1
|
Cheng T, Xu J, Ren C, Wen B, Zhang W, Zhao Q, Yu G, Zhang Y. ABA as a downstream signal actively participates in phthalanilic acid mediated cold tolerance of common beans (Phaseolus vulgaris). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109594. [PMID: 39899960 DOI: 10.1016/j.plaphy.2025.109594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/17/2025] [Accepted: 01/30/2025] [Indexed: 02/05/2025]
Abstract
Although the reaction of plants to various stresses can be regulated by phthalanilic acid (PPA), the regulation mechanism in the cold resistance of common beans was still unclear. The study showed that the ABA content of common bean seedlings was significantly increased by PPA application under low-temperature stress, the growth of common bean seedlings was effectively protected, and the yield loss was reduced. Importantly, the regulation of PPA on cold resistance of common bean seedlings depended on ABA pathway. It was further revealed that the ABA receptor pathway was observably activated by knocking down the ABA catabolic gene CYP707As, and the cold resistance of common bean seedlings was considerably enhanced. At the same time, the regulation of PPA on the low-temperature resistance of common bean seedlings was visibly weakened, which was also proved by gene over-expression and virus induced gene silence of CYP707As. In addition, combining exogenous treatment of ABA biosynthesis inhibitor (fluridone) with endogenous gene knock-down, over-expression and virus induced gene silence of phospholipase D coding gene (PLD1), it was found that PPA could obviously enhance cold resistance of common bean seedlings by promoting phospholipase D to produce phosphatidic acid, increasing the antioxidant enzyme activity to reduce oxidative damage and improve the stability of the photosynthetic system. In summary, the molecular and physiological basis was firstly elucidated that phthalanilic acid enhanced cold resistance of common bean seedlings by phospholipid metabolism, photosynthetic system, and antioxidant status through the ABA pathway in the present study.
Collapse
Affiliation(s)
- Tong Cheng
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Jinghan Xu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Chunyuan Ren
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Bowen Wen
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Wenjie Zhang
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Qiang Zhao
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Gaobo Yu
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China.
| | - Yuxian Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China; National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang, China; Key Laboratory of Soybean Mechanized Production (Daqing), Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
2
|
Zhang X, Yang X, Hu X, Meng Z, Yu Z, Sun Z, Zhang Y, Yang Z, Li S, Wang JS, Jia Q, Liu L, Zhou J. Biomonitoring and food surveillance on heavy metals reveal need for food safety in a coastal region. Food Res Int 2025; 203:115858. [PMID: 40022381 DOI: 10.1016/j.foodres.2025.115858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 03/03/2025]
Abstract
Vegetables and seafoods are major sources of nutrients for human being. However, heavy metals can easily accumulate in these food types. Here we compared residents' blood As, Cd, Pb, Mn, Cu and Hg in one coastal city (Rizhao) and two inland cities (Zaozhuang and Jining) in Shandong province, China. From 180 participants we found that: blood As of Rizhao participants (8.03 ± 5.8 µg/L) was ∼7 fold of Jining participants and ∼10 fold of Zaozhuang participants; blood Cd (1.34 ± 1.72 µg/L) and Pb (17.05 ± 9.48 µg/L) in Rizhao participants demonstrated to be 1.29∼3.72 fold of that in Jining and Zaozhuang participants. To find reason for such difference, we examined food safety surveillance on heavy metals in vegetables, fruits, beans, tofu, peanuts 2020 to 2023. We also evaluated relevant reports on the heavy metal contamination. The health risks (P50∼P95) were assessed for 12 age/sex population types. Weekly intake limits and background levels from USA national survey were compared with Rizhao population exposure levels. We found that Pb, As and Cd intake from vegetables, beans, tofu and peanuts were not posing health risk. But when seafood intake was included, alarming health risk (target hazard quotient, THQ > 1) was found in children of 2∼5 years old (P75, P90, P95). While the weekly intake of heavy metals stayed within safe range, the daily intake of heavy metals in child groups exceeded population background levels in USA. Our study calls for extra attention on the food-contained heavy metals in coastal region.
Collapse
Affiliation(s)
- Xin Zhang
- Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong 250117, China
| | - Xiaoqian Yang
- Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong 250117, China
| | - Xiaoyue Hu
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhonghua Meng
- Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong 250117, China
| | - Zhigang Yu
- Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong 250117, China
| | - Zhan Sun
- Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong 250117, China
| | - Ying Zhang
- Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong 250117, China
| | - Zhifeng Yang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Sha Li
- Chongqing Institute for Food and Drug Control, Chongqing 401121, China.
| | - Jia-Sheng Wang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China; Interdisciplinary Toxicology Program and Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA.
| | - Qiang Jia
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China.
| | - Lanzheng Liu
- Jinan Municipal Center for Disease Control and Prevention, Jinan, Shandong 250117, China.
| | - Jun Zhou
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China.
| |
Collapse
|
3
|
Silva-Gigante M, Hinojosa-Reyes L, Bazzan-Dessuy M, Rosas-Castor JM, Torres-Gaytán DE, Quero-Jiménez PC, Caballero-Quintero A, Guzmán-Mar JL. Traces of the past: assessing the impact of potentially toxic elements from an abandoned mine on groundwater and agricultural soil in San Luis Potosí, México. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1015. [PMID: 39365363 DOI: 10.1007/s10661-024-13081-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/27/2024] [Indexed: 10/05/2024]
Abstract
The study was conducted in Cerritos, San Luis Potosí, México, near the Guaxcama mine, focused on environmental contamination (groundwater and agricultural soil) from antimony (Sb), arsenic (As), lead (Pb), cadmium (Cd), and mercury (Hg). In March 2022, 20 agricultural soil and 16 groundwater samples were collected near the historically cinnabar (HgS)- and arsenopyrite (FeAsS)-rich Guaxcama mine. Hydride generation atomic fluorescence spectrometry (HG-AFS) for As, cold vapor atomic fluorescence spectrometry (CV-AFS) for Hg, and inductively coupled plasma optical emission spectrometry (ICP-OES) for Cd, Pb, and Sb were used for the determinations of potentially toxic elements (PTEs). While concentrations of Cd, Hg, Pb, and Sb in groundwater were below detection limits, As levels exhibited a range from 40.9 ± 1.4 to 576.0 ± 1.0 µg/L, exceeding permissible limits for drinking water (10 µg/L). In agricultural soil, As was between 7.67 ± 0.16 and 24.1 ± 0.4 µg/g, Hg ranged from 0.203 ± 0.018 to 2.33 ± 0.19 µg/g, Cd from 2.53 ± 0.90 to 2.78 ± 0.01 µg/g, and Pb from 11.7 ± 1.2 to 34.3 ± 4.1 µg/g. Only one study area surpassed the Mexican As soil limit of 22 µg/g. Sequential extraction (four-step BCR procedure) indicated significant As bioavailability in soil (fractions 1 and 2) ranging from 3.66 to 10.36%, heightening the risk of crop transfer, in contrast to the low bioavailability of Hg, showing that fractions 1, 2, and 3 were below the limit of quantification (LOQ). Crucial physicochemical parameters in soil, including nitrate levels, pH, and organic matter, were pivotal in understanding contamination dynamics. Principal component analysis highlighted the influence of elements like Fe and Ca on phytoavailable As, while Pb and Cd likely originated from a common source. Ecological risk assessments underscored the significant impact of pollution, primarily due to the concentrations of Cd and Hg. Non-cancer and cancer risks to residents through As poisoning via contaminated water ingestion also were found. The hazard index (HI) values varied between 4.0 and 82.2 for adults and children. The total incremental lifetime cancer risk (TILCAR) values for adults ranged from 7.75E - 04 to 1.06E - 02, whereas for children, the values were from 2.47E - 04 to 3.17E - 03.
Collapse
Affiliation(s)
- M Silva-Gigante
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, Ave. Universidad S/N, 66455, San Nicolás de Los Garza, NL, México
| | - L Hinojosa-Reyes
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, Ave. Universidad S/N, 66455, San Nicolás de Los Garza, NL, México
| | - M Bazzan-Dessuy
- Universidade Federal Do Rio Grande Do Sul, Instituto de Química, Av. Bento Gonçalves, Porto Alegre, RS, 9500, Brazil
| | - J M Rosas-Castor
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, Ave. Universidad S/N, 66455, San Nicolás de Los Garza, NL, México
| | - D E Torres-Gaytán
- Instituto Potosino de Investigación Científica y Tecnológica, IPICYT, División de Geociencias Aplicadas, Camino a La Presa San José 2055 Col. Lomas 4a Sección, San Luis Potosí, SLP, CP 78216, México
| | - P C Quero-Jiménez
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, Ave. Universidad S/N, 66455, San Nicolás de Los Garza, NL, México
| | - A Caballero-Quintero
- Escuela de Ingeniería y Ciencias, Departamento de Ciencias, Química y Nanotecnología, Tecnológico de Monterrey, Ave Eugenio Garza Sada 2501 sur, Monterrey, NL, CP 64890, México
| | - J L Guzmán-Mar
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Cd. Universitaria, Ave. Universidad S/N, 66455, San Nicolás de Los Garza, NL, México.
| |
Collapse
|
4
|
Hiller E, Faragó T, Kolesár M, Filová L, Mihaljevič M, Jurkovič Ľ, Demko R, Machlica A, Štefánek J, Vítková M. Metal(loid)s in urban soil from historical municipal solid waste landfill: Geochemistry, source apportionment, bioaccessibility testing and human health risks. CHEMOSPHERE 2024; 362:142677. [PMID: 38908448 DOI: 10.1016/j.chemosphere.2024.142677] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Landfills, especially those poorly managed, can negatively affect the environment and human beings through chemical contamination of soils and waters. This study investigates the soils of a historical municipal solid waste (MSW) landfill situated in the heart of a residential zone in the capital of Slovakia, Bratislava, with an emphasis on metal (loid) contamination and its consequences. Regardless of the depth, many of the soils exhibited high metal (loid) concentrations, mainly Cd, Cu, Pb, Sb, Sn and Zn (up to 24, 2620, 2420, 134, 811 and 6220 mg/kg, respectively), classifying them as extremely contaminated based on the geo-accumulation index (Igeo >5). The stable lead isotopic ratios of the landfill topsoil varied widely (1.1679-1.2074 for 206Pb/207Pb and 2.0573-2.1111 for 208Pb/206Pb) and indicated that Pb contained a natural component and an anthropogenic component, likely municipal solid waste incineration (MSWI) ash and construction waste. Oral bioaccessibility of metal (loid)s in the topsoil was variable with Cd (73.2-106%) and Fe (0.98-2.10%) being the most and least bioaccessible, respectively. The variation of metal (loid) bioaccessibility among the soils could be explained by differences in their geochemical fractionation as shown by positive correlations of bioaccessibility values with the first two fractions of BCR (Community Bureau of Reference) sequential extraction for As, Cd, Mn, Ni, Pb, Sn and Zn. The results of geochemical fractionation coupled with the mineralogical characterisation of topsoil showed that the reservoir of bioaccessible metal (loid)s was calcite and Fe (hydr)oxides. Based on aqua regia metal (loid) concentrations, a non-carcinogenic risk was demonstrated for children (HI = 1.59) but no risk taking into account their bioaccessible concentrations (HI = 0.65). This study emphasises the need for detailed research of the geochemistry of wastes deposited in urban soils to assess the potentially hazardous sources and determine the actual bioaccessibility and human health risks of the accumulated metal (loid)s.
Collapse
Affiliation(s)
- Edgar Hiller
- Department of Geochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovak Republic.
| | - Tomáš Faragó
- Department of Geochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovak Republic.
| | - Martin Kolesár
- DEKONTA Slovensko, Ltd., Odeská 49, 821 06 Bratislava, Slovak Republic.
| | - Lenka Filová
- Department of Applied Mathematics and Statistics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynská dolina 1, 842 48 Bratislava, Slovak Republic.
| | - Martin Mihaljevič
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 43 Prague 2, Czech Republic.
| | - Ľubomír Jurkovič
- Department of Geochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovak Republic.
| | - Rastislav Demko
- Department of Older Geological Formations, Division of Geology, State Geological Institute of Dionýz Štúr, Mlynská dolina 1, 817 04 Bratislava 11, Slovak Republic.
| | - Andrej Machlica
- DEKONTA Slovensko, Ltd., Odeská 49, 821 06 Bratislava, Slovak Republic.
| | - Ján Štefánek
- DEKONTA Slovensko, Ltd., Odeská 49, 821 06 Bratislava, Slovak Republic.
| | - Martina Vítková
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Praha - Suchdol, Czech Republic.
| |
Collapse
|
5
|
Cheng T, Ren C, Xu J, Wang H, Wen B, Zhao Q, Zhang W, Yu G, Zhang Y. Genome-wide analysis of the common bean (Phaseolus vulgaris) laccase gene family and its functions in response to abiotic stress. BMC PLANT BIOLOGY 2024; 24:688. [PMID: 39026161 PMCID: PMC11264805 DOI: 10.1186/s12870-024-05385-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Laccase (LAC) gene family plays a pivotal role in plant lignin biosynthesis and adaptation to various stresses. Limited research has been conducted on laccase genes in common beans. RESULTS 29 LAC gene family members were identified within the common bean genome, distributed unevenly in 9 chromosomes. These members were divided into 6 distinct subclades by phylogenetic analysis. Further phylogenetic analyses and synteny analyses indicated that considerable gene duplication and loss presented throughout the evolution of the laccase gene family. Purified selection was shown to be the major evolutionary force through Ka / Ks. Transcriptional changes of PvLAC genes under low temperature and salt stress were observed, emphasizing the regulatory function of these genes in such conditions. Regulation by abscisic acid and gibberellins appears to be the case for PvLAC3, PvLAC4, PvLAC7, PvLAC13, PvLAC14, PvLAC18, PvLAC23, and PvLAC26, as indicated by hormone induction experiments. Additionally, the regulation of PvLAC3, PvLAC4, PvLAC7, and PvLAC14 in response to nicosulfuron and low-temperature stress were identified by virus-induced gene silence, which demonstrated inhibition on growth and development in common beans. CONCLUSIONS The research provides valuable genetic resources for improving the resistance of common beans to abiotic stresses and enhance the understanding of the functional roles of the LAC gene family.
Collapse
Affiliation(s)
- Tong Cheng
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang, China
| | - Chunyuan Ren
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Jinghan Xu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Huamei Wang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang, China
| | - Bowen Wen
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Qiang Zhao
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang, China
| | - Wenjie Zhang
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Gaobo Yu
- College of Horticulture and Landscape Architecture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China.
| | - Yuxian Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China.
- National Coarse Cereals Engineering Research Center, Daqing, Heilongjiang, China.
| |
Collapse
|
6
|
Haghighizadeh A, Rajabi O, Nezarat A, Hajyani Z, Haghmohammadi M, Hedayatikhah S, Asl SD, Aghababai Beni A. Comprehensive analysis of heavy metal soil contamination in mining Environments: Impacts, monitoring Techniques, and remediation strategies. ARAB J CHEM 2024; 17:105777. [DOI: 10.1016/j.arabjc.2024.105777] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025] Open
|
7
|
Chen Z, Feng Y, Guo Z, Han M, Yan X. Zinc oxide nanoparticles alleviate cadmium toxicity and promote tolerance by modulating programmed cell death in alfalfa (Medicago sativa L.). JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133917. [PMID: 38432092 DOI: 10.1016/j.jhazmat.2024.133917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/06/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Cadmium (Cd) can induce programmed cell death (PCD) and zinc oxide nanoparticles (ZnO NPs) effectively alleviate Cd stress. However, the mechanisms of ZnO NPs-mediated Cd detoxification in alfalfa (Medicago sativa L.) are limited. The pot experiment was conducted with Cd soil (19.2 mg kg-1) and foliar ZnO NPs (100 mg L-1) on alfalfa. The results showed that Cd reduced shoot height and biomass, and accumulated reactive oxygen species (ROS), resulting in oxidative stress and further PCD (plasmolysis, cytosolic and nuclear condensation, subcellular organelle swelling, and cell death). ZnO NPs positively regulated the antioxidant system, cell membrane stability, ultrastructure, osmotic homeostasis, and reduced PCD, indicating a multi-level coordination for the increased Cd tolerance. ZnO NPs up-regulated the activity and expression of antioxidant enzymes and regulated PCD-related genes to scavenge ROS and mitigate PCD caused by Cd. The genes related to ZnO NPs-mediated Cd detoxification were significantly enriched in cell death and porphyrin and chlorophyll metabolism. Overall, it elucidates the molecular basis of ZnO NPs-mediated Cd-tolerance by promoting redox and osmotic homeostasis, maintaining cellular ultrastructure, reducing Cd content, and attenuating Cd-induced PCD. it provides a promising application of ZnO NPs to mitigate Cd phytotoxicity and the related cellular and biochemical mechanisms. ENVIRONMENTAL IMPLICATION: Cd, one of the most toxic heavy metals, has caused serious environmental pollution. ZnO NPs can effectively alleviate Cd stress on plants and the environment. This study revealed that foliar-applied ZnO NPs alleviate Cd toxicity by mitigating the oxidative damage and regulating Cd-induced PCD via morphological, physiological, and transcriptomic levels. The findings elucidated the molecular basis of ZnO NPs-mediated Cd tolerance by promoting osmotic and redox homeostasis, reducing Cd content and lipid peroxidation, attenuating Cd-induced PCD features, and altering PCD-related genes in alfalfa. The study laid a theoretical foundation for the safe production of alfalfa under Cd pollution.
Collapse
Affiliation(s)
- Zhao Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yuxi Feng
- College of Animal science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhipeng Guo
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Mengli Han
- College of Animal science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xuebing Yan
- College of Animal science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
8
|
Kapoor RT, Paray BA, Ahmad A, Mansoor S, Ahmad P. Biochar and silicon relegate the adversities of beryllium stress in pepper by modulating methylglyoxal detoxification and antioxidant defense mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37060-37074. [PMID: 38758448 DOI: 10.1007/s11356-024-33547-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/28/2024] [Indexed: 05/18/2024]
Abstract
Industrial activities have escalated beryllium (Be) release in environment which negatively affect plant growth and human health. This investigation describes Be-induced stress in pepper and its palliation by application of pineapple fruit peel biochar (BC) and potassium silicate (Si). The treatment of Be reduced seedling length, biomass, and physiological attributes and enhanced electrolyte leakage, hydrogen peroxide (H2O2), superoxide (O2•-) level in pepper plants; however, these oxidative stress markers were reduced with combined treatment (Be + BC + Si). Application of BC and Si also lowered Be cumulation in roots and shoots of pepper. Under combined treatment, superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) activities exhibited significant enhancement 19, 7.6, 22.8, and 48%, respectively, in Be-stressed pepper. The Be + BC + Si increased peroxidase (POD), glutathione S-transferase (GPX), and glutathione peroxidase (GST) activities 121, 55, and 53%, respectively, as compared to Be-treated pepper. Methylglyoxal level was reduced in pepper with rise in glyoxalase I and II enzymes. Thus, combined application of SS and BC effectively protects pepper against oxidative stress induced by Be by increasing both antioxidant defense and glyoxalase systems. Hence, pineapple fruit peel biochar along with potassium silicate can be used for enhancing crop productivity under Be-contaminated soil.
Collapse
Affiliation(s)
- Riti Thapar Kapoor
- Centre for Plant and Environmental Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201 313, Uttar Pradesh, India
| | - Bilal Ahamad Paray
- Zoology Department, College of Sciences, King Saud University, PO Box 2455, 11451, Riyadh, Saudi Arabia
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Sheikh Mansoor
- Department of Plant Resources and Environment, Jeju National University, Jeju, 63243, Republic of Korea
| | - Parvaiz Ahmad
- Department of Botany, GDC, Pulwama, 192301, Jammu and Kashmir, India.
| |
Collapse
|
9
|
Cao K, Jaime-Pérez N, Mijovilovich A, Morina F, Bokhari SNH, Liu Y, Küpper H, Tao Q. Symplasmic and transmembrane zinc transport is modulated by cadmium in the Cd/Zn hyperaccumulator Sedum alfredii. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116272. [PMID: 38564870 DOI: 10.1016/j.ecoenv.2024.116272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
This study investigated the influence of Cd (25 µM) on Zn accumulation in a hyperaccumulating (HE) and a non-hyperaccumulating (NHE) ecotype of Sedum alfredii Hance at short-term supply of replete (Zn5, 5 µM) and excess (Zn400, 400 µM) Zn. Cd inhibited Zn accumulation in both ecotypes, especially under Zn400, in organs with active metal sequestration, i.e. roots of NHE and shoots of HE. Direct biochemical Cd/Zn competition at the metal-protein interaction and changes in transporter gene expression contributed to the observed accumulation patterns in the roots. Specifically, in HE, Cd stimulated SaZIP4 and SaPCR2 under Zn5, but downregulated SaIRT1 and SaZIP4 under Zn400. However, Cd downregulated related transporter genes, except for SaNRAMP1, in NHE, irrespective of Zn. Cadmium stimulated casparian strip (CSs) development in NHE, as part of the defense response, while it had a subtle effect on the (CS) in HE. Moreover, Cd delayed the initiation of the suberin lamellae (SL) in HE, but stimulated SL deposition in NHE under both Zn5 or Zn400. Changes in suberization were mainly ascribed to suberin-biosynthesis-related genes and hormonal signaling. Altogether, Cd regulated Zn accumulation mainly via symplasmic and transmembrane transport in HE, while Cd inhibited both symplasmic and apoplasmic Zn transport in NHE.
Collapse
Affiliation(s)
- Ke Cao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Noelia Jaime-Pérez
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics & Biochemistry, Branišovská 1160/31, České Budějovice 370 05, Czech Republic
| | - Ana Mijovilovich
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics & Biochemistry, Branišovská 1160/31, České Budějovice 370 05, Czech Republic
| | - Filis Morina
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics & Biochemistry, Branišovská 1160/31, České Budějovice 370 05, Czech Republic
| | - Syed Nadeem Hussain Bokhari
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics & Biochemistry, Branišovská 1160/31, České Budějovice 370 05, Czech Republic
| | - Yunqi Liu
- Zhongguancun Xuyue Non-invasive Micro-test Technology Industrial Alliance, Beijing, China
| | - Hendrik Küpper
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Laboratory of Plant Biophysics & Biochemistry, Branišovská 1160/31, České Budějovice 370 05, Czech Republic; University of South Bohemia, Department of Experimental Plant Biology, Branišovská 1160/31, České Budějovice 370 05, Czech Republic.
| | - Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
10
|
Fu S, Iqbal B, Li G, Alabbosh KF, Khan KA, Zhao X, Raheem A, Du D. The role of microbial partners in heavy metal metabolism in plants: a review. PLANT CELL REPORTS 2024; 43:111. [PMID: 38568247 DOI: 10.1007/s00299-024-03194-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/06/2024] [Indexed: 04/05/2024]
Abstract
Heavy metal pollution threatens plant growth and development as well as ecological stability. Here, we synthesize current research on the interplay between plants and their microbial symbionts under heavy metal stress, highlighting the mechanisms employed by microbes to enhance plant tolerance and resilience. Several key strategies such as bioavailability alteration, chelation, detoxification, induced systemic tolerance, horizontal gene transfer, and methylation and demethylation, are examined, alongside the genetic and molecular basis governing these plant-microbe interactions. However, the complexity of plant-microbe interactions, coupled with our limited understanding of the associated mechanisms, presents challenges in their practical application. Thus, this review underscores the necessity of a more detailed understanding of how plants and microbes interact and the importance of using a combined approach from different scientific fields to maximize the benefits of these microbial processes. By advancing our knowledge of plant-microbe synergies in the metabolism of heavy metals, we can develop more effective bioremediation strategies to combat the contamination of soil by heavy metals.
Collapse
Affiliation(s)
- Shilin Fu
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, 212013, Zhenjiang, People's Republic of China
| | - Babar Iqbal
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, 212013, Zhenjiang, People's Republic of China
| | - Guanlin Li
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, 212013, Zhenjiang, People's Republic of China.
- Jiangsu Collaborative Innovation Centre of Technology and Material of Water Treatment, Suzhou University of Science and Technology, 215009, Suzhou, People's Republic of China.
| | | | - Khalid Ali Khan
- Applied College, Center of Bee Research and its Products (CBRP), Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, 61413, Abha, Saudi Arabia
| | - Xin Zhao
- Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Abdulkareem Raheem
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Centre of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, 212013, Zhenjiang, People's Republic of China.
| | - Daolin Du
- Jingjiang College, Institute of Environment and Ecology, School of Emergency Management, School of Environment and Safety Engineering, School of Agricultural Engineering, Jiangsu University, 212013, Zhenjiang, People's Republic of China.
| |
Collapse
|
11
|
Thakur S, Bains A, Inbaraj BS, Sridhar K, Kumar A, Yaqoob M, Ali N, Parvez MK, Chawla P, Sharma M. Synthesis of carbon quantum dots from waste Phaseolus vulgaris for the development of a fluorescence sensing probe to detect plasticizer in cookies. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION 2024; 184:650-659. [DOI: 10.1016/j.psep.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
|
12
|
Zong X, Liu Y, Lin X, He D, Dong Z, Guo T, Li J, Li H, Wang F. Foliar spraying of lanthanum activates endocytosis in lettuce (Lactuca sativa L.) root cells, increasing Cd and Pb accumulation and their bioaccessibility. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168374. [PMID: 37956851 DOI: 10.1016/j.scitotenv.2023.168374] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/15/2023]
Abstract
Cadmium (Cd) and lead (Pb) accumulate easily in leafy vegetables and can harm human health. Lanthanum (La) have been used to improve agricultural yield and quality, but the effect of La application on Cd/Pb enrichment in leafy vegetables remains incomplete currently. A previous study reported that the endocytosis in lettuce leaf cells can be activated by La, leading to an increase in Pb accumulation in lettuce leaves. However, it has not been investigated whether foliar application of La enhances root cellular endocytosis and promotes its uptake of Cd and Pb. In this study, the influence of La on the uptake of Cd and Pb, Cd bioaccessibility, and the safety risks of cultivating lettuce under Cd and Pb stress were explored. It was found that La increased Cd (16-30 % in shoot, 16-34 % in root) and Pb (25-29 % in shoot, 17-23 % in root) accumulation in lettuce. The increased accumulation of Cd and Pb could be attributed to La-enhanced endocytosis. Meanwhile, La enhanced the toxicity of both Cd and Pb, inhibited lettuce growth, and aggravated the damage to the photosynthetic and antioxidant systems. Finally, gastrointestinal simulation experiments showed that La increased the Cd bioaccessibility in both gastric and intestinal phase by 7-108 % and 9-87 %, respectively. These results offer valuable insights into the safety of REEs for agricultural applications.
Collapse
Affiliation(s)
- Xinyan Zong
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu 210023, China
| | - Yongqiang Liu
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu 210023, China
| | - Xinying Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ding He
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu 210023, China
| | - Zhongtian Dong
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Ting Guo
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu 210023, China
| | - Jining Li
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu 210023, China
| | - Hongbo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Fenghe Wang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China; Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
13
|
Haseen U, Ali SG, Khan RA, Alsalme A, Koo BH, Ahmad H. Preconcentration and selective extraction of trace Hg(ii) by polymeric g-C 3N 4 nanosheet-packed SPE column. RSC Adv 2024; 14:1593-1601. [PMID: 38179094 PMCID: PMC10765282 DOI: 10.1039/d3ra05512d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/02/2023] [Indexed: 01/06/2024] Open
Abstract
In this study, we successfully synthesized polymeric graphitic carbon nitride (g-C3N4) nanosheets through thermal means and proposed their application in solid-phase extraction (SPE) for the enrichment of trace Hg(ii). The nanosheets underwent characterization using scanning electron microscopy, tunnelling electron microscopy, and energy-dispersive X-ray spectroscopy. The column packed with polymeric carbon nitride nanosheets demonstrated effective extraction of trace Hg(ii) ions from complex samples. The g-C3N4 nanosheets possess a zeta potential value of -20 mV, enabling strong interaction with positively charged divalent Hg(ii) ions. This interaction leads to the formation of stable chelates with the nitrogen atoms present in the polytriazine and heptazine units of the material. The proposed method exhibited a high preconcentration limit of 0.33 μg L-1, making it suitable for analysing trace amounts of Hg(ii) ions. Moreover, the method's applicability was confirmed through successful analysis of real samples, achieving an impressive preconcentration factor of 200. The detection limit for trace Hg(ii) ions was determined to be 0.6 μg L-1. To assess the accuracy of the method, we evaluated its performance by recovering spiked amounts of Hg(ii) and by analysing certified reference materials. The results indicated excellent precision, with RSD consistently below 5% for all the analyses conducted. In conclusion, the thermally synthesized polymeric carbon nitride nanosheets present a promising approach for solid-phase extraction and preconcentration of trace Hg(ii) from real samples. The method showcases high efficiency, sensitivity, and accuracy, making it a valuable tool for environmental and analytical applications.
Collapse
Affiliation(s)
- Uzma Haseen
- Department of Chemistry, Aligarh Muslim University Aligarh 202002 India
| | - Syed Ghazanfar Ali
- Department of Microbiology, Jawaharlal Nehru Medical College, Aligarh Muslim University Aligarh 202002 India
| | - Rais Ahmad Khan
- Department of Chemistry, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Ali Alsalme
- Department of Chemistry, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Bon Heun Koo
- School of Materials Science and Engineering, Changwon National University Changwon 51140 Gyeongnam South Korea
| | - Hilal Ahmad
- Faculty of Applied Sciences, Ton Duc Thang University Ho Chi Minh City 700000 Vietnam
| |
Collapse
|
14
|
Liu J, Zheng Q, Pei S, Li J, Ma L, Zhang L, Niu J, Tian T. Ecological and health risk assessment of heavy metals in agricultural soils from northern China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:99. [PMID: 38157088 DOI: 10.1007/s10661-023-12255-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
Soil pollution by heavy metals can cause continuing damage to ecosystems and the human body. In this study, we collected nine fresh topsoil samples and 18 maize samples (including nine leaf samples and nine corn samples) from agricultural soils in the Baiyin mining areas. The results showed that the order of heavy metal concentrations (mg/kg) in agricultural soils was as follows: Zn (377.40) > Pb (125.06) > Cu (75.06) > Ni (28.29) > Cd (5.46) > Hg (0.37). Cd, Cu, Zn, and Pb exceeded the Chinese risk limit for agricultural soil pollution. The average the pollution load index (4.39) was greater than 3, indicating a heavy contamination level. The element that contributed the most to contamination and high ecological risk in soil was Cd. Principal component analysis (PCA) and Pearson's correlation analysis indicated that the sources of Ni, Cd, Cu, and Zn in the soil were primarily mixed, involving both industrial and agricultural activities, whereas the sources of Hg and Pb included both industrial and transportation activities. Adults and children are not likely to experience non-carcinogenic impacts from the soil in this region. Nonetheless, it was important to be aware of the elevated cancer risk presented by Cd, Pb, and especially Ni. The exceedance rates of Cd and Pb in corn were 66.67% and 33.3%, respectively. The results of this research provide data to improve soil protection, human health monitoring, and crop management in the Baiyin district.
Collapse
Affiliation(s)
- Jiangyun Liu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, The People's Republic of China
| | - Qiwen Zheng
- School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, The People's Republic of China
| | - Shuwei Pei
- School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, The People's Republic of China
| | - Jia Li
- School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, The People's Republic of China
| | - Li Ma
- School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, The People's Republic of China
| | - Li Zhang
- School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, The People's Republic of China
| | - Jingping Niu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, The People's Republic of China.
| | - Tian Tian
- School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, The People's Republic of China.
| |
Collapse
|
15
|
Moeen-Ud-Din M, Yang S, Wang J. Auxin homeostasis in plant responses to heavy metal stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108210. [PMID: 38006792 DOI: 10.1016/j.plaphy.2023.108210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/21/2023] [Accepted: 11/18/2023] [Indexed: 11/27/2023]
Abstract
Expeditious industrialization and anthropogenic activities have resulted in large amounts of heavy metals (HMs) being released into the environment. These HMs affect crop yields and directly threaten global food security. Therefore, significant efforts have been made to control the toxic effects of HMs on crops. When HMs are taken up by plants, various mechanisms are stimulated to alleviate HM stress, including the biosynthesis and transport of auxin in the plant. Interestingly, researchers have noted the significant potential of auxin in mediating resistance to HM stress, primarily by reducing uptake of metals, promoting chelation and sequestration in plant tissues, and mitigating oxidative damage. Both exogenous administration of auxin and manipulation of intrinsic auxin status are effective strategies to protect plants from the negative consequences of HMs stress. Regulation of genes and transcription factors related to auxin homeostasis has been shown to be related to varying degrees to the type and concentration of HMs. Therefore, to derive the maximum benefit from auxin-mediated mechanisms to attenuate HM toxicities, it is essential to gain a comprehensive understanding of signaling pathways involved in regulatory actions. This review primarily emphases on the auxin-mediated mechanisms participating in the injurious effects of HMs in plants. Thus, it will pave the way to understanding the mechanism of auxin homeostasis in regulating HM tolerance in plants and become a tool for developing sustainable strategies for agricultural growth in the future.
Collapse
Affiliation(s)
- Muhammad Moeen-Ud-Din
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Shaohui Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jiehua Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
16
|
Yu S, Pan XD, Han JL. Toxic Elements in Beans from Zhejiang, Southeast China: Distribution and Probabilistic Health Risk Assessment. Foods 2023; 12:3300. [PMID: 37685231 PMCID: PMC10486916 DOI: 10.3390/foods12173300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
This study described the distribution of As, Cd, Cr, Hg, and Pb in 692 bean samples from Zhejiang province, southeast China, and estimated the health risk using Monte Carlo simulation. The average levels of As, Cd, Cr, Hg, and Pb were 0.0349, 0.0379, 0.246, 0.0019, and 0.0246 mg kg-1. Correlation analyses showed very strong positive correlations for Cd-Pb in kidney beans and mung beans, Cd-As in black beans, and Pb-As in red beans. The target hazard quotients (THQs) were adopted for non-carcinogenic risk assessment, and THQs at the 50th percentile were all less than 1, indicating that there are no deleterious effects from rice exposure to these elements. When evaluating THQ for multiple elements, the certainty with a hazard index (HI) greater than 1 for children was 12.64%, for teens 11.54%, and for adults 1.01%. The sensitivity analysis reveals that the concentration of Cd in beans and ED (exposure duration) are the main principal factors that contributed to the total risk. The mean carcinogenic risks for children, teens, and adults were all less than 1 × 10-4, indicating no potential carcinogenic risk. Despite that, the routine monitoring of these elements, especially for Cd should be continued.
Collapse
Affiliation(s)
| | - Xiao-Dong Pan
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | | |
Collapse
|