed that pathways related to substance degradation were upregulated in the PBAT-MPs-soil. Furthermore, a higher percentage of strains with PBAT-MPs-degrading ability was found in PBAT-MPs-soil. Our results confirm that PBAT-MPs significantly inhibit the growth of vegetable crops and that soil bacterial communities affected by PBAT-MPs are instrumental in degrading them.
Collapse
Affiliation(s)
- Jiaxi Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Siqi Han
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peiyuan Wang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaofeng Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiuyu Zhang
- Institute of Metabolism & Integrative Biology, Fudan University, Shanghai 200438, China
| | - Lijun Hou
- Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Yiqiong Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yufan Wang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Yanbing Lin
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
15
|
Jiang Y, Wang X, Zhao G, Shi Y, Wu Y, Yang H, Zhao F. Silver nanostars arrayed on GO/MWCNT composite membranes for enrichment and SERS detection of polystyrene nanoplastics in water. WATER RESEARCH 2024; 255:121444. [PMID: 38492312 DOI: 10.1016/j.watres.2024.121444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/16/2024] [Accepted: 03/09/2024] [Indexed: 03/18/2024]
Abstract
Nanoplastic water contamination has become a critical environmental issue, highlighting the need for rapid and sensitive detection of nanoplastics. In this study, we aimed to prepare a graphene oxide (GO)/multiwalled carbon nanotube (MWCNT)-silver nanostar (AgNS) multifunctional membrane using a simple vacuum filtration method for the enrichment and surface-enhanced Raman spectroscopy (SERS) detection of polystyrene (PS) nanoplastics in water. AgNSs, selected for the size and shape of nanoplastics, have numerous exposed Raman hotspots on their surface, which exert a strong electromagnetic enhancement effect. AgNSs were filter-arrayed on GO/MWCNT composite membranes with excellent enrichment ability and chemical enhancement effects, resulting in the high sensitivity of GO/MWCNT-AgNS membranes. When the water samples flowed through the portable filtration device with GO/MWCNT-AgNS membranes, PS nanoplastics could be effectively enriched, and the retention rate for 50 nm PS nanoplastics was 97.1 %. Utilizing the strong SERS effect of the GO/MWCNT-AgNS membrane, we successfully detected PS nanoparticles with particle size in the range of 50-1000 nm and a minimum detection concentration of 5 × 10-5 mg/mL. In addition, we detected 50, 100, and 200 nm PS nanoplastics at concentrations as low as 5 × 10-5 mg/mL in real water samples using spiking experiments. These results indicate that the GO/MWCNT-AgNS membranes paired with a portable filtration device and Raman spectrometer can effectively enrich and rapidly detect PS nanoplastics in water, which has great potential for on-site sensitive water quality safety evaluation.
Collapse
Affiliation(s)
- Ye Jiang
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, PR China
| | - Xiaochan Wang
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, PR China.
| | - Guo Zhao
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210031, PR China
| | - Yinyan Shi
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, PR China
| | - Yao Wu
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, PR China
| | - Haolin Yang
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, PR China
| | - Fenyu Zhao
- College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210031, PR China
| |
Collapse
|
16
|
Huang M, Han K, Liu W, Wang Z, Liu X, Guo Q. Advancing microplastic surveillance through photoacoustic imaging and deep learning techniques. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134188. [PMID: 38579587 DOI: 10.1016/j.jhazmat.2024.134188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
Microplastic contamination presents a significant global environmental threat, yet scientific understanding of its morphological distribution within ecosystems remains limited. This study introduces a pioneering method for comprehensive microplastic assessment and environmental monitoring, integrating photoacoustic imaging and advanced deep learning techniques. Rigorous curation of diverse microplastic datasets enhances model training, yielding a high-resolution imaging dataset focused on shape-based discrimination. The introduction of the Vector-Quantized Variational Auto Encoder (VQVAE2) deep learning model signifies a substantial advancement, demonstrating exceptional proficiency in image dimensionality reduction and clustering. Furthermore, the utilization of Vector Quantization Microplastic Photoacoustic imaging (VQMPA) with a proxy task before decoding enhances feature extraction, enabling simultaneous microplastic analysis and discrimination. Despite inherent limitations, this study lays a robust foundation for future research, suggesting avenues for enhancing microplastic identification precision through expanded sample sizes and complementary methodologies like spectroscopy. In conclusion, this innovative approach not only advances microplastic monitoring but also provides valuable insights for future environmental investigations, highlighting the potential of photoacoustic imaging and deep learning in bolstering sustainable environmental monitoring efforts.
Collapse
Affiliation(s)
- Mengyuan Huang
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Kaitai Han
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Wu Liu
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Zijun Wang
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Xi Liu
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Qianjin Guo
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China; School of Mechanical Engineering & Hydrogen Energy Research Centre, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
| |
Collapse
|
17
|
Dai Y, Li L, Guo Z, Yang X, Dong D. Emerging isolation and degradation technology of microplastics and nanoplastics in the environment. ENVIRONMENTAL RESEARCH 2024; 243:117864. [PMID: 38072105 DOI: 10.1016/j.envres.2023.117864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/18/2023] [Accepted: 12/02/2023] [Indexed: 02/06/2024]
Abstract
Microplastics (MPs, less than 5 mm in size) are widely distributed in surroundings in various forms and ways, and threaten ecosystems security and human health. Its environmental behavior as pollutants carrier and the after-effects exposed to MPs has been extensively exploited; whereas, current knowledge on technologies for the separation and degradation of MPs is relatively limited. It is essential to isolate MPs from surroundings and/or degrade to safe levels. This in-depth review details the origin and distribution of MPs. Provides a comprehensive summary of currently available MPs separation and degradation technologies, and discusses the mechanisms, challenges, and application prospects of these technologies. Comparison of the contribution of various separation methods to the separation of NPs and MPs. Furthermore, the latest research trends and direction in bio-degradation technology are outlooked.
Collapse
Affiliation(s)
- Yaodan Dai
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, China
| | - Lele Li
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, China
| | - Zhi Guo
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, China.
| | - Xue Yang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, China
| | - Dazhuang Dong
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
18
|
Zeb A, Liu W, Ali N, Shi R, Wang Q, Wang J, Li J, Yin C, Liu J, Yu M, Liu J. Microplastic pollution in terrestrial ecosystems: Global implications and sustainable solutions. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132636. [PMID: 37778309 DOI: 10.1016/j.jhazmat.2023.132636] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Microplastic (MPs) pollution has become a global environmental concern with significant impacts on ecosystems and human health. Although MPs have been widely detected in aquatic environments, their presence in terrestrial ecosystems remains largely unexplored. This review examines the multifaceted issues of MPs pollution in terrestrial ecosystem, covering various aspects from additives in plastics to global legislation and sustainable solutions. The study explores the widespread distribution of MPs worldwide and their potential antagonistic interactions with co-occurring contaminants, emphasizing the need for a holistic understanding of their environmental implications. The influence of MPs on soil and plants is discussed, shedding light on the potential consequences for terrestrial ecosystems and agricultural productivity. The aging mechanisms of MPs, including photo and thermal aging, are elucidated, along with the factors influencing their aging process. Furthermore, the review provides an overview of global legislation addressing plastic waste, including bans on specific plastic items and levies on single-use plastics. Sustainable solutions for MPs pollution are proposed, encompassing upstream approaches such as bioplastics, improved waste management practices, and wastewater treatment technologies, as well as downstream methods like physical and biological removal of MPs. The importance of international collaboration, comprehensive legislation, and global agreements is underscored as crucial in tackling this pervasive environmental challenge. This review may serve as a valuable resource for researchers, policymakers, and stakeholders, providing a comprehensive assessment of the environmental impact and potential risks associated with MPs.
Collapse
Affiliation(s)
- Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| | - Nouman Ali
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jianling Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jiantao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Chuan Yin
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jinzheng Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Miao Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| | - Jianv Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China
| |
Collapse
|
19
|
Lackner M, Mukherjee A, Koller M. What Are "Bioplastics"? Defining Renewability, Biosynthesis, Biodegradability, and Biocompatibility. Polymers (Basel) 2023; 15:4695. [PMID: 38139947 PMCID: PMC10747977 DOI: 10.3390/polym15244695] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Today, plastic materials are mostly made from fossil resources, and they are characterized by their long lifetime and pronounced persistence in the open environment. These attributes of plastics are one cause of the ubiquitous pollution we see in our environment. When plastics end up in the environment, most of this pollution can be attributed to a lack of infrastructure for appropriately collecting and recycling plastic waste, mainly due to mismanagement. Because of the huge production volumes of plastics, their merits of being cheap to produce and process and their recalcitrance have turned into a huge disadvantage, since plastic waste has become the end point of our linear economic usage model, and massive amounts have started to accumulate in the environment, leading to microplastics pollution and other detrimental effects. A possible solution to this is offered by "bioplastics", which are materials that are either (partly) biobased and/or degradable under defined conditions. With the rise of bioplastics in the marketplace, several standards and test protocols have been developed to assess, certify, and advertise their properties in this respect. This article summarizes and critically discusses different views on bioplastics, mainly related to the properties of biodegradability and biobased carbon content; this shall allow us to find a common ground for clearly addressing and categorizing bioplastic materials, which could become an essential building block in a circular economy. Today, bioplastics account for only 1-2% of all plastics, while technically, they could replace up to 90% of all fossil-based plastics, particularly in short-lived goods and packaging, the single most important area of use for conventional plastics. Their replacement potential not only applies to thermoplastics but also to thermosets and elastomers. Bioplastics can be recycled through different means, and they can be made from renewable sources, with (bio)degradability being an option for the mismanaged fraction and special applications with an intended end of life in nature (such as in seed coatings and bite protection for trees). Bioplastics can be used in composites and differ in their properties, similarly to conventional plastics. Clear definitions for "biobased" and "biodegradable" are needed to allow stakeholders of (bio)plastics to make fact-based decisions regarding material selection, application, and end-of-life options; the same level of clarity is needed for terms like "renewable carbon" and "bio-attributed" carbon, definitions of which are summarized and discussed in this paper.
Collapse
Affiliation(s)
- Maximilian Lackner
- Go!PHA, Oudebrugsteeg 9, 1012 JN Amsterdam, The Netherlands;
- Go!PHA, 12324 Hampton Way, Wake Forest, NC 27587, USA
- CIRCE Biotechnologie GmbH, Kerpengasse 125, 1210 Vienna, Austria
| | - Anindya Mukherjee
- Go!PHA, Oudebrugsteeg 9, 1012 JN Amsterdam, The Netherlands;
- Go!PHA, 12324 Hampton Way, Wake Forest, NC 27587, USA
| | - Martin Koller
- Institute of Chemistry, NAWI Graz, University of Graz, Heinrichstrasse 28/IV, 8010 Graz, Austria;
| |
Collapse
|
20
|
Wang H, Zhu Z, Zhang L, Liu X, Sun W, Yan F, Zhou Y, Wang Z, Wang X, Wei C, Lai J, Chen Q, Zhu D, Zhang Y. The hind information: Exploring the impact of physical damage on mask microbial composition in the aquatic environment. ENVIRONMENTAL RESEARCH 2023; 237:116917. [PMID: 37611784 DOI: 10.1016/j.envres.2023.116917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/05/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
Due to poor management and the lack of environmental awareness, lots of masks (an emerging form of plastic pollution) are discarded into the environment during the COVID-19, thereby jeopardizing the health of humans and the environment. Our study introduces a novel perspective by examining the impact of physical damage on the microbial composition of masks in the water environment. We focus on the variations in biofilm formation on each layer of both damaged and undamaged masks, which allows us to understand more about the biofilm on each layer and the significant changes that occur when masks are physically damaged. Research has shown that the community structure of microorganisms on discarded masks can be altered in just ten days, showing an evolution from undifferentiated pioneer colonizing species ("non-picky") to adaptive dominant species ("picky"). Especially, considering that discarded masks were inevitably damaged, we found that the biomass on the damaged samples is 1.62-2.38 times higher than that of the undamaged samples, respectively. Moreover, the microbial community structure on it was also significantly different. Genes involved in biogeochemical cycles of nutrients are more enriched in damaged masks. When damaged, the colonization process and community structure in the middle layer significantly differ from those in the inner and outer layers and even enrich more pathogenic bacteria. Based on the above, it is evident that the environmental risk of masks cannot be assessed as a whole, and the middle layer carries a higher risk.
Collapse
Affiliation(s)
- Hu Wang
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Zixian Zhu
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China; Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Ling Zhang
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Xiaohui Liu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China
| | - Weihong Sun
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China
| | - Feifei Yan
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, PR China
| | - Yuxin Zhou
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China
| | - Zhi Wang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei Province, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430077, Hubei, PR China
| | - Xiaofeng Wang
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China
| | - Chunyan Wei
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China
| | - Jie Lai
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China
| | - Qingfeng Chen
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, PR China.
| | - Ying Zhang
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, PR China.
| |
Collapse
|
21
|
Das P, Halder G, Bal M. A critical review on remediation of microplastics using microalgae from aqueous system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:166425. [PMID: 37598972 DOI: 10.1016/j.scitotenv.2023.166425] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/30/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Microplastics (MPs) are deemed to be a global concern due to their harmful negative effects on the aquatic environment and human beings. MPs have a significant impact on both fresh and marine water ecosystems. In many countries, there is concern about the deleterious consequences of MPs on human health due to the presence of MPs in aquatic life for higher intake of marine food (fish and shellfish). Exposure to MPs causes fish to suffer from growth retardation, neurotoxicity, and behavioural abnormalities and it affects human as well. It causes oxidative stress, neurotoxicity, cytotoxicity, and immune system disruption after being ingested to these contaminated fish in human body. Due to these reasons, it has become imperative to find ways to resolve this problem. This review paper represents a pioneering endeavor by consolidating comprehensive information on microplastic-polluted Indian riverine ecosystems and effective MPs removal methods into a single, cohesive document. It meticulously evaluates the principles, removal efficiency, benefits, and drawbacks of various techniques, aiming to identify the most optimal solution. Furthermore, this paper provides a comprehensive exploration of the interesting interactions between MPs and microalgae, delving into the intricate processes of hetero-aggregation. Additionally, it shines a spotlight on the latest advancements in understanding the efficacy of microalgae in removing MPs, showcasing recent breakthroughs in this field of research. Moreover, the work goes beyond conventional assessments by elucidating the characteristics of MPs and exploring diverse influencing parameters that impact MPs removal by microalgae and also addresses the potential future aspects. This thorough investigation uncovers important factors that could significantly contribute to the development of more efficient and sustainable remediation strategies.
Collapse
Affiliation(s)
- Payal Das
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, West Bengal 713209, India
| | - Gopinath Halder
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, West Bengal 713209, India
| | - Manisha Bal
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, West Bengal 713209, India.
| |
Collapse
|
22
|
Zou W, Lu S, Wang J, Xu Y, Shahid MA, Saleem MU, Mehmood K, Li K. Environmental Microplastic Exposure Changes Gut Microbiota in Chickens. Animals (Basel) 2023; 13:2503. [PMID: 37570310 PMCID: PMC10417107 DOI: 10.3390/ani13152503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
As novel environmental contaminants, MPs exist widely in the environment and accumulate in organisms, which has become a global ecological problem. MP perturbations of organismal physiology and behavior have been extensively recorded in aquatic animals, but the potential effects of MPs on poultry are not well characterized. Here, we explored the adverse effects of MP exposure on the growth performance and gut microbiota of chickens. Results showed that the growth performance of chickens decreased significantly during MP exposure. Additionally, Firmicutes, Bacteroidota, and Proteobacteria were found to be dominant in the gut microbiota of MP-exposed chickens, regardless of health status. Although the types of dominant bacteria did not change, the abundances of some bacteria and the structure of the gut microbiota changed significantly. Compared with the controls, the alpha diversity of gut microbiota in chickens exposed to MPs showed a significant decrease. The results of comparative analyses of bacteria between groups showed that the levels of 1 phyla (Proteobacteria) and 18 genera dramatically decreased, whereas the levels of 1 phyla (Cyanobacteria) and 12 genera dramatically increased, during MP exposure. In summary, this study provides evidence that exposure to MPs has a significant impact on the growth performance and gut microbial composition and structure of chickens, leading to a gut microbial imbalance. This may raise widespread public concern about the health threat caused by MP contamination, which is relevant to the maintenance of environmental quality and protection of poultry health.
Collapse
Affiliation(s)
- Wen Zou
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (W.Z.); (S.L.); (J.W.); (Y.X.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Sijia Lu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (W.Z.); (S.L.); (J.W.); (Y.X.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jia Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (W.Z.); (S.L.); (J.W.); (Y.X.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yixiao Xu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (W.Z.); (S.L.); (J.W.); (Y.X.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Muhammad Akbar Shahid
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Muhammad Usman Saleem
- Department of Biosciences, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (W.Z.); (S.L.); (J.W.); (Y.X.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|