1
|
Chen PHB, Li XL, Baskin JM. Synthetic Lipid Biology. Chem Rev 2025; 125:2502-2560. [PMID: 39805091 PMCID: PMC11969270 DOI: 10.1021/acs.chemrev.4c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Cells contain thousands of different lipids. Their rapid and redundant metabolism, dynamic movement, and many interactions with other biomolecules have justly earned lipids a reputation as a vexing class of molecules to understand. Further, as the cell's hydrophobic metabolites, lipids assemble into supramolecular structures─most commonly bilayers, or membranes─from which they carry out myriad biological functions. Motivated by this daunting complexity, researchers across disciplines are bringing order to the seeming chaos of biological lipids and membranes. Here, we formalize these efforts as "synthetic lipid biology". Inspired by the idea, central to synthetic biology, that our abilities to understand and build biological systems are intimately connected, we organize studies and approaches across numerous fields to create, manipulate, and analyze lipids and biomembranes. These include construction of lipids and membranes from scratch using chemical and chemoenzymatic synthesis, editing of pre-existing membranes using optogenetics and protein engineering, detection of lipid metabolism and transport using bioorthogonal chemistry, and probing of lipid-protein interactions and membrane biophysical properties. What emerges is a portrait of an incipient field where chemists, biologists, physicists, and engineers work together in proximity─like lipids themselves─to build a clearer description of the properties, behaviors, and functions of lipids and membranes.
Collapse
Affiliation(s)
- Po-Hsun Brian Chen
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Xiang-Ling Li
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Jeremy M Baskin
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
2
|
Structural determinants of REMORIN nanodomain formation in anionic membranes. Biophys J 2022:S0006-3495(22)03964-9. [PMID: 36582138 DOI: 10.1016/j.bpj.2022.12.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/02/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022] Open
Abstract
Remorins are a family of multigenic plasma membrane phosphoproteins involved in biotic and abiotic plant interaction mechanisms, partnering in molecular signaling cascades. Signaling activity of remorins depends on their phosphorylation states and subsequent clustering into nanosized membrane domains. The presence of a coiled-coil domain and a C-terminal domain is crucial to anchor remorins to negatively charged membrane domains; however, the exact role of the N-terminal intrinsically disordered domain (IDD) on protein clustering and lipid interactions is largely unknown. Here, we combine chemical biology and imaging approaches to study the partitioning of group 1 remorin into anionic model membranes mimicking the inner leaflet of the plant plasma membrane. Using reconstituted membranes containing a mix of saturated and unsaturated phosphatidylcholine, phosphatidylinositol phosphates, and sterol, we investigate the clustering of remorins to the membrane and monitor the formation of nanosized membrane domains. REM1.3 promoted membrane nanodomain organization on the exposed external leaflet of both spherical lipid vesicles and flat supported lipid bilayers. Our results reveal that REM1.3 drives a mechanism allowing lipid reorganization, leading to the formation of remorin-enriched nanodomains. Phosphorylation of the N-terminal IDD by the calcium protein kinase CPK3 influences this clustering and can lead to the formation of smaller and more disperse domains. Our work reveals the phosphate-dependent involvement of the N-terminal IDD in the remorin-membrane interaction process by driving structural rearrangements at lipid-water interfaces.
Collapse
|
3
|
Bechtella L, Chalouhi E, Milán Rodríguez P, Cosset M, Ravault D, Illien F, Sagan S, Carlier L, Lequin O, Fuchs PFJ, Sachon E, Walrant A. Structural Bases for the Involvement of Phosphatidylinositol-4,5-bisphosphate in the Internalization of the Cell-Penetrating Peptide Penetratin. ACS Chem Biol 2022; 17:1427-1439. [PMID: 35608167 DOI: 10.1021/acschembio.1c00974] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cell-penetrating peptides cross cell membranes through various parallel internalization pathways. Herein, we analyze the role of the negatively charged lipid phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) in the internalization of Penetratin. Contributions of both inner leaflet and outer leaflet pools of PI(4,5)P2 were revealed by quantifying the internalization of Penetratin in cells treated with PI(4,5)P2 binders. Studies on model systems showed that Penetratin has a strong affinity for PI(4,5)P2 and interacts selectively with this lipid, even in the presence of other negatively charged lipids, as demonstrated by affinity photo-crosslinking experiments. Differential scanning calorimetry experiments showed that Penetratin induces lateral segregation in PI(4,5)P2-containing liposomes, which was confirmed by coarse-grained molecular dynamics simulations. NMR experiments indicated that Penetratin adopts a stabilized helical conformation in the presence of PI(4,5)P2-containing membranes, with an orientation parallel to the bilayer plane, which was also confirmed by all-atom simulations. NMR and photo-crosslinking experiments also suggest a rather shallow insertion of the peptide in the membrane. Put together, our findings suggest that PI(4,5)P2 is a privileged interaction partner for Penetratin and that it plays an important role in Penetratin internalization.
Collapse
Affiliation(s)
- Leïla Bechtella
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, CNRS, 75005 Paris, France
| | - Edward Chalouhi
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, CNRS, 75005 Paris, France
| | - Paula Milán Rodríguez
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, CNRS, 75005 Paris, France
| | - Marine Cosset
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, CNRS, 75005 Paris, France
| | - Delphine Ravault
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, CNRS, 75005 Paris, France
| | - Françoise Illien
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, CNRS, 75005 Paris, France
| | - Sandrine Sagan
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, CNRS, 75005 Paris, France
| | - Ludovic Carlier
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, CNRS, 75005 Paris, France
| | - Olivier Lequin
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, CNRS, 75005 Paris, France
| | - Patrick F. J. Fuchs
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, CNRS, 75005 Paris, France
- Université de Paris, UFR Sciences du Vivant, 75013 Paris, France
| | - Emmanuelle Sachon
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, CNRS, 75005 Paris, France
- Sorbonne Université, Mass Spectrometry Sciences Sorbonne Université, MS3U platform, UFR 926, UFR 927, Paris 75005, France
| | - Astrid Walrant
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, CNRS, 75005 Paris, France
| |
Collapse
|
4
|
Cutrale F, Rodriguez D, Hortigüela V, Chiu CL, Otterstrom J, Mieruszynski S, Seriola A, Larrañaga E, Raya A, Lakadamyali M, Fraser SE, Martinez E, Ojosnegros S. Using enhanced number and brightness to measure protein oligomerization dynamics in live cells. Nat Protoc 2019; 14:616-638. [DOI: 10.1038/s41596-018-0111-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
5
|
Mu L, Tu Z, Miao L, Ruan H, Kang N, Hei Y, Chen J, Wei W, Gong F, Wang B, Du Y, Ma G, Amerein MW, Xia T, Shi Y. A phosphatidylinositol 4,5-bisphosphate redistribution-based sensing mechanism initiates a phagocytosis programing. Nat Commun 2018; 9:4259. [PMID: 30323235 PMCID: PMC6189171 DOI: 10.1038/s41467-018-06744-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 09/20/2018] [Indexed: 12/30/2022] Open
Abstract
Phagocytosis is one of the earliest cellular functions, developing approximately 2 billion years ago. Although FcR-based phagocytic signaling is well-studied, how it originated from ancient phagocytosis is unknown. Lipid redistribution upregulates a phagocytic program recapitulating FcR-based phagocytosis with complete dependence on Src family kinases, Syk, and phosphoinositide 3-kinases (PI3K). Here we show that in phagocytes, an atypical ITAM sequence in the ancient membrane anchor protein Moesin transduces signal without receptor activation. Plasma membrane deformation created by solid structure binding generates phosphatidylinositol 4,5-bisphosphate (PIP2) accumulation at the contact site, which binds the Moesin FERM domain and relocalizes Syk to the membrane via the ITAM motif. Phylogenic analysis traces this signaling using PI3K and Syk to 0.8 billion years ago, earlier than immune receptor signaling. The proposed general model of solid structure phagocytosis implies a preexisting lipid redistribution-based activation platform collecting intracellular signaling components for the emergence of immune receptors.
Collapse
Affiliation(s)
- Libing Mu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Institute for Immunology and Department of Basic Medical Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhongyuan Tu
- Department of Microbiology, Immunology & Infectious Diseases and Snyder Institute, University of Calgary, Calgary, T2N 4N1, AB, Canada
| | - Lin Miao
- Institute for Immunology and Department of Basic Medical Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
- School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Hefei Ruan
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Institute for Immunology and Department of Basic Medical Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ning Kang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Institute for Immunology and Department of Basic Medical Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yongzhen Hei
- Institute for Immunology and Department of Basic Medical Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jiahuan Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Institute for Immunology and Department of Basic Medical Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Fangling Gong
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Bingjie Wang
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, 100084, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, 100084, China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Matthias W Amerein
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, T2N 4N1, AB, Canada
- Snyder Institute of Chronic Diseases, University of Calgary, Calgary, T2N 4N1, AB, Canada
| | - Tie Xia
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Institute for Immunology and Department of Basic Medical Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yan Shi
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Institute for Immunology and Department of Basic Medical Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
- Department of Microbiology, Immunology & Infectious Diseases and Snyder Institute, University of Calgary, Calgary, T2N 4N1, AB, Canada.
| |
Collapse
|
6
|
Ermakova E, Zuev Y. Effect of ergosterol on the fungal membrane properties. All-atom and coarse-grained molecular dynamics study. Chem Phys Lipids 2017; 209:45-53. [PMID: 29122611 DOI: 10.1016/j.chemphyslip.2017.11.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/27/2017] [Accepted: 11/04/2017] [Indexed: 01/04/2023]
Abstract
Cell membranes are complex multicomponent systems consisting of thousands of different lipids with numerous embedded membrane proteins and many types of sterols. We used all-atom and coarse-grained molecular dynamics simulations to study the structural and dynamical properties of phospholipid bilayers containing four types of phospholipids and different amount of ergosterol, main sterol component in the fungal membranes. To characterize the influence of ergosterol on the membrane properties we analyzed the surface area per lipid, bilayer thickness, area compressibility modulus, mass density profiles, deuterium order parameters, and lateral diffusion coefficients. The presence of ergosterol induces the ordering of lipids leading to their denser packing, to reducing the lateral diffusion of lipids and lipid surface area, to increasing the thickness of bilayer and compressibility modulus. In addition, we evaluated each calculated property between the two simulation methods.
Collapse
Affiliation(s)
- Elena Ermakova
- Kazan Institute of Biochemistry and Biophysics RAS, Kazan, 420111, Russian Federation.
| | - Yuriy Zuev
- Kazan Institute of Biochemistry and Biophysics RAS, Kazan, 420111, Russian Federation; Kazan State Power Engineering University, Kazan, 420066, Russian Federation
| |
Collapse
|
7
|
Sarmento MJ, Coutinho A, Fedorov A, Prieto M, Fernandes F. Membrane Order Is a Key Regulator of Divalent Cation-Induced Clustering of PI(3,5)P 2 and PI(4,5)P 2. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:12463-12477. [PMID: 28961003 DOI: 10.1021/acs.langmuir.7b00666] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Although the evidence for the presence of functionally important nanosized phosphorylated phosphoinositide (PIP)-rich domains within cellular membranes has accumulated, very limited information is available regarding the structural determinants for compartmentalization of these phospholipids. Here, we used a combination of fluorescence spectroscopy and microscopy techniques to characterize differences in divalent cation-induced clustering of PI(4,5)P2 and PI(3,5)P2. Through these methodologies we were able to detect differences in divalent cation-induced clustering efficiency and cluster size. Ca2+-induced PI(4,5)P2 clusters are shown to be significantly larger than the ones observed for PI(3,5)P2. Clustering of PI(4,5)P2 is also detected at physiological concentrations of Mg2+, suggesting that in cellular membranes, these molecules are constitutively driven to clustering by the high intracellular concentration of divalent cations. Importantly, it is shown that lipid membrane order is a key factor in the regulation of clustering for both PIP isoforms, with a major impact on cluster sizes. Clustered PI(4,5)P2 and PI(3,5)P2 are observed to present considerably higher affinity for more ordered lipid phases than the monomeric species or than PI(4)P, possibly reflecting a more general tendency of clustered lipids for insertion into ordered domains. These results support a model for the description of the lateral organization of PIPs in cellular membranes, where both divalent cation interaction and membrane order are key modulators defining the lateral organization of these lipids.
Collapse
Affiliation(s)
- Maria J Sarmento
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, University of Lisbon , 1649-004 Lisbon, Portugal
- J. Heyrovský Inst. Physical Chemistry of the A.S.C.R. v.v.i. , 182 23 Prague, Czech Republic
| | - Ana Coutinho
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, University of Lisbon , 1649-004 Lisbon, Portugal
- Departamento de Química e Bioquímica, FCUL, University of Lisbon , 1649-004 Lisbon, Portugal
| | - Aleksander Fedorov
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, University of Lisbon , 1649-004 Lisbon, Portugal
| | - Manuel Prieto
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, University of Lisbon , 1649-004 Lisbon, Portugal
| | - Fábio Fernandes
- Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, University of Lisbon , 1649-004 Lisbon, Portugal
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa , Campus da Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
8
|
Dumas F, Haanappel E. Lipids in infectious diseases - The case of AIDS and tuberculosis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1636-1647. [PMID: 28535936 DOI: 10.1016/j.bbamem.2017.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 05/11/2017] [Accepted: 05/14/2017] [Indexed: 02/07/2023]
Abstract
Lipids play a central role in many infectious diseases. AIDS (Acquired Immune Deficiency Syndrome) and tuberculosis are two of the deadliest infectious diseases to have struck mankind. The pathogens responsible for these diseases, Human Immunodeficiency Virus-1 and Mycobacterium tuberculosis, rely on lipids and on lipid membrane properties to gain access to their host cells, to persist in them and ultimately to egress from their hosts. In this Review, we discuss the life cycles of these pathogens and the roles played by lipids and membranes. We then give an overview of therapies that target lipid metabolism, modulate host membrane properties or implement lipid-based drug delivery systems. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Collapse
Affiliation(s)
- Fabrice Dumas
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, France.
| | - Evert Haanappel
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, France
| |
Collapse
|
9
|
Drücker P, Pejic M, Grill D, Galla HJ, Gerke V. Cooperative binding of annexin A2 to cholesterol- and phosphatidylinositol-4,5-bisphosphate-containing bilayers. Biophys J 2015; 107:2070-81. [PMID: 25418092 DOI: 10.1016/j.bpj.2014.08.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 08/14/2014] [Accepted: 08/27/2014] [Indexed: 10/24/2022] Open
Abstract
Biological membranes are organized into dynamic microdomains that serve as sites for signal transduction and membrane trafficking. The formation and expansion of these microdomains are driven by intrinsic properties of membrane lipids and integral as well as membrane-associated proteins. Annexin A2 (AnxA2) is a peripherally associated membrane protein that can support microdomain formation in a Ca(2+)-dependent manner and has been implicated in membrane transport processes. Here, we performed a quantitative analysis of the binding of AnxA2 to solid supported membranes containing the annexin binding lipids phosphatidylinositol-4,5-bisphosphate and phosphatidylserine in different compositions. We show that the binding is of high specificity and affinity with dissociation constants ranging between 22.1 and 32.2 nM. We also analyzed binding parameters of a heterotetrameric complex of AnxA2 with its S100A10 protein ligand and show that this complex has a higher affinity for the same membranes with Kd values of 12 to 16.4 nM. Interestingly, binding of the monomeric AnxA2 and the AnxA2-S100A10 complex are characterized by positive cooperativity. This cooperative binding is mediated by the conserved C-terminal annexin core domain of the protein and requires the presence of cholesterol. Together our results reveal for the first time, to our knowledge, that AnxA2 and its derivatives bind cooperatively to membranes containing cholesterol, phosphatidylserine, and/or phosphatidylinositol-4,5-bisphosphate, thus providing a mechanistic model for the lipid clustering activity of AnxA2.
Collapse
Affiliation(s)
- Patrick Drücker
- Institute of Biochemistry, University of Muenster, Muenster, Germany
| | - Milena Pejic
- Institute of Medical Biochemistry, ZMBE, University of Muenster, Muenster, Germany
| | - David Grill
- Institute of Medical Biochemistry, ZMBE, University of Muenster, Muenster, Germany
| | | | - Volker Gerke
- Institute of Medical Biochemistry, ZMBE, University of Muenster, Muenster, Germany.
| |
Collapse
|
10
|
Graber ZT, Wang W, Singh G, Kuzmenko I, Vaknin D, Kooijman EE. Competitive cation binding to phosphatidylinositol-4,5-bisphosphate domains revealed by X-ray fluorescence. RSC Adv 2015. [DOI: 10.1039/c5ra19023a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Calcium ions bind strongly to PIP2 at physiological concentrations, leading to condensation and decreased effective charge for PIP2. Calcium displaces the more numerous magnesium and potassium ions, but some potassium ions remain.
Collapse
Affiliation(s)
- Z. T. Graber
- Department of Chemistry and Biochemistry
- Kent State University
- Kent
- USA
| | - W. Wang
- Ames Laboratory and Department of Physics and Astronomy
- Iowa State University
- Ames
- USA
| | - G. Singh
- Department of Physics
- Kent State University
- Kent
- USA
| | - I. Kuzmenko
- X-ray Science Division
- Advanced Photon Source
- Argonne National Laboratory
- Lemont
- USA
| | - D. Vaknin
- Ames Laboratory and Department of Physics and Astronomy
- Iowa State University
- Ames
- USA
| | - E. E. Kooijman
- Department of Biological Sciences
- Kent State University
- Kent
- USA
| |
Collapse
|
11
|
Drücker P, Grill D, Gerke V, Galla HJ. Formation and characterization of supported lipid bilayers containing phosphatidylinositol-4,5-bisphosphate and cholesterol as functional surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:14877-14886. [PMID: 25415330 DOI: 10.1021/la503203a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Solid-supported lipid bilayers (SLBs) mimicking a biological membrane are commonly used to investigate lipid-lipid or lipid-protein interactions. Simple binary or ternary lipid systems are well established, whereas more complex model membranes containing biologically important signaling lipids such as phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) and cholesterol have not been extensively described yet. Here we report the generation of such bilayers and their relevant biophysical properties and in particular the accessibility of PI(4,5)P2 for protein binding. Ternary mixtures of POPC with 20% cholesterol and either 3 or 5 mol % dioleoyl-phosphatidylinositol-4,5-bisphosphate were probed by employing the quartz crystal microbalance and atomic force microscopy. We show that these mixtures form homogeneous solid-supported bilayers that exhibit no intrinsic phase separation and are characterized by long-term stability (>8 h). Bilayers were formed in a pH-dependent manner and were characterized by the accessibility of PI(4,5)P2 on the SLB surface as shown by the interaction with the PI(4,5)P2 binding domain of the cortical membrane-cytoskeleton linker protein ezrin. A time-dependent reduction of PI(4,5)P2 levels in the upper leaflet of SLBs was observed, which could be effectively inhibited by the incorporation of a negatively charged lipid such as phosphatidylserine. Furthermore, quartz crystal microbalance measurements revealed that cholesterol affects bilayer adsorption to the solid support.
Collapse
Affiliation(s)
- Patrick Drücker
- Institute of Biochemistry and ‡Institute of Medical Biochemistry, ZMBE, University of Münster , D-48149 Münster, Germany
| | | | | | | |
Collapse
|
12
|
Martin TFJ. PI(4,5)P₂-binding effector proteins for vesicle exocytosis. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:785-93. [PMID: 25280637 DOI: 10.1016/j.bbalip.2014.09.017] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/20/2014] [Accepted: 09/23/2014] [Indexed: 12/27/2022]
Abstract
PI(4,5)P₂participates directly in priming and possibly in fusion steps of Ca²⁺-triggered vesicle exocytosis. High concentration nanodomains of PI(4,5)P₂reside on the plasma membrane of neuroendocrine cells. A subset of vesicles that co-localize with PI(4,5)P₂ domains appear to undergo preferential exocytosis in stimulated cells. PI(4,5)P₂directly regulates vesicle exocytosis by recruiting and activating PI(4,5)P₂-binding proteins that regulate SNARE protein function including CAPS, Munc13-1/2, synaptotagmin-1, and other C2 domain-containing proteins. These PI(4,5)P₂effector proteins are coincidence detectors that engage in multiple interactions at vesicle exocytic sites. The SNARE protein syntaxin-1 also binds to PI(4,5)P₂, which promotes clustering, but an activating role for PI(4,5)P₂in syntaxin-1 function remains to be fully characterized. Similar principles underlie polarized constitutive vesicle fusion mediated in part by the PI(4,5)P₂-binding subunits of the exocyst complex (Sec3, Exo70). Overall, focal vesicle exocytosis occurs at sites landmarked by PI(4,5)P2, which serves to recruit and/or activate multifunctional PI(4,5)P₂-binding proteins. This article is part of a Special Issue entitled Phosphoinositides.
Collapse
Affiliation(s)
- Thomas F J Martin
- Biochemistry Department, University of Wisconsin, 433 Babcock Drive, Madison, WI 53706, USA.
| |
Collapse
|
13
|
Ingólfsson HI, Melo MN, van Eerden FJ, Arnarez C, Lopez CA, Wassenaar TA, Periole X, de Vries AH, Tieleman DP, Marrink SJ. Lipid Organization of the Plasma Membrane. J Am Chem Soc 2014; 136:14554-9. [DOI: 10.1021/ja507832e] [Citation(s) in RCA: 577] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Helgi I. Ingólfsson
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Manuel N. Melo
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Floris J. van Eerden
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Clément Arnarez
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Cesar A. Lopez
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Tsjerk A. Wassenaar
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
- Computational
Biology, Department of Biology, University of Erlangen-Nürnberg, Staudtstr. 5, 91052 Erlangen, Germany
| | - Xavier Periole
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Alex H. de Vries
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - D. Peter Tieleman
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada
| | - Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
14
|
Slochower DR, Wang YH, Tourdot RW, Radhakrishnan R, Janmey PA. Counterion-mediated pattern formation in membranes containing anionic lipids. Adv Colloid Interface Sci 2014; 208:177-88. [PMID: 24556233 DOI: 10.1016/j.cis.2014.01.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/21/2014] [Accepted: 01/22/2014] [Indexed: 01/05/2023]
Abstract
Most lipid components of cell membranes are either neutral, like cholesterol, or zwitterionic, like phosphatidylcholine and sphingomyelin. Very few lipids, such as sphingosine, are cationic at physiological pH. These generally interact only transiently with the lipid bilayer, and their synthetic analogs are often designed to destabilize the membrane for drug or DNA delivery. However, anionic lipids are common in both eukaryotic and prokaryotic cell membranes. The net charge per anionic phospholipid ranges from -1 for the most abundant anionic lipids such as phosphatidylserine, to near -7 for phosphatidylinositol 3,4,5 trisphosphate, although the effective charge depends on many environmental factors. Anionic phospholipids and other negatively charged lipids such as lipopolysaccharides are not randomly distributed in the lipid bilayer, but are highly restricted to specific leaflets of the bilayer and to regions near transmembrane proteins or other organized structures within the plane of the membrane. This review highlights some recent evidence that counterions, in the form of monovalent or divalent metal ions, polyamines, or cationic protein domains, have a large influence on the lateral distribution of anionic lipids within the membrane, and that lateral demixing of anionic lipids has effects on membrane curvature and protein function that are important for biological control.
Collapse
Affiliation(s)
- David R Slochower
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yu-Hsiu Wang
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Richard W Tourdot
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ravi Radhakrishnan
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul A Janmey
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Departments of Physiology and Physics, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
15
|
Yandrapalli N, Muriaux D, Favard C. Lipid domains in HIV-1 assembly. Front Microbiol 2014; 5:220. [PMID: 24904536 PMCID: PMC4033000 DOI: 10.3389/fmicb.2014.00220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 04/26/2014] [Indexed: 12/14/2022] Open
Abstract
In CD+4 T cells, HIV-1 buds from the host cell plasma membrane. The viral Gag polyprotein is mainly responsible for this process. However, the intimate interaction of Gag and lipids at the plasma membrane as well as its consequences, in terms of lipids lateral organization and virus assembly, is still under debate. In this review we propose to revisit the role of plasma membrane lipids in HIV-1 Gag targeting and assembly, at the light of lipid membranes biophysics and literature dealing with Gag-lipid interactions.
Collapse
Affiliation(s)
- Naresh Yandrapalli
- Centre d'étude des Pathogènes et de Biotechnologies pour la Santé, CNRS UMR-5236 Montpellier Cedex, France
| | - Delphine Muriaux
- Centre d'étude des Pathogènes et de Biotechnologies pour la Santé, CNRS UMR-5236 Montpellier Cedex, France
| | - Cyril Favard
- Centre d'étude des Pathogènes et de Biotechnologies pour la Santé, CNRS UMR-5236 Montpellier Cedex, France
| |
Collapse
|
16
|
Jiang Z, Redfern RE, Isler Y, Ross AH, Gericke A. Cholesterol stabilizes fluid phosphoinositide domains. Chem Phys Lipids 2014; 182:52-61. [PMID: 24556334 DOI: 10.1016/j.chemphyslip.2014.02.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/06/2014] [Accepted: 02/07/2014] [Indexed: 11/19/2022]
Abstract
Local accumulation of phosphoinositides (PIPs) is an important factor for a broad range of cellular events including membrane trafficking and cell signaling. The negatively charged phosphoinositide headgroups can interact with cations or cationic proteins and this electrostatic interaction has been identified as the main phosphoinositide clustering mechanism. However, an increasing number of reports show that phosphoinositide-mediated signaling events are at least in some cases cholesterol dependent, suggesting other possible contributors to the segregation of phosphoinositides. Using fluorescence microscopy on giant unilamellar vesicles and monolayers at the air/water interface, we present data showing that cholesterol stabilizes fluid phosphoinositide-enriched phases. The interaction with cholesterol is observed for all investigated phosphoinositides (PI(4)P, PI(3,4)P2, PI(3,5)P2, PI(4,5)P2 and PI(3,4,5)P3) as well as phosphatidylinositol. We find that cholesterol is present in the phosphoinositide-enriched phase and that the resulting phase is fluid. Cholesterol derivatives modified at the hydroxyl group (cholestenone, cholesteryl ethyl ether) do not promote formation of phosphoinositide domains, suggesting an instrumental role of the cholesterol hydroxyl group in the observed cholesterol/phosphoinositide interaction. This leads to the hypothesis that cholesterol participates in an intermolecular hydrogen bond network formed among the phosphoinositide lipids. We had previously reported that the intra- and intermolecular hydrogen bond network between the phosphoinositide lipids leads to a reduction of the charge density at the phosphoinositide phosphomonoester groups (Kooijman et al., 2009). We believe that cholesterol acts as a spacer between the phosphoinositide lipids, thereby reducing the electrostatic repulsion, while participating in the hydrogen bond network, leading to its further stabilization. To illustrate the effect of phosphoinositide segregation on protein binding, we show that binding of the tumor suppressor protein PTEN to PI(5)P and PI(4,5)P2 is enhanced in the presence of cholesterol. These results provide new insights into how phosphoinositides mediate important cellular events.
Collapse
Affiliation(s)
- Zhiping Jiang
- Laboratory of Molecular Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Roberta E Redfern
- ProMedica Research Department, ProMedica Health System, Toledo, OH 43606, United States
| | - Yasmin Isler
- Academic Health Center BioRepository, ProMedica Health System, Toledo, OH 43606, United States
| | - Alonzo H Ross
- University of Massachusetts Medical School, Worcester, MA 01605, United States
| | - Arne Gericke
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA 01609, United States.
| |
Collapse
|