1
|
Essandoh YE, Steiniche T, Xia C, Romanak K, Ogwang J, Mutegeki R, Wasserman M, Venier M. Tracking toxic chemical exposure in Uganda: Insights from silicone wristbands. ENVIRONMENTAL RESEARCH 2025; 277:121522. [PMID: 40180265 DOI: 10.1016/j.envres.2025.121522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/14/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
The increasing use of synthetic chemicals, including pesticides for agriculture and flame retardants from consumer products like electronics, raises environmental concerns for public health and biodiversity, particularly in agricultural and rural communities. Although these chemicals have been extensively studied in industrialized regions, data on human exposure particulary near protected areas in sub-Saharan Africa, remain scarce. This study provides novel insights into chemical exposure among different occupational groups in Uganda using silicone wristbands. We collected 39 silicone wristbands from participants living around Kibale National Park, including tea workers (n = 8), researchers (n = 10), commercial farmers (n = 6), subsistence farmers (n = 7), and urban workers (n = 8), and analyzed for 21 polybrominated biphenyl ethers (PBDEs), 11 novel flame retardants (nFRs), 20 current-use pesticides (CUPs), and 21 organochlorine pesticides (OCPs). CUPs the most abundant chemicals detected (range 18.2-54.4 ng/g), were significantly higher for commercial and subsistence farmers and tea workers. Urban workers and researchers had higher levels of PBDEs and nFRs than the other three groups with BDE-47, -99, -139, -153, -209, bis (2-ethylhexyl) tetrabromophthalate (BETHTBP) and decabromodiphenylethane (DBDPE) being the most detected compounds. Ametryn, β-HCH, o,p'-DDT, p,p'-DDT, and endosulfan sulfate were the most frequently detected pesticides. The widespread detection of legacy and emerging chemicals at levels similar to urban and industrialized areas among populations near a protected area in Eastern Africa highlights an urgent environmental and public health concern.
Collapse
Affiliation(s)
- Yaw Edu Essandoh
- O'Neill School of Public and Environmental Affairs, Indiana University, 702 North Walnut Grove, Bloomington, IN, 47405, USA
| | - Tessa Steiniche
- Department of Anthropology, Indiana University, Bloomington, IN, USA; Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Chunjie Xia
- O'Neill School of Public and Environmental Affairs, Indiana University, 702 North Walnut Grove, Bloomington, IN, 47405, USA
| | - Kevin Romanak
- O'Neill School of Public and Environmental Affairs, Indiana University, 702 North Walnut Grove, Bloomington, IN, 47405, USA
| | - Jimmy Ogwang
- Makerere University Biological Field Station (MUBFS), Uganda
| | | | - Michael Wasserman
- Department of Anthropology, Indiana University, Bloomington, IN, USA
| | - Marta Venier
- O'Neill School of Public and Environmental Affairs, Indiana University, 702 North Walnut Grove, Bloomington, IN, 47405, USA.
| |
Collapse
|
2
|
Miller JD, Herkert NJ, Stapleton HM, Hsu-Kim H. Silicone wristbands for assessing personal chemical exposures: impacts of movement on chemical uptake rates. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:670-681. [PMID: 39912195 PMCID: PMC11800079 DOI: 10.1039/d4em00440j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 01/25/2025] [Indexed: 02/07/2025]
Abstract
Silicone wristbands are utilized as personal passive sampling devices for exposure assessments of semi-volatile organic compounds (SVOCs). While research demonstrates that accumulation of SVOCs on the wristbands correlates with internal dose for many different chemical classes, the mechanisms of accumulation remain poorly understood. Multiple factors such as movement of the individual lead to variable mass transfer conditions at the sampler interface. The objective of this study was to investigate the effect of air flow velocity across the wristband surface on SVOC uptake rates and to evaluate if enhanced rates vary between compounds with a range physicochemical properties. Experiments were conducted in a residential home where wristbands were either held in static conditions or attached to an end-over-end rotator at different speeds for a four week period. We measured the uptake of 17 different SVOCs that are commonly detected in indoor environments and compared their accumulation rates as a function of the rotating velocity. For wristbands moving at tangential speeds of 0.05, 0.5, and 1.1 m s-1 (relevant for a walking pace), the motion enhanced uptake rates by 1.2 ± 0.2, 3.2 ± 0.6, and 4.3 ± 0.8 times the respective rates for the static controls. This enhancement is consistent with gas phase diffusion-controlled mass transfer theory at the wristband interface. Moreover, the enhancement of uptake positively correlated with octanol-air partition coefficients log KOA (R = 0.6; p < 0.02) of the chemicals and negatively correlated with diffusivity (R = 0.5; p < 0.05). In a comparison with worn wristband studies, the ratio of uptakes rates for worn relative to rotating wristbands correlated with SVOC properties (R = 0.85 for log KOA). For SVOCs with log KOA > 9, uptake rates on worn wristbands greatly exceeded (by a factor of 10 to 104) the respective rates in this rotator experiment. These results suggest that a mass transfer mechanism based solely on gas-solid partitioning under variations in air velocity cannot fully explain uptake on worn wristbands. Instead, the results implicate additional processes such as particle phase deposition, direct contact with certain materials, and excretion from skin as pathways of accumulation on the wristband sampler and personal exposure.
Collapse
Affiliation(s)
- Joshua D Miller
- Duke University, Department of Civil & Environmental Engineering, Box 90287, Durham, NC, 27708, USA.
| | - Nicholas J Herkert
- Duke University, Nicholas School of the Environment, Box 90328, Durham, NC, 27708, USA
| | - Heather M Stapleton
- Duke University, Nicholas School of the Environment, Box 90328, Durham, NC, 27708, USA
| | - Heileen Hsu-Kim
- Duke University, Department of Civil & Environmental Engineering, Box 90287, Durham, NC, 27708, USA.
| |
Collapse
|
3
|
Fowler CH, Reuben A, Stapleton HM, Hoffman K, Herkert N, Barakat L, Gaffrey MS. Children's exposure to chemical contaminants: Demographic disparities and associations with the developing basal ganglia. ENVIRONMENTAL RESEARCH 2024; 263:119990. [PMID: 39304016 DOI: 10.1016/j.envres.2024.119990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/17/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Children are regularly exposed to chemical contaminants that may influence brain development. However, relatively little is known about how these contaminants impact the developing human brain. Here, we combined silicone wristband exposure assessments with neuroimaging for the first time to examine how chemical contaminant mixtures are associated with the developing basal ganglia-a brain region key for the healthy development of emotion, reward, and motor processing, and which may be particularly susceptible to contaminant harm. Further, we examined demographic disparities in exposures to clarify which children were at highest risk for any contaminant-associated neurobiological changes. Participants included 62 community children (average age 7.00 years, 53% female, 66% White) who underwent structural neuroimaging to provide data on their basal ganglia structure and wore a silicone wristband for seven days to track their chemical contaminant exposure. 45 chemical contaminants-including phthalates and their alternatives, brominated flame retardants, organophosphate esters, pesticides, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls-were detected in over 75% of wristbands. Notable demographic disparities in exposure were present, such that Non-White and lower-income children were more exposed to several contaminants. Exposure to chemical contaminant mixtures was not associated with overall basal ganglia volume; however, two organophosphate esters (2IPPDPP and 4IPPDPP) were both associated with a larger globus pallidus, a basal ganglia sub-region. Results highlight demographic disparities in exposure and suggest possible risks to a brain region key for healthy emotional development.
Collapse
Affiliation(s)
| | | | | | | | | | - Lubna Barakat
- University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | - Michael S Gaffrey
- Duke University, Durham, NC, 27708, USA; Children's Wisconsin, Milwaukee, WI, 53226, USA
| |
Collapse
|
4
|
Liu J, Gao F, Fu M, Wang L, Shen H, Hu J. Occurrence of legacy and emerging organophosphate flame retardants (OPFRs) on silicone wristbands: Comparison within couples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177154. [PMID: 39447892 DOI: 10.1016/j.scitotenv.2024.177154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Novel organophosphate flame retardants (OPFRs) are recently identified and highly detected in indoor dusts, but their personal exposure was not clear. Here, wristband was used to estimate non-dietary exposure to emerging OPFRs in comparison with legacy OPFRs in 93 adults in Beijing, China. Comparison of studies in wristband monitoring data showed a clear difference in profiles of legacy OPFRs between China and United States, where tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) was usually the dominant OPFR in the United States, but triphenyl phosphate has the highest contribution to total OPFRs in China. Five emerging OPFRs, including diethylene glycol bis(bis(2-chloroisopropyl) phosphate) (DEGBBCPP) and bis(2-ethylhexyl) phenyl phosphate (BEHPP), were detected in above 45 % of wristbands. The median concentration of DEGBBCPP (2.2 ng/g) was about three times higher than TDCIPP (0.76 ng/g), a legacy chloro-OPFR. Both emerging and legacy OPFRs were significantly correlated within 40 pairs of couples, suggesting major exposure in their homes. Wristbands from husbands had significantly higher tris(2-butoxyethyl) phosphate (TBOEP) and DEGBBCPP, while 2-ethylhexyl diphenyl phosphate (EHDPP) was significantly higher in wives' bands, suggesting gender-related exposure sources for these OPFRs.
Collapse
Affiliation(s)
- Jiaying Liu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Fumei Gao
- Reproductive Medical Center, Peking University People's Hospital, Peking University, Beijing 100044, China
| | - Min Fu
- Reproductive Medical Center, Peking University People's Hospital, Peking University, Beijing 100044, China
| | - Lei Wang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Huan Shen
- Reproductive Medical Center, Peking University People's Hospital, Peking University, Beijing 100044, China
| | - Jianying Hu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
5
|
Reddam A, Herkert N, Stapleton HM, Volz DC. Silicone wristbands reveal ubiquitous human exposure to ortho-phthalates and non-ortho-phthalate plasticizers in Southern California. ENVIRONMENTAL RESEARCH 2024; 258:119465. [PMID: 38908658 PMCID: PMC11323145 DOI: 10.1016/j.envres.2024.119465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
In the United States and abroad, ortho-phthalates and non-ortho-phthalate plasticizers continue to be used within a diverse array of consumer products. Prior California-specific biomonitoring programs for ortho-phthalates have focused on rural, agricultural communities and, to our knowledge, these programs have not measured the potential for exposure to non-ortho-phthalate plasticizers. Therefore, the potential for human exposure to ortho-phthalates and non-ortho-phthalate plasticizers have not been adequately addressed in regions of California that have higher population density. Since there are numerous sources of ortho-phthalates and non-ortho-phthalate plasticizers in population-dense, urban regions, the objective of this study was to leverage silicone wristbands to quantify aggregate ortho-phthalate and non-ortho-phthalate plasticizer exposure over a 5-day period across two different cohorts (2019 and 2020) of undergraduate students at the University of California, Riverside (UCR) that commute from all over Southern California. Based on 5 d of aggregate exposure across two different cohorts, total ortho-phthalate plus non-ortho-phthalate plasticizer concentrations ranged, on average, from ∼100,000-1,000,000 ng/g. Based on the distribution of individual ortho-phthalate and non-ortho-phthalate plasticizer concentrations, the concentrations of di-isononyl phthalate (DiNP, a high molecular weight ortho-phthalate), di (2-ethylhexyl) phthalate (DEHP, a high molecular weight ortho-phthalate), and di-2-ethylhexyl terephthalate (DEHT, a non-ortho-phthalate plasticizer) detected within wristbands were higher than the remaining seven ortho-phthalates and non-ortho-phthalate plasticizers measured, accounting for approximately 94-97% of the total mass depending on the cohort. Overall, our findings raise concerns about chronic DiNP, DEHP, and DEHT exposure in urban, population-dense regions throughout California.
Collapse
Affiliation(s)
- Aalekhya Reddam
- Department of Environmental Sciences, University of California, Riverside, CA, USA
| | - Nicholas Herkert
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | | | - David C Volz
- Department of Environmental Sciences, University of California, Riverside, CA, USA.
| |
Collapse
|
6
|
Herkert NJ, Getzinger GJ, Hoffman K, Young AS, Allen JG, Levasseur JL, Ferguson PL, Stapleton HM. Wristband Personal Passive Samplers and Suspect Screening Methods Highlight Gender Disparities in Chemical Exposures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:15497-15510. [PMID: 39171898 PMCID: PMC12012859 DOI: 10.1021/acs.est.4c06008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Wristband personal samplers enable human exposure assessments for a diverse range of chemical contaminants and exposure settings with a previously unattainable scale and cost-effectiveness. Paired with nontargeted analyses, wristbands can provide important exposure monitoring data to expand our understanding of the environmental exposome. Here, a custom scripted suspect screening workflow was developed in the R programming language for feature selection and chemical annotations using gas chromatography-high-resolution mass spectrometry data acquired from the analysis of wristband samples collected from five different cohorts. The workflow includes blank subtraction, internal standard normalization, prediction of chemical uses in products, and feature annotation using multiple library search metrics and metadata from PubChem, among other functionalities. The workflow was developed and validated against 104 analytes identified by targeted analytical results in previously published reports of wristbands. A true positive rate of 62 and 48% in a quality control matrix and wristband samples, respectively, was observed for our optimum set of parameters. Feature analysis identified 458 features that were significantly higher on female-worn wristbands and only 21 features that were significantly higher on male-worn wristbands across all cohorts. Tentative identifications suggest that personal care products are a primary driver of the differences observed.
Collapse
Affiliation(s)
| | - Gordon J. Getzinger
- School of Environmental Sustainability, Loyola University Chicago, Chicago, IL, 60660, USA
| | - Kate Hoffman
- Nicholas School of the Environment, Duke University, Durham, NC, 27710, USA
| | - Anna S. Young
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Joseph G. Allen
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | | | - P. Lee Ferguson
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, 27708, USA
| | | |
Collapse
|
7
|
Yin S, den Ouden F, Cleys P, Klimowska A, Bombeke J, Poma G, Covaci A. Personal environmental exposure to plasticizers and organophosphate flame retardants using silicone wristbands and urine: Patterns, comparisons, and correlations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172187. [PMID: 38582107 DOI: 10.1016/j.scitotenv.2024.172187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Plasticizers (PLs) and organophosphate flame retardants (OPFRs) are ubiquitous in the environment due to their widespread use and potential for leaching from consumer products. Environmental exposure is a critical aspect of the human exposome, revealing complex interactions between environmental contaminants and potential health effects. Silicone wristbands (SWBs) have emerged as a novel and non-invasive sampling device for assessing personal external exposure. In this study, SWBs were used as a proxy to estimate personal dermal adsorption (EDdermal) to PLs and OPFRs in Belgian participants for one week; four morning urine samples were also collected and analyzed for estimated daily intake (EDI). The results of the SWBs samples showed that all the participants were exposed to these chemicals, and the exposure was found to be highest for the legacy and alternative plasticizers (LP and AP), followed by the legacy and emerging OPFRs (LOPFR and EOPFR). In urine samples, the highest levels were observed for metabolites of diethyl phthalate (DEP), di-isobutyl phthalate (DiBP) and di-n-butyl phthalate (DnBP) among LPs and di(2-ethylhexyl) terephthalate (DEHT) for APs. Outliers among the participants indicated that there were other sources of exposure that were not identified. Results showed a significant correlation between EDdermal and EDI for DiBP, tris (2-butoxyethyl) phosphate (TBOEP) and triphenyl phosphate (TPhP). These correlations indicated their suitability for predicting exposure via SWB monitoring for total chemical exposure. The results of this pilot study advance our understanding of SWB sampling and its relevance for predicting aggregate environmental chemical exposures, while highlighting the potential of SWBs as low-cost, non-invasive personal samplers for future research. This innovative approach has the potential to advance the assessment of environmental exposures and their impact on public health.
Collapse
Affiliation(s)
- Shanshan Yin
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China; Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Fatima den Ouden
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Paulien Cleys
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Anna Klimowska
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Department of Toxicology, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland
| | - Jasper Bombeke
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|