1
|
Hamed M, Said REM, Shaalan WM, Elbaghdady HAM, Sayed AEDH. Immunological, neurological, and intestinal changes in red swamp crayfish (Procambarus clarkii) exposed to the combined toxicity of Pyrogallol and microplastics. MARINE POLLUTION BULLETIN 2025; 213:117641. [PMID: 39921983 DOI: 10.1016/j.marpolbul.2025.117641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/27/2025] [Accepted: 02/02/2025] [Indexed: 02/10/2025]
Abstract
This study investigates the combined effects of pyrogallol (PG) and microplastics (MPs) on the freshwater crayfish Procambarus clarkii, evaluating their impacts both individually and in combination. Over 15 days, crayfish were exposed to 100 mg/L MPs, 10 mg/L PG, and a mixture of 10 mg/L PG + 100 mg/L MPs. The activities of serum lysozyme (LYZ), phenoxide (Phx), and acid phosphatase (ACP), along with neurological markers such as acetylcholinesterase (AchE) and nitric oxide (NO), were measured. Histological alterations in the intestines were also assessed. Results indicated that both PG and MPs, separately or jointly, decreased immune parameters (LYZ, Phx, ACP) and neurotoxic indicators (AchE, NO). Histologically, crayfish exposed to PG and MPs showed significant intestinal damage, including epithelial disorganization, tissue tearing, and necrosis, with combined exposure exacerbating these effects. These findings suggest that PG and MPs interact synergistically, particularly regarding histopathological changes, highlighting the need for monitoring wastewater effluents in aquatic ecosystems.
Collapse
Affiliation(s)
- Mohamed Hamed
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), 71524 Assiut, Egypt; Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA 70803, USA
| | - Rashad E M Said
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), 71524 Assiut, Egypt
| | - Walaa M Shaalan
- Zoology Department, Faculty of Science, Benha University, 13518 Benha, Egypt; Bioinformatics Group, Faculty for Biology and Biotechnology and Center for Protein Diagnostics, Ruhr-University Bochum,44801, Germany
| | | | - Alaa El-Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, 71516 Assiut, Egypt; Molecular Biology Research & Studies Institute, Assiut University, 71516 Assiut, Egypt.
| |
Collapse
|
2
|
Gabr A, Mohamed AM, Abou Khalil NS, Sayed AEDH. The protective effect of Chlorella vulgaris against diclofenac toxicity in Clarias gariepinus: haemato-immunological parameters and spleen histological features as outcome markers. Front Immunol 2025; 16:1566496. [PMID: 40230852 PMCID: PMC11994428 DOI: 10.3389/fimmu.2025.1566496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/10/2025] [Indexed: 04/16/2025] Open
Abstract
Introduction Diclofenac (DCF) is a commonly utilized medication in the non-steroidal anti-inflammatory drug category that is released into aquatic systems in significant amounts. Chlorella vulgaris (C. vulgaris) is rich in active phytochemicals known for their haemato-immunological boosting properties. Methods Our objective was to investigate the haemato-immunological protective properties of Chlorella in mitigating the toxic effects of DCF. Five groups of Clarias gariepinus, each comprising 36 fish, were assigned over a two-week period. The groups were assigned as follows: control group, which received a basal diet only; DCF1 group, which received a basal diet and was exposed to 20 μg/L of DCF; DCF2 group, which received a basal diet and was exposed to 10 mg/L of DCF; and Chlorella +DCF1 and Chlorella+DCF2 groups, which were exposed to the same DCF doses as Groups 2 and 3, respectively, while also being fed a diet containing 25% Chlorella. Results Exposure to both doses of DCF significantly decreased erythrocyte count, hemoglobin content, white blood cell count, phagocytic index, and lysozyme activity, while increased eosinophil and neutrophil % in an equipotent manner. The low dose caused a more pronounced reduction in packed cell volume (PCV)% and large lymphocyte% compared to the high dose. A significant decline in platelet count was observed only with the low DCF dose, while the high dose led to a decrease in monocyte%. DCF intoxication led to a dose-related decrease in small lymphocyte% and an increase in erythrocyte morphological alterations and interleukin (IL)-6 levels. The DCF2 group exhibited a higher increase in apoptotic RBCs than the DCF1 group. Intervention with Chlorella alongside the two DCF doses significantly normalized RBC count and eosinophil %, increased PCV% and small lymphocyte%, and decreased erythrocyte abnormalities to an equal extent. Large lymphocyte% in the Chlorella+DCF1 group was successfully restored to normal levels. Phagocytic index and lysozyme activity in the supplemented groups were lower, while IL-6 levels were higher than in the DCF groups. The percentage of apoptotic cells decreased with Chlorella administration, with the Chlorella+DCF1 group showing fewer apoptotic cells than the Chlorella+DCF2 group. Histopathological deterioration and excessive collagen deposition were observed in the spleen of DCF groups, while notable improvements were seen following C. vulgaris supplementation. Conclusion These findings suggest that dietary inclusion of C. vulgaris may antagonize the haemato-cytological abnormalities induced by DCF intoxication.
Collapse
Affiliation(s)
- Ahmed Gabr
- Molecular Biology Research & Studies Institute, Assiut University, Assiut, Egypt
| | - Amr M. Mohamed
- Molecular Biology Research & Studies Institute, Assiut University, Assiut, Egypt
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Nasser S. Abou Khalil
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University, Assiut, Egypt
| | - Alaa El-Din H. Sayed
- Molecular Biology Research & Studies Institute, Assiut University, Assiut, Egypt
- Department of Zoology, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|
3
|
Hamed M, Abou Khalil NS, Alghriany AA, El-Din H. Sayed A. The protective effects of dietary microalgae against hematological, biochemical, and histopathological alterations in pyrogallol-intoxicated Clarias gariepinus. Heliyon 2024; 10:e40930. [PMID: 39759355 PMCID: PMC11699231 DOI: 10.1016/j.heliyon.2024.e40930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/05/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025] Open
Abstract
Microalgae have well-established health benefits for farmed fish. Thus, this study aims to explore the potential protective effects of Spirulina platensis, Chlorella vulgaris, and Moringa oleifera against pyrogallol-induced hematological, hepatic, and renal biomarkers in African catfish (Clarias gariepinus), as well as the histopathological changes in the liver and kidney. Fish weighing 200 ± 25 g were divided into several groups: group 1 served as the control, group 2 was exposed to 10 mg/L of pyrogallol, and groups 3, 4, and 5 were exposed to the same concentration of pyrogallol, supplemented with S. platensis at 20 g/kg diet, C. vulgaris at 50 g/kg diet, and M. oleifera at 5 g/kg diet, respectively, for 15 days. Exposure to pyrogallol led to decreased packed cell volume (PCV) and lymphocyte count, but these effects were alleviated by microalgae interventions. C. vulgaris and M. oleifera equally restored PCV and increased lymphocyte counts. Supplementation with C. vulgaris and M. oleifera successfully normalized both neutrophil and eosinophil counts. Pyrogallol intoxication engenders an increase in glycemic status, but C. vulgaris and M. oleifera effectively mitigated this rise. Pyrogallol-exposed fish exhibited signs of renal dysfunction, with increased serum creatinine and total cholesterol levels. A significant decrease in both erythrocytic cellular and nuclear abnormalities was observed following supplementation with microalgae. C. vulgaris and M. oleifera showed promise in decreasing serum glucose and creatinine levels, and improving hematological parameters, while S. platensis exhibited limited efficacy in this regard. Exposure to pyrogallol led to a notable decrease in serum superoxide dismutase activity and total antioxidant capacity (TAC), accompanied by an increase in serum malondialdehyde (MDA) levels. Diets enriched with C. vulgaris and M. oleifera effectively restored these parameters to normal levels, whereas S. platensis did not induce significant changes. None of the microalgae improved TAC except for M. oleifera, which significantly enhanced it. MDA levels returned to control levels equally and significantly across all groups. Interleukin-6 levels did not exhibit significant differences between any of the groups. Collectively, the histopathological changes induced by pyrogallol were most prominently alleviated in the pyrogallol + C. vulgaris and pyrogallol + M. oleifera groups, and to a limited degree in the pyrogallol + S. platensis group. While the tested microalgae did not cause hepatic or renal dysfunction, they did lead to metabolic abnormalities. The incorporation of microalgae into the diet holds significant importance in mitigating the metabolic and histological toxicity of pyrogallol and should be considered in the formulation of fish feed.
Collapse
Affiliation(s)
- Mohamed Hamed
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA, 70803, USA
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut branch), Assiut, 71524, Egypt
| | - Nasser S. Abou Khalil
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Animal Physiology and Biochemistry, Faculty of veterinary Medicine, Badr University, Assuit, Egypt
| | | | - Alaa El-Din H. Sayed
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71516, Egypt
- Molecular Biology Research & Studies Institute, Assiut University, 71516, Assiut, Egypt
| |
Collapse
|
4
|
Macirella R, Ahmed AIM, Talarico F, Gharbi N, Mezzasalma M, Brunelli E. Morphological Alterations and Oxidative Stress Induction in Danio rerio Liver After Short-Term Exposure to the Strobilurin Fungicide Dimoxystrobin. ENVIRONMENTS 2024; 11:282. [DOI: 10.3390/environments11120282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Unlike many other fungicides, strobilurins are applied several times during the growing season for prophylactic purposes, thus heightening the risk of environmental contamination. In the EU, the dimoxystrobin approval period lasted for 17 years. It has been classified as moderately toxic to birds and highly toxic to earthworms, and it is suspected to be carcinogenic to humans. However, it is still commercialized in several countries. The effects of dimoxystrobin are still largely underexplored, with only three studies reporting sublethal alterations in fish. Here, we evaluated for the first time the effects of dimoxystrobin on zebrafish liver after short-term exposure (96 h) to two sublethal and environmentally relevant concentrations (6.56 and 13.13 μg/L), providing evidence of morphological, functional, and ultrastructural modifications. We revealed severe alterations encompassing three reaction patterns: circulatory disturbance, regressive and progressive changes, which also showed a dose-dependent trend. Furthermore, we revealed that dimoxystrobin induced a significant increase in lipid content, a decrease in glycogen granules and affected the defensive response against oxidative stress through a significant downregulation of SOD and CAT. The information presented here demonstrates that the hazardous properties of dimoxystrobin may result from several pathological events involving multiple targets. Our results also emphasize the importance of the combined use of morphological, ultrastructural and functional investigation in ecotoxicological studies.
Collapse
Affiliation(s)
- Rachele Macirella
- Department of Biology, Ecology and Earth Science (DiBEST), University of Calabria, Via P. Bucci 4/B, 87036 Rende, Italy
| | - Abdalmoiz I. M. Ahmed
- Department of Biology, Ecology and Earth Science (DiBEST), University of Calabria, Via P. Bucci 4/B, 87036 Rende, Italy
| | - Federica Talarico
- Department of Biology, Ecology and Earth Science (DiBEST), University of Calabria, Via P. Bucci 4/B, 87036 Rende, Italy
- Natural History Museum and Botanical Garden, University of Calabria, 87036 Rende, Italy
| | - Naouel Gharbi
- Fish Biology and Aquaculture Group, Ocean and Environment Department, NORCE Norwegian Research Center, 5006 Bergen, Norway
| | - Marcello Mezzasalma
- Department of Biology, Ecology and Earth Science (DiBEST), University of Calabria, Via P. Bucci 4/B, 87036 Rende, Italy
| | - Elvira Brunelli
- Department of Biology, Ecology and Earth Science (DiBEST), University of Calabria, Via P. Bucci 4/B, 87036 Rende, Italy
| |
Collapse
|
5
|
Sayed AEDH, Hamed M, El-Aal MA, Naguib M, Saad E, Soliman HAM. Climate Change Induce the Toxicity of Black Sand Nanoparticles on Catfish (Clarias gariepinus) Using Hemato-Hepatological Biomarkers. BIONANOSCIENCE 2024; 14:5080-5093. [DOI: 10.1007/s12668-024-01549-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2024] [Indexed: 12/09/2024]
|
6
|
Shaalan WM, Elbaghdady HAM, Sayed AEDH. Synergistic effects of thermal stress and 4-nonylphenol on oxidative stress and immune responses in juvenile tilapia (Oreochromis niloticus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64024-64032. [PMID: 39528893 DOI: 10.1007/s11356-024-35419-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Aquatic ecosystems face multiple stressors, including thermal fluctuations and chemical pollutants, which can detrimentally impact fish health and ecosystem integrity. This study investigates the individual and combined toxic effects of 4-nonylphenol (4-NP) and thermal stress on juvenile tilapia fish (Oreochromis niloticus). Four groups of fish were exposed to different stressors for 15 days: control, thermal stress (35 °C ± 1 °C), 4-NP exposure (1 mg/L), and a combination of thermal stress and 4-NP. Results reveal significant alterations in antioxidant enzyme activity, lipid peroxidation levels, and cytokine expression in response to stressors. Thermal stress and 4-NP exposure disrupt antioxidant defense mechanisms and increase oxidative stress. Thermal stress profoundly affects fish health and metabolism, impacting physiological functions and immunity. Thermal stress induces reactive oxygen species production, triggering antioxidant responses and affecting immune parameters. Exposure to 4-NP exacerbates oxidative stress, further compromising fish health. The observed increase in pro-inflammatory cytokines implies an immunostimulatory reaction to stressors. These findings underscore the complex interactions between environmental stressors, immune responses, and fish health. Further research is needed to fully understand these interactions and their implications for aquatic ecosystems. Implementing these biomarkers in ecological risk assessments can provide insights into the impacts of environmental stressors and inform conservation and management strategies in aquaculture.
Collapse
Affiliation(s)
- Walaa M Shaalan
- Zoology Department, Faculty of Science, Benha University, Benha, 13518, Egypt
- Faculty for Biology and Biotechnology and Center for Protein Diagnostics, Ruhr-University, 44801, Bochum, Germany
| | | | - Alaa El-Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
- Molecular Biology Research & Studies Institute, Assiut University, Assiut, 71516, Egypt.
| |
Collapse
|
7
|
Sayed AEDH, Said REM, El-Aal MA, Saad E, Kamel WA, Hamed M. Black sand nanoparticles and heat stress impacts the neurological and oxidative stress indices and splenic-renal histology of Clarias gariepinus. Sci Rep 2024; 14:21993. [PMID: 39313514 PMCID: PMC11420222 DOI: 10.1038/s41598-024-71707-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024] Open
Abstract
In Egypt, while many studies have focused on the radiometry and mineralogy of black sands, research on their effects on nearby aquatic organisms is rare. This study aimed to assess the combined effects of heat stress (HS) and black sand nanoparticles (BS-NPs) on renal function, antioxidant responses (TAC, SOD, CAT), neuro-stress indicators (AchE, cortisol), and to conduct histopathological investigations in the kidney and spleen tissues of African catfish Clarias gariepinus over a 15-day period to exposure to control, HS (32 °C), BS (6.4 g/kg diet) and HS + BS groups. The outcomes revealed that thermal stress alone showed no significant difference from the control. However, creatinine and uric acid levels were significantly higher in the BS-NPs and HS + BS-NPs groups (p < 0.001). Antioxidant markers (TAC, SOD, and CAT) were substantially reduced across all treated groups (0.05 ≥ p < 0.0001). AchE levels were significantly elevated in BS-NPs and HS + BS-NPs (p < 0.001), while cortisol levels were higher in these groups but not significantly different in HS. Degeneration and necrosis in the white and red pulps, scattered lymphocytes, and increased collagen fiber surrounding blood vessels and the lining of the ellipsoid structure were all evident in the spleen, along with the enlargement of the melanomacrophage centers with big granular, irregular, and brown pigments (hemosiderin). Our study, therefore, provides new insights into how heat stress, an abiotic environmental factor, influences the toxicity of black sand nanoparticles in catfish.
Collapse
Affiliation(s)
- Alaa El-Din Hamid Sayed
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
- Molecular Biology Research & Studies Institute, Assiut University, Assiut, 71516, Egypt.
| | - Rashad E M Said
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, 71524, Egypt
| | - Mohamed Abd El-Aal
- Chemistry Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Eman Saad
- Department of Geology, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Walied A Kamel
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
- Laboratory of Fundamental Oncology, National Cancer Center Research Institute, Tsukiji 5-1-1, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Mohamed Hamed
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, 71524, Egypt
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA, 70803, USA
| |
Collapse
|
8
|
Hasan AKMM, Hamed M, Hasan J, Martyniuk CJ, Niyogi S, Chivers DP. A review of the neurobehavioural, physiological, and reproductive toxicity of microplastics in fishes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116712. [PMID: 39002376 DOI: 10.1016/j.ecoenv.2024.116712] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Microplastics (MPs) have emerged as widespread environmental pollutants, causing significant threats to aquatic ecosystems and organisms. This review examines the toxic effects of MPs on fishes, with a focus on neurobehavioural, physiological, and reproductive impacts, as well as the underlying mechanisms of toxicity. Evidence indicates that MPs induce a range of neurobehavioural abnormalities in fishes, affecting social interactions and cognitive functions. Altered neurotransmitter levels are identified as a key mechanism driving behavioural alterations following MP exposure. Physiological abnormalities in fishes exposed to MPs are also reported, including neurotoxicity, immunotoxicity, and oxidative stress. These physiological disruptions can compromise the individual health of aquatic organisms. Furthermore, reproductive abnormalities linked to MP exposure are discussed, with a particular emphasis on disruptions in endocrine signaling pathways. These disruptions can impair reproductive success in fish species, impacting population numbers. Here we explore the critical role of endocrine disruptions in mediating reproductive effects after exposure to MPs, focusing primarily on the hypothalamic-pituitary-gonadal axis. Our review highlights the urgent need for interdisciplinary research efforts aimed at elucidating the full extent of MP toxicity and its implications for aquatic ecosystems. Lastly, we identify knowledge gaps for future research, including investigations into the transgenerational impacts, if any, of MP exposure and quantifying synergetic/antagonistic effects of MPs with other environmental pollutants. This expanded knowledge regarding the potential risks of MPs to aquatic wildlife is expected to aid policymakers in developing mitigation strategies to protect aquatic species.
Collapse
Affiliation(s)
- A K M Munzurul Hasan
- Department of Biology, University of Saskatchewan, Saskatoon SK, S7N 5E2, Canada.
| | - Mohamed Hamed
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA 70803, USA
| | - Jabed Hasan
- Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon SK, S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, Saskatoon SK, S7N 5E2, Canada
| |
Collapse
|
9
|
Hamed M, Martyniuk CJ, Soliman HAM, Osman AGM, Said REM. Neurotoxic and cardiotoxic effects of pyrogallol on catfish (Clarias gariepinus). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 109:104481. [PMID: 38857774 DOI: 10.1016/j.etap.2024.104481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024]
Abstract
Pyrogallol, a botanical hydrolysable tannin, has diverse medical and industrial applications. Its impact on aquatic ecosystems and fish health has been previously studied, revealing histopathological, immunological, biochemical, and haematological alterations in African catfish (Clarias gariepinus). In this study, the neurotoxic potential of pyrogallol was assessed through a 15-day exposure of catfish to concentrations of 1, 5, or 10 mg/L. Enzyme activities such as acetylcholinesterase (AchE), monoamine oxidase (MAO), aldehyde oxidase (AO), and nitric oxide (NO) were measured in serum and brain, along with histopathological examinations in the brain and heart. Pyrogallol exposure led to decreased AchE activity in the brain and serum, increased serum MAO activity, elevated AO in both brain and serum, and suppressed NO levels. Morphological abnormalities and dose-dependent pathological alterations were observed in the brain and heart, including neuropile deformities, shrunken Purkinje cells, cardiomyocyte degeneration, and increased collagen fibers. This suggests that pyrogallol induces adverse effects in fish.
Collapse
Affiliation(s)
- Mohamed Hamed
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut branch), Assiut 71524, Egypt; Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA 70803, USA.
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Hamdy A M Soliman
- Department of Zoology, Faculty of Science, Sohag University, Sohag 8562, Egypt
| | - Alaa G M Osman
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut branch), Assiut 71524, Egypt
| | - Rashad E M Said
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut branch), Assiut 71524, Egypt
| |
Collapse
|
10
|
Basry DM, Mansour S, H Sayed AED. Dietary Moringa oleifera mitigates Fluconazole-Induced immunological and spleen-histological alterations in Catfish (Clarias gariepinus). BMC Vet Res 2024; 20:325. [PMID: 39026256 PMCID: PMC11256558 DOI: 10.1186/s12917-024-04173-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024] Open
Abstract
Fluconazole (FCZ), an antifungal from the azole family, causes several detrimental effects in fish. In recent times, there has been a notable surge in interest regarding the utilization of Moringa oleifera (Mo) as a dietary antioxidant. This research aimed to evaluate the potential protective effects of dietary Moringa oleifera (MO) against the adverse impacts of fluconazole in the African catfish (Clarias gariepinus). The fish were allocated into four groups as follows: a control group fed a basal diet, an FCZ - exposed (200 ng/L) fed basal diet, 1% MO fed through basal diet, and an FCZ-exposed (200 ng/L) and 1% MO fed through basal diet fed group. The results showed that FCZ exposure decreased superoxide dismutase, total antioxidant capacity, and acetylcholine esterase levels. On the other hand, FCZ exposure increased malonaldehyde and cortisol levels as compared to control (P < 0.05). FCZ caused immunosuppressive effects in C. gariepinus as revealed by lower immunity indices (lysozyme and phagocytic activity and immunoglobulin level) and increased cytokine levels (IL-6 IL-1β). Histological examination of the spleen from fish exposed to FCZ showed several splenic changes. We conclude that dietary MO supplementation has the potential to alleviate the oxidative stress, restore immune response balance, and mitigate histological damage induced by FCZ exposure, thus positioning MO as an immunostimulant in C. gariepinus when administered alongside FCZ.
Collapse
Affiliation(s)
- Doaa M Basry
- Zoology Department, Faculty of Science, South Valley University, Qena, Egypt
| | - Salwa Mansour
- Zoology Department, Faculty of Science, South Valley University, Qena, Egypt
| | - Alaa El-Din H Sayed
- Zoology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
- Molecular Biology Research and Studies Institute, Assiut University, Assiut, 71516, Egypt.
| |
Collapse
|
11
|
Hamed M, Said REM, Martyniuk CJ, Soliman HAM, Sayed AEDH, Osman AGM. Reproductive and endocrine-disrupting toxicity of pyrogallol in catfish (Clariasgariepinus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124104. [PMID: 38703978 DOI: 10.1016/j.envpol.2024.124104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/05/2024] [Accepted: 05/02/2024] [Indexed: 05/06/2024]
Abstract
Endocrine disruptors are synthetic or natural chemicals that can agonize/antagonize hormone receptors or can interfere with the production and secretion of hormones, leading to altered tissue histology and physiology. Pyrogallol is a contaminant widely distributed in aquatic environments that presents health risks to both humans and animals. However, the potential for endocrine disruption by pyrogallol, particularly in fish, are lacking. The purpose of this study was to shed light on how pyrogallol may affect hormone signalling, histopathology, and reproductive outcomes in African catfish Clarias gariepinus. To investigate this, African catfish were exposed to one sublethal concentration of pyrogallol at either 0, 1, 5 or 10 mg/L for 15 days. We then assessed the effects of pyrogallol on the thyroid gland as well as the reproductive system by measuring sex hormone, seminal quality, gonadal histopathology, and histochemistry. Thyroid stimulating hormone and thyroxine showed notable decreases in catfish, and triiodothyronine was decreased with 10 mg/L pyrogallol. Unlike luteinizing hormone, follicle-stimulating hormone was significantly reduced in fish following exposure to pyrogallol relative to controls. Testosterone was also decreased in fish following pyrogallol exposure, whereas 17β-estradiol increased in catfish exposed to pyrogallol. Additionally, in response to pyrogallol toxicity, sperm quality indices, including count, spermatocrit, motility, and sperm viability were adversely affected in a concentration-dependent manner. Pyrogallol exposure also induced several changes in the gonad following exposure to 1, 5, or 10 mg/L. Deformed tubular structures, vacuolation, thickening of the basement membrane, hypertrophy of the seminiferous tubules, intense melanomacrophage localization, spermatozoa loss, and necrosis were all observed in the testes. In the ovary, atretic follicles, deteriorated mature oocytes, degenerated yolk globules, and an increase in perinucleolar oocytes were observed in catfish exposed to pyrogallol. These findings suggest that pyrogallol may act as endocrine disrupting substance in aquatic environments. Further research on the mechanisms by which pyrogallol impairs endocrine systems, particularly in fish, is recommended.
Collapse
Affiliation(s)
- Mohamed Hamed
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, 71524, Egypt; Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA 70803, USA.
| | - Rashad E M Said
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, 71524, Egypt
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Hamdy A M Soliman
- Department of Zoology, Faculty of Science, Sohag University, Sohag 8562, Egypt
| | - Alaa El-Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, Assiut 71516, Egypt; Molecular Biology Research & Studies Institute, Assiut University, 71516 Assiut, Egypt
| | - Alaa G M Osman
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut, 71524, Egypt
| |
Collapse
|
12
|
Hamed M, Soliman HAM, Said REM, Martyniuk CJ, Osman AGM, Sayed AEDH. Oxidative stress, antioxidant defense responses, and histopathology: Biomarkers for monitoring exposure to pyrogallol in Clarias gariepinus. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119845. [PMID: 38109825 DOI: 10.1016/j.jenvman.2023.119845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/19/2023] [Accepted: 12/03/2023] [Indexed: 12/20/2023]
Abstract
Pyrogallol promotes free radicals leading to oxidative stress and toxicity. There are however a lack of studies on oxidative stress and the antioxidant system of fish following exposure to pyrogallol. This study measured oxidative stress markers, antioxidant responses, and histological changes in catfish exposed to pyrogallol. Fish were divided into one of four experimental groups: control only, or 1, 5 or 10 mg/L pyrogallol. After 15 days, glutathione-S-transferase in the serum was decreased in fish exposed to either 5 or 10 mg/L pyrogallol relative to controls while superoxide dismutase and total antioxidant capacity were decreased significantly in fish exposed to 1, 5, or 10 mg/L pyrogallol. Conversely, catalase was increased in serum of fish exposed to 1, 5, or 10 mg/L pyrogallol compared to controls. The liver of fish treated with 1, 5, or 10 mg/L pyrogallol had significantly higher levels of oxidative stress markers (malondialdehyde, lipid peroxidation, hydroperoxide content, oxidised protein content, and DNA fragmentation %) that varied with concentration. Catfish exposed to either 1, 5, or 10 mg/L pyrogallol presented with notable histological alterations in the intestine, kidney, and muscles with prominent fibrosis, as intense deposition of collagen fibre was observed by Masson's trichrome staining. Overall, endpoints related to oxidative stress and antioxidant defence enzymes in fish may be early biomarkers of pyrogallol exposure and contamination in aquatic ecosystems. Additional studies should characterize oxidative stress indicators for their utility as biomarkers of effect.
Collapse
Affiliation(s)
- Mohamed Hamed
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut branch), Assiut, 71524, Egypt.
| | - Hamdy A M Soliman
- Department of Zoology, Faculty of Science, Sohag University, Sohag, 8562, Egypt
| | - Rashad E M Said
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut branch), Assiut, 71524, Egypt
| | - Christopher J Martyniuk
- Canter for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Alaa G M Osman
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut branch), Assiut, 71524, Egypt
| | - Alaa El-Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, Assiut 71516, Egypt.
| |
Collapse
|