1
|
Mangas-Suarez M, Barquero JI, Barral N, Roqueñí N, Garcia-Ordiales E. Assessment of polycyclic aromatic hydrocarbon concentrations in the sediments of an estuary heavily affected by heavy industrial activities. MARINE POLLUTION BULLETIN 2025; 217:118125. [PMID: 40349618 DOI: 10.1016/j.marpolbul.2025.118125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2025] [Revised: 05/04/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
The Aviles estuary is one of the most anthropized in Spain due to the significant pressure exerted on it by industry. This study assesses the concentrations, origins, sources, and environmental implications of 16 polycyclic aromatic hydrocarbons (PAHs) as persistent contaminants of the estuary sediments. A total of 79 sediment samples were studied. Results indicate ∑16PAH concentrations ranging from 0.086 to 305.771 μg g-1, with the highest values in the estuary's main channel. High-molecular-weight PAHs (4-6 rings) were predominant, suggesting a pyrogenic origin associated to industrial combustion processes. Lower molecular weight PAHs (2-3 rings) were mainly observed near the estuary mouth. Diagnostic ratio analysis confirmed that PAHs in the estuary predominantly originate from mixed combustion sources, including industrial processes, vehicle emissions, and maritime activities. Spatial distribution maps identified three contamination hotspots: (i) the Albares River, linked with steel industry emissions; (ii) a central estuary site near an aluminium smelter discharge point, connected to PAHs from industrial operations; and (iii) the estuary mouth, where PAHs from industrial wastewater discharges and shipping activities were detected. Cluster analysis further distinguished areas with similar contamination profiles, confirming the influence of industrial and maritime activities. Finally, the risk assessment comparisons with international pollution thresholds revealed that PAH levels in the Avilés Estuary are significantly higher than in other European and global estuarine environments. Over 90 % of samples exceeded both low and median effect range limits, indicating substantial toxicity risks. Moreover, ecological risk quotient classified 92 % of sediment samples as posing a high risk to aquatic life.
Collapse
Affiliation(s)
| | - Jose Ignacio Barquero
- Instituto de Geología Aplicada, Universidad de Castilla-La Mancha, 13400, Almadén, Ciudad Real, Spain
| | - Noemi Barral
- Transport and Project and Process Technology Department, Universidad de Cantabria, Santander, Spain
| | - Nieves Roqueñí
- ISYMA Research Group, Mining, University of Oviedo, 33600 Mieres, Spain
| | | |
Collapse
|
2
|
Berríos-Rolón PJ, Cotto MC, Márquez F. Polycyclic Aromatic Hydrocarbons (PAHs) in Freshwater Systems: A Comprehensive Review of Sources, Distribution, and Ecotoxicological Impacts. TOXICS 2025; 13:321. [PMID: 40278637 PMCID: PMC12031217 DOI: 10.3390/toxics13040321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/06/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025]
Abstract
This comprehensive review offers new perspectives on the distribution, sources, and ecotoxicological impacts of polycyclic aromatic hydrocarbons (PAHs) in freshwater systems. Unlike previous reviews, this work integrates recent findings on PAH dynamics within environmental matrices and emphasizes spatiotemporal variability across geographic regions. It critically examines both anthropogenic and natural sources, as well as the physical, chemical, and biological mechanisms driving PAH transport and fate. Special attention is given to the ecotoxicological effects of PAHs on freshwater organisms, including bioaccumulation, endocrine disruption, and genotoxicity. Notably, this review identifies key knowledge gaps and proposes an interdisciplinary framework to assess ecological risk and guide effective monitoring and management strategies for the protection of freshwater ecosystems.
Collapse
Affiliation(s)
| | - María C. Cotto
- Nanomaterials Research Group, Department of Natural Sciences and Technology, Division of Natural Sciences, Technology and Environment, Universidad Ana G. Méndez-Gurabo Campus, Gurabo, PR 00778, USA;
| | - Francisco Márquez
- Nanomaterials Research Group, Department of Natural Sciences and Technology, Division of Natural Sciences, Technology and Environment, Universidad Ana G. Méndez-Gurabo Campus, Gurabo, PR 00778, USA;
| |
Collapse
|
3
|
Rong Q, Zhang H, Li Y, Yan L, Luo J, Jones KC. Occurrence and distribution of PAHs in the Yangtze River and urban river waters of Nanjing, China: Insights from in situ DGT measurements. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 371:125921. [PMID: 40015442 DOI: 10.1016/j.envpol.2025.125921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/21/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
The diffusive gradients in thin films (DGT) technique has been used for monitoring various organic pollutants in surface water in recent years. This article applies a novel DGT passive sampler to the Nanjing section of the Yangtze River and urban rivers to measure the in-situ concentrations of polycyclic aromatic hydrocarbons (PAHs), analyze their seasonal changes and determine their fate. PAH concentrations had marked seasonality. The concentration of individual PAH was 1.3-18 ng/L in summer and 4.2-161 ng/L in winter. Source inputs, flow differences and degradation/losses caused the seasonal differences. Inputs from Nanjing and tributary rivers were minor compared to the cumulative loads of PAHs in the main Yangtze river upstream of the city. Petrochemical enterprises along the Yangtze River, ship transportation, and upstream pollution were the main sources of pollution in this area. Source analysis indicated a mixed source with coal and biomass combustion inputs increasing significantly in winter. Risk assessment indicated that although the Yangtze River protection policy has reduced pollution in recent years, water quality still exceeded PAH ecological thresholds in the river and the chemical industry cluster areas during winter. Further measures are needed to reduce pollution and its associated risks from a catchment perspective.
Collapse
Affiliation(s)
- Qiuyu Rong
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - Yanying Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, Liaoning, 116023, PR China
| | - Liying Yan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, PR China
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, PR China.
| | - Kevin C Jones
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom.
| |
Collapse
|
4
|
Muhsin RMM, Abd Manan TSB, Bidai J, Mangat MSA, Mohd Hanafiah Z, Gohari A, Ahmad N, Ahmad F, Beddu S, Mohd Kamal NL, Mohamad D, Aldala'in SAH, Mustafa MRU, Mohtar WHMW, Hasnain Isa M, Yusoff MS, Abdul Aziz H. Polycyclic aromatic hydrocarbons (PAHs) occurrences in water bodies, extraction techniques, detection methods, and standardized guidelines for PAHs in aqueous solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 972:179123. [PMID: 40088795 DOI: 10.1016/j.scitotenv.2025.179123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/13/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a carcinogenic compound comprised of benzene ring(s). They occur naturally. However, the occurrence of anthropogenic PAHs (originates from human activities and man-made structures) may contribute to water pollution, risking the public health and aquatic life. This review describes occurrences of PAHs in water bodies, extraction techniques, detection methods, and standardized guidelines for PAHs in aqueous solutions. Previous research identifies PAH contamination across freshwater bodies due to proximity to pollution sources and hydrological factors. Despite analytical advancements, accurately quantifying and characterizing PAHs in complex environmental matrices remains challenging. Overall, this review supports the Sustainable Development Goals (SDGs) no. 6 (clean water and sanitation public) and no. 14 life below water.
Collapse
Affiliation(s)
- Rana Muhammad Mubeen Muhsin
- Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Darul Iman, Malaysia
| | - Teh Sabariah Binti Abd Manan
- Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Darul Iman, Malaysia; School of Civil Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia.
| | - Joseph Bidai
- Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Darul Iman, Malaysia
| | - Muhammad Sarfraz Ahmad Mangat
- Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Darul Iman, Malaysia
| | - Zarimah Mohd Hanafiah
- Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia; Environmental Management Centre, Institute of Climate Change, Universiti Kebangsaan Malaysia, Bangi, Selangor Darul Ehsan, Malaysia
| | - Adel Gohari
- Faculty of Maritime Studies, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Malaysia
| | - Naveed Ahmad
- Department of Chemical and Materials Engineering, College of Engineering, Northern Border University, Arar, Saudi Arabia
| | - Farooq Ahmad
- Department of Chemical and Materials Engineering, College of Engineering, Northern Border University, Arar, Saudi Arabia
| | - Salmia Beddu
- Department of Civil Engineering, Universiti Tenaga Nasional, Jalan Ikram-Uniten, 43000 Kajang, Selangor Darul Ehsan, Malaysia
| | - Nur Liyana Mohd Kamal
- Department of Civil Engineering, Universiti Tenaga Nasional, Jalan Ikram-Uniten, 43000 Kajang, Selangor Darul Ehsan, Malaysia
| | - Daud Mohamad
- Department of Civil Engineering, Universiti Tenaga Nasional, Jalan Ikram-Uniten, 43000 Kajang, Selangor Darul Ehsan, Malaysia
| | | | - Muhammad Raza Ul Mustafa
- Civil and Environmental Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Wan Hanna Melini Wan Mohtar
- Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Darul Iman, Malaysia; Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
| | - Mohamed Hasnain Isa
- Civil Engineering Programme, Faculty of Engineering, Universiti Teknologi Brunei, Tungku Highway, Gadong, BE1410, Brunei Darussalam
| | - Mohd Suffian Yusoff
- School of Civil Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia
| | - Hamidi Abdul Aziz
- School of Civil Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia
| |
Collapse
|
5
|
Zhang Q, Hu R, Xie J, Hu X, Guo Y, Fang Y. Effects of microplastics on polycyclic aromatic hydrocarbons migration in Baiyangdian Lake, northern China: Concentrations, sorption-desorption behavior, and multi-phase exchange. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125408. [PMID: 39613180 DOI: 10.1016/j.envpol.2024.125408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Microplastics (MPs) and polycyclic aromatic hydrocarbons (PAHs) have been found in all environment matrices and are of concern worldwide. In this study, PAHs were determined in Baiyangdian Lake, China, and the effects of MPs on the migration of PAHs at the lake interfaces were analyzed. The average abundances of detected MPs were 9595 items m-3 for water and 1023 items kg-1 for sediment. The detected MPs were polyamide 6, polypropylene, polyethylene, and polyethylene terephthalate. The average Σ16PAHs in the water, sediment, and air were 1338 ng L-1, 751 ng g-1 dry weight, and 395 ng m-3, respectively. At the air-water interface, naphthalene, and phenanthrene volatilized from water to air, whereas benzo(b)fluoranthene, benzo(k)fluoranthene, and dibenzo(a,h)anthracene deposited from air to water. The fugacity fraction between sediment and bottom water ranged from 0.88 to 0.99, which indicated net volatilization at the water-sediment interface. The adsorption capacities of the four MPs for the PAHs ranged from 39.4 to 99.8 μg g-1 with a desorption efficiency range of 0.01%-44.3% under oscillation. According to the distribution of PAHs on the MPs, the exchange fluxes of PAHs at the water-air and sediment-water interfaces were recalculated. The results showed that the MPs could increase deposition of the PAHs from air to the water (ΔFA-W: -221 × 10-2 to -0.01 × 10-2 ng m-2 d-1) and the volatilization of PAHs from sediment to water (ΔFW-S: -79.7 × 105 to 180 × 105 ng m-2 d-1), which suggests that MPs increase the risk of PAHs in water and to aquatic organisms.
Collapse
Affiliation(s)
- Qiuxia Zhang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, PR China
| | - Ruonan Hu
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, PR China
| | - Jixing Xie
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, PR China
| | - Xiufeng Hu
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, PR China
| | - Yiding Guo
- Hebei Key Laboratory of Wetland Ecology and Conservation, Hengshui, 053000, PR China
| | - Yanyan Fang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, PR China.
| |
Collapse
|
6
|
Muthukumaran M, Rawindran H, Noorjahan A, Parveen M, Barasarathi J, Blessie JJ, Ali SS, Sayyed R, Awasthi MK, Hassan S, Ravindran B, Vatanpour V, Balakumar B. Microalgae-based solutions for palm oil mill effluent management: Integrating phycoremediation, biomass and biodiesel production for a greener future. BIOMASS AND BIOENERGY 2024; 191:107445. [DOI: 10.1016/j.biombioe.2024.107445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
7
|
Gomes DF, Brito HP, do Vale JG, da Silva Pinto TJ, Moreira RA, Rocha O. Toxicity of isolated and mixed metals to a native Amazonian ostracod and ecological risk assessment. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:1074-1085. [PMID: 39215898 DOI: 10.1007/s10646-024-02800-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
In recent decades the Amazonian ecosystem has received large amounts of domestic and industrial effluents, as well as mining-related waste contributing significant quantities of metal to water bodies. Thus, the main objective of the study was to verify the sensitivity of a native Amazonian ostracod (Strandesia rondoniensis) species to isolated and mixed metal salts (CuSO4; ZnCl2; CdCl2 and HgCl2). The sensitivity will be compared to other species using species sensitivity distributions (SSDs) for an ecological risk assessment (ERA). The experiment consisted of simultaneously exposing each metal alone and in mixture, through a factorial design for toxicity with 25 different combinations for 48 h. For the ERA, metal concentrations measured in the water of various aquatic environments in the Amazon basin were considered based on the risk quotient values. The results showed that the metal toxicity gradient was Cd>Hg>Cu>Zn, respectively. The toxicity in the mixture showed that the combination of Cu-Cd and Cu-Zn better fit the model (CA), indicating mainly synergism when copper predominated in the mixture. Meanwhile, the Cu-Hg interaction fit the model better (IA), again indicating synergism when copper was at a higher concentration. The ERA showed a high risk (RQ > 1) for the Cd, Cu, and Hg metals.
Collapse
Affiliation(s)
- Diego Ferreira Gomes
- LEEA/SHS, Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos, 13.560-970, Brazil.
| | - Hevelyn Plácido Brito
- Department of Physiological Sciences, Federal University of São Carlos, Rod. Washington Luís km 235 - SP-310, São Carlos, SP, 13565-905, Brazil
| | - Julia Gomes do Vale
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rod. Washington Luís km 235 - SP-310, São Carlos, SP, 13565-905, Brazil
| | - Thandy Júnior da Silva Pinto
- Institute of Chemistry, University of Campinas (UNICAMP), Rua Josué de Castro, S/n - Cidade Universitária, Campinas, SP, 13083-970, Brazil
| | - Raquel Aparecida Moreira
- Department of Basic Sciences (ZAB), Faculty of Animal Science and Food Engineering (FZEA) at the University of São Paulo (USP), Av. Duque de Caxias Norte, 225, Pirassununga, 13635-900, Brazil
| | - Odete Rocha
- Department of Ecology and Evolutionary Biology, Federal University of São Carlos, Rod. Washington Luís km 235 - SP-310, São Carlos, SP, 13565-905, Brazil
| |
Collapse
|
8
|
Wilczyńska A, Żak N, Stasiuk E. Content of Selected Harmful Metals (Zn, Pb, Cd) and Polycyclic Aromatic Hydrocarbons (PAHs) in Honeys from Apiaries Located in Urbanized Areas. Foods 2024; 13:3451. [PMID: 39517235 PMCID: PMC11545775 DOI: 10.3390/foods13213451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
The chemical composition of honey, and therefore its quality and properties, is influenced by many factors, including its botanical origin and the harvesting conditions-the location of the apiary, access to melliferous plants, the proximity of industrial infrastructure and communication routes, etc. This quality may be reduced by undesirable, toxic compounds that penetrate honey from a contaminated environment, such as heavy metals and residues from other environmental pollutants. Therefore, the aim of our research was to assess the quality of honeys from urbanized areas-in particular, to assess contamination with heavy metals and persistent organic pollutants (PAHs). In total, 35 samples from six different apiaries located in urbanized areas were examined. The content of heavy metals (Cd, Pb, Zn) was determined by atomic absorption spectrophotometry (AAS), and the content of total PAHs as the sum of the concentrations of the compounds benzo(a)anthracene, chrysene, benzo(b)fluoranthene and benzo(a)pyrene was determined by high-performance liquid chromatography with fluorescence detection (HPLC-FLD). The average zinc content ranged from about 2 to 4.5 mg/kg, the average lead content ranged from 3.5 µg/kg to 388 µg/kg and the average cadmium content ranged from 0.5 to 14 µg/kg. It was found that all honeys contained certain amounts of harmful metals, and only lead exceeded the permissible limits. None of the samples tested contained sum content of PAHs exceeding 10 µg/kg of honey. Contrary to our expectations, the results obtained indicate that honeys from urbanized areas do not contain these harmful substances. In general, the presence of harmful metals does not, however, reduce honey's quality or its health value.
Collapse
Affiliation(s)
- Aleksandra Wilczyńska
- Department of Quality Management, Gdynia Maritime University, ul. Morska 81-87, 81-225 Gdynia, Poland; (N.Ż.); (E.S.)
| | | | | |
Collapse
|
9
|
Méndez García M, García de Llasera MP, Lara Ruiz ME, Sevilla Agustín CU. Benzo(b)fluoranthene and benzo(k)fluoranthene removal by microalgae in the presence of triazine herbicides: Matrix solid-phase dispersion and solid-phase extraction (MSPD/SPE) for HPLC-UV analysis of the different culture components. J Chromatogr A 2024; 1731:465194. [PMID: 39047443 DOI: 10.1016/j.chroma.2024.465194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Over the last decade, human activities in the industrial and agricultural sectors have significantly increased the concentration of persistent and harmful pollutants in aquatic ecosystems. The use of microorganisms is a green strategy for the bio-removal of certain contaminants. However, other pollutants in the same ecosystems can reduce their degrading activity and even affect their survival. Therefore, this study aimed to evaluate the efficiency of benzo(b)fluoranthene (BbF) and benzo(k)fluoranthene (BkF) removal by Selenastrum capricornutum in the presence of triazine herbicides, compounds mainly used in broadleaf weeds. The interest of this work focused on identifying in which of the microalgal components the degrading activity is best evidenced and affected. For this purpose, the use of solid-phase extraction (SPE) and matrix solid-phase dispersion (MSPD) extraction procedures and HPLC-UV analysis allowed the BbF and BkF trace quantification in biomass, liquid medium, and cell lysate separately from cultures exposed to these polycyclic aromatic hydrocarbons (PAHs) alone or with herbicides. The recovery percentages were between 78 and 94 %, good linearity (r2 ≈ 0.99), precision values measured as RSD < 15 %, and limits of detection (LOQs) at levels of ng mL-1 and ng mg-1 were obtained. The individual PAH amounts measured in the components of microalgae cultures show similar removal kinetics (removal percentages: 82-89 %). Likewise, the analysis demonstrated that the removal of PAHs is not affected in the presence of triazine herbicides (atrazine and cyanazine) and with similar removal percentages (79-86 %) compared to those cultures exposed to individual PAHs (74-83 %). These results support the possible real-world applications of PAH removal by extracts from S. capricornutum in aquatic environments contaminated with PAHs and near agriculture areas where triazine herbicides are used.
Collapse
Affiliation(s)
- Manuel Méndez García
- Facultad de Química, Departamento de Química Analítica, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, D.F., 04510, Mexico.
| | - Martha Patricia García de Llasera
- Facultad de Química, Departamento de Química Analítica, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, D.F., 04510, Mexico
| | - María Elena Lara Ruiz
- Facultad de Química, Departamento de Química Analítica, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, D.F., 04510, Mexico
| | - Carlos Uriel Sevilla Agustín
- Facultad de Química, Departamento de Química Analítica, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, D.F., 04510, Mexico
| |
Collapse
|
10
|
Cao C, Wu YY, Lv ZY, Wang JW, Wang CW, Zhang H, Wang JJ, Chen H. Uptake of polycyclic aromatic hydrocarbons (PAHs) from PAH-contaminated soils to carrots and Chinese cabbages under the greenhouse and field conditions. CHEMOSPHERE 2024; 360:142405. [PMID: 38782134 DOI: 10.1016/j.chemosphere.2024.142405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) with the properties of structural stability, semi-volatility, and hydrophobicity are toxic and persistent in environments; thus, their transport and fate in agroecosystems is essential for reducing PAH accumulation in the edible parts of crops. Here, we cultivated cabbages (Brassica pekinensis L.) and carrots (Daucus carota L.) in PAH-contaminated soils under the greenhouse and field conditions. After harvesting, we observed a 9.5-46% reduction in soil ∑PAH concentrations. There were 37% of bioconcentration factors (BCFbs) > 1 and 93% of translocation factors (TFab) > 1, while low-molecular-weight (LMW) PAHs had higher BCFbs than high-molecular-weight (HMW) PAHs. The PAH concentrations showed significant and positive correlations among soils, the belowground parts, and the aboveground parts. The toxicity equivalent concentration (TEQBaP) followed the order of cabbage (greenhouse) > cabbage (field) > carrot (greenhouse) > carrot (field), suggesting potentially higher health risks in cabbage relative to carrot and vegetables under the greenhouse relative to field condition. Our study suggested growing carrots under field conditions as a management strategy for reducing the risks of vegetables grown in PAH-contaminated soils.
Collapse
Affiliation(s)
- Chun Cao
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, Gansu, China; Key Laboratory of Resource Environment and Sustainable Development of Oasis, Lanzhou, 730070, Gansu, China
| | - Yu-Yao Wu
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, Gansu, China; Key Laboratory of Resource Environment and Sustainable Development of Oasis, Lanzhou, 730070, Gansu, China
| | - Zhen-Ying Lv
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ji-Wei Wang
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, Gansu, China; Key Laboratory of Resource Environment and Sustainable Development of Oasis, Lanzhou, 730070, Gansu, China
| | - Chen-Wen Wang
- College of Geography and Environmental Science, Northwest Normal University, Lanzhou, 730070, Gansu, China; Key Laboratory of Resource Environment and Sustainable Development of Oasis, Lanzhou, 730070, Gansu, China
| | - Hui Zhang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Jun-Jian Wang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Huan Chen
- Department of Environmental Engineering and Earth Science, Clemson University, South Carolina, 29634, United States.
| |
Collapse
|
11
|
Liu T, Zhang L, Pan L, Yang D. Polycyclic Aromatic Hydrocarbons' Impact on Crops and Occurrence, Sources, and Detection Methods in Food: A Review. Foods 2024; 13:1977. [PMID: 38998483 PMCID: PMC11240991 DOI: 10.3390/foods13131977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) represent a category of persistent organic pollutants that pose a global concern in the realm of food safety due to their recognized carcinogenic properties in humans. Food can be contaminated with PAHs that are present in water, air, or soil, or during food processing and cooking. The wide and varied sources of PAHs contribute to their persistent contamination of food, leading to their accumulation within these products. As a result, monitoring of the levels of PAHs in food is necessary to guarantee the safety of food products as well as the public health. This review paper attempts to give its readers an overview of the impact of PAHs on crops, their occurrence and sources, and the methodologies employed for the sample preparation and detection of PAHs in food. In addition, possible directions for future research are proposed. The objective is to provide references for the monitoring, prevention, and in-depth exploration of PAHs in food.
Collapse
Affiliation(s)
- Tengfei Liu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Taihu Area Institute of Agricultural Sciences, Suzhou 215106, China
| | - Li Zhang
- Suzhou Vocational University Center for Food Safety and Nutrition, Suzhou 215104, China
| | - Leiqing Pan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Daifeng Yang
- Jiangsu Taihu Area Institute of Agricultural Sciences, Suzhou 215106, China
| |
Collapse
|
12
|
Naaz N, Pandey J. Spatial distribution of polycyclic aromatic hydrocarbons in water and sediment in the Ganga River: source diagnostics and health risk assessment on dietary exposure through a common carp fish Labeo rohita. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:196. [PMID: 38695954 DOI: 10.1007/s10653-024-01980-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 04/03/2024] [Indexed: 06/17/2024]
Abstract
We evaluated spatial distribution and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in water and sediments at four selected sites of the Ganga River. Also, we measured PAHs in muscle tissues of Rohu (Labeo rohita), the most common edible carp fish of the Ganga River and potential human health risk was addressed. Total concentration of PAHs (∑PAHs) in water was highest at Manika Site (1470.5 ng/L) followed by Knuj (630.0 ng/L) and lowest at Adpr (219.0 ng/L). A similar trend was observed for sediments with highest concentration of ∑PAHs at Manika (461.8 ng/g) and lowest at Adpr Site (94.59 ng/g). Among PAHs, phenanthrene (Phe) showed highest concentration in both water and sediment. Of the eight major carcinogenic contributors (∑PAH8C), Indeno (1,2,3-C,D) pyrene (InP) did appear the most dominant component accounting for 42% to this group at Manika Site. Isomer ratios indicated vehicular emission and biomass combustion as major sources of PAHs. The ∑PAHs concentrations in fish tissue ranged from 117.8 to 758.0 ng/g (fresh weight basis) where low molecular weight PAHs assumed predominance (above 80%). The risk level in fish tissues appeared highest at Manika Site and site-wise differences were statistically significant (p < 0.05). The ILCR (> 10-4) indicated carcinogenic risk in adults and children associated with BaP and DBahA at Manika Site and with BaP at Knuj Site. Overall, the concentrations exceeding permissible limit, carcinogenic potential and BaP equivalent all indicated carcinogenic risks associated with some individual PAHs. This merits attention because the Ganga River is a reservoir of fisheries.
Collapse
Affiliation(s)
- Neha Naaz
- Ganga River Ecology Research Laboratory, Environmental Science Division, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Jitendra Pandey
- Ganga River Ecology Research Laboratory, Environmental Science Division, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
13
|
Dey S. Exploring the Impact of Naphthalene (Polycyclic Aromatic Hydrocarbons) on Anabas testudineus (Bloch) through Dose-Specific Bioenzymological Analysis. ACS OMEGA 2024; 9:14923-14931. [PMID: 38585137 PMCID: PMC10993261 DOI: 10.1021/acsomega.3c08535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/22/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024]
Abstract
This study addresses the increasing concern about naphthalene, a polycyclic aromatic hydrocarbon (PAH), highlighting its growing threats to the environment and aquatic life. The research examines its impact on Anabas testudineus (Bloch) through a detailed dose-specific bioenzymological analysis. Experimental fish groups were exposed to T1 (0.71 mg/L) and T2 (1.42 mg/L) naphthalene concentrations, representing 25 and 50% of the LC50 value, respectively, over a 1-21 day period. Following the experiment, water samples underwent physicochemical analysis, while fish tissues were examined for diverse bioenzymological parameters. Among these parameters, aspirate aminotransferase (AST) and alanine aminotransferase (ALT) serve as crucial indicators for monitoring the physiological status of fish and addressing pollution induced by PAHs, especially naphthalene. Statistical significance was observed in morpho-pathological changes and erythrocyte alterations, particularly the presence of tear-drop appearance (Tr) positively interacting with swelled cells (Sc), vacuolated cells (Va), and sickle cells (Sk) (P < 0.05). These findings highlight tear-drop appearance (Tr) as a significant biomarker in response to naphthalene exposure. The observed changes in A. testudineus tissue bioenzymology, apoptosis, and erythrocytic alterations were exposure and dose-dependent. The research highlights the significance of overseeing and controlling PAH concentrations in aquatic ecosystems to ensure the well-being of A. testudineus (Bloch).
Collapse
Affiliation(s)
- Sukhendu Dey
- The University of Burdwan, Burdwan, West Bengal 713104, India
| |
Collapse
|
14
|
Qu G, Liu G, Zhao C, Yuan Z, Yang Y, Xiang K. Detection and treatment of mono and polycyclic aromatic hydrocarbon pollutants in aqueous environments based on electrochemical technology: recent advances. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23334-23362. [PMID: 38436845 DOI: 10.1007/s11356-024-32640-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
Mono and polycyclic aromatic hydrocarbons are widely distributed and severely pollute the aqueous environment due to natural and human activities, particularly human activity. It is crucial to identify and address them in order to reduce the dangers and threats they pose to biological processes and ecosystems. In the fields of sensor detection and water treatment, electrochemistry plays a crucial role as a trustworthy and environmentally friendly technology. In order to accomplish trace detection while enhancing detection accuracy and precision, researchers have created and studied sensors using a range of materials based on electrochemical processes, and their results have demonstrated good performance. One cannot overlook the challenges associated with treating aromatic pollutants, including mono and polycyclic. Much work has been done and good progress has been achieved in order to address these challenges. This study discusses the mono and polycyclic aromatic hydrocarbon sensor detection and electrochemical treatment technologies for contaminants in the aqueous environment. Additionally mentioned are the sources, distribution, risks, hazards, and problems in the removal of pollutants. The obstacles to be overcome and the future development plans of the field are then suggested by summarizing and assessing the research findings of the researchers.
Collapse
Affiliation(s)
- Guangfei Qu
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China.
| | - Guojun Liu
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| | - Chenyang Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| | - Zheng Yuan
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| | - Yixin Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| | - Keyi Xiang
- Faculty of Environmental Science and Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| |
Collapse
|
15
|
Liu J, Yang F, Cai Y, Lu G, Li Y, Li M, Fan L, Gao L. Unveiling the existence and ecological hazards of trace organic pollutants in wastewater treatment plant effluents across China. ECO-ENVIRONMENT & HEALTH (ONLINE) 2024; 3:21-29. [PMID: 38162869 PMCID: PMC10757255 DOI: 10.1016/j.eehl.2023.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/07/2023] [Accepted: 09/26/2023] [Indexed: 01/03/2024]
Abstract
The presence of trace organic pollutants in the effluent of wastewater treatment plants (WWTPs) poses considerable risks to aquatic organisms and human health. A large-scale survey of 302 trace organic pollutants in the effluent of 46 Chinese WWTPs was conducted to gain an improved understanding of their occurrence and ecological risks. The survey data showed that 216 compounds in 11 chemical classes had been detected in effluents. The sum concentrations of the trace contaminants in effluent ranged from 1,392 ng/L to 35,453 ng/L, with the maximum concentration of perfluoroalkyl substances (PFASs) recorded as the highest (30,573 ng/L), which was markedly less than the reported 185,000 ng/L for the 38 American WWTPs. The concentration of bisphenol analogs (BPs) was up to 4,422 ng/L, significantly higher than those reported in France, Germany, Japan, Korea, and the U.S. PFASs and BPs were the major pollutants, accounting for 59% of the total pollution. Additionally, a total of 119 contaminants were found to have ecological risks (RQ > 0.01). Among these, 23 contaminants (RQ > 1.0) warrant higher attention and should be prioritized for removal. This study lists valuable information for controlling contaminants with higher priority in WWTP effluent in China.
Collapse
Affiliation(s)
- Jianchao Liu
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Fang Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yuanfei Cai
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yiping Li
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Ming Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Linhua Fan
- School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | - Li Gao
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, Victoria 8001, Australia
| |
Collapse
|
16
|
Zhang X, Yao Z, Yang W, Zhang W, Liu Y, Wang Z, Li W. Distribution, sources, partition behavior and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the waters and sediments of Lake Ulansuhai, China. MARINE POLLUTION BULLETIN 2024; 200:116072. [PMID: 38290363 DOI: 10.1016/j.marpolbul.2024.116072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/10/2024] [Accepted: 01/21/2024] [Indexed: 02/01/2024]
Abstract
This study represents the first comprehensive investigation of 16 polycyclic aromatic hydrocarbons (PAHs) in the waters and sediments of Lake Ulansuhai. It explores their occurrence, sources, transport behavior, and associated risks to human health and ecosystems. The results revealed that concentrations of ∑PAHs in dissolved phase and sediment with no significant seasonal differences. In contrast, ∑PAHs concentrations in suspended particulate matter were significantly higher during the ice-free period compared to the ice period. Spatially, the northern part of Lake Ulansuhai displayed higher PAHs content. Diagnostic isomeric ratios and PMF models indicated that the PAHs were primarily derived from combustion sources. The distribution of PAHs within water-sediment demonstrated that non-equilibrium status. Fugacity calculations indicated that 2-4 rings PAHs acted as secondary sources of sediment emissions. Toxicity assessment, indicated that PAHs posed no significant carcinogenic risk to humans. Risk quotient values showed that PAHs as low to high ecological risk.
Collapse
Affiliation(s)
- Xiaoxue Zhang
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, 014000, China; Autonomous Region Level Ecological Protection and Comprehensive Utilization Cooperative Innovation Center for the Inner Mongolia Section of the Yellow River Basin, Baotou, 014000, China
| | - Zhi Yao
- Autonomous Region Level Ecological Protection and Comprehensive Utilization Cooperative Innovation Center for the Inner Mongolia Section of the Yellow River Basin, Baotou, 014000, China; School of Mining and Coal, Inner Mongolia University of Science and Technology, Baotou, 014000, China
| | - Wenhuan Yang
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, 014000, China; Autonomous Region Level Ecological Protection and Comprehensive Utilization Cooperative Innovation Center for the Inner Mongolia Section of the Yellow River Basin, Baotou, 014000, China.
| | - Wenxing Zhang
- Inner Mongolia Ecological Environment Research Institute Co., Ltd, Hohhot, 010000, China
| | - Yizhe Liu
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, 014000, China; Autonomous Region Level Ecological Protection and Comprehensive Utilization Cooperative Innovation Center for the Inner Mongolia Section of the Yellow River Basin, Baotou, 014000, China
| | - Zhichao Wang
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, 014000, China; Autonomous Region Level Ecological Protection and Comprehensive Utilization Cooperative Innovation Center for the Inner Mongolia Section of the Yellow River Basin, Baotou, 014000, China
| | - Weiping Li
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, 014000, China; Autonomous Region Level Ecological Protection and Comprehensive Utilization Cooperative Innovation Center for the Inner Mongolia Section of the Yellow River Basin, Baotou, 014000, China.
| |
Collapse
|
17
|
Shen Q, Yu H, Cao Y, Guo Z, Hu L, Duan L, Sun X, Lin T. Distribution and sources of polycyclic aromatic hydrocarbons in surface sediments of the East China marginal seas: Significance of the terrestrial input and shelf mud deposition. MARINE POLLUTION BULLETIN 2024; 199:115920. [PMID: 38113801 DOI: 10.1016/j.marpolbul.2023.115920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/21/2023]
Abstract
To investigate the distribution, sources, influencing factors, and ecological risk of polycyclic aromatic hydrocarbons (PAHs) in East China Marginal Seas (ECMSs) sediments, we measured the concentrations of 16 PAHs in 104 surface sediment samples collected from the ECMSs in 2014 and 2016. Total PAH concentration (∑PAHs) ranged from 4.49 to 163.66 ng/g dry weight (dry w), with 65.98 ± 33.00 (mean ± SD) ng/g dry w. The highest PAH concentrations and total organic carbon were observed in areas with fine-grained sediments in the Bohai Sea (BS), Yellow Sea (YS), and coastal East China Sea (ECS), indicating the prominent influence of regional hydrodynamics and sediment properties. The dominant PAH congener in BS and YS was BbF, whereas coastal ECS was Phe. The heterogeneity of PAH sources implies that terrestrial PAH input and shelf mud deposition have crucial roles in the source-sink processes of PAHs in a strongly human-influenced marginal sea.
Collapse
Affiliation(s)
- Qi Shen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200433, China; State Environmental Protection Key Laboratory of Land and Sea Ecological Governance and Systematic Regulation, Shandong Academy for Environmental Planning, Jinan 250101, China
| | - Huimin Yu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200433, China
| | - Yibo Cao
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200433, China
| | - Zhigang Guo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200433, China; State Environmental Protection Key Laboratory of Land and Sea Ecological Governance and Systematic Regulation, Shandong Academy for Environmental Planning, Jinan 250101, China; Institute of Eco-Chongming (IEC), Shanghai, 202162, China.
| | - Limin Hu
- College of Marine Geosciences, Key Laboratory of Submarine Geosciences and Prospecting Techniques, Ocean University of China, Qingdao 266100, China
| | - Lian Duan
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Fudan University, Shanghai 200433, China
| | - Xueshi Sun
- College of Marine Geosciences, Key Laboratory of Submarine Geosciences and Prospecting Techniques, Ocean University of China, Qingdao 266100, China
| | - Tian Lin
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
18
|
Peer Muhamed Noorani KR, Flora G, Surendarnath S, Mary Stephy G, Amesho KTT, Chinglenthoiba C, Thajuddin N. Recent advances in remediation strategies for mitigating the impacts of emerging pollutants in water and ensuring environmental sustainability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119674. [PMID: 38061098 DOI: 10.1016/j.jenvman.2023.119674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/01/2023] [Accepted: 11/20/2023] [Indexed: 01/14/2024]
Abstract
The proliferation of emerging pollutants (EPs), encompassing a range of substances such as phthalates, phenolics, pharmaceuticals, pesticides, personal care products, surfactants, and disinfection agents, has become a significant global concern due to their potential risks to the environment and human well-being. Over the past two decades, numerous research studies have investigated the presence of EPs in wastewater and aquatic ecosystems, with the United States Environmental Protection Agency (USEPA) categorizing these newly introduced chemical compounds as emerging contaminants due to their poorly understood impact. EPs have been linked to adverse health effects in humans, including genotoxic and cytotoxic effects, as well as conditions such as obesity, diabetes, cardiovascular disease, and reproductive abnormalities, often associated with their estrogenic action. Microalgae have shown promise in the detoxification of both inorganic and organic contaminants, and several large-scale microalgal systems for wastewater treatment have been developed. However, the progress of algal bioremediation can be influenced by accidental contaminations and operational challenges encountered in pilot-scale research. Microalgae employ various processes, such as bioadsorption, biouptake, and biodegradation, to effectively remediate EPs. During microalgal biodegradation, complex chemical compounds are transformed into simpler substances through catalytic metabolic degradation. Integrating algal bioremediation with existing treatment methodologies offers a viable approach for efficiently eliminating EPs from wastewater. This review focuses on the use of algal-based biological remediation processes for wastewater treatment, the environmental impacts of EPs, and the challenges associated with implementing algal bioremediation systems to effectively remove emerging pollutants.
Collapse
Affiliation(s)
- Kalilur Rahman Peer Muhamed Noorani
- National Repository for Microalgae and Cyanobacteria - Freshwater (NRMC-F), (Sponsored by DBT, Govt. of India), Department of Microbiology, Bharathidasan University, Tiruchirappalli, 620 024, India
| | - G Flora
- PG and Research Department of Botany, St. Mary's College (Autonomous), Thoothukudi, Tamil Nadu, India
| | - S Surendarnath
- Department of Mechanical Engineering, DVR & Dr. HS MIC College of Technology (A), Vijayawada, 521 180, Andhra Pradesh, India
| | - G Mary Stephy
- PG and Research Department of Botany, St. Mary's College (Autonomous), Thoothukudi, Tamil Nadu, India
| | - Kassian T T Amesho
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan; The International University of Management, Centre for Environmental Studies, Main Campus, Dorado Park Ext 1, Windhoek, Namibia; Destinies Biomass Energy and Farming Pty Ltd, P.O.Box 7387, Swakomund, Namibia
| | | | - Nooruddin Thajuddin
- National Repository for Microalgae and Cyanobacteria - Freshwater (NRMC-F), (Sponsored by DBT, Govt. of India), Department of Microbiology, Bharathidasan University, Tiruchirappalli, 620 024, India; School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India.
| |
Collapse
|
19
|
Qian Y, Liang M, Zhao Z, Zhang Z, Cai M, Lin Y. Does mangrove leave falling dominate the bury of polycyclic aromatic hydrocarbons in the mangrove of China? MARINE ENVIRONMENTAL RESEARCH 2024; 194:106318. [PMID: 38218006 DOI: 10.1016/j.marenvres.2023.106318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/21/2023] [Accepted: 12/20/2023] [Indexed: 01/15/2024]
Abstract
Mangrove wetlands are vital coastal ecosystems that can absorb and accumulate pollutants. Polycyclic aromatic hydrocarbons (PAHs) are persistent organic pollutants that pose potential risks to ecosystems and human health. However, their source and transport fate in mangrove areas are poorly understood. This study investigates 29 PAHs pollution of water and sediment in Zhangjiangkou Mangrove Wetland, the northernmost large-scale mangrove wetland reserve in China. We examine the distribution, source, transport mechanisms and risk assessment of PAHs. The results show that the concentrations of PAHs in mangrove sediment range from 55.62 to 347.36 ng/g (DW), with 5-ring PAHs being the dominant species. While the concentrations of PAHs in surface water range from 10.61 to 46.39 ng/L, with 2-ring PAHs and alkylated PAHs being the dominant species. The PAHs concentrations in surface water and sediment of river are higher than those in mangrove area, indicating that mangrove water could receive PAHs through tidal exchange. Based on diagnostic ratios (DRs), principal component analysis (PCA), and positive matrix factorization (PMF), we infer that the leaf deposition (48.55%) could be an important pathway of PAHs in mangrove sediment except for river water transport (51.45%), while the PAHs in estuary water originate mainly from point sources such as biomass burning (50.96%) and traffic emission (49.04%). The range of toxic equivalents in surface water and sediment was 2.73-16.09 ng TEQ g-1 and 0.03-3.63 ng/L, respectively. Although the ecological risk assessment suggests that the PAHs pollution in surface water and sediment poses a low risk, we recommend more attention to the protection of the mangrove ecosystem. This study reveals that mangrove leaf falling might be a significant mechanism of PAH sequestration in the mangrove system, which deserves more attention in future research.
Collapse
Affiliation(s)
- Yingying Qian
- School of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361021, China; Xiamen Key Laboratory of Membrane Research and Application, Xiamen 361024, China
| | - Meiru Liang
- School of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361021, China; Xiamen Key Laboratory of Membrane Research and Application, Xiamen 361024, China
| | - Zixing Zhao
- School of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361021, China; Xiamen Key Laboratory of Membrane Research and Application, Xiamen 361024, China
| | - Zihang Zhang
- School of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361021, China; Xiamen Key Laboratory of Membrane Research and Application, Xiamen 361024, China
| | - Minggang Cai
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; Key Laboratory of Marine Chemistry and Application Technology, Xiamen University, Xiamen 361102, China; College of Oceanography and Environmental Science, Xiamen University, Xiamen 361005, China
| | - Yan Lin
- School of Environmental Science and Engineering, Xiamen University of Technology, Xiamen 361021, China; Xiamen Key Laboratory of Membrane Research and Application, Xiamen 361024, China.
| |
Collapse
|
20
|
González N, Souza MCO, Cezarette GN, Rocha BA, Devoz PP, Dos Santos LC, Barcelos GRM, Nadal M, Domingo JL, Barbosa F. Evaluation of exposure to multiple organic pollutants in riparian communities of the Brazilian Amazon: Screening levels and potential health risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168294. [PMID: 37924872 DOI: 10.1016/j.scitotenv.2023.168294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
Organic pollutants are widely distributed in the environment. Due to their physical and chemical characteristics, they tend to be biomagnified in food chains, mainly in aquatic organisms. Therefore, food consumption is a significant route of lifelong exposure. Although the Amazon River basin contains the highest freshwater biodiversity on Earth, there is scarce literature focusing on the levels of organic pollutants in the local population. The present study was aimed at assessing the levels of several environmental pollutants (polycyclic aromatic hydrocarbons, bisphenols, parabens, and benzophenones) in urine samples from riverside communities along the Tapajós and Amazon Rivers in the Brazilian Amazon region. The results show a 100 % detection of naphthalene metabolites (namely, 1-hydroxy-naphthalene (1OH-NAP), 2-hydroxy-naphthalene (2OH-NAP)), with the highest levels belonging to benzylparaben (BzP) (17.3 ng/mL). Gender-specific analysis revealed that women had significantly higher levels of certain PAH metabolites (i.e., 1OH-NAP and 2-hydroxy-fluorene (2OH-FLU)) than men. In turn, most of the evaluated compounds were higher in urine samples from people living near the Amazon River, which presents increased traffic of boats and ships than the Tapajós River. On the other hand, the human health risk assessment suggested that all communities are at risk of suffering non-carcinogenic effects from exposure to PAHs. At the same time, they are also at risk of carcinogenic effects from exposure to benzo[a]pyrene metabolites. Thus, further studies are needed in order to evaluate the potential health effects of exposure to a mixture of these organic pollutants and other contaminants present in the area, such as mercury.
Collapse
Affiliation(s)
- Neus González
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology and Food Sciences, Analytical and System Toxicology Laboratory, Avenida do Cafe s/n°, 14040-903 Ribeirao Preto, Sao Paulo, Brazil; Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Sant Llorenç 21, 43201 Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Catalonia, Spain
| | - Marília Cristina Oliveira Souza
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology and Food Sciences, Analytical and System Toxicology Laboratory, Avenida do Cafe s/n°, 14040-903 Ribeirao Preto, Sao Paulo, Brazil.
| | - Gabriel Neves Cezarette
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology and Food Sciences, Analytical and System Toxicology Laboratory, Avenida do Cafe s/n°, 14040-903 Ribeirao Preto, Sao Paulo, Brazil
| | - Bruno Alves Rocha
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology and Food Sciences, Analytical and System Toxicology Laboratory, Avenida do Cafe s/n°, 14040-903 Ribeirao Preto, Sao Paulo, Brazil
| | - Paula Pícoli Devoz
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology and Food Sciences, Analytical and System Toxicology Laboratory, Avenida do Cafe s/n°, 14040-903 Ribeirao Preto, Sao Paulo, Brazil
| | - Lucas Cassulatti Dos Santos
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology and Food Sciences, Analytical and System Toxicology Laboratory, Avenida do Cafe s/n°, 14040-903 Ribeirao Preto, Sao Paulo, Brazil
| | | | - Martí Nadal
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Sant Llorenç 21, 43201 Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Catalonia, Spain
| | - José L Domingo
- Universitat Rovira i Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Sant Llorenç 21, 43201 Reus, Catalonia, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204 Reus, Catalonia, Spain
| | - Fernando Barbosa
- University of Sao Paulo, School of Pharmaceutical Sciences of Ribeirao Preto, Department of Clinical Analyses, Toxicology and Food Sciences, Analytical and System Toxicology Laboratory, Avenida do Cafe s/n°, 14040-903 Ribeirao Preto, Sao Paulo, Brazil.
| |
Collapse
|
21
|
Satpati GG, Gupta S, Biswas RK, Choudhury AK, Kim JW, Davoodbasha M. Microalgae mediated bioremediation of polycyclic aromatic hydrocarbons: Strategies, advancement and regulations. CHEMOSPHERE 2023; 344:140337. [PMID: 37797901 DOI: 10.1016/j.chemosphere.2023.140337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are pervasive in the atmosphere and are one of the emerging pollutants that cause harmful effects in living systems. There are some natural and anthropogenic sources that can produce PAHs in an uncontrolled way. Several health hazards associated with PAHs like abnormality in the reproductive system, endocrine system as well as immune system have been explained. The mutagenic or carcinogenic effects of hydrocarbons in living systems including algae, vertebrates and invertebrates have been discussed. For controlling PAHs, biodegradation has been suggested as an effective and eco-friendly process. Microalgae-based biosorption and biodegradation resulted in the removal of toxic contaminants. Microalgae both in unialgal form and in consortium (with bacteria or fungi) performed good results in bioaccumulation and biodegradation. In the present review, we highlighted the general information about the PAHs, conventional versus advanced technology for removal. In addition microalgae based removal and toxicity is discussed. Furthermore this work provides an idea on modern scientific applications like genetic and metabolic engineering, nanomaterials-based technologies, artificial neural network (ANN), machine learning (ML) etc. As rapid and effective methods for bioremediation of PAHs. With several pros and cons, biological treatments using microalgae are found to be better for PAH removal than any other conventional technologies.
Collapse
Affiliation(s)
- Gour Gopal Satpati
- Department of Botany, Bangabasi Evening College, University of Calcutta, Kolkata- 700009, West Bengal, India.
| | - Shalini Gupta
- University School of Environment and Management, Guru Gobind Singh Indraprastha University, Dwarka, Delhi- 110078, India
| | - Rohan Kr Biswas
- Phycology Lab, Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata-700118, India
| | - Avik Kumar Choudhury
- Phycology Lab, Department of Botany, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata-700118, India
| | - Jung-Wan Kim
- Research Centre for Bio Material and Process Development, Incheon National Univeristy, Republic of Korea; Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea.
| | - MubarakAli Davoodbasha
- Research Centre for Bio Material and Process Development, Incheon National Univeristy, Republic of Korea; Centre for Surface Technology and Applications, Korea Aerospace University, Goyang, 10540, Republic of Korea; School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600048, India.
| |
Collapse
|
22
|
Singh V, Negi R, Jacob M, Gayathri A, Rokade A, Sarma H, Kalita J, Tasfia ST, Bharti R, Wakid A, Suthar S, Kolipakam V, Qureshi Q. Polycyclic Aromatic Hydrocarbons (PAHs) in aquatic ecosystem exposed to the 2020 Baghjan oil spill in upper Assam, India: Short-term toxicity and ecological risk assessment. PLoS One 2023; 18:e0293601. [PMID: 38019821 PMCID: PMC10686499 DOI: 10.1371/journal.pone.0293601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
This study focuses on the short-term contamination and associated risks arising from the release of Polycyclic Aromatic Hydrocarbons (PAHs) due to the 2020 Baghjan oil blowout in upper Assam, India. Shortly after the Baghjan oil blowout, samples were collected from water, sediment, and fish species and examined for PAHs contents. The results of the analysis revealed ΣPAHs concentrations ranged between 0.21-691.31 μg L-1 (water); 37.6-395.8 μg Kg-1 (sediment); 104.3-7829.6 μg Kg-1 (fish). The prevalence of 3-4 ring low molecular weight PAHs compounds in water (87.17%), sediment (100%), and fish samples (93.17%) validate the petrogenic source of origin (oil spill). The geographic vicinity of the oil blowout is rich in wildlife; thus, leading to a significant mass mortality of several eco-sensitive species like fish, plants, microbes, reptiles, amphibians, birds and mammals including the Gangetic River dolphin. The initial ecological risk assessment suggested moderate to high-risk values (RQ >1) of majority PAHs concerning fish, daphnia, and algae species. This study highlights the need for recognizing the potential for short-term exposure to local species. To safeguard local ecosystems from potential future environmental disasters, it is imperative for the government to adopt a precautionary strategy.
Collapse
Affiliation(s)
- Vineet Singh
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India
| | - Ranjana Negi
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India
| | - Merin Jacob
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India
| | - Aaranya Gayathri
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India
| | - Anurag Rokade
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India
| | - Hiyashri Sarma
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India
| | - Jitul Kalita
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India
| | | | | | - Abdul Wakid
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India
- Aaranyak, Guwahati, Assam, India
| | - Surindra Suthar
- School of Environment & Natural Resources, Doon University, Dehradun, Uttarakhand, India
| | | | - Qamar Qureshi
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India
| |
Collapse
|
23
|
Lencioni V, Rizzi C, Gobbi M, Mustoni A, Villa S. Glacier foreland insect uptake synthetic compounds: an emerging environmental concern. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:113859-113873. [PMID: 37855959 DOI: 10.1007/s11356-023-30387-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023]
Abstract
Pesticides, synthetic fragrances and polycyclic aromatic hydrocarbons contaminated two glacier-fed streams (Amola, Mandrone) and one spring (Grostè) in the Italian Alps. Ten compounds (chlorpyrifos (CPY), chlorpyrifos-methyl (CPY-m), galaxolide (HHCB), tonalide (AHTN), fluorene (Flu), phenanthrene (Phen), anthracene (Ant), fluoranthene (Fl), pyrene (Pyr), benzo[a]anthracene (BaA)) accumulated in aquatic larvae of chironomids (Diamesa steinboecki, D. latitarsis, D. bertrami, D. tonsa, D. zernyi, Pseudokiefferiella parva, Orthocladiinae) and tipulids. Their tissue concentrations (detected by gas chromatography coupled with mass spectrometry) ranged from 1.1 ± 0.1 ng/g d.w. (= dry weight) (CPY-m in D. tonsa from Amola) to 68.0 ± 9.1 ng/g d.w. (Pyr in D. steinboecki from Mandrone). HHCB, AHTN, and CPY, with one exception, were accumulated by all aquatic insects. Six compounds (CPY, CPY-m, HHCB, AHTN, Fl, Pyr) also contaminated carabids (Nebria germarii, N. castanea, N. jockischii) predating adults of merolimnic insects. Their tissue concentrations ranged from 1.1 ± 0.3 ng/g d.w. (CPY-m in N. germarii from Mandrone) to 84.6 ± 0.3 ng/g d.w. (HHCB in N. castanea from Grostè). HHCB and AHTN were accumulated by all Nebria species. Intersite and interspecies differences were observed, which might be attributed to different environmental contamination levels. There was a stronger similarity between species from the same site than among the same species from different sites, suggesting that uptake is not species specific. At all sites, the concentration of xenobiotics was higher in larvae than in water and comparable or higher in carabids than in larvae from the same site, suggesting trophic transfer by emerging aquatic insects to their riparian predators.
Collapse
Affiliation(s)
- Valeria Lencioni
- Climate and Ecology Unit, Research and Museum Collections Office, MUSE-Museo delle Scienze, Corso del Lavoro e della Scienza, 3, 38122, Trento, Italy.
| | - Cristiana Rizzi
- Department of Earth and Environmental Sciences DISAT, University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - Mauro Gobbi
- Climate and Ecology Unit, Research and Museum Collections Office, MUSE-Museo delle Scienze, Corso del Lavoro e della Scienza, 3, 38122, Trento, Italy
| | - Andrea Mustoni
- Adamello Brenta Natural Park, Via Nazionale, 24, 38080, Strembo (Trento), Italy
| | - Sara Villa
- Department of Earth and Environmental Sciences DISAT, University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| |
Collapse
|
24
|
Moulatlet GM, Yacelga N, Rico A, Mora A, Hauser-Davis RA, Cabrera M, Capparelli MV. A systematic review on metal contamination due to mining activities in the Amazon basin and associated environmental hazards. CHEMOSPHERE 2023; 339:139700. [PMID: 37532203 DOI: 10.1016/j.chemosphere.2023.139700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
Metal contamination associated with mining activities has been considered one of the main environmental pollution problems in the Amazon region. Understanding the levels of metal contamination from mining activities requires a good understanding of background metal concentrations, which may vary notably according to the geology/lithology characteristics of the region, soil type, and predominant biogeochemical processes. This review assessed 50 papers and reports published between 1989 and 2020 describing environmental concentrations of different metals and metalloids (As, Hg, Mn, Fe, Cd, Cu, Cr, Pb, Ni, and Zn) in water and sediments of mining and non-mining areas in five geographic regions of the Amazon basin. Metal enrichment caused by mining activities was calculated and exposure concentrations were compared with sediment and water quality standards set for the protection of aquatic life. Significant enrichments of Cd, Cu, Cr, Fe, Hg, Mn, Ni and Zn were observed in mining areas in both sediment and water. Regarding background levels in the different geographic regions, the highest prevalence of metal enrichment (i.e., concentrations 10 to 100-fold higher than mean background values) in sediment samples was found for Fe (100% of samples), Ni (90%), and Mn (69%). For water, high prevalence of metal enrichment occurred for Zn, Mn, and Fe (100% of samples), and for Hg (86%). Hg, Fe, Pb, Cu, Cd, Ni and Zn exceeded water and/or sediment quality standards in a significant number of samples in the proximity of mining areas. This study indicates that mining activities significantly contribute to water and sediment contamination across the Amazon basin, posing hazards for freshwater ecosystems and potentially having human health implications.
Collapse
Affiliation(s)
- Gabriel M Moulatlet
- Red de Biología Evolutiva, Instituto de Ecología, A.C., Xalapa, Veracruz, Mexico
| | - Naomi Yacelga
- Facultad de Ciencias de la Vida, Universidad Regional Amazónica Ikiam, Tena, Napo, Ecuador
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Av. Punto Com 2, Alcalá de Henares, 28805, Madrid, Spain; Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, C/ Catedrático José Beltrán 2, 46980, Paterna, Valencia, Spain
| | - Abrahan Mora
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, Puebla de Zaragoza, 72453, Mexico
| | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Marcela Cabrera
- Facultad de Ciencias de la Vida, Universidad Regional Amazónica Ikiam, Tena, Napo, Ecuador
| | - Mariana V Capparelli
- Estación El Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Carretera Carmen-Puerto Real Km 9.5, 24157, Ciudad del Carmen, Campeche, Mexico.
| |
Collapse
|