1
|
Ramirez-Muñoz A, Forgionny A, Muñoz-Saldaña J, Flórez E, Acelas N. Pharmaceuticals removal from aqueous solution by water hyacinth (Eichhornia crassipes): a comprehensive investigation of kinetics, equilibrium, and thermodynamics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:4239-4256. [PMID: 39871054 DOI: 10.1007/s11356-024-35665-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/24/2024] [Indexed: 01/29/2025]
Abstract
This study shows the efficiency of WH-C450, an adsorbent obtained from water hyacinth (WH) biomass, in the removal of sulfamethoxazole (SMX) from aqueous solutions. The process involves calcination of WH at 450 °C to produce an optimal adsorbent material capable of removing up to 73% of SMX and maximum SMX adsorption capacity of 132.23 mg/g. Fourier-transform infrared (FTIR) characterization reveals the involvement of various functional groups in the adsorption process through hydrogen bonds and electron-donor-acceptor (EDA) interactions. X-ray diffraction (XRD) analysis confirms the presence of phases containing CO32-, PO43- ions, as well as elements such as Si and Fe, which contribute to the adsorption mechanism through hydrogen bonding and complexation, respectively. X-ray photoelectron spectroscopy (XPS) analysis further supports these interactions. Kinetic analysis shows rapid adsorption, which combines physical and chemical processes and leads to rapid attainment of equilibrium. This is due to the high affinity of WH-C450 for SMX, which allows for a fast and efficient adsorption process. Isothermal modeling reveals multilayer adsorption with favorable interactions. Thermodynamic analysis confirms the endothermic and temperature-dependent nature of the process. In addition, pH, adsorbent dose, and initial concentration are important in adsorption. Lower pH levels enhance cationic SMX adsorption, while higher adsorbent doses improve efficiency. Optimal conditions were identified by experimental design, enabling the establishment of a predictive model. Consequently, the SMX removal capacity is strongly correlated with the initial concentration. This research underscores the potential of WH-C450 for antibiotic removal in water treatment applications.
Collapse
Affiliation(s)
- Anyi Ramirez-Muñoz
- Centro de Investigación y de Estudios Avanzados del IPN, Laboratorio Nacional de Proyección Térmica (CENAPROT), Libramiento Norponiente 2000, Fracc. Real de Juriquilla, 76230, Querétaro, México
| | - Angélica Forgionny
- Grupo de Investigación Materiales Con Impacto (Mat&Mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, 050026, Medellín, Colombia
| | - Juan Muñoz-Saldaña
- Centro de Investigación y de Estudios Avanzados del IPN, Laboratorio Nacional de Proyección Térmica (CENAPROT), Libramiento Norponiente 2000, Fracc. Real de Juriquilla, 76230, Querétaro, México
| | - Elizabeth Flórez
- Grupo de Investigación Materiales Con Impacto (Mat&Mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, 050026, Medellín, Colombia
| | - Nancy Acelas
- Grupo de Investigación Materiales Con Impacto (Mat&Mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, 050026, Medellín, Colombia.
| |
Collapse
|
2
|
Kukowska S, Nowicki P, Szewczuk-Karpisz K. New fruit waste-derived activated carbons of high adsorption performance towards metal, metalloid, and polymer species in multicomponent systems. Sci Rep 2025; 15:1082. [PMID: 39774288 PMCID: PMC11706987 DOI: 10.1038/s41598-025-85409-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
The main aim of the study was to develop new fruit waste-derived activated carbons of high adsorption performance towards metals, metalloids, and polymers by the use of carbon dioxide (CO2)-consuming, microwave-assisted activation. The authors compared morphology, surface chemistry, textural parameters, and elemental composition of precursors (chokeberry seeds, black currant seeds, orange peels), as well as biochars (BCs) and activated carbons (ACs) obtained from them. The adsorption mechanisms of metals (copper, cadmium), metalloids (arsenic, selenium), and macromolecular compounds (bacterial exopolysaccharide, ionic polyacrylamides) on the surface of selected materials were investigated in one- and two-component systems. Consequently, the capacities of BCs and ACs prepared through direct/indirect physical activation, using conventional/microwave heating were determined. It was noted that microwave heating favoured surface development and thus enhanced adsorbent ability to bind ions or macromolecules. Direct biomass activation led to higher microporosity compared to indirect (two-stage) one, whilst CO2-consuming activation increased aromaticity and hydrophobicity of the solids. In the two-component systems, polymers could favour metal/metalloid adsorption based on complexation phenomena. However, the most efficient and environmentally safe activated carbon turned out to be the one obtained from orange peels by microwave-assisted, direct activation at 800 °C in the CO2 atmosphere.
Collapse
Affiliation(s)
- Sylwia Kukowska
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, Lublin, 20-290, Poland
| | - Piotr Nowicki
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
| | | |
Collapse
|
3
|
Meng W, Xing B, Cheng S, Nie Y, Zeng H, Qu X, Xu B, Zhang C, Yu J, Won Hong S. Preparation of high quality carbon nanotubes by catalytic pyrolysis of waste plastics using FeNi-based catalyst. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 189:11-22. [PMID: 39142246 DOI: 10.1016/j.wasman.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 07/01/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024]
Abstract
Plastic waste pollution is the serious environmental problem, and catalytic pyrolysis of waste plastics is an effective way to solve this problem. Carbon nanotubes (CNTs) are prepared by catalytic pyrolysis of low-density polyethylene (LDPE) waste plastics by one-stage method using iron nitrate and nickel nitrate as catalyst. The growth mechanism of CNTs is analyzed in detail. TPO, XRD, SEM and Raman analyses show that increasing Ni content contributes to the production of CNTs with good morphology and high graphitization degree. While the increasing Fe content contributes to improving the yield of CNTs. The outer and inner diameters of the FeNi12-CNTs-800 are about 21 nm and 8 nm with the length of 18.9 μm, respectively. LDPE pyrolysis gases are analyzed to determine that the primary carbon source required for CNTs growth is C2H4. The C2H4 adsorption and decomposition processes on FeNi alloys are performed to reveal the growth mechanism of CNTs, based on density functional theory calculation. Three kinds of the growth models are proposed to explain the difference of the CNTs tubular shape. FeNi12-CNTs-800 are used to remove microplastics from wastewater due to existence of magnetic. PVC can be quickly removed from wastewater with removal of 100 % at 20 min. This study provides an effective way for recycling and treatment of waste plastic.
Collapse
Affiliation(s)
- Weibo Meng
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Baolin Xing
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China; Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, Jiaozuo 454003, China; Henan International Joint Laboratory of Clean Coal Utilization, Jiaozuo 454003, China
| | - Song Cheng
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China; Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, Jiaozuo 454003, China.
| | - Yanhe Nie
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Huihui Zeng
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Xiaoxiao Qu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China; Department of Cogno-Mechatronics Engineering, Department of Optics and Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Bing Xu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Chuanxiang Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Jianglong Yu
- Southeast University-Monash University Joint Graduate School, and Suzhou Industrial Park Monash Research Institute of Science & Technology, Suzhou 215000, China
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, Department of Optics and Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
4
|
Negm NA, Altalhi AA, Ahmed HM, Mohamed EA. Synergistic effect of rice husk-derived activated carbon modified by Ni/Al-layered double hydroxides for lead removal from industrial wastewater. Sci Rep 2024; 14:28411. [PMID: 39557906 PMCID: PMC11574212 DOI: 10.1038/s41598-024-77569-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/23/2024] [Indexed: 11/20/2024] Open
Abstract
To enhance the adsorption efficiency of activated carbon for heavy metals, herein we synthesized a novel composite adsorbent by loading of nickel/aluminum layered double hydroxides (Ni/Al-LDH) onto a chemically modified Egyptian rice husk-derived activated carbon. The characterization techniques used for determining the chemical and surface structure of the prepared composite were including FTIR, XRD, SEM, and BET which confirmed the successful loading of LDH onto the prepared activated carbon surface. The modified activated carbon established significantly upgraded performance in eliminating lead ions from wastewater. Adsorption studies revealed that the process follows Freundlich isotherm and pseudo-second-order kinetics, indicating chemisorption as the rate-determining step. The maximum lead ions removal (using 50 ppm concentration solution) was 82% after 210 min at pH 7. The improved lead ions removal efficiency was attributed to the synergistic effect of the activated carbon's surface chemistry and the LDH's ion exchange properties. The presence of chelating groups like hydroxyl (-OH), amide (-CO-NH-), carboxylate (-COOH), and nitrogen-containing functional groups on the activated carbon surface, along with the hydroxide groups of the LDH, facilitates the complexation and adsorption of lead ions.
Collapse
Affiliation(s)
- Nabel A Negm
- Egyptian Petroleum Research Institute, Nasr City, BO-11727, Cairo, Egypt.
| | - Amal A Altalhi
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Hend M Ahmed
- Department of allied health professions, Faculty of medical and health sciences Liwa College, BO-11727, Abu Dhabi, United Arab Emirates
| | - Eslam A Mohamed
- Egyptian Petroleum Research Institute, Nasr City, BO-11727, Cairo, Egypt.
| |
Collapse
|
5
|
He C, Pi X, Zhang X, Jiang F. Biocompatible bismuth-based biochar material for degrading environmental endocrine disrupting compounds: Performance study and enhanced electron transfer radical process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122756. [PMID: 39388811 DOI: 10.1016/j.jenvman.2024.122756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/12/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024]
Abstract
Environmental endocrine disrupting compounds (EDCs) present a significant environmental threat and represent a major challenge in water pollution management. Photocatalysis is a promising method for the treatment of EDCs. Among them, bismuth-based photocatalysts have attracted attention due to their excellent visible light response, narrow band gap, and high efficiency. However, challenges such as easy recombination of photogenerated electrons and holes, low reaction rates, and difficulty in recycling powdered catalysts hinder their practical application. In this investigation, a swift microwave-assisted hydrothermal technique was utilized to fabricate a composite material comprising bismuth-based biochar (BC): BiVO4/AgI/BC. Using 17α-ethynylestradiol (EE2) and estradiol (E2) as model EDCs, the photocatalytic degradation efficiency of BiVO4/AgI/BC was evaluated, alongside an examination of its degradation mechanism and pathways. Remarkably, the incorporation of BiVO4/AgI onto BC significantly augmented the electron transfer rate, fostering the production of •O2-, resulting in a removal efficiency of 99.68% for EE2 and 99.44% for E2, surpassing that of other materials. Furthermore, BiVO4/AgI/BC demonstrated nos3reusability, stability, and low biotoxicity. Thus, BiVO4/AgI/BC exhibits substantial potential for the efficient and environmentally benign elimination of endocrine-disrupting compounds under realistic water conditions.
Collapse
Affiliation(s)
- Changjiang He
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Xiaolin Pi
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Xueni Zhang
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
| | - Fengzhi Jiang
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province (Yunnan University), School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China.
| |
Collapse
|
6
|
Wei W, Wang B, Huang X, Zhou Z, Yan Y, Li L, Yang Y. Potassium salts activated lignin-based biochar as an effective adsorbent for malachite green adsorption. Int J Biol Macromol 2024; 277:134209. [PMID: 39069048 DOI: 10.1016/j.ijbiomac.2024.134209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/26/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Herein, a series of lignin-based porous carbons (LC) were prepared from sulfonated lignin through a simple and environmentally-friendly one-pot activated carbonization together with various potassium compounds as activators, and used for malachite green (MG) adsorption. The results showed that the prepared biochar, especially after K2CO3 activation, exhibited a honeycomb profile with large surface area (2107.6 m2/g) and high total pore volume (1.1591 cm3/g), having excellent efficiency for MG adsorption, and the biggest adsorption capacity was 2970.0 mg/g. The kinetic study together with thermodynamic analysis indicated that the adsorption of MG by LC-K2CO3 conformed to pseudo-second-order model and the adsorption process was spontaneous, feasible, and endothermic. Moreover, LC-K2CO3 also displayed good stability and selectivity, and can selective separate the cationic dye from binary-dye system. Furthermore, the adsorption mechanism proposed in this work manifested that the high-efficient MG adsorption by LC-K2CO3 was a result of multiple actions including hydrogen bonding, electrostatic attraction, π-π interaction and n-π interaction as well as physical absorption. The work not only provide a fundamental theory for dye removal from wastewater, but offered a new insight for lignin valorization.
Collapse
Affiliation(s)
- Weiqi Wei
- School of Environmental & Resource Science, Shanxi University, Taiyuan 030006, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Zhejiang Kan New Material Co., Ltd., Suichang 323300, China
| | - Baoxian Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Xinrui Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Zhenyu Zhou
- Zhejiang Kan New Material Co., Ltd., Suichang 323300, China
| | - Yongping Yan
- Zhejiang Kan New Material Co., Ltd., Suichang 323300, China
| | - Lizi Li
- Zhejiang Kan New Material Co., Ltd., Suichang 323300, China.
| | - Yonggang Yang
- School of Environmental & Resource Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
7
|
Coutinho R, Hoshima HY, Vianna MTG, Marques M. Sustainable application of modified Luffa cylindrica biomass for removal of trimethoprim in water by adsorption with process optimization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55280-55300. [PMID: 39227535 DOI: 10.1007/s11356-024-34797-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024]
Abstract
The present study describes a set of methodological procedures (seldom applied together), including (i) development of an alternative adsorbent derived from abundant low-cost plant biomass; (ii) use of simple low-cost biomass modification techniques based on physical processing and chemical activation; (iii) design of experiments (DoE) applied to optimize the removal of a pharmaceutical contaminant from water; (iv) at environmentally relevant concentrations, (v) that due to initial low concentrations required determination by ultra-performance liquid phase chromatography coupled to mass spectrometry (UPLC-MS/MS). A central composite rotational design (CCRD) was employed to investigate the performance of vegetable sponge biomass (Luffa cylindrica), physically processed (crushing and sieving) and chemically activated with phosphoric acid, in the adsorption of the antibiotic trimethoprim (TMP) from water. The optimized model identified pH as the most significant variable, with maximum drug removal (91.1 ± 5.7%) achieved at pH 7.5, a temperature of 22.5 °C, and an adsorbent/adsorbate ratio of 18.6 mg µg-1. The adsorption mechanisms and surface properties of the adsorbent were examined through characterization techniques such as scanning electron microscopy (SEM), point of zero charge (pHpzc) measurement, thermogravimetric analysis (TGA), specific surface area, and Fourier-transform infrared spectroscopy (FTIR). The best kinetic fit was obtained by the Avrami fractional-order model. The hypothesis of a hybrid behavior of the adsorbent was suggested by the equilibrium results presented by the Langmuir and Freundlich models and reinforced by the Redlich-Peterson model, which achieved the best fit (R2 = 0.982). The thermodynamic study indicated an exothermic, spontaneous, and favorable process. The maximum adsorption capacity of the material was 2.32 × 102 µg g-1 at an equilibrium time of 120 min. Finally, a sustainable and promising adsorbent for the polishing of aqueous matrices contaminated by contaminants of emerging concern (CECs) at environmentally relevant concentrations is available for future investigations.
Collapse
Affiliation(s)
- Rodrigo Coutinho
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| | - Henrique Yahagi Hoshima
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Marco Tadeu Gomes Vianna
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Marcia Marques
- Department of Sanitary and Environmental Engineering, Rio de Janeiro State University, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Cao Z, Sai A, Jia X, Zhang X. Evaluating the effect of antibiotics on aerobic granular sludge treatment of pharmaceutical wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:1280-1289. [PMID: 39215738 DOI: 10.2166/wst.2024.226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/21/2024] [Indexed: 09/04/2024]
Abstract
Aerobic granular sludge (AGS) has been widely applied in pharmaceutical wastewater treatment due to its advantages such as high biomass and excellent settling performance. However, the influence of commonly found antibiotics in pharmaceutical wastewater on the operational efficiency of AGS has been poorly explored. This study investigated the effects of tetracycline (TE) on AGS treating pharmaceutical wastewater at room temperature and analyzed the related mechanisms. The results demonstrate a dose-dependent relationship between TE's effects on AGS. At concentrations below the threshold of 0.1 mg/L, the effects are considered trivial. In contrast, TE with more than 2.0 mg/L reduces the performance of AGS. In the 6.0 mg/L TE group, COD, TN, and TP removal efficiencies decreased to 72.6-75.5, 54.6-58.9, and 71.6-75.8%, respectively. High concentrations of TE reduced sludge concentration and the proportion of organic matter in AGS, leading to a decline in sludge settling performance. Elevated TE concentrations stimulated extracellular polymeric substance secretion, increasing polymeric nitrogen and polymeric phosphorus content. Intracellular polymer analysis revealed that high TE concentrations reduced polyhydroxyalkanoates but enhanced glycogen metabolism. Enzyme activity analysis disclosed that high TE concentrations decreased the activity of key enzymes associated with nutrient removal.
Collapse
Affiliation(s)
- Zhenghao Cao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China E-mail:
| | - Anning Sai
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Xiangxiang Jia
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Xiaoyu Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
9
|
Wu X, Quan W, Chen Q, Gong W, Wang A. Efficient Adsorption of Nitrogen and Phosphorus in Wastewater by Biochar. Molecules 2024; 29:1005. [PMID: 38474517 PMCID: PMC10935008 DOI: 10.3390/molecules29051005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
Nitrogen and phosphorus play essential roles in ecosystems and organisms. However, with the development of industry and agriculture in recent years, excessive N and P have flowed into water bodies, leading to eutrophication, algal proliferation, and red tides, which are harmful to aquatic organisms. Biochar has a high specific surface area, abundant functional groups, and porous structure, which can effectively adsorb nitrogen and phosphorus in water, thus reducing environmental pollution, achieving the reusability of elements. This article provides an overview of the preparation of biochar, modification methods of biochar, advancements in the adsorption of nitrogen and phosphorus by biochar, factors influencing the adsorption of nitrogen and phosphorus in water by biochar, as well as reusability and adsorption mechanisms. Furthermore, the difficulties encountered and future research directions regarding the adsorption of nitrogen and phosphorus by biochar were proposed, providing references for the future application of biochar in nitrogen and phosphorus adsorption.
Collapse
Affiliation(s)
- Xichang Wu
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550025, China;
| | - Wenxuan Quan
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550025, China;
| | - Qi Chen
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China; (Q.C.); (W.G.)
| | - Wei Gong
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China; (Q.C.); (W.G.)
| | - Anping Wang
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550025, China;
- School of Materials and Architectural Engineering, Guizhou Normal University, Guiyang 550025, China; (Q.C.); (W.G.)
| |
Collapse
|
10
|
Silva JDOS, Dos Santos JF, Granja HS, Almeida WS, Loeser TFL, Freitas LS, Bergamini MF, Marcolino-Junior LH, Sussuchi EM. Simultaneous determination of carbendazim and carbaryl pesticides in water bodies samples using a new voltammetric sensor based on Moringa oleifera biochar. CHEMOSPHERE 2024; 347:140707. [PMID: 37972866 DOI: 10.1016/j.chemosphere.2023.140707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/03/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
For the first time, a modified electrochemical sensor based on carbon paste was developed using biochar derived from the husks of Moringa oleifera pods to detect successfully and simultaneously carbendazim (CBZ) and carbaryl (CBR) pesticides. Biochar was obtained via pyrolysis at 400 °C, which required no additional activation or modification processes. The incorporation of the biochar modifier enabled the preconcentration of both pesticides under open potential circuit conditions, resulting in a significant enhancement in sensitivity compared to bare electrode. Under the optimized experimental conditions, the developed sensor exhibited excellent sensitivity to the target analytes, showing a linear relationship within the concentration range of 0.29-6.00 μM for CBZ and 29.9-502 μM for CBR. The limits of detection were calculated to be 0.12 μM for CBZ and 10.4 μM for CBR. The proposed method demonstrated remarkable selectivity for analytes even in the presence of diverse organic and inorganic species. Furthermore, the method was successfully applied to the determination of CBZ and CBR pesticides in various water matrices, including river, sea, drinking, and groundwater samples, without the need for any sample pretreatment, such as extraction or filtration. The observed recoveries ranged from 87% to 111%, indicating the efficiency and reliability of this method.
Collapse
Affiliation(s)
- Jonatas de Oliveira S Silva
- Grupo de Pesquisa em Sensores Eletroquímicos e Nano(Materiais) - SEnM, Laboratório de Corrosão e Nanotecnologia - LCNT, Programa de Pós-Graduação em Química - Departamento de Química, Universidade Federal de Sergipe - UFS, São Cristóvão, SE, 49107-230, Brazil.
| | - José Felipe Dos Santos
- Grupo de Pesquisa em Sensores Eletroquímicos e Nano(Materiais) - SEnM, Laboratório de Corrosão e Nanotecnologia - LCNT, Programa de Pós-Graduação em Química - Departamento de Química, Universidade Federal de Sergipe - UFS, São Cristóvão, SE, 49107-230, Brazil.
| | - Honnara S Granja
- Grupo de Pesquisa em Sensores Eletroquímicos e Nano(Materiais) - SEnM, Laboratório de Corrosão e Nanotecnologia - LCNT, Programa de Pós-Graduação em Química - Departamento de Química, Universidade Federal de Sergipe - UFS, São Cristóvão, SE, 49107-230, Brazil; Laboratório de Análises Cromatográficas - LAC, Programa de Pós-Graduação em Química - Departamento de Química, Universidade Federal de Sergipe - UFS, São Cristóvão, SE, 49107-230, Brazil.
| | - Wandson S Almeida
- Grupo de Pesquisa em Sensores Eletroquímicos e Nano(Materiais) - SEnM, Laboratório de Corrosão e Nanotecnologia - LCNT, Programa de Pós-Graduação em Química - Departamento de Química, Universidade Federal de Sergipe - UFS, São Cristóvão, SE, 49107-230, Brazil
| | - Thiago F L Loeser
- Laboratório de Análises Cromatográficas - LAC, Programa de Pós-Graduação em Química - Departamento de Química, Universidade Federal de Sergipe - UFS, São Cristóvão, SE, 49107-230, Brazil.
| | - Lisiane S Freitas
- Laboratório de Análises Cromatográficas - LAC, Programa de Pós-Graduação em Química - Departamento de Química, Universidade Federal de Sergipe - UFS, São Cristóvão, SE, 49107-230, Brazil.
| | - Márcio F Bergamini
- Laboratório de Sensores Eletroquímicos - LabSensE, Programa de Pós-Graduação em Química - Departamento de Química, Universidade Federal do Paraná - UFPR, Curitiba, PR, 81530-000, Brazil.
| | - Luiz H Marcolino-Junior
- Laboratório de Sensores Eletroquímicos - LabSensE, Programa de Pós-Graduação em Química - Departamento de Química, Universidade Federal do Paraná - UFPR, Curitiba, PR, 81530-000, Brazil.
| | - Eliana Midori Sussuchi
- Grupo de Pesquisa em Sensores Eletroquímicos e Nano(Materiais) - SEnM, Laboratório de Corrosão e Nanotecnologia - LCNT, Programa de Pós-Graduação em Química - Departamento de Química, Universidade Federal de Sergipe - UFS, São Cristóvão, SE, 49107-230, Brazil.
| |
Collapse
|
11
|
Quan C, Miskolczi N, Feng S, Grammelis P, Wu C, Gao N. Effect of type of activating agent on properties of activated carbon prepared from digested solid waste. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119234. [PMID: 37844398 DOI: 10.1016/j.jenvman.2023.119234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/17/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023]
Abstract
Anaerobic digestion has been proved to be a widely used and effective technology. The main challenge for the sustainable biogas industry is to find ways to efficiently recycle and utilize the anaerobic digestate. The conversion of digestion products into activated carbon seems to be an attractive way. Therefore, the present study focused on assessing the potential of digested solids as a promising source of activated carbon using a range of activators including KOH, ZnCl2 and H3PO4. The activated carbon prepared from digested solids was subjected to an activation process to investigate the physicochemical and surface properties of the resulting activated carbon. The results showed that KOH appeared to be the best activator for producing activated carbon from high silica precursors such as digested solids. The effectiveness of KOH activation can be attributed to the ability of K to readily form poorly layered compounds with carbon, as well as a significant increase in the number of porosities during KOH activation due to the violent reaction of KOH with C and the volatilization of the inorganic minerals in the digested char. The KOH activated sample had the lowest La and Lc, which means it had the theoretically largest specific surface area. This study provides experimental basis and theoretical guidance for the conversion of digested solids into high value-added activated carbon.
Collapse
Affiliation(s)
- Cui Quan
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Norbert Miskolczi
- Faculty of Engineering, Institute of Chemical Engineering and Process Engineering, MOL Department of Hydrocarbon & Coal Processing, University of Pannonia, Egyetem u. 10, Veszprém H-8200, Hungary
| | - Shaoxuan Feng
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | | | - Chunfei Wu
- School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, BT7 1NN, UK
| | - Ningbo Gao
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
12
|
Huang J, Zhu Y, Bian H, Song L, Liu Y, Lv Y, Ye X, Lin C, Li X. Insights into Enhanced Peroxydisulfate Activation with B and Fe Co-Doped Biochar from Bark for the Rapid Degradation of Guaiacol. Molecules 2023; 28:7591. [PMID: 38005313 PMCID: PMC10674898 DOI: 10.3390/molecules28227591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
A boron and iron co-doped biochar (B-Fe/biochar) from Masson pine bark was fabricated and used to activate peroxydisulfate (PDS) for the degradation of guaiacol (GL). The roles of the dopants and the contribution of the radical and non-radical oxidations were investigated. The results showed that the doping of boron and iron significantly improved the catalytic activity of the biochar catalyst with a GL removal efficiency of 98.30% within 30 min. The degradation of the GL mainly occurred through the generation of hydroxyl radicals (·OHs) and electron transfer on the biochar surface, and a non-radical degradation pathway dominated by direct electron transfer was proposed. Recycling the B-Fe/biochar showed low metal leaching from the catalyst and satisfactory long-term stability and reusability, providing potential insights into the use of metal and non-metal co-doped biochar catalysts for PDS activation.
Collapse
Affiliation(s)
- Jian Huang
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China; (J.H.); (Y.Z.); (L.S.); (Y.L.); (Y.L.); (X.Y.)
| | - Yu Zhu
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China; (J.H.); (Y.Z.); (L.S.); (Y.L.); (Y.L.); (X.Y.)
| | - Huiyang Bian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China;
| | - Liang Song
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China; (J.H.); (Y.Z.); (L.S.); (Y.L.); (Y.L.); (X.Y.)
| | - Yifan Liu
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China; (J.H.); (Y.Z.); (L.S.); (Y.L.); (Y.L.); (X.Y.)
| | - Yuancai Lv
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China; (J.H.); (Y.Z.); (L.S.); (Y.L.); (Y.L.); (X.Y.)
| | - Xiaoxia Ye
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China; (J.H.); (Y.Z.); (L.S.); (Y.L.); (Y.L.); (X.Y.)
| | - Chunxiang Lin
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China; (J.H.); (Y.Z.); (L.S.); (Y.L.); (Y.L.); (X.Y.)
| | - Xiaojuan Li
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China; (J.H.); (Y.Z.); (L.S.); (Y.L.); (Y.L.); (X.Y.)
| |
Collapse
|