1
|
Wu R, Sun X, Zhu M, Wang Y, Zhu Y, Fang Z, Liu H, Du S. Abscisic acid-producing bacterium Azospirillum brasilense effectively reduces heavy metals (cadmium, nickel, lead, and zinc) accumulation in pak choi across various soil types. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 298:118277. [PMID: 40334540 DOI: 10.1016/j.ecoenv.2025.118277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 04/06/2025] [Accepted: 05/03/2025] [Indexed: 05/09/2025]
Abstract
Heavy metal contamination of soil is a serious environmental issue that threatens agricultural products and human health. Previous studies have shown that abscisic acid (ABA)-producing bacteria can effectively decrease heavy metal accumulation in plants. However, the broader applicability of this approach across varying soil types remains undetermined, revealing significant gaps in understanding its real-world implementation under distinct edaphic conditions. Garden soils were collected from Zhejiang, Sichuan, and Heilongjiang Provinces to investigate the effects of ABA-producing bacteria in reducing heavy metal accumulation in vegetable crops grown in moderately contaminated soils in this study. Inoculating the ABA-producing bacterium Azospirillum brasilense decreased heavy metals contents, including cadmium (Cd), nickel (Ni), lead (Pb), and zinc (Zn) in pak choi grown in the soil from Zhejiang, Heilongjiang, and Sichuan Provinces by 30.2-52.4 %, 24.1-30.1 %, and 22.0-49.2 %, respectively. Additionally, pak choi biomass increased significantly by 134.3 %, 87.9 %, and 126.3 % in these soils, respectively. These results indicated that ABA-producing bacteria universally benefited from heavy metal reduction and yield improvement. Further analysis revealed that the ABA levels in plants increased by 24.7 %, 27.7 %, and 11.9 %, IRT1 expression decreased by 34.9 %, 8.6 %, and 30.8 %, and IRT2 expression decreased by 34.2 %, 20.1 %, and 9.2 % in those soils, respectively. Structural equation modeling analysis confirmed that increased soil pH and decreased available heavy metals contributed to the reduced heavy metal accumulation in pak choi. Overall, the ABA-producing bacteria effectively reduced heavy metal accumulation and enhanced biomass across different soil types, with the most pronounced effect observed in the soil of Zhejiang. Consequently, the application of ABA-generating bacteria may be an alternative strategy for improving the biomass production and quality of vegetable plants grown in heavy metal-contaminated soils.
Collapse
Affiliation(s)
- Ran Wu
- Key Laboratory of Pollution Exposure and Health Intervention Technology, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Xiaohang Sun
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Mengfei Zhu
- Key Laboratory of Pollution Exposure and Health Intervention Technology, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Ying Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yaxin Zhu
- Key Laboratory of Pollution Exposure and Health Intervention Technology, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Zhiguo Fang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Huijun Liu
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Shaoting Du
- Key Laboratory of Pollution Exposure and Health Intervention Technology, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
2
|
Lu X, Chen X, Vancov T, Zhu F, Zhu W, Hong L, Yao Y, Li P, Wang W, Hong C. Combined remediation effect of ryegrass-earthworm on heavy metal composite contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138477. [PMID: 40327931 DOI: 10.1016/j.jhazmat.2025.138477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/20/2025] [Accepted: 05/01/2025] [Indexed: 05/08/2025]
Abstract
Combining plants and soil organisms offers an effective strategy for managing heavy metal contamination. A pot experiment was conducted by using ryegrass (Lolium perenne L.) and earthworms (Eisenia fetida) under five levels of heavy metal contamination, applied individually and in combination. After 80 days, plant and earthworm growth, heavy metal accumulation, and residual soil metal concentrations were analysed to assess the potential of ryegrass-earthworm for remediation of heavy metal contaminated soil. The results indicated that the combined treatment significantly enhanced ryegrass and earthworm growth, increasing both the density and biomass yield of ryegrass and earthworms compared to the individual treatments. This approach also improved heavy metal accumulation, achieving the maximum decreases Cd, Pb, and Cu in soil of 38 %, 42 %, and 34 %, respectively. Structural equation modeling analysis revealed mutual growth promotion between ryegrass and earthworms, though competition for heavy metal accumulation was noted. The combined treatment achieved the highest subordinate function value (0.50), outperforming ryegrass alone (0.48) and earthworms alone (0.43). These findings highlight the superior effectiveness of the combined ryegrass-earthworm strategy, particularly at higher heavy metal concentrations, making it a promising strategy for remediating contaminated soils.
Collapse
Affiliation(s)
- Xin Lu
- Institute of Environmental Resources and Soil Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaoyang Chen
- Institute of Environmental Resources and Soil Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Tony Vancov
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW 2568, Australia
| | - Fengxiang Zhu
- Institute of Environmental Resources and Soil Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Weijing Zhu
- Institute of Environmental Resources and Soil Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Leidong Hong
- Institute of Environmental Resources and Soil Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yanlai Yao
- Institute of Environmental Resources and Soil Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Penghao Li
- Institute of Environmental Resources and Soil Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Weiping Wang
- Institute of Environmental Resources and Soil Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chunlai Hong
- Institute of Environmental Resources and Soil Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
3
|
Madhogaria B, Banerjee S, Chakraborty S, Dhak P, Kundu A. Alleviation of heavy metals chromium, cadmium and lead and plant growth promotion in Vigna radiata L. plant using isolated Pseudomonas geniculata. Int Microbiol 2025; 28:133-149. [PMID: 38916652 DOI: 10.1007/s10123-024-00546-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/30/2024] [Accepted: 06/14/2024] [Indexed: 06/26/2024]
Abstract
Plants exposed to heavy metals (HMs) stress negatively affect their development and production capacity. Chromium (Cr), Cadmium (Cd), and Lead (Pb) are the most common hazardous trace metals in agriculture. The physiological, biochemical, and molecular characteristics of crops are being affected. Phytoremediation is a method to alleviate heavy metals from the contaminated soil. The study aims to evaluate the phytoremediation ability of Vigna radiata L. (mung bean) in the absence and the presence of multi-metal tolerant and plant growth promoting Pseudomonas geniculata strain TIU16A3 isolated from soil of tannery industrial estate, Kolkata, West Bengal, India. The strain was further assessed with increasing concentrations of Cr, Cd, and Pb (10, 20, 40, and 80 µg/mL) when the mung bean plant was a test crop. The strain significantly increased plant growth, chlorophyll content, increased level of antioxidant enzymes such as superoxide dismutase, peroxidase, and catalase, and decreased oxidative stress indicators like H2O2 and electrolyte leakage in the presence of Cr, Cd, and Pb as compared to plants grown in the absence of Pseudomonas geniculata strain. Shoot length responsive gene (Aux/IAA) in the presence of heavy metal alone and Pseudomonas geniculata treated Cd and Cr showed higher relative expression of (Aux/IAA) compared to Pb. Due to these intrinsic abilities, Pseudomonas geniculata strain TIU16A3 can be a plant growth promoter and thus can help in the remediation of heavy metal (Cr, Cd, and Pb) contaminated soil.
Collapse
Affiliation(s)
- Barkha Madhogaria
- Department of Microbiology, Techno India University, EM-4, Sector-V, Saltlake City, Kolkata, West Bengal, 700091, India
| | - Sangeeta Banerjee
- Department of Microbiology, Techno India University, EM-4, Sector-V, Saltlake City, Kolkata, West Bengal, 700091, India
| | - Sohini Chakraborty
- Department of Microbiology, Techno India University, EM-4, Sector-V, Saltlake City, Kolkata, West Bengal, 700091, India
| | - Prasanta Dhak
- Department of Chemistry, Techno India University, EM-4, Sector-V, Saltlake City, Kolkata, West Bengal, 700091, India.
| | - Atreyee Kundu
- Department of Microbiology, Techno India University, EM-4, Sector-V, Saltlake City, Kolkata, West Bengal, 700091, India.
| |
Collapse
|
4
|
Aziz MA, Adil B, Ali I, Alghamdi AG. Role of biochar and PGPR in improving soil biochemical characteristics and maize growth under Cr contamination. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2025; 27:1154-1168. [PMID: 40170427 DOI: 10.1080/15226514.2025.2485302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Heavy metals toxicity in soil is increasing globally and bioremediation of these contaminants through sustainable and recalcitrant materials has gained attention in recent years. A greenhouse pot experiment was conducted to investigate the effect of Cr tolerant Bacillus subtilis and Pseudomonas aeruginosa strains along with biochar of different feedstocks on maize plant biochemical attributes and soil health. Results of the study revealed that Cr contamination decreased plant growth attributes whilst the integrated application of B. subtilis+PLB significantly improved root-shoot length (36 and 10% respectively), total chlorophyll (11.29%), and stomatal conductance (11.95%). Under Cr contamination, maize carotenoid, flavonoid, and phenolic contents also improved up to 77.20%, 39.18%, and 7.90% respectively by B. subtilis+PLB treatment. Soil PLFA content, G+, G-, Fungi and actinomycetes activity also alleviated along with antioxidants superoxidase (54%), peroxidase (28.57%), and catalase (89%) under the treatment of B. subtilis+PLB. Additionally, microbial CUE improved up to 70% under B. subtilis+PLB followed by P. aeruginosa+PLB (62%). Moreover, soil nutrient content (TOC, N, P, and K) also showed a great improvement under the combinedcombined application of PGPR and biochar. These findings of the study provide a sustainable solution for the bioremediation of Cr in agricultural soil by improving soil microbial and antioxidative activities.
Collapse
Affiliation(s)
- Muhammad Abdullah Aziz
- Institute of Soil and Environmental Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan
| | - Bilal Adil
- Land Resource Research Institute, National Agriculture Research Center, Islamabad, Pakistan
| | - Ijaz Ali
- Land Resource Research Institute, National Agriculture Research Center, Islamabad, Pakistan
| | - Abdulaziz G Alghamdi
- Department of Soil Science, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Matei E, Râpă M, Mateș IM, Popescu AF, Bădiceanu A, Balint AI, Covaliu-Mierlă CI. Heavy Metals in Particulate Matter-Trends and Impacts on Environment. Molecules 2025; 30:1455. [PMID: 40286077 PMCID: PMC11990512 DOI: 10.3390/molecules30071455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
Heavy metals represent a class of pollutants detected at concentrations lower than 10 ppm in different matrices that are intensively monitored due to having a major impact on human health. Industrial activities including mining, agriculture, and transport, determine their presence in different environments. Corrosion phenomena of various installations, volcanic eruptions, or atmospheric deposition on the soil surface and in water can contaminate the respective environments. Atmospheric pollutants in the form of suspended dust particles with diameters below 10 microns are predominantly composed of different metallic species from Cd, Cr, Cu, Ni, etc. This paper presents a review of the main sources and types of heavy metals present in the atmosphere in the composition of particulate matter (PM), highlighting the main mechanisms of occurrence and detection techniques, including the impact on bio-geo-chemical processes in the soil and food chain, in close correlation with their impact on environment and human health. The purpose of this review is to highlight the current level of knowledge regarding the global situation of heavy metals in PM and to identify gaps as targets for future research.
Collapse
Affiliation(s)
- Ecaterina Matei
- Department of Metallic Material Processing and Environment Engineering, Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania;
| | - Maria Râpă
- Department of Metallic Material Processing and Environment Engineering, Faculty of Materials Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania;
| | - Ileana Mariana Mateș
- Central Military Emergency University Hospital “Dr. Carol Davila”, 88 Vulcănescu, 010825 Bucharest, Romania
| | - Anca-Florentina Popescu
- Biotechnical Systems Engineering Doctoral School, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (A.-F.P.); (A.B.); (A.I.B.)
| | - Alexandra Bădiceanu
- Biotechnical Systems Engineering Doctoral School, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (A.-F.P.); (A.B.); (A.I.B.)
| | - Alexandru Ioan Balint
- Biotechnical Systems Engineering Doctoral School, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (A.-F.P.); (A.B.); (A.I.B.)
| | - Cristina Ileana Covaliu-Mierlă
- Faculty of Biotechnical Systems Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania;
| |
Collapse
|
6
|
Liao S, Ling Y, Gao Y, Ma G, Li X, Chen L, Hu L, Xie Y. Enhanced cadmium tolerance in perennial ryegrass via exogenous application of Enterobacter hormaechei strain X20. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117905. [PMID: 39986050 DOI: 10.1016/j.ecoenv.2025.117905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 02/24/2025]
Abstract
Cadmium (Cd) contamination in soils poses a critical environmental challenge, jeopardizing both agricultural productivity and food safety. The utilization of plant growth-promoting rhizobacteria (PGPR) emerges as a promising strategy for mitigating the adverse effects of heavy metal stress on plant health and development. This study investigates the effectiveness of Enterobacter hormaechei X20 in enhancing Cd tolerance in perennial ryegrass, a species renowned for its phytoremediation potential. Strain X20 demonstrated multiple PGPR traits, including phosphate solubilization, indole-3-acetic acid (IAA) production, and siderophore secretion. Under Cd stress, X20 significantly stimulated plant growth, elevated canopy height, and preserved leaf water content. Additionally, X20 inoculation enhanced Cd uptake and reestablished ion homeostasis by augmenting Fe2+, Cu2+, Zn2+, and Mn2+ levels. It also improved photosynthetic efficiency, particularly by optimizing PSII activity, and strengthened antioxidant defense, alleviating oxidative stress. Metabolomic analysis revealed significant modulations in amino acid and sugar metabolism, marked by increased in serine and glycine levels under Cd stress. Furthermore, fructose and glucose levels rose, while sucrose levels declined, reflecting metabolic reprogramming that facilitates stress adaptation. These findings suggest that Enterobacter hormaechei X20 holds great promise as a bioinoculant for enhancing phytoremediation efficiency and plant resilience in Cd-contaminated soils, providing a sustainable strategy for managing heavy metal pollution in agriculture.
Collapse
Affiliation(s)
- Shujie Liao
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha 410128, China; CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Yu Ling
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Ya Gao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Guangjing Ma
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoning Li
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, Shandong, China
| | - Liang Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; Acadamician Workstation of Agricultural High-tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, Shandong 257300, China
| | - Longxing Hu
- Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha 410128, China; Acadamician Workstation of Agricultural High-tech Industrial Area of the Yellow River Delta, National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, Shandong 257300, China.
| | - Yan Xie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
7
|
Tennakoon A, Galahitigama H, Samarakoon SMABK, Perera IJJUN, Thakshila GPGI, Thiruketheeswaranathan S, Roshana MR, Sandamal S, Sewwandi GPGSM, Bellanthudawa BKA. Remediating contaminated environmental systems: the role of plants in cadmium removal. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2025; 27:896-915. [PMID: 39912381 DOI: 10.1080/15226514.2025.2456095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Cadmium (Cd) is one of the most harmful heavy metals in the environment, negatively impacting plant growth and development. However, phytoremediation which is an environmentally friendly and cost-effective technique can be used to treat Cd contaminated environments. It effectively removes Cd from polluted soil and water through processes, such as phytoextraction, phytostabilization, phytostimulation, phytofiltration, and phytotransformation. Numerous research has shown evidences that biological, physical, chemical, agronomic, and genetic methods are being utilized to improve phytoremediation. A special group of plants known as hyperaccumulator plants further enhance Cd removal, turning polluted areas into productive land. These plants accumulate Cd in root cell vacuoles and aerial parts. Despite the morphological and genetic variations, different plant species remediate Cd at different rates using either one or multiple mechanisms. To improve the effectiveness of phytoremediation, it is essential to thoroughly understand the mechanisms that control the accumulation and persistence of Cd in plants, including absorption, translocation, and elimination processes. However, what missing in understanding is in depth of idea on how the limitations of phytoremediation can be overcome. The limitations of phytoremediation can be addressed through various strategies, including natural and chemical amendments, genetic engineering, and natural microbial stimulation, broadly categorized into soil amelioration and plant capacity enhancement approaches. This review presents a concise overview of the latest research on various plants utilized in Cd phytoremediation and the different methods employed to enhance this process. Moreover, this review also underscores the creditability of phytoremediation technique to remediate Cd pollution as it offers a promising approach for eliminating Cd from contaminated sites and restoring their productivity. Additionally, we recommend directing future research toward enhancing the biochemical capabilities of plants for remediation purposes, elucidating the molecular mechanisms underlying the damage caused by Cd in plants, and understanding the fundamental principles regulating the enrichment of Cd in plants.
Collapse
Affiliation(s)
- Asanka Tennakoon
- Department of Agricultural Biology, Faculty of Agriculture, Eastern University, Chenkalady, Sri Lanka
| | - Harshana Galahitigama
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
- Department of Export Agriculture, Faculty of Agricultural Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya, Sri Lanka
| | - S M A B K Samarakoon
- Department of Agricultural Engineering and Environmental Technology, Faculty of Agriculture, University of Ruhuna, Matara, Sri Lanka
| | - I J J U N Perera
- Department of Agricultural Engineering and Environmental Technology, Faculty of Agriculture, University of Ruhuna, Matara, Sri Lanka
| | - G P G I Thakshila
- Department of Applied Sciences, Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe, Sri Lanka
- University of Chinese Academy of Sciences, Beijing, China
| | - Suthajini Thiruketheeswaranathan
- School of Environment, Tsinghua University, Beijing, China
- Department of Biosystems Technology, Faculty of Technology, Eastern University, Chenkalady, Sri Lanka
| | - M R Roshana
- Department of Biosystems Technology, Faculty of Technology, Eastern University, Chenkalady, Sri Lanka
| | - Salinda Sandamal
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | | | - B K A Bellanthudawa
- Department of Agricultural Engineering and Environmental Technology, Faculty of Agriculture, University of Ruhuna, Matara, Sri Lanka
- University of Chinese Academy of Sciences, Beijing, China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Okla MK, Javed S, Tahir MF, Anas M, Saleem MH, Ahmed T, Saleh IA, Zomot N, Alwasel YA, Abdel-Maksoud MA, Ali S, Fahad S. Evaluating the potential of Acinetobacter calcoaceticus in alleviation of aluminium stress in Triticum aestivum. 3 Biotech 2025; 15:34. [PMID: 39781215 PMCID: PMC11704110 DOI: 10.1007/s13205-024-04192-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025] Open
Abstract
Soil contamination with toxic heavy metals [such as aluminum (Al)] is becoming a serious global problem due to the rapid development of the social economy. Although plant growth-promoting rhizo-bacteria (PGPR) are the major protectants to alleviate metal toxicity, the study of these bacteria to ameliorate the toxic effects of Al is limited. Therefore, the present study was conducted to investigate the combined effects of different levels of Acinetobacter calcoaceticus (5 ppm and 10 ppm) of accession number of MT123456 on plant growth and biomass, photosynthetic pigments, gas exchange attributes, oxidative stress and response of antioxidant compounds (enzymatic and nonenzymatic), and their specific gene expression, sugars, nutritional status of the plant, organic acid exudation pattern and Al accumulation from the different parts of the plants, which was spiked with different levels of Al [0 µM (i.e., no Al), 50 µM, and 100 µM] using aluminum sulfate [Al2(SO4)3] in wheat (Triticum aestivum L.). Results from the present study revealed that the Al toxicity induced a substantial decreased in shoot length, root length, number of leaves, leaf area, shoot fresh weight, root fresh weight, shoot dry weight, root dry weight, chlorophyll-a, chlorophyll-b, total chlorophyll, carotenoid content, net photosynthesis, stomatal conductance, transpiration rate, soluble sugar, reducing sugar, non-reducing sugar contents, calcium (Ca2+), magnesium (Mg2+), iron (Fe2+), and phosphorus (P) contents in the roots and shoots of the plants. In contrast, increasing levels of Al in the soil signifcantly (P < 0.05) increased Al concentration in the roots and shoots of the plants, phenolic content, malondialdehyde (MDA), hydrogen peroxide (H2O2), electrolyte leakage (EL), fumaric acid, acetic acid, citric acid, formic acid, malic acid, oxalic acid contents in the roots of the plants. Although, the activities of enzymatic antioxidants such as superoxidase dismutase, peroxidase, catalase, ascorbate peroxidase and their specific gene expression in the roots and shoots of the plants and non-enzymatic such as phenolic, favonoid, ascorbic acid, and anthocyanin contents were initially increased with the exposure of 50 µM Al, but decreased by the increasing the Al concentration 100 µM in the soil. Addition of A. calcoaceticus into the soil signifcantly alleviated Al toxicity effects on T. aestivum by improving photosynthetic capacity and ultimately plant growth. Increased activities of antioxidant enzymes in A. calcoaceticus-treated plants seem to play a role in capturing stress-induced reactive oxygen species as was evident from lower levels of MDA, H2O2, MDA, and EL in A. calcoaceticus-treated plants. Research findings, therefore, suggested that A. calcoaceticus application can ameliorate Al toxicity in T. aestivum seedlings and resulted in improved plant growth and composition under metal stress as depicted by balanced exudation of organic acids.
Collapse
Affiliation(s)
- Mohammad K. Okla
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, 11451 Riyadh, Saudi Arabia
| | - Sadia Javed
- Department of Biochemistry, Government College University, Allama Iqbal Road, Faisalabad, 38000 Pakistan
| | - Muhammad Faran Tahir
- Department of Plant Pathology, University of Agriculture, Faisalabad, 38040 Punjab Pakistan
| | - Muhammad Anas
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320 Pakistan
| | - Muhammad Hamzah Saleem
- College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Temoor Ahmed
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan
- Advanced Research Centre, European University of Lefke, Lefke Northern Cyprus, TR-10 Mersin, Turkey
- Department of Plant Biotechnology, Korea Universtiy, Seoul, 02481 South Korea
| | | | - Naser Zomot
- Faculty of Science, Zarqa University, Zarqa, 13110 Jordan
| | - Yasmeen A. Alwasel
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, 11451 Riyadh, Saudi Arabia
| | - Mostafa A. Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, 11451 Riyadh, Saudi Arabia
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000 Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402 Taiwan
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University, Mardan, 23200 Khyber Pakhtunkhwa Pakistan
| |
Collapse
|
9
|
Jiang W, Jiang P, You S, Qiu H, Liu J, Zhang X, Chen M. Mechanisms of manganese uptake and long-distance transport in the hyperaccumulator Celosia argentea Linn. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117514. [PMID: 39667325 DOI: 10.1016/j.ecoenv.2024.117514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/01/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
Celosia argentea Linn. is a hyperaccumulator for the remediation of manganese (Mn)-contaminated soil owing to its rapid growth, high decontamination capacity, and strong stress resistance. However, little is known about the processes involved in long-distance transport of Mn in hyperaccumulators. In this study, synchrotron-based micro X-ray fluorescence (μ-XRF) imaging showed that root tips and root hairs may be the focal sites for root uptake of Mn. Furthermore, the high Mn intensity in the vascular bundles (xylem and phloem) of stems and petioles indicates that the xylem and phloem play crucial roles in Mn transport from roots to leaves. High concentrations of Mn and three organic acids (oxalic, citric, and malic) were detected in the xylem sap under Mn treatment, and Mn may be chelated with them in the xylem for transport from the root to the shoot. Additionally, rooting and leaf-sourcing experiments confirmed that accumulated Mn in mature leaves could be re-transported via the phloem. However, the majority of Mn exported from mature leaves was translocated upward to the shoots (approximately 96 %), and only 4 % was translocated to the roots. These results provide new insights into the mechanisms of long-distance transport of Mn in plants.
Collapse
Affiliation(s)
- Wenxuan Jiang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China.
| | - Pingping Jiang
- College of Earth Sciences, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China.
| | - Shaohong You
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China; Guangxi Science and Technology Normal University, Laibin 546199, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Gulin University of Technology, Guilin, Guangxi 541004, China.
| | - Hui Qiu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China.
| | - Jie Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China.
| | - Xuehong Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China.
| | - Mouyixing Chen
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
10
|
Wang P, Chen C, Zheng R, Peng L, Zhou Z, Wang Q. Complexity of influences on atrazine phytoremediation of coexisting graphene oxide in water: Mitigating its phytotoxicity while decreasing plant removal contribution. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122807. [PMID: 39368390 DOI: 10.1016/j.jenvman.2024.122807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/06/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Phytoremediation is an efficient technology for the removal of herbicide atrazine (ATZ) contamination in water bodies, but its ability to reduce ATZ under combined pollution remains unclear, especially ATZ co-existing with the emerging pollutant graphene oxide (GO) that may have potential effects on ATZ fate, plants and microbes. Herein, we investigated the phytoremediation potential of an emergent plant (Iris pseudacorus) for ATZ and the response of bacteria in a hydroponic system with and without GO. The results showed that plants enhanced ATZ dissipation in water with the increased removal rate by a factor of 1.7-4.0. GO restricted ATZ uptake by plants, but favored ATZ bioconcentration in cell walls. The plant contributed most to changes in the bacterial communities, decreasing the alpha diversity, while enriching the functional categories involving in amino acid and carbohydrate metabolisms. These findings indicated that I. pseudacorus can be employed as an effective candidate of phytoremediation for ATZ co-existing with GO at environmentally relevant concentrations, tending to recruit bacteria with plant stress tolerance and growth-promotion activities more than with ATZ degradation activities; GO exerted a mitigating effect on ATZ stress improving the barrier function of cell walls, but decreased the contribution of plants to ATZ removal.
Collapse
Affiliation(s)
- Peixin Wang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Chuansheng Chen
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Ruilun Zheng
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Lei Peng
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Zixin Zhou
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Qinghai Wang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
11
|
Hou M, Leng C, Zhu J, Yang M, Yin Y, Xing Y, Chen J. Alpine and subalpine plant microbiome mediated plants adapt to the cold environment: A systematic review. ENVIRONMENTAL MICROBIOME 2024; 19:82. [PMID: 39487507 PMCID: PMC11529171 DOI: 10.1186/s40793-024-00614-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/02/2024] [Indexed: 11/04/2024]
Abstract
With global climate change, ecosystems are affected, some of which are more vulnerable than others, such as alpine ecosystems. Microbes play an important role in environmental change in global ecosystems. Plants and microbes are tightly associated, and symbiotic or commensal microorganisms are crucial for plants to respond to stress, particularly for alpine plants. The current study of alpine and subalpine plant microbiome only stays at the community structure scale, but its ecological function and mechanism to help plants to adapt to the harsh environments have not received enough attention. Therefore, it is essential to systematically understand the structure, functions and mechanisms of the microbial community of alpine and subalpine plants, which will be helpful for the conservation of alpine and subalpine plants using synthetic microbial communities in the future. This review mainly summarizes the research progress of the alpine plant microbiome and its mediating mechanism of plant cold adaptation from the following three perspectives: (1) Microbiome community structure and their unique taxa of alpine and subalpine plants; (2) The role of alpine and subalpine plant microbiome in plant adaptation to cold stress; (3) Mechanisms by which the microbiome of alpine and subalpine plants promotes plant adaptation to low-temperature environments. Finally, we also discussed the future application of high-throughput technologies in the development of microbial communities for alpine and subalpine plants. The existing knowledge could improve our understanding of the important role of microbes in plant adaptation to harsh environments. In addition, perspective further studies on microbes' function confirmation and microbial manipulations in microbiome engineering were also discussed.
Collapse
Affiliation(s)
- Mengyan Hou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Chunyan Leng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Jun Zhu
- Xinjiang Institute of Chinese and Ethnic Medicine, Urumqi, 830002, People's Republic of China
| | - Mingshu Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Yifei Yin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Yongmei Xing
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China
| | - Juan Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, No.151, Malianwa North Road, Haidian District, Beijing, 100193, People's Republic of China.
- School of Pharmacy, Shandong Second Medical University, Weifang, 261053, People's Republic of China.
| |
Collapse
|
12
|
Khatoon Z, Orozco-Mosqueda MDC, Santoyo G. Microbial Contributions to Heavy Metal Phytoremediation in Agricultural Soils: A Review. Microorganisms 2024; 12:1945. [PMID: 39458255 PMCID: PMC11509225 DOI: 10.3390/microorganisms12101945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/15/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Phytoremediation is a sustainable technique that employs plants to reinforce polluted environments such as agroecosystems. In recent years, new strategies involving the plant microbiome as an adjuvant in remediation processes have been reported. By leveraging this microbial assistance to remediate soils contaminated with heavy metals such As, Pb, Cd, Hg, and Cr, plants can sequester, degrade, or stabilize contaminants more efficiently. Remarkably, some plant species are known for their hyper-accumulative traits in synergy with their microbial partners and can successfully mitigate heavy metal pollutants. This sustainable biotechnology based on plant-microbe associations not only aids in environmental cleanup but also enhances biodiversity, improves soil structure, and promotes plant growth and health, making it a promising solution for addressing agro-pollution challenges worldwide. The current review article emphasizes the potential of synergistic plant-microbe interactions in developing practical and sustainable solutions for heavy metal remediation in agricultural systems, which are essential for food security.
Collapse
Affiliation(s)
- Zobia Khatoon
- Institute of Chemical and Biological Research, Universidad Michoacana de San Nicolas de Hidalgo, Morelia 58030, Mexico
| | | | - Gustavo Santoyo
- Institute of Chemical and Biological Research, Universidad Michoacana de San Nicolas de Hidalgo, Morelia 58030, Mexico
| |
Collapse
|
13
|
Prokisch J, Nguyen DHH, Muthu A, Ferroudj A, Singh A, Agrawal S, Rajput VD, Ghazaryan K, El-Ramady H, Rai M. Carbon Nanodot-Microbe-Plant Nexus in Agroecosystem and Antimicrobial Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1249. [PMID: 39120354 PMCID: PMC11314255 DOI: 10.3390/nano14151249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024]
Abstract
The intensive applications of nanomaterials in the agroecosystem led to the creation of several environmental problems. More efforts are needed to discover new insights in the nanomaterial-microbe-plant nexus. This relationship has several dimensions, which may include the transport of nanomaterials to different plant organs, the nanotoxicity to soil microbes and plants, and different possible regulations. This review focuses on the challenges and prospects of the nanomaterial-microbe-plant nexus under agroecosystem conditions. The previous nano-forms were selected in this study because of the rare, published articles on such nanomaterials. Under the study's nexus, more insights on the carbon nanodot-microbe-plant nexus were discussed along with the role of the new frontier in nano-tellurium-microbe nexus. Transport of nanomaterials to different plant organs under possible applications, and translocation of these nanoparticles besides their expected nanotoxicity to soil microbes will be also reported in the current study. Nanotoxicity to soil microbes and plants was investigated by taking account of morpho-physiological, molecular, and biochemical concerns. This study highlights the regulations of nanotoxicity with a focus on risk and challenges at the ecological level and their risks to human health, along with the scientific and organizational levels. This study opens many windows in such studies nexus which are needed in the near future.
Collapse
Affiliation(s)
- József Prokisch
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (D.H.H.N.); (A.M.); (A.F.); (M.R.)
| | - Duyen H. H. Nguyen
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (D.H.H.N.); (A.M.); (A.F.); (M.R.)
- Tay Nguyen Institute for Scientific Research, Vietnam Academy of Science and Technology (VAST), Dalat 66000, Vietnam
- Doctoral School of Nutrition and Food Science, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary
| | - Arjun Muthu
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (D.H.H.N.); (A.M.); (A.F.); (M.R.)
- Doctoral School of Nutrition and Food Science, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary
| | - Aya Ferroudj
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (D.H.H.N.); (A.M.); (A.F.); (M.R.)
- Doctoral School of Animal Husbandry, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary
| | - Abhishek Singh
- Faculty of Biology, Yerevan State University, Yerevan 0025, Armenia; (A.S.); (K.G.)
| | - Shreni Agrawal
- Department of Biotechnology, Parul Institute of Applied Science, Parul University, Vadodara 391760, Gujarat, India;
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov on Don 344006, Russia;
| | - Karen Ghazaryan
- Faculty of Biology, Yerevan State University, Yerevan 0025, Armenia; (A.S.); (K.G.)
| | - Hassan El-Ramady
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (D.H.H.N.); (A.M.); (A.F.); (M.R.)
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Mahendra Rai
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, University of Debrecen, 138 Böszörményi Street, 4032 Debrecen, Hungary; (D.H.H.N.); (A.M.); (A.F.); (M.R.)
- Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati 444602, Maharashtra, India
| |
Collapse
|
14
|
Zhu Y, You Y, Zheng S, Li J, Wang Y, Wu R, Fang Z, Liu H, Du S. ABA-importing transporter (AIT1) synergies enhances exogenous ABA minimize heavy metals accumulations in Arabidopsis. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134718. [PMID: 38797079 DOI: 10.1016/j.jhazmat.2024.134718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Exogenous abscisic acid (ABA) presents a novel approach to mitigate heavy metal (HM) accumulation in plants, yet its efficacy against multiple HMs and potential enhancement methods remain underexplored. In this study, we demonstrated that the exogenous ABA application simultaneously decreased Zn, Cd and Ni accumulation by 22-25 %, 27-39 % and 60-62 %, respectively, in wild-type (WT) Arabidopsis. Conversely, ABA reduced Pb in shoots but increased its root concentration. ABA application also modulated the expression of HM uptake genes, inhibiting IRT1, NRAMP1, NRAMP4, and HMA3, and increasing ZIP1 and ZIP4 expressions. Further analysis revealed that overexpressing the ABA-importing transporter (AIT1) in plants intensified the reduction of Cd, Zn, and Ni, compared to WT. However, the inhibitory effect of exogenous ABA on Pb accumulation was mitigated in shoots with higher AIT1 expression. Furthermore, HMs-induced growth inhibition and the damage to photosynthesis were also alleviated with ABA treatment. Conclusively, AIT1's synergistic effect with ABA effectively reduces Cd, Zn and Ni accumulation, offering a synergistic approach to mitigate HM stress in plants.
Collapse
Affiliation(s)
- Yaxin Zhu
- Key Laboratory of Pollution Exposure and Health Intervention Technology, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Yue You
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Shihao Zheng
- Key Laboratory of Pollution Exposure and Health Intervention Technology, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Jiaxin Li
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yuying Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ran Wu
- Key Laboratory of Pollution Exposure and Health Intervention Technology, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Zhiguo Fang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Huijun Liu
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Shaoting Du
- Key Laboratory of Pollution Exposure and Health Intervention Technology, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
15
|
Ammar A, Nouira A, El Mouridi Z, Boughribil S. Recent trends in the phytoremediation of radionuclide contamination of soil by cesium and strontium: Sources, mechanisms and methods: A comprehensive review. CHEMOSPHERE 2024; 359:142273. [PMID: 38750727 DOI: 10.1016/j.chemosphere.2024.142273] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/03/2024] [Accepted: 05/05/2024] [Indexed: 05/19/2024]
Abstract
This comprehensive review examines recent trends in phytoremediation strategies to address soil radionuclide contamination by cesium (Cs) and strontium (Sr). Radionuclide contamination, resulting from natural processes and nuclear-related activities such as accidents and the operation of nuclear facilities, poses significant risks to the environment and human health. Cs and Sr, prominent radionuclides involved in nuclear accidents, exhibit chemical properties that contribute to their toxicity, including easy uptake, high solubility, and long half-lives. Phytoremediation is emerging as a promising and environmentally friendly approach to mitigate radionuclide contamination by exploiting the ability of plants to extract toxic elements from soil and water. This review focuses specifically on the removal of 90Sr and 137Cs, addressing their health risks and environmental implications. Understanding the mechanisms governing plant uptake of radionuclides is critical and is influenced by factors such as plant species, soil texture, and physicochemical properties. Phytoremediation not only addresses immediate contamination challenges but also provides long-term benefits for ecosystem restoration and sustainable development. By improving soil health, biodiversity, and ecosystem resilience, phytoremediation is in line with global sustainability goals and environmental protection initiatives. This review aims to provide insights into effective strategies for mitigating environmental hazards associated with radionuclide contamination and to highlight the importance of phytoremediation in environmental remediation efforts.
Collapse
Affiliation(s)
- Ayyoub Ammar
- Laboratory of Virology, Microbiology, Quality and Biotechnology /Eco-toxicology and Biodiversity (LVMQB/EB), Faculty of Sciences and Techniques Mohammedia, University Hassan II, Casablanca, Morocco; National Center for Energy, Sciences, and Nuclear Techniques (CNESTEN), Rabat, Morocco; Laboratory of Environment and Conservation of Natural Resources, National Institute of Agronomique Research (INRA), Rabat, Morocco.
| | - Asmae Nouira
- National Center for Energy, Sciences, and Nuclear Techniques (CNESTEN), Rabat, Morocco
| | - Zineb El Mouridi
- Laboratory of Environment and Conservation of Natural Resources, National Institute of Agronomique Research (INRA), Rabat, Morocco
| | - Said Boughribil
- Laboratory of Virology, Microbiology, Quality and Biotechnology /Eco-toxicology and Biodiversity (LVMQB/EB), Faculty of Sciences and Techniques Mohammedia, University Hassan II, Casablanca, Morocco
| |
Collapse
|
16
|
James A, Rene ER, Bilyaminu AM, Chellam PV. Advances in amelioration of air pollution using plants and associated microbes: An outlook on phytoremediation and other plant-based technologies. CHEMOSPHERE 2024; 358:142182. [PMID: 38685321 DOI: 10.1016/j.chemosphere.2024.142182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/16/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Globally, air pollution is an unfortunate aftermath of rapid industrialization and urbanization. Although the best strategy is to prevent air pollution, it is not always feasible. This makes it imperative to devise and implement techniques that can clean the air continuously. Plants and microbes have a natural potential to transform or degrade pollutants. Hence, strategies that use this potential of living biomass to remediate air pollution seem to be promising. The simplest future trend can be planting suitable plant-microbe species capable of removing air pollutants like SO2, CO2, CO, NOX and particulate matter (PM) along roadsides and inside the buildings. Established wastewater treatment strategies such as microbial fuel cells (MFC) and constructed wetlands (CW) can be suitably modified to ameliorate air pollution. Green architecture involving green walls and green roofs is facile and aesthetic, providing urban ecosystem services. Certain microbe-based bioreactors such as bioscrubbers and biofilters may be useful in small confined spaces. Several generative models have been developed to assist with planning and managing green spaces in urban locales. The physiological limitations of using living organisms can be circumvent by applying biotechnology and transgenics to improve their potential. This review provides a comprehensive update on not just the plants and associated microbes for the mitigation of air pollution, but also lists the technologies that are available and/or can be modified and used for air pollution control. The article also gives a detailed analysis of this topic in the form of strengths-weaknesses-opportunities-challenges (SWOC). The strategies mentioned in this review would help to attain corporate Environmental Social and Governance (ESG) and Sustainable Development Goals (SDGs), while reducing carbon footprint in the urban scenario. The review aims to emphasise that urbanization is possible while tackling air pollution using facile, green techniques involving plants and associated microbes.
Collapse
Affiliation(s)
- Anina James
- J & K Pocket, Dilshad Garden, Delhi, 110095, India.
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands
| | - Abubakar M Bilyaminu
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands
| | | |
Collapse
|
17
|
Wang S, He X, Tian J, Wu R, Liu H, Fang Z, Du S. NRT1.2 overexpression enhances the synergistic interplay between ABA-generating bacteria and biochars in reducing heavy metal accumulation in pak choi. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171276. [PMID: 38417500 DOI: 10.1016/j.scitotenv.2024.171276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/07/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
The agricultural sector faces severe challenges owing to heavy metal (HM) contamination of farmlands, requiring urgent preventive measures. To address this, we investigated the impact of the synergistic application of Azospirillum brasilense, a growth-promoting rhizobacterium producing abscisic acid (ABA), and biochar to minimize HM accumulation in pak choi, using three distinct expression levels of the ABA transporter NRT1.2 in pak choi and three different types of contaminated soils as experimental materials. The results revealed that pak choi with low, medium, and high NRT1.2 expression intensity, when subjected to bacterial strain-biochar treatment, exhibited an increasing trend in ABA content compared to the control. Correspondingly, the aboveground HM content decreased by 1-49 %, 22-52 %, and 15-96 %, whereas the fresh weight increased by 12-38 %, 88-126 %, and 152-340 %, respectively, showing a significant correlation with NRT1.2 expression. Pearson correlation analysis demonstrated that NRT1.2 expression intensity was inversely associated with the combined treatment's reduction in HM accumulation and positively correlated with the promotional effect. Simultaneously, soil discrepancies significantly affected the combined treatment, which was likely associated with variations in the active forms of HM in each soil. Consequently, when employing ABA-producing bacteria for mitigating crop HM accumulation, selecting plants with higher relative NRT1.2 expression intensity, combined with biochar, is recommended.
Collapse
Affiliation(s)
- Shengtao Wang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xiaolin He
- Jiangxi Province Agricultural Technology Extension Center, Nanchang 330045, China
| | - Jiaying Tian
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Ran Wu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Huijun Liu
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Zhiguo Fang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Shaoting Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
18
|
Zhang X, Li Q, Zhong Z, Huang Z, Bian F. Characterization of the composition, structure, and functional potential of bamboo rhizosphere archaeal communities along a chromium gradient. Front Microbiol 2024; 15:1372403. [PMID: 38694797 PMCID: PMC11061513 DOI: 10.3389/fmicb.2024.1372403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/29/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction Bamboo can be used in the phytoremediation of heavy metal pollution. However, the characteristics of the bamboo rhizosphere archaeal community in Cr-contaminated soil under field conditions remain unclear. Methods In this study, high-throughput sequencing was used to examine the rhizosphere soil archaeal communities of Lei bamboo (Phyllostachys precox) plantations along a Cr pollution gradient. Results The results revealed U-shaped relationships between Cr [total Cr (TCr) or HCl-extractable Cr (ACr)] and two alpha indices (Chao1 and Shannon) of archaea. We also established that high Cr concentrations were associated with a significant increase in the abundance of Thaumarchaeota and significant reductions in the abundances of Crenarchaeota and Euryarchaeota. The archaeal co-occurrence networks reduced in complexity with Cr pollution, decreasing the community's resistance to environmental disturbance. Candidatus nitrosotalea and Nitrososphaeraceae_unclassified (two genera of Thaumarchaeota) were identified as keystone taxa. The community structure of soil archaeal communities was also found to be affected by TCr, ACr, pH, total organic C, and available nutrient (N, P, and K) concentrations, with pH being identified as the most reliable predictor of the archaeal community in assessed soils. Discussion These findings enhance our understanding of microbial responses to Cr pollution and provide a basis for developing more refined approaches for the use of bamboo in the remediation of Cr-contaminated soils.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Key Laboratory of State Forestry and Grassland Administration on Bamboo Forest Ecology and Resource Utilization, China National Bamboo Research Center, Hangzhou, China
- National Long-term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Hangzhou, China
- Engineering Research Center of Biochar of Zhejiang Province, Hangzhou, China
| | - Qiaoling Li
- Key Laboratory of State Forestry and Grassland Administration on Bamboo Forest Ecology and Resource Utilization, China National Bamboo Research Center, Hangzhou, China
- National Long-term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Hangzhou, China
| | - Zheke Zhong
- Key Laboratory of State Forestry and Grassland Administration on Bamboo Forest Ecology and Resource Utilization, China National Bamboo Research Center, Hangzhou, China
- National Long-term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Hangzhou, China
- Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, Hangzhou, China
| | - Zhiyuan Huang
- Key Laboratory of State Forestry and Grassland Administration on Bamboo Forest Ecology and Resource Utilization, China National Bamboo Research Center, Hangzhou, China
- National Long-term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Hangzhou, China
| | - Fangyuan Bian
- Key Laboratory of State Forestry and Grassland Administration on Bamboo Forest Ecology and Resource Utilization, China National Bamboo Research Center, Hangzhou, China
- National Long-term Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Hangzhou, China
- Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, Hangzhou, China
| |
Collapse
|
19
|
Vrchovecká S, Amirbekov A, Sázavská T, Arias CA, Jespersen EA, Černík M, Hrabák P. Chemical analysis of wetland plants to evaluate the bioaccumulation and metabolism of hexachlorocyclohexane (HCH). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171141. [PMID: 38387594 DOI: 10.1016/j.scitotenv.2024.171141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Hexachlorocyclohexanes (HCH) belong to the banned pesticides with short-time production and use during the last century. However, the consequences of this short period are still present as persistent environmental contamination. This study represents the large lab-scale experiment focused on the HCH accumulation and metabolism in selected wetland plants (Juncus effuses, Typha latifolia, Phragmites australis) and trees (Alnus glutinosa) after the exposure to the technical mix of HCH isomers (t-HCH) or δ-HCH at three different concentration. During the three-month exposure, morphological (biomass, height, relative chlorophyll content) and physiological (photosynthetic measurements - photosynthetic rate, stomatal conductance, transpiration and dark transpiration) parameters were measured to assess the HCH effect on plant's growth. The results showed that all selected plant species supported HCH removal from the soil. The total removal efficiency was lower for the t-HCH than for δ-HCH exposure, and the best results were provided by Alnus glutinosa tree. Also, no isomer preference was observed in plants exposed to t-HCH. Most HCH remained accumulated in the root biomass, and mainly α-HCH and δ-HCH were transported to the above-ground parts due to their physicochemical properties. Simultaneously, HCH uptake and metabolization to chlorobenzenes (CB) and chlorophenols (CP) occur. Non-targeted analysis showed that CP could be conjugated to glucose and malonyl in plant tissue, and secondary plant metabolism is affected positively and negatively after exposure to t-HCH depending on plant species and chemical concentration. Luteolin, quercetin and quercetin-3-O-glucoside found common to all species showed quantitative changes due to HCH. Nevertheless, most morphological and physiological parameters were adversely affected without statistical significance. This large-scale study provides information on the fate of HCH in the soil-plant system, the suitability of selected plants and their adaptation to chemical stress for use in the phytoremediation process.
Collapse
Affiliation(s)
- Stanislava Vrchovecká
- Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec, Studentska 2, 460 01 Liberec, Czech Republic; Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentska 1402/2, 461 17 Liberec, Czech Republic.
| | - Aday Amirbekov
- Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec, Studentska 2, 460 01 Liberec, Czech Republic; Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentska 1402/2, 461 17 Liberec, Czech Republic
| | - Tereza Sázavská
- Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec, Studentska 2, 460 01 Liberec, Czech Republic
| | - Carlos Alberto Arias
- Department of Biology - Aquatic Biology, Aarhus University, Ole Worms Allé 1, 1135, 227 8000 Aarhus C, Denmark; Aarhus University Centre for Water Technology (WATEC), Ny Munkegade 120, 8000 Aarhus C, Denmark
| | - Emil Arboe Jespersen
- Department of Biology - Aquatic Biology, Aarhus University, Ole Worms Allé 1, 1135, 227 8000 Aarhus C, Denmark
| | - Miroslav Černík
- Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec, Studentska 2, 460 01 Liberec, Czech Republic
| | - Pavel Hrabák
- Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec, Studentska 2, 460 01 Liberec, Czech Republic
| |
Collapse
|
20
|
Alotaibi MM, Aljuaid A, Alsudays IM, Aloufi AS, AlBalawi AN, Alasmari A, Alghanem SMS, Albalawi BF, Alwutayd KM, Gharib HS, Awad-Allah MMA. Effect of Bio-Fertilizer Application on Agronomic Traits, Yield, and Nutrient Uptake of Barley ( Hordeum vulgare) in Saline Soil. PLANTS (BASEL, SWITZERLAND) 2024; 13:951. [PMID: 38611480 PMCID: PMC11013266 DOI: 10.3390/plants13070951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024]
Abstract
Under salinity conditions, growth and productivity of grain crops decrease, leading to inhibition and limited absorption of water and elements necessary for plant growth, osmotic imbalance, ionic stress, and oxidative stress. Microorganisms in bio-fertilizers have several mechanisms to provide benefits to crop plants and reduce the harmful effect of salinity. They can be effective in dissolving phosphate, fixing nitrogen, promoting plant growth, and can have a combination of all these qualities. During two successful agricultural seasons, two field experiments were conducted to evaluate the effect of bio-fertilizer applications, including phosphate solubilizing bacteria (PSB), nitrogen fixation bacteria and a mix of phosphate-solubilizing bacteria and nitrogen fixation bacteria with three rates, 50, 75 and 100% NPK, of the recommended dose of minimal fertilizer on agronomic traits, yield and nutrient uptake of barley (Hordeum vulgare) under saline condition in Village 13, Farafra Oasis, New Valley Governorate, Egypt. The results showed that the application of Microbein + 75% NPK recorded the highest values of plant height, spike length, number of spikes/m2, grain yield (Mg ha-1), straw yield (Mg ha-1), biological yield (Mg ha-1), protein content %, nitrogen (N), phosphorus (P), potassium (K) uptakes in grain and straw (kg ha-1), available nitrogen (mg/kg soil), available phosphorus (mg/kg soil), total microbial count of soil, antioxidant activity of soil (AOA), dehydrogenase, nitrogen fixers, and PSB counts. The application of bio-fertilizers led to an increase in plant tolerance to salt stress, plant growth, grain yield, and straw yield, in addition to the application of the bio-fertilizers, which resulted in a 25% saving in the cost of mineral fertilizers used in barley production.
Collapse
Affiliation(s)
- Mashael M. Alotaibi
- Biology Department, College of Science and Humanities, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Alya Aljuaid
- Biology Department, College of Science and Humanities, Shaqra University, Shaqra 11961, Saudi Arabia
| | | | - Abeer S. Aloufi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Aisha Nawaf AlBalawi
- Biology Department, University College of Haqel, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Abdulrahman Alasmari
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia
| | | | - Bedur Faleh Albalawi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Hany S. Gharib
- Department of Agronomy, Faculty of Agriculture, University of Kafrelsheikh, Kafrelsheikh 33516, Egypt
| | | |
Collapse
|
21
|
Shi B, Yang R, Tian W, Lu M, Wang X. Factors influencing cadmium accumulation in plants after inoculation with rhizobacteria: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170277. [PMID: 38266722 DOI: 10.1016/j.scitotenv.2024.170277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Rhizobacteria have the potential to enhance phytoremediation by generating substances that stimulate plant development and influence the effectiveness of cadmium (Cd) remediation by adjusting Cd availability via metal solubilization. Furthermore, rhizobacterial inoculation affects plants' metal tolerance and uptake by controlling the expression of several metal transporters, channels, and metal chelator genes. A meta-analysis was conducted to quantitatively assess the effects of rhizobacteria on Cd accumulation in plants using 207 individual observations from 47 articles. This meta-analysis showed an average Cd concentration increase of 8.09 % in plant cells under rhizobacteria treatment. The effects of different plant-microbial interactions on the bioaccumulation of Cd in plants varied. Selecting the proper rhizobacteria-plant association is essential to affect Cd buildup in plant roots and shoots. A more extended planting period (>30 days) and a suitable soil pH (<6, 7-8) would aid in the phytoextraction of Cd from the soil. This study comprehensively and quantitatively investigated the effects of plants, rhizobacteria, soil pH, planting period, experimental sites, and plant organs on plant Cd accumulation. According to the analysis of explanatory factors, plant species, planting period, soil pH, and rhizobacteria species have a more decisive influence on Cd accumulation than other factors. The results provide information for future research on the successful remediation of soils contaminated with Cd. More investigations are required to elucidate the intricate interactions between plant roots and microorganisms.
Collapse
Affiliation(s)
- Ben Shi
- Department of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471023, China.
| | - Ruixian Yang
- Department of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Wenjie Tian
- Department of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Mingmei Lu
- Department of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Xiaoqing Wang
- Department of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471023, China
| |
Collapse
|
22
|
Chiquito-Contreras CJ, Meza-Menchaca T, Guzmán-López O, Vásquez EC, Ricaño-Rodríguez J. Molecular Insights into Plant-Microbe Interactions: A Comprehensive Review of Key Mechanisms. Front Biosci (Elite Ed) 2024; 16:9. [PMID: 38538528 DOI: 10.31083/j.fbe1601009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/25/2024] [Accepted: 02/18/2024] [Indexed: 10/22/2024]
Abstract
In most ecosystems, plants establish complex symbiotic relationships with organisms, such as bacteria and fungi, which significantly influence their health by promoting or inhibiting growth. These relationships involve biochemical exchanges at the cellular level that affect plant physiology and have evolutionary implications, such as species diversification, horizontal gene transfer, symbiosis and mutualism, environmental adaptation, and positive impacts on community structure and biodiversity. For these reasons, contemporary research, moving beyond observational studies, seeks to elucidate the molecular basis of these interactions; however, gaps in knowledge remain. This is particularly noticeable in understanding how plants distinguish between beneficial and antagonistic microorganisms. In light of the above, this literature review aims to address some of these gaps by exploring the key mechanisms in common interspecies relationships. Thus, our study presents novel insights into these evolutionary archetypes, focusing on the antibiosis process and microbial signaling, including chemotaxis and quorum sensing. Additionally, it examined the biochemical basis of endophytism, pre-mRNA splicing, and transcriptional plasticity, highlighting the roles of transcription factors and epigenetic regulation in the functions of the interacting organisms. These findings emphasize the importance of understanding these confluences in natural environments, which are crucial for future theoretical and practical applications, such as improving plant nutrition, protecting against pathogens, developing transgenic crops, sustainable agriculture, and researching disease mechanisms. It was concluded that because of the characteristics of the various biomolecules involved in these biological interactions, there are interconnected molecular networks in nature that give rise to different ecological scaffolds. These networks integrate a myriad of functionally organic units that belong to various kingdoms. This interweaving underscores the complexity and multidisciplinary integration required to understand plant-microbe interactions at the molecular level. Regarding the limitations inherent in this study, it is recognized that researchers face significant obstacles. These include technical difficulties in experimentation and fieldwork, as well as the arduous task of consolidating and summarizing findings for academic articles. Challenges range from understanding complex ecological and molecular dynamics to unbiased and objective interpretation of diverse and ever-changing literature.
Collapse
Affiliation(s)
| | | | - Oswaldo Guzmán-López
- Faculty of Chemical Sciences, University of Veracruz, 96538 Coatzacoalcos, Veracruz, Mexico
| | | | - Jorge Ricaño-Rodríguez
- Center for Ecoliteracy and Knowledge Dialogue, University of Veracruz, 91060 Xalapa, Veracruz, Mexico
| |
Collapse
|
23
|
Zhu Y, Wang Y, Liu H, Wang H, Xie M, Fang Z, Du S. ABA-metabolizing bacteria and rhamnolipids as valuable allies for enhancing phytoremediation efficiency in heavy metal-contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167398. [PMID: 37758153 DOI: 10.1016/j.scitotenv.2023.167398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/19/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
Microbial-assisted phytoremediation has great potential to improve the efficiency of phytoremediation in heavy metal (HM)-contaminated soils. In this study, the synergistic effects of rhamnolipids and the abscisic acid (ABA)-metabolizing bacterium Rhodococcus qingshengii on the phytoremediation efficiency of Indian mustard (Brassica juncea) in HM-contaminated soils were investigated. The Cd, Zn, and Pb contents in plants treated with a combination of rhamnolipids and R. qingshengii were 48.4-77.1 %, 14.6-40.4 %, and 16.1-20.0 % higher, respectively, than in those treated with R. qingshengii alone, and 42.8-59.2 %, 13.1-48.2 %, and 7.3-67.5 % higher, respectively, than in those treated with rhamnolipids alone. In addition, the bioconcentration factors of each metal were improved, and the biomass further increased by 36.6-65.7 % compared to that of single treatments. Pearson's correlation analysis showed that rhamnolipids and R. qingshengii enhanced the accumulation of HMs in B. juncea by activating the available forms of HMs in the soil and regulating the ABA and indole-3-acetic acid in plants, respectively. The structural equation model indicated that R. qingshengii had a larger path coefficient than rhamnolipids in terms of HM content and plant biomass, suggesting that R. qingshengii may have a greater contribution to promoting the extraction of HMs from the soil under synergistic conditions. In conclusion, the combination of rhamnolipids and R. qingshengii has great potential to enhance the phytoremediation efficiency of hyperaccumulating plants in HM-contaminated soils.
Collapse
Affiliation(s)
- Yaxin Zhu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Yu Wang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Huijun Liu
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Hua Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Minghui Xie
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Zhiguo Fang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Shaoting Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
24
|
Wang H, Wang S, He X, Xie M, Cai M, Zhu Y, Du S. A promising product: Abscisic acid-producing bacterial agents for restricting cadmium enrichment in field vegetable crops. Food Chem X 2023; 19:100795. [PMID: 37780261 PMCID: PMC10534097 DOI: 10.1016/j.fochx.2023.100795] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/01/2023] [Accepted: 07/13/2023] [Indexed: 10/02/2023] Open
Abstract
Soil heavy metal contamination and its enrichment in the edible parts of crops have gained global concern. In this study, a compound bacterial agent possessing the ability to produce the plant hormone, abscisic acid (ABA), was applied to contaminated farmland in Hunan province. Its application reduced the concentration of Cd in radish, cabbage, mustard, and lettuce by 15-144%. Accordingly, the Cd contents in these vegetables were found to be below the maximum limits set by GB 2762-2017. Meanwhile, bacteria agents also led to a significant increase in crops yield by 45-82%. Furthermore, the nutritional indices, including soluble sugar and soluble protein increased by 18-66%, as well as the antioxidant indices, including total phenolic, ascorbate content, and DPPH capacity, enhanced by 12-76%, 10-49% and 50-140%, respectively. In conclusion, the use of ABA-producing bacteria is anticipated to be a novel approach for the safe use of soil with moderate and low pollution.
Collapse
Affiliation(s)
- Hua Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Shengtao Wang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xiaolin He
- Jiangxi Province Agricultural Technology Extension Center, Nanchang 330045, China
| | - Minghui Xie
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Miaozhen Cai
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yaxin Zhu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Shaoting Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| |
Collapse
|
25
|
Paulo AM, Caetano NS, Marques APGC. The Potential of Bioaugmentation-Assisted Phytoremediation Derived Maize Biomass for the Production of Biomethane via Anaerobic Digestion. PLANTS (BASEL, SWITZERLAND) 2023; 12:3623. [PMID: 37896085 PMCID: PMC10610220 DOI: 10.3390/plants12203623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023]
Abstract
Anthropogenic behaviors are causing the severe build-up of heavy metal (HM) pollutants in the environment, particularly in soils. Amongst a diversity of remediation technologies, phytoremediation is an environmentally friendly technology that, when coupling tolerant plants to selected rhizospheric microorganisms, can greatly stimulate HM decontamination of soils. Maize (Zea mays) is a plant with the reported capacity for HM exclusion from contaminated soil but also has energetic importance. In this study, Zea mays was coupled with Rhizophagus irregularis, an arbuscular mycorrhizal fungus (AMF), and Cupriavidus sp. strain 1C2, a plant growth-promoting rhizobacteria (PGPR), as a remediation approach to remove Cd and Zn from an industrial contaminated soil (1.2 mg Cd kg-1 and 599 mg Zn kg-1) and generate plant biomass, by contrast to the conservative development of the plant in an agricultural (with no metal pollution) soil. Biomass production and metal accumulation by Z. mays were monitored, and an increase in plant yield of ca. 9% was observed after development in the contaminated soil compared to the soil without metal contamination, while the plants removed ca. 0.77% and 0.13% of the Cd and Zn initially present in the soil. The resulting biomass (roots, stems, and cobs) was used for biogas generation in several biomethane (BMP) assays to evaluate the potential end purpose of the phytoremediation-resulting biomass. It was perceptible that the HMs existent in the industrial soil did not hinder the anaerobic biodegradation of the biomass, being registered biomethane production yields of ca. 183 and 178 mL of CH4 g-1 VS of the complete plant grown in non-contaminated and contaminated soils, respectively. The generation of biomethane from HM-polluted soils' phytoremediation-derived maize biomass represents thus a promising possibility to be a counterpart to biogas production in an increasingly challenging status of renewable energy necessities.
Collapse
Affiliation(s)
- Ana M. Paulo
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005 Porto, Portugal;
| | - Nídia S. Caetano
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- CIETI/ISEP—Centro de Inovação em Engenharia e Tecnologia Industrial/Instituto Superior de Engenharia, Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal
| | - Ana P. G. C. Marques
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, 4169-005 Porto, Portugal;
| |
Collapse
|
26
|
Wang Y, Luo B, Zhang S, Zhu Y, Du S. Nitrate-induced AHb1 expression aggravates Cd toxicity in plants. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132495. [PMID: 37690205 DOI: 10.1016/j.jhazmat.2023.132495] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/16/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Cadmium (Cd) causes severe toxicity in plants. However, the molecular mechanisms underlying plant resistance to Cd in relation to nitrogen (N) supply remain unclear. The non-symbiotic hemoglobin gene Hb1 plays an important role in scavenging nitric oxide (NO) in plants. In this study, there was no differential effect of Cd on the biomass of wild-type (WT) and AHb1-overexpressing (H7) plants when NH4+-N was used as a nitrogen source. However, under NO3--N conditions, Cd exerted less biomass stress on AHb1-silenced (L3) plants and more stress on H7 plants than on WT plants. The Cd tolerance index followed the order: L3 > WT > H7. However, there was no difference in Cd concentrations in the roots or shoots of the WT, L3, and H7 plants, indicating that differences in AHb1 expression were unrelated to Cd uptake. Further investigation showed that Cd exposure enhanced H2O2 accumulation and aggravated oxidative damage in H7 plants. The application of an NO donor effectively reversed growth inhibition, H2O2 burst, and oxidative stress induced by Cd in H7 plants. Thus, we suggest that NO3--induced AHb1 expression suppresses Cd-induced NO production in plants, increasing the ROS burst and exacerbating Cd toxicity.
Collapse
Affiliation(s)
- Yun Wang
- Planting Technology Extension Center of Dongyang, Jinhua 322100, China
| | - Bingfang Luo
- Huiduoli AMP Co., Ltd., Hangzhou 310052, China; College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Siyu Zhang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Yaxin Zhu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China.
| | - Shaoting Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|