1
|
Li W, Zhu Z, Fang X, Wang X, Chu W, Gong H, Yan M. Polyvinyl chloride microplastics facilitated the transmission of Vibrio parahaemolyticus from surrounding water to Litopenaeus vannamei. Food Microbiol 2025; 129:104757. [PMID: 40086986 DOI: 10.1016/j.fm.2025.104757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/01/2025] [Accepted: 02/17/2025] [Indexed: 03/16/2025]
Abstract
Microplastics (MPs) pose a major threat to marine life and ecosystems. However, the toxicological effects of MPs on crustaceans which are highly susceptible to MPs pollution are not fully understood. In addition, MPs can serve as the medium for pathogens, increasing the risk of disease outbreaks in shrimp aquaculture. To study the biological risks of MPs close to the aquacultural practice, the current study firstly focused on the impacts of MPs colonized by the pathogen Vibrio parahaemolyticus on shrimp Litopenaeus vannamei. The role of microplastics in facilitating pathogens infection of shrimps was firstly reported. Under this impact, the hepatopancreas of L. vannamei suffered severe damage. At 96 hpi, the shrimp mortality rate reached 100%. Dominant phyla altered in the intestinal and hepatopancreatic microbiota of L. vannamei. The characterization of the L. vannamei microbiota under the condition where the pathogens and MPs exist in the surroundings, to be used as a reference for comparison with healthy and diseased shrimp in the aquacultural system, is necessary.
Collapse
Affiliation(s)
- Weixin Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510641, PR China; School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ziying Zhu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510641, PR China
| | - Xilin Fang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510641, PR China
| | - Xiaocui Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510641, PR China
| | - Wei Chu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Han Gong
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510641, PR China.
| | - Muting Yan
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510641, PR China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
2
|
Li F, Zeng Z, Wu Y, Wang Y, Shen L, Huang X, Wang X, Sun Y. Characteristics of microplastics in typical poultry farms and the association of environment microplastics colonized-microbiota, waterfowl gut microbiota, and antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137808. [PMID: 40043390 DOI: 10.1016/j.jhazmat.2025.137808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 04/16/2025]
Abstract
Microplastics (MPs) pollution is a growing global environmental concern. MPs serve as ecological niches for microbial communities, which may accelerate the spread of antibiotic resistance genes (ARGs), posing risks to the breeding industry. While studies on MPs in aquatic organisms are common, research on farmed poultry is limited. This study investigates MPs in poultry farm environments and waterfowl intestines for the first time. MPs were isolated via density separation and analyzed for characterization in soil, pond water, and waterfowl intestines. Metagenomics was used to investigate the association between environment MPs colonized-microbiota and waterfowl gut microbiota. Our findings reveal that MPs are abundant in soil (6.75 ± 2.78 items/g d.w.), pond water (0.94 ± 0.28 items/g w.w.), and poultry intestines (45.35 ± 19.52 items/g w.w.), primarily appearing as fragmented particles sized 20-50 μm. MPs abundance in intestines correlates with environmental levels. Colonized-microbiota on MPs are linked to poultry intestinal microbiota, with greater diversity and microbial functions. Network analysis reveals that Corynebacterium plays a key role in MPs and poultry intestinal. Polymyxin resistance exhibits high clustering. Procrustes analysis reveals correlations between MPs, bacteria, and ARGs in the farming environment. Overall, MPs in poultry farms may facilitate pathogen and ARGs transmission, posing risks to animal gut health.
Collapse
Affiliation(s)
- Fulin Li
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Developmentand Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483, Wushan Road, Guangzhou, Guangdong 510642, China
| | - Ziru Zeng
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Developmentand Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483, Wushan Road, Guangzhou, Guangdong 510642, China
| | - Yixiao Wu
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Developmentand Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483, Wushan Road, Guangzhou, Guangdong 510642, China
| | - Yefan Wang
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Developmentand Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483, Wushan Road, Guangzhou, Guangdong 510642, China
| | - Lingyan Shen
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Developmentand Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483, Wushan Road, Guangzhou, Guangdong 510642, China
| | - Xingru Huang
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Developmentand Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483, Wushan Road, Guangzhou, Guangdong 510642, China
| | - Xue Wang
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Developmentand Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483, Wushan Road, Guangzhou, Guangdong 510642, China
| | - Yongxue Sun
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Developmentand Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, No. 483, Wushan Road, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
3
|
Miao L, Jin Z, Ci H, Adyel TM, Deng X, You G, Xu Y, Wu J, Yao Y, Kong M, Hou J. Dynamic changes of leachates of aged plastic debris under different suspended sand concentrations and their toxicity. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136874. [PMID: 39700944 DOI: 10.1016/j.jhazmat.2024.136874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Plastic pollution in aquatic environments poses significant ecological risks, particularly through released leachates. While traditional or non-biodegradable plastics (non-BPs) are well-studied, biodegradable plastics (BPs) have emerged as alternatives that are designed to degrade more rapidly within the environment. However, research on the ecological risks of the leachates from aged BPs in aquatic environments is scarce. This controlled laboratory study investigated the leachate release processes and associated toxicity of traditional non-BPs, i.e., polyethylene terephthalate (PET) and polypropylene (PP) and BPs, i.e., polylactic acid (PLA) combined with polybutylene adipate terephthalate (PBAT) and starch-based plastic (SBP) under different aging time and suspended sand concentrations (0, 50, 100, 250, and 500 mg/L). The results indicated that BPs release significantly higher levels of dissolved organic carbon (DOC) than those of non-BPs, particularly at elevated suspended sand concentrations. The DOC concentrations in PLA+PBAT leachate reached 2.69 mg/L, surpassing those of PET and PP. Additionally, BPs released organic matter of larger molecular weight and protein-like substances. Toxicity tests showed that leachates from BPs inhibited the activity of Daphnia magna more than those from non-BPs. At a suspended sand concentration of 500 mg/L, PLA+PBAT leachate caused a 30 % inhibitory rate of Daphnia magna. Despite enhanced degradability, leachates from BPs may pose increased environmental risks in ecosystems with high suspended sand concentrations. Comprehensive ecological risk assessments are essential for effectively managing and mitigating these hazards of plastic pollution.
Collapse
Affiliation(s)
- Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Zhuoyi Jin
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Hanlin Ci
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai 200434, PR China
| | - Tanveer M Adyel
- Centre for Nature Positive Solutions, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Xiaoya Deng
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yi Xu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yu Yao
- School of Environment, Nanjing Normal University, Nanjing 210023, PR China.
| | - Ming Kong
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
4
|
Liang X, Ma Y, Li J, Ye Y, Li J. Impact of microplastics on microbial diversity and pathogen distribution in aquaculture ecosystems: A seasonal analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125796. [PMID: 39914565 DOI: 10.1016/j.envpol.2025.125796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/27/2024] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Microplastics, as a prominent emerging pollutant in marine environments, pose a serious threat to the stability of marine ecosystems due to their resistance to biodegradation. MPs act as substrates for biofouling and potentially promote the spread of harmful microorganisms. Research indicates that human activities exacerbate MPs pollution in aquaculture environments, significantly increasing their abundance. This study focused on the aquaculture environment of the large yellow croaker (Larimichthys crocea), one of the most extensively farmed fish species in coastal regions. We conducted a comprehensive analysis of microbial diversity on the biofilms covering MPs and in the surrounding aquaculture water, with a focus on the distribution of pathogens on MPs. Furthermore, this study investigated the impact of seasonal variations on the microbial communities within these biofilms. Sequencing analysis revealed that the α-diversity of microbial communities on MPs was lower than that in aquaculture water during winter but higher in summer, indicating a seasonal shift in microbial community structure. PICRUSt predictions suggested that microbes on MPs possess unique metabolic pathways. Co-occurrence network analysis demonstrated that during summer, the microbial communities on MPs revealed increased connectivity and functional modularity, whereas microbial communities in aquaculture water showed stronger interactions in winter. Additionally, several potential pathogens, including Vibrio and Pseudomonas, were detected in the MPs biofilms. These findings underscore the ways in which MPs influence the microbial community structure in aquaculture environments, increasing health risks to the ecosystem. This research offers significant insights into the ecological impacts of MPs pollution on microbial communities in aquaculture ecosystems.
Collapse
Affiliation(s)
- Xinjie Liang
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Yanwen Ma
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Jing Li
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Yingying Ye
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Jiji Li
- National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, 316000, China.
| |
Collapse
|
5
|
Matias RS, Monteiro M, Sousa V, Pinho B, Guilhermino L, Valente LMP, Gomes S. A multiple biomarker approach to understand the effects of microplastics on the health status of European seabass farmed in earthen ponds on the NE Atlantic coast. ENVIRONMENTAL RESEARCH 2024; 263:120208. [PMID: 39442660 DOI: 10.1016/j.envres.2024.120208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/01/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
The occurrence of microplastics (MPs) in aquaculture environments is a growing concern due to their potential negative effects on fish health and, ultimately, on seafood safety. Earthen pond aquaculture, a prevalent aquaculture system worldwide, is typically located in coastal and estuarine areas thus vulnerable to MP contamination. The present study investigated the possible relation between MP levels of European seabass (Dicentrarchus labrax) farmed in an earthen pond and its health status. More precisely, two groups of fish were established based on the lowest and highest number of MPs found collectively in their gastrointestinal tract (GIT), liver, and dorsal muscle: fish with ≤2 MP/g and fish with ≥4 MP/g. The intestinal integrity and oxidative stress biomarkers in the liver and dorsal muscle were evaluated in the established groups. No significant differences in the biometric and organosomatic parameters between groups were observed. The results indicated a significant increase in the number of acid goblet cells (GC) in the rectum of fish with higher MP levels (p = 0.016). Increased acid GC number may constitute a first defence strategy against foreign particles to protect the intestinal epithelium. No significant differences in oxidative stress biomarkers between the two fish groups were observed, namely in the activity of superoxide dismutase, catalase, glutathione reductase, and glutathione S-transferase in the liver, or in lipid peroxidation levels in the liver and dorsal muscle. The overall results suggest that MP levels were possibly related to an intestinal response but its potential implications on the health status of pond-farmed seabass warrant further investigation. Monitoring MP occurrence across stages of aquaculture production could help to elucidate the potential threats of MPs to fish health.
Collapse
Affiliation(s)
- Ricardo S Matias
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Marta Monteiro
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Vera Sousa
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Bia Pinho
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Lúcia Guilhermino
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Luisa M P Valente
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Sónia Gomes
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
6
|
Gao S, Zhang S, Feng Z, Lu J, Fu G, Yu W. The bio-accumulation and -magnification of microplastics under predator-prey isotopic relationships. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135896. [PMID: 39378590 DOI: 10.1016/j.jhazmat.2024.135896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Recent studies on microplastics (MPs) in marine ecosystems have focused on their bioaccumulation and biomagnification within food chains, emphasizing their potential health risks to humans. However, these bio-effects of MPs in marine ecosystems remain a contentious issue. Employing the "consumer-dietary source" tracking function in stable isotope analysis can enhance our comprehension of how MPs magnify in organisms. In our research conducted in the coastal waters of Haizhou Bay, Jiangsu, China, we examined two commercially important fish species, Larimichthys polyactis and Collichthys lucidus, through stable isotope analysis to investigate the accumulation of MPs in their dietary sources. Results revealed fiber, blue, and PET as the primary shapes, colors, and polymers of MPs in the region. C. lucidus displayed a broader isotopic niche and a higher propensity for MP accumulation than L. polyactis. Biomagnification analysis indicated that dominant MP shapes, colors, and polymers were magnified in both fish species, with MPs smaller than 3 mm exhibiting substantial biomagnification. Factors such as feeding strategies and habitat preferences may influence MP ingestion by fish. We conclude that a high proportion of dietary sources in fish does not necessarily equate to a high concentration of MPs. Neglecting the proportion of dietary sources might lead to underestimating MP biomagnification. Therefore, a multidimensional approach to exploring the biomagnification of MPs is essential to accurately grasp this unique pollutant's impact.
Collapse
Affiliation(s)
- Shike Gao
- College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China; Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| | - Shuo Zhang
- College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China; Joint Laboratory for Monitoring and Conservation of Aquatic Living Resources In the Yangtze Estuary, Shanghai 200000, China.
| | - Zhihua Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Jikun Lu
- Marine and Fishery Development Promotion Center In Lianyungang, Lianyungang 222002, Jiangsu, China.
| | - Guanghui Fu
- Marine and Fishery Development Promotion Center In Lianyungang, Lianyungang 222002, Jiangsu, China
| | - Wenwen Yu
- Jiangsu Research Institute of Marine Fisheries, Nantong 226007, China.
| |
Collapse
|
7
|
Fu Y, Zhang J, Cui Y, Li B, Huo S, Du J, Li Y. Effects of microplastics separate exposure and co-exposure to 17β-estradiol on the productive performance of juvenile female Chinese mitten crab (Eriocheir sinensis). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176807. [PMID: 39389145 DOI: 10.1016/j.scitotenv.2024.176807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/24/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
Microplastics (MPs) and endocrine-disrupting chemicals are persistent and ubiquitous pollutants in aquatic environments. The coexistence of MPs and 17β-estradiol (E2) in aquaculture water is concerning, yet their combined impact on aquaculture products remains unclear. In this study, we investigated the individual and combined effects of MPs and E2 on juvenile female Chinese mitten crabs (Eriocheir sinensis). The results revealed that MPs and E2, alone and in combination, damage the histology and ultrastructure of the hepatopancreas, reduce lipid storage, and inhibit the expression of genes related to innate immunity, energy metabolism, and reproductive development in the hepatopancreas. These effects result in decreased innate immunity and impact growth and development. MPs and E2 also damage pereiopod muscles and ovarian tissues, impairing locomotor function and reproductive development. The coexposure group exhibited the combined damage effects of MPs and E2. Fluctuations in gene expression at different time points suggest that E. sinensis is self-regulated in response to external stimuli from MPs and E2. These findings emphasize the effects of MPs and E2, indicating that their coexistence in aquaculture environments threatens the productive performance of E. sinensis.
Collapse
Affiliation(s)
- Yang Fu
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Heze Vocational College, Department of Veterinary Medicine, Heze 274002, China
| | - Jian Zhang
- School of Laboratory Animal& Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Yilong Cui
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Bo Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Siming Huo
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiayu Du
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
8
|
Le VG, Nguyen MK, Ngo HH, Barceló D, Nguyen HL, Um MJ, Nguyen DD. Microplastics in aquaculture environments: Current occurrence, adverse effects, ecological risk, and nature-based mitigation solutions. MARINE POLLUTION BULLETIN 2024; 209:117168. [PMID: 39454401 DOI: 10.1016/j.marpolbul.2024.117168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/09/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Microplastics pose detrimental effects on the environment, aquatic products, and human health. This comprehensive analysis highlights the repercussions of microplastic contamination within aquaculture. Microplastics in aquaculture are primarily from land-based plastic waste, tourism-related disposal, shipping activities, fisheries/aquaculture, and atmospheric deposition. In aquaculture environments, microplastics have the potential to discharge harmful additives, attract pollutants, degrade the aquaculture setting, and induce toxicological effects. These particles pose ecological risks and can impact human health. Assessing the destiny of microplastics in aquaculture ecosystems is crucial to determining the role of aquaculture in contributing to microplastic contamination within the watershed. It particularly emphasizes the ecological consequences for aquaculture species and the subsequent health threats for humans. The review strongly supports strict regulations to control and limit microplastic presence within aquaculture ecosystems. Clear regulations are essential for reducing microplastics in aquaculture, thereby ensuring food safety. A novel nature-based solution is proposed using methods like microplastic biofilters, biodegradation, and wetlands. These innovations can be conducted in aquatic ecosystems to serve as microplastic biofilters, effectively eliminating waterborne microplastics. In the future, however, it is crucial to develop additional emergency treatment measures to avoid the potential negative impacts of microplastics on both aquaculture and human health.
Collapse
Affiliation(s)
- Van-Giang Le
- Central Institute for Natural Resources and Environmental Studies, Vietnam National University (CRES-VNU), Hanoi 111000, Viet Nam
| | - Minh-Ky Nguyen
- Faculty of Environment and Natural Resources, Nong Lam University, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Damià Barceló
- Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, C/ Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Hoang-Lam Nguyen
- Department of Civil Engineering, McGill University, Montreal, Canada.
| | - M Jin Um
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea
| | - D Duc Nguyen
- Department of Civil & Energy System Engineering, Kyonggi University, Suwon 16227, South Korea; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Viet Nam.
| |
Collapse
|
9
|
Tang Y, Wu X, Pang Y, Xiao S, Xie L, Zhang Y. Toxicity of Polystyrene Microplastics with Cadmium on the Digestive System of Rana zhenhaiensis Tadpoles. TOXICS 2024; 12:854. [PMID: 39771069 PMCID: PMC11679246 DOI: 10.3390/toxics12120854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025]
Abstract
Microplastics pollution in freshwater systems is attracting increasing attention. However, our knowledge of its combined toxicity with heavy metals is scarce. In this study, Rana zhenhaiensis was used as the model animal to study the combined poisoning mechanism of cadmium or microplastics on the digestive systems of tadpoles in freshwater. Results showed that the exposure to cadmium and polystyrene increased the mortality and metamorphosis rate of R. zhenhaiensis tadpoles, and delayed their growth and development. Cadmium was detected in the livers and intestines, while polystyrene mainly accumulated in the gills and intestines of tadpoles. The individual exposure of cadmium or polystyrene can cause pathological damage to liver tissue, induce oxidative stress in liver, and change gene expression. Cadmium co-exposure with polystyrene can reduce the cadmium accumulation in the liver. While polystyrene can slightly increase cadmium accumulation in the intestine. Exposure to cadmium and polystyrene altered the abundance and community structure of intestinal microbiota, and polystyrene increased the dysregulation of the gut microbiome. In this study, the combined exposure of microplastics and cadmium had a negative impact on R. zhenhaiensis tadpoles, but the introduction of microplastics on the toxicity of cadmium on the tadpoles needs further investigation, due to the different characteristics of microplastics.
Collapse
Affiliation(s)
- Ye Tang
- Life and Environmental Science College, Wenzhou University, Wenzhou 325003, China
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325003, China
| | - Xueyi Wu
- Life and Environmental Science College, Wenzhou University, Wenzhou 325003, China
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325003, China
| | - Yuting Pang
- Life and Environmental Science College, Wenzhou University, Wenzhou 325003, China
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325003, China
| | - Shimin Xiao
- Life and Environmental Science College, Wenzhou University, Wenzhou 325003, China
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325003, China
| | - Lei Xie
- Life and Environmental Science College, Wenzhou University, Wenzhou 325003, China
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325003, China
| | - Yongpu Zhang
- Life and Environmental Science College, Wenzhou University, Wenzhou 325003, China
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325003, China
| |
Collapse
|
10
|
Cattaneo N, Zarantoniello M, Conti F, Tavano A, Frontini A, Sener I, Cardinaletti G, Olivotto I. Natural-based solutions to mitigate dietary microplastics side effects in fish. CHEMOSPHERE 2024; 367:143587. [PMID: 39433100 DOI: 10.1016/j.chemosphere.2024.143587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 10/03/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Dietary microplastics (MPs) can be consumed by fish, crossing through the gastrointestinal tract. MPs smaller than 20 μm can easily translocate to other organs, such as liver, commonly triggering oxidative stress in fish. Given the current unlikelihood of their short-term elimination, strategies to mitigate MPs-related issues on fish are of considerable interest to the scientific community. In the present study, to reduce both the dietary MPs-induced oxidative stress and the accumulation of MPs, the effectiveness of microencapsulated astaxanthin (ASX) was evaluated in zebrafish (Danio rerio). Specifically, zebrafish were reared from larvae to adults (6 months) and fed diets containing MPs different in range-size (polymer A: 1-5 μm; polymer B: 40-47 μm) at different concentrations (50 or 500 mg/kg). After this period, fish from each experimental group were divided in two sub-groups that were fed, for an additional month, with the previous diets or with the same diets containing implemented with microencapsulated ASX (7 g/kg), respectively. Results showed that microencapsulated ASX was able to counteract the negative effects caused by MPs different in size. Particularly, in zebrafish fed diets containing polymer B microbeads, microencapsulated astaxanthin was able to restore the intestinal epithelium, affected by the abrasive role of MPs during gut transit. Differently, in zebrafish fed diets containing polymer A microbeads, absorbed at intestinal level and translocated mainly to the liver, the microencapsulated ASX decreased the oxidative stress response and reduced the MPs accumulation in target organs due to the antioxidant and the coagulant properties of the ASX and microcapsules wall, respectively. Taken together, the results highlighted that the aquafeeds' implementation with microencapsulated astaxanthin is a prospective tool to prevent MPs-related issues in fish.
Collapse
Affiliation(s)
- N Cattaneo
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - M Zarantoniello
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - F Conti
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - A Tavano
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - A Frontini
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - I Sener
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| | - G Cardinaletti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2, 33100, Udine, Italy.
| | - I Olivotto
- Department of Life and Environmental Sciences, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| |
Collapse
|
11
|
Deng WK, Zeng JL, Deng YH, Liao XD, Xing SC. A critical review of microplastic pollution in breeding industry: Sources, distribution, impacts, and characterization techniques, mitigation strategies and future research directions. CHEMOSPHERE 2024; 368:143713. [PMID: 39542368 DOI: 10.1016/j.chemosphere.2024.143713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
Microplastic (MP) pollution has garnered significant attention due to its detrimental effects on ecosystems and human health. If MPs contaminate farmed animals, they are more likely to enter the human body through the food chain, thereby impacting human health. Exploring MPs in breeding industry can provide a theoretical basis for breeding industry to prevent MP pollution. However, there is currently a lack of comprehensive summaries and overviews of MPs research in the industry as a whole. The core focus of the review is to improve our understanding of MPs in the breeding industry and provide valuable references and support for the development of mitigation strategies and policies. The review found that there are more studies related to MP pollution in the breeding industry, but there is inadequate information on the prevention and control technology. This review proposes strategies for prevention and control and discusses future research directions.
Collapse
Affiliation(s)
- Wei-Kang Deng
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Jing-Li Zeng
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Yi-Heng Deng
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xin-Di Liao
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou, 510642, Guangdong, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, 510642, Guangdong, China; State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510642, Guangdong, China
| | - Si-Cheng Xing
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry Agriculture, Guangzhou, 510642, Guangdong, China; National-Local Joint Engineering Research Center for Livestock Breeding, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
12
|
Du H, Chen P, Lin X, Zheng J, Liu H, Wang X. Adsorption of metals on aged microplastics in intensive mariculture areas: Aggravating the potential ecological risks to marine organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173964. [PMID: 38876355 DOI: 10.1016/j.scitotenv.2024.173964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Field determination of the metal adsorption capacity of microplastics (MPs) by using a passive sampler had been done in typical subtropical mariculture area in China. The adsorption of eight metals (Fe, Mn, Cu, Zn, As, Pb, Cr and Cd) by five types of MPs (low-density polyethylene, polypropylene, polystyrene, poly(ethylene terephthalate) and poly(vinyl chloride) (PVC) was compared, including metal types, mariculture types (cage and longline culture), metal residue content in ambient environment, polymer types and particle sizes of MPs. The results showed that Cu, Zn, As, Cd, Pb and Cr in the mariculture environment were contaminated compared with the quality criteria. The concentrations of these six metals adsorbed on five MPs increased linearly with those in seawater. More enriched Cu and As in MPs in marine cage culture than in longline culture, due to the obvious endogenous pollution emissions for the artificial diets, fish medicine and disinfectants. Aged PVC with more cracks and pores showed higher metal adsorption capacity than any other polymers. MPs with a smaller size range of 50-74 μm tended to accumulate higher amounts of metals than those with a larger size range of 74-178 μm, consisting with the surface characteristics of MPs. The significant positive relationship between the concentrations of nutrients in seawater and the adsorption amounts of Cu, Zn and As on MPs implies that the eutrophication would promote their pollution. Based on the ecological risk assessment, the occurrence of MPs could aggravate the potential risk of metals to marine organisms in intensive mariculture areas. This is the first time to reveal the impacts of the adsorption of metals on aged MPs on the potential ecological risks of metals to organisms under the realistic environmental condition.
Collapse
Affiliation(s)
- Huihong Du
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Pengyu Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing 210024, China
| | - Xiaoping Lin
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Jingyi Zheng
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Huatai Liu
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Xinhong Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
13
|
Nagarajan D, Chen CW, Ponnusamy VK, Dong CD, Lee DJ, Chang JS. Sustainable aquaculture and seafood production using microalgal technology - A circular bioeconomy perspective. CHEMOSPHERE 2024; 366:143502. [PMID: 39384130 DOI: 10.1016/j.chemosphere.2024.143502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/12/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
The aquaculture industry is under the framework of the food-water-energy nexus due to the extensive use of water and energy. Sustainable practices are required to support the tremendous growth of this sector. Currently, the aquaculture industry is challenged by its reliance on capture fisheries for feed, increased use of pharmaceuticals, infectious outbreaks, and solid/liquid waste management. This review posits microalgal technology as a comprehensive solution for the current predicaments in aquaculture in a sustainable way. Microalgae are microscopic, freshwater and marine photosynthetic organisms, capable of carbon mitigation and bioremediation. They are indispensable in aquaculture due to their key role in marine productivity and their position in the marine food chain. Microalgae are nutritious and are currently used as feed in specific sectors of aquaculture. Due to their bioremediation potential, direct application of microalgae in shellfish ponds and in recirculating systems have been adopted to improve water quality and aquatic animal health. The potential of microalgae for integration into various aspects of aquaculture processes, namely hatcheries, feed, and waste management has been critically analyzed. Seamless integration of microalgal technology in aquaculture is feasible, and this review will provide new insights into using microalgal technology for sustainable aquaculture.
Collapse
Affiliation(s)
- Dillirani Nagarajan
- Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, 811532, Taiwan
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, 811532, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, 811532, Taiwan
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry & Research Center for Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, 811532, Taiwan; Department of Medicinal and Applied Chemistry & Research Center for Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan.
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, ROC, Taiwan; Research Center for Smart and Sustainable Circular Economy, Tunghai University, Tainan, 407224, ROC, Taiwan; Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung, 407224, ROC, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, 32003, Taiwan.
| |
Collapse
|
14
|
Zhang S, Yi X, He D, Tang X, Chen Y, Zheng H. Recent progress and perspectives of typical renewable bio-based flocculants: characteristics and application in wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46877-46897. [PMID: 38980480 DOI: 10.1007/s11356-024-34199-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 06/27/2024] [Indexed: 07/10/2024]
Abstract
The research on bio-based flocculants for waste resource utilization and environmental protection has garnered significant attention. Bio-based flocculants encompass plant-based, animal-based, and microbial variants that are prepared and modified through biological, chemical, and physical methods. These flocculants possess abundant functional groups, unique structures, and distinctive characteristics. This review comprehensively discussed the removal rates of conventional pollutants and emerging pollutants by bio-based flocculants, the interaction between these flocculants and pollutants, their impact on flocculation performance in wastewater treatment, as well as their application cost. Furthermore, it described the common challenges faced by bio-based flocculants in practical applications along with various improvement strategies to address them. With their safety profile, environmental friendliness, efficiency, renewability, and wide availability from diverse sources, bio-based flocculants hold great potential for widespread use in wastewater treatment.
Collapse
Affiliation(s)
- Shixin Zhang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, People's Republic of China
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, People's Republic of China
| | - Xiaohui Yi
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, People's Republic of China
| | - Dilin He
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, People's Republic of China
| | - Xiaomin Tang
- Chongqing Key Laboratory of Catalysis & Functional Organic Molecules, College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, People's Republic of China
| | - Yao Chen
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, People's Republic of China.
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, Chongqing Jiaotong University, Chongqing, 400074, People's Republic of China.
| | - Huaili Zheng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, State Ministry of Education, Chongqing University, Chongqing, 400045, People's Republic of China
| |
Collapse
|
15
|
Gan W, Zhang R, Cao Z, Liu H, Fan W, Sun A, Song S, Zhang Z, Shi X. Unveiling the hidden risks: Pesticide residues in aquaculture systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172388. [PMID: 38614356 DOI: 10.1016/j.scitotenv.2024.172388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/16/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
The present study systematically assessed the presence and ecological risks of 79 pesticides in various aquaculture systems, namely pond aquaculture (PA), greenhouse aquaculture (GA), and raceway aquaculture (RA) at different aquaculture stages, along with evaluating the pesticide removal of four tailwater treatment systems. Sixteen herbicides and two fungicides were identified, with the total concentrations ranging from 8.33 ng/L to 3248.45 ng/L. The PA system demonstrated significantly higher concentrations (p < 0.05) and a wider range of pesticide residues compared to the GA and RA systems. Prometryn, simetryn, atrazine, and thifluzamide were found to be the predominant pesticides across all three aquaculture modes, suggesting their significance as pollutants that warrant monitoring. Additionally, the findings indicated that the early aquaculture stage exhibits the highest levels of pesticide concentration, underscoring the importance of heightened monitoring and regulatory interventions during this phase. Furthermore, among the four tailwater treatment systems analyzed, the recirculating tailwater treatment system exhibited the highest efficacy in pesticide removal. A comprehensive risk assessment revealed minimal ecological risks in both the aquaculture and tailwater environments. However, the pesticide mixtures present high risks to algae and low to medium risks to aquatic invertebrates and fish, particularly during the early stages of aquaculture. Simetryn and prometryn were identified as high-risk pesticides. Based on the prioritization index, simetryn, prometryn, diuron, and ametryn are recommended for prioritization in risk assessment. This study offers valuable data for pesticide control and serves as a reference for the establishment of a standardized pesticide monitoring and management system at various stages of aquaculture.
Collapse
Affiliation(s)
- Weijia Gan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Rongrong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Zhi Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Hao Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Wentao Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Aili Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Suquan Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Zeming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| | - Xizhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
16
|
Xie S, Hamid N, Zhang T, Zhang Z, Peng L. Unraveling the nexus: Microplastics, antibiotics, and ARGs interactions, threats and control in aquaculture - A review. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134324. [PMID: 38640666 DOI: 10.1016/j.jhazmat.2024.134324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/04/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
In recent years, aquaculture has expanded rapidly to address food scarcity and provides high-quality aquatic products. However, this growth has led to the release of significant effluents, containing emerging contaminants like antibiotics, microplastics (MPs), and antibiotic resistance genes (ARGs). This study investigated the occurrence and interactions of these pollutants in aquaculture environment. Combined pollutants, such as MPs and coexisting adsorbents, were widespread and could include antibiotics, heavy metals, resistance genes, and pathogens. Elevated levels of chemical pollutants on MPs could lead to the emergence of resistance genes under selective pressure, facilitated by bacterial communities and horizontal gene transfer (HGT). MPs acted as vectors, transferring pollutants into the food web. Various technologies, including membrane technology, coagulation, and advanced oxidation, have been trialed for pollutants removal, each with its benefits and drawbacks. Future research should focus on ecologically friendly treatment technologies for emerging contaminants in aquaculture wastewater. This review provided insights into understanding and addressing newly developing toxins, aiming to develop integrated systems for effective aquaculture wastewater treatment.
Collapse
Affiliation(s)
- Shiyu Xie
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou 570228, China; School of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Naima Hamid
- Faculty of Science and Marine Environment, University Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Tingting Zhang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou 570228, China; School of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Zijun Zhang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou 570228, China; School of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Licheng Peng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou 570228, China; School of Ecology and Environment, Hainan University, Haikou 570228, China.
| |
Collapse
|
17
|
Cui B, Rong H, Tian T, Guo D, Duan L, Nkinahamira F, Ndagijimana P, Yan W, Naidu R. Chemical methods to remove microplastics from wastewater: A review. ENVIRONMENTAL RESEARCH 2024; 249:118416. [PMID: 38316391 DOI: 10.1016/j.envres.2024.118416] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/23/2023] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Microplastics (Mps) have emerged as a pervasive environmental concern, with their presence detected not only in freshwater ecosystems but also in drinking and bottled water sources. While extensive research has centered on understanding the origins, migration patterns, detection techniques, and ecotoxicological impacts of these contaminants, there remains a notable research gap about the strategies for Mps removal. This study reviews existing literature on chemical approaches for mitigating microplastic contamination within wastewater systems, focusing on coagulation precipitation, electrocoagulation, and advanced oxidation methods. Each approach is systematically explored, encompassing their respective mechanisms and operational dynamics. Furthermore, the comparative analysis of these three techniques elucidates their strengths and limitations in the context of MPs removal. By shedding light on the intricate mechanisms underlying these removal methods, this review contributes to the theoretical foundation of microplastic elimination from wastewater and identifies future research trajectories and potential challenges.
Collapse
Affiliation(s)
- Baihui Cui
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-Sen University, Gongchang Road, Guangming District, Guangdong, 518107, China; School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Hongwei Rong
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Tingting Tian
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Dabin Guo
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Luchun Duan
- Global Centre for Environmental Remediation (GCER), College of Science, Engineering and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (crcCARE), University Drive, Callaghan, NSW, 2308, Australia
| | | | | | - Wangwang Yan
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-Sen University, Gongchang Road, Guangming District, Guangdong, 518107, China.
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), College of Science, Engineering and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (crcCARE), University Drive, Callaghan, NSW, 2308, Australia
| |
Collapse
|
18
|
Ali N, Khan MH, Ali M, Sidra, Ahmad S, Khan A, Nabi G, Ali F, Bououdina M, Kyzas GZ. Insight into microplastics in the aquatic ecosystem: Properties, sources, threats and mitigation strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169489. [PMID: 38159747 DOI: 10.1016/j.scitotenv.2023.169489] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
Globally recognized as emergent contaminants, microplastics (MPs) are prevalent in aquaculture habitats and subject to intense management. Aquaculture systems are at risk of microplastic contamination due to various channels, which worsens the worldwide microplastic pollution problem. Organic contaminants in the environment can be absorbed by and interact with microplastic, increasing their toxicity and making treatment more challenging. There are two primary sources of microplastics: (1) the direct release of primary microplastics and (2) the fragmentation of plastic materials resulting in secondary microplastics. Freshwater, atmospheric and marine environments are also responsible for the successful migration of microplastics. Until now, microplastic pollution and its effects on aquaculture habitats remain insufficient. This article aims to provide a comprehensive review of the impact of microplastics on aquatic ecosystems. It highlights the sources and distribution of microplastics, their physical and chemical properties, and the potential ecological consequences they pose to marine and freshwater environments. The paper also examines the current scientific knowledge on the mechanisms by which microplastics affect aquatic organisms and ecosystems. By synthesizing existing research, this review underscores the urgent need for effective mitigation strategies and further investigation to safeguard the health and sustainability of aquatic ecosystems.
Collapse
Affiliation(s)
- Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, PR China.
| | - Muhammad Hamid Khan
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, PR China
| | - Muhammad Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, PR China
| | - Sidra
- Institute of Chemical Sciences, University of Peshawar, 25120, Pakistan
| | - Shakeel Ahmad
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, PR China
| | - Adnan Khan
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, PR China; Institute of Chemical Sciences, University of Peshawar, 25120, Pakistan.
| | - Ghulam Nabi
- Institute of Nature Conservation Polish Academy of Sciences Krakow, Poland
| | - Farman Ali
- Department of Chemistry, Hazara University, Khyber Pakhtunkhwa, Mansehra 21300, Pakistan
| | - Mohamed Bououdina
- Department of Mathematics and Science, Faculty of Humanities and Sciences, Prince Sultan University, Riyadh, Saudi Arabia
| | - George Z Kyzas
- Hephaestus Laboratory, Department of Chemistry, School of Science, International Hellenic University, 654 04 Kavala, Greece.
| |
Collapse
|
19
|
Xie S, Song K, Liu S, Li Y, Wang J, Huang W, Feng Z. Distribution and characteristics of microplastics in 16 benthic organisms in Haizhou Bay, China: Influence of habitat, feeding habits and trophic level. MARINE POLLUTION BULLETIN 2024; 199:115962. [PMID: 38157831 DOI: 10.1016/j.marpolbul.2023.115962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Microplastics (MPs) are widely found in the ocean and cause a serious risk to marine organisms. However, fewer studies have been conducted on benthic organisms. This study conducted a case study on the pollution characteristics of MPs on 16 marine benthic organisms in Haizhou Bay, and analyzed the effects of habitat, trophic level, and feeding mode on the MPs pollution characters. The results showed that MPs were detected in all 16 organisms with an average abundance of 8.84 ± 9.14 items/individual, which is in the middle-high level in the international scale. Among the detected MPs, the main material was cellophane. This study showed that benthic organisms can be used as indicator organisms for MPs pollution. MPs in organisms can be affected by their habitat, trophic level, and feeding mode. Comprehensive analysis of MPs in benthic organisms will contribute to fully understand the characterization and source resolution of MPs pollution.
Collapse
Affiliation(s)
- Siqi Xie
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Kexin Song
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, PR China; Analytical Instrumentation Center, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, PR China; University of Chinese Academy of Sciences, Beijing 100190, PR China
| | - Shiwei Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - You Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Jiaxuan Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Wei Huang
- Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
| | - Zhihua Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, PR China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, PR China; Key Laboratory of Coastal Salt Marsh Ecology and Resources, Ministry of Natural Resources, Jiangsu Ocean University, Lianyungang 222005, PR China.
| |
Collapse
|
20
|
Xie Y, Wang H, Guo Y, Wang C, Cui H, Xue J. Effects of microplastic contamination on the hydraulic, water retention, and desiccation crack properties of a natural clay exposed to leachate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119858. [PMID: 38118346 DOI: 10.1016/j.jenvman.2023.119858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/22/2023]
Abstract
Microplastic (MP) can significantly affect soil behaviour and the ecosystem. This paper presents an experimental study to investigate the effects of MP contamination and leachate exposure on the desiccation cracks, hydraulic conductivity, and water retention properties of the natural black clay. The leachate was from a landfill in Australia. The black clay was incorporated with up to 2.0% MPs by weight (w/w) with diverse dimensions and mixed with water/leachate. The measured properties include saturated hydraulic conductivity (ksat), soil-water characteristic curves, moisture evaporation rates, and crack intensity factors. The results suggest that the inclusion of MPs significantly increases ksat, and this increase is more obvious for soils with larger dimensions and contents of MPs, e.g., ksat of the black clay with 2.0% of 500 μm MP increases significantly by 206% (p < 0.05). The black clay exposed to leachate exhibits a slight increase in ksat due to the low viscosity of leachate. The existence of MPs decreases the residual moisture contents and air-entry pressures, and so does the water retention capacity (v/v %) of the black clay. The exposure to leachate increases the air-entry pressures by 6.0%-15.8% of the clay. The evaporation rates increase with the dimensions and concentrations of MPs. The highest evaporation rate (0.96 g/h) can be observed in samples exposed to 2.0% 500 μm MP with water addition. For all samples, the crack intensity factors increase when MP content is between 0.2% and 1.0% and decreases slightly after that. After being exposed to leachate, the evaporation rates and crack intensity factors of the black clay are decreased by 2.4%-12.6% and 3.6%-13.7%, respectively.
Collapse
Affiliation(s)
- Yuekai Xie
- School of Engineering and Technology, University of New South Wales, Canberra, ACT, 2612, Australia.
| | - Hongxu Wang
- School of Engineering and Technology, University of New South Wales, Canberra, ACT, 2612, Australia
| | - Yingying Guo
- School of Engineering and Technology, University of New South Wales, Canberra, ACT, 2612, Australia; Civil Branch, Infrastructure Delivery Partner, Major Projects Canberra, Canberra, ACT, 2606, Australia
| | - Chenman Wang
- Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518060, Guangdong, China
| | - Hanwen Cui
- School of Engineering and Technology, University of New South Wales, Canberra, ACT, 2612, Australia; Queensland Department of Transport and Main Roads, South Coast Region, Nerang, QLD, 4211, Australia
| | - Jianfeng Xue
- School of Engineering and Technology, University of New South Wales, Canberra, ACT, 2612, Australia
| |
Collapse
|
21
|
Wang X, Dai Y, Li Y, Yin L. Application of advanced oxidation processes for the removal of micro/nanoplastics from water: A review. CHEMOSPHERE 2024; 346:140636. [PMID: 37949189 DOI: 10.1016/j.chemosphere.2023.140636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
Micro/nanoplastics (MNPs) have been increasingly found in environments, food, and organisms, arousing wide public concerns. MNPs may enter food chains through water, posing a threat to human health. Therefore, efficient and environmentally friendly technologies are needed to remove MNPs from contaminated aqueous environments. Advanced oxidation processes (AOPs) produce a vast amount of active species, such as hydroxyl radicals (·OH), known for their strong oxidation capacity. As a result, an increasing number of researchers have focused on using AOPs to decompose and remove MNPs from water. This review summarizes the progress in researches on the removal of MNPs from water by AOPs, including ultraviolet photolysis, ozone oxidation, photocatalysis, Fenton oxidation, electrocatalysis, persulfate oxidation, and plasma oxidation, etc. The removal efficiencies of these AOPs for MNPs in water and the influencing factors are comprehensively analyzed, meanwhile, the oxidation mechanisms and reaction pathways are also discussed in detail. Most AOPs can achieve the degradation of MNPs, mainly manifest as the decrease of particle size and the increase of mass loss, but the mineralization rate is low, thus requiring further optimization for improved performance. Investigating various AOPs is crucial for achieving the complete decomposition of MNPs in water. AOPs will undoubtedly play a vital role in the future for the removal of MNPs from water.
Collapse
Affiliation(s)
- Xiaojie Wang
- School of Water Resources and Environment, Beijing Key Laboratory of Water Resources & Environmental Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Yunrong Dai
- School of Water Resources and Environment, Beijing Key Laboratory of Water Resources & Environmental Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Yang Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Lifeng Yin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
22
|
Zeidi A, Sayadi MH, Rezaei MR, Banaee M, Gholamhosseini A, Pastorino P, Multisanti CR, Faggio C. Single and combined effects of CuSO 4 and polyethylene microplastics on biochemical endpoints and physiological impacts on the narrow-clawed crayfish Pontastacusleptodactylus. CHEMOSPHERE 2023; 345:140478. [PMID: 37865200 DOI: 10.1016/j.chemosphere.2023.140478] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
This study investigated the toxicity of polyethylene microplastics (MPs; <0.02 mm) and CuSO4, alone and in combination, on the freshwater crayfish Pontastacus leptodactylus. In this study, the crayfish were exposed to PE-MPs (0.0, 0.5, and 1 mg L-1) and CuSO4·5H2O (0.0, 0.5, and 1 mg L-1) for a period of 28 days. Next, multi-biomarkers, including biochemical, immunological, and oxidative stress indicators were analyzed. Results showed that co-exposure to PE-MPs and CuSO4 resulted in increased aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), and decreased alkaline phosphatase (ALP), butyrylcholinesterase (BChE), and gamma-glutamyl-transferase (GGT). Triglycerides, cholesterol, glucose, and albumin content also increased. Although no significant change was observed in lysozyme and phenoloxidase activities in crayfish co-exposed to 0.5 mg L-1 MPs and 0.5 mg L-1 CuSO4, their activities were significantly decreased in other experimental groups. Oxidative stress parameters in hepatopancreas indicated increased superoxide dismutase (SOD), glutathione peroxidase (GPx), and in malondialdehyde (MDA) levels, but decreased catalase (CAT), glucose 6-phosphate dehydrogenase (G6PDH), and cellular total antioxidant (TAC). Results showed that the sub-chronic toxicity of CuSO4 was confirmed. The study confirmed the toxicity of CuSO4 and found that higher concentrations led to more severe effects. Co-exposure to PE-MPs and CuSO4 primarily compromised the endpoints, showing increased toxicity when both pollutants were present in higher concentrations. The activities of POX, LYZ, ALP, GGT, LDH, and CAT were suppressed by both CuSO4 and MPs. However, a synergistic increase was observed in other measured biomarkers in crayfish co-exposed to CuSO4 and MPs.
Collapse
Affiliation(s)
- Amir Zeidi
- Aquaculture Department, Faculty of Natural Resources and Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Mohammad Hossein Sayadi
- Department of Agriculture, Faculty of Natural Resources and Environment, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Mohammad Reza Rezaei
- Department of Environmental Engineering, Faculty of Natural Resources and Environment, University of Birjand, Birjand, Iran.
| | - Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Amin Gholamhosseini
- Division of Aquatic Animal Health & Diseases, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Paolo Pastorino
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna 148, 10154, Torino, Italy.
| | - Cristiana Roberta Multisanti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
| |
Collapse
|
23
|
Jin R, Zhang J, Zhao Y, Liu S, Shen M. Are microplastics in aquaculture an undeniable driver in accelerating the spread of antibiotic resistance genes? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:114685-114689. [PMID: 37840081 DOI: 10.1007/s11356-023-30412-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023]
Abstract
Aquaculture products have been a key source of protein in the human food supply. Contamination by microplastics and antibiotic resistance genes (ARGs) directly affects food quality and safety. Plastic fishing gear and the long-term misuse of antibiotics result in the persistent residue, migration, and spread of microplastics and ARGs in the aquaculture environment, causing in ecological imbalance and endangering human security. Microplastics can act as "petri dishes" for the reproduction, communication, and spread of ARGs, which adds an additional layer of complexity to the global issues surrounding microplastics and ARGs. Aquaculture has become an important source of microplastics and ARGs in natural waters. Accordingly, this paper mainly discusses the contribution of aquaculture to the presence of microplastics and ARGs in aquatic ecosystems. Microplastics and ARGs can (1) affect the production and quality of aquatic products; (2) influence the development and reproduction of aquatic organisms; and (3) accelerate the spread of resistant bacteria. How to eliminate microplastics and ARGs and block their transmission has become a worldwide problem. Actually, further research is required to understand the scale and scope of these effects.
Collapse
Affiliation(s)
- Ruixin Jin
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, People's Republic of China
| | - Jiahao Zhang
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, People's Republic of China
| | - Yifei Zhao
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, People's Republic of China
| | - Shiwei Liu
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, People's Republic of China
| | - Maocai Shen
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, People's Republic of China.
| |
Collapse
|