• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4748985)   Today's Articles (11787)
For: Kreft S, Schoch R, Schneidewind J, Rabeah J, Kondratenko EV, Kondratenko VA, Junge H, Bauer M, Wohlrab S, Beller M. Improving Selectivity and Activity of CO2 Reduction Photocatalysts with Oxygen. Chem 2019. [DOI: 10.1016/j.chempr.2019.04.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Number Cited by Other Article(s)
1
Ma M, Fang Y, Huang Z, Wu S, He W, Ge S, Zheng Z, Zhou Y, Fa W, Wang X. Mechanistic Insights Into H2O Dissociation in Overall Photo-/Electro-Catalytic CO2 Reduction. Angew Chem Int Ed Engl 2025;64:e202425195. [PMID: 40029965 DOI: 10.1002/anie.202425195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/01/2025] [Accepted: 03/02/2025] [Indexed: 03/18/2025]
2
Li X, Kang W, Fan X, Tan X, Masa J, Robertson AW, Jung Y, Han B, Texter J, Cheng Y, Dai B, Sun Z. Electrochemical CO2 reduction to liquid fuels: Mechanistic pathways and surface/interface engineering of catalysts and electrolytes. Innovation (N Y) 2025;6:100807. [PMID: 40098663 PMCID: PMC11910886 DOI: 10.1016/j.xinn.2025.100807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/14/2025] [Indexed: 03/19/2025]  Open
3
Scarpa de Souza EL, Neumann H, Roque Duarte Correia C, Beller M. Proposing Oxalic Acid as Chemical Storage of Carbon Dioxide to Achieve Carbon Neutrality. CHEMSUSCHEM 2025;18:e202401199. [PMID: 39630013 PMCID: PMC11789976 DOI: 10.1002/cssc.202401199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/29/2024] [Indexed: 02/04/2025]
4
Zhang Z, Wang Y, Xie Y, Tsukamoto T, Zhao Q, Huang Q, Huang X, Zhang B, Song W, Chen C, Sheng H, Zhao J. Floatable artificial leaf to couple oxygen-tolerant CO2 conversion with water purification. Nat Commun 2025;16:274. [PMID: 39747259 PMCID: PMC11696042 DOI: 10.1038/s41467-024-55753-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]  Open
5
Ni S, Wu W, Yang Z, Zhang M, Yang J. Influence of Copper Valence in CuOx/TiO2 Catalysts on the Selectivity of Carbon Dioxide Photocatalytic Reduction Products. NANOMATERIALS (BASEL, SWITZERLAND) 2024;14:1930. [PMID: 39683318 DOI: 10.3390/nano14231930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024]
6
Tee SY, Kong J, Koh JJ, Teng CP, Wang X, Wang X, Teo SL, Thitsartarn W, Han MY, Seh ZW. Structurally and surficially activated TiO2 nanomaterials for photochemical reactions. NANOSCALE 2024;16:18165-18212. [PMID: 39268929 DOI: 10.1039/d4nr02342k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
7
Li S, Hu J, Chen F, Chu S, Tang R, Wang S, An Q, Huang H. Surface-Integrating Oxygen Vacancy and CuxO Nanodots Enabling Synergistic Electric Field and Dual Catalytic Sites Boosting CO2 Photoreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024;20:e2402882. [PMID: 38773890 DOI: 10.1002/smll.202402882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/05/2024] [Indexed: 05/24/2024]
8
Wang N, Jiang W, Yang J, Feng H, Zheng Y, Wang S, Li B, Heng JZX, Ong WC, Tan HR, Zhang YW, Wang D, Ye E, Li Z. Contact-electro-catalytic CO2 reduction from ambient air. Nat Commun 2024;15:5913. [PMID: 39003260 PMCID: PMC11246423 DOI: 10.1038/s41467-024-50118-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 06/20/2024] [Indexed: 07/15/2024]  Open
9
Wang X, Liao H, Tan W, Song W, Li X, Ji J, Wei X, Wu C, Yin C, Tong Q, Peng B, Sun S, Wan H, Dong L. Surface Coordination Environment Engineering on PtxCu1-x Alloy Catalysts for the Efficient Photocatalytic Reduction of CO2 to CH4. ACS APPLIED MATERIALS & INTERFACES 2024;16:22089-22101. [PMID: 38651674 DOI: 10.1021/acsami.4c03861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
10
Bols ML, Ma J, Rammal F, Plessers D, Wu X, Navarro-Jaén S, Heyer AJ, Sels BF, Solomon EI, Schoonheydt RA. In Situ UV-Vis-NIR Absorption Spectroscopy and Catalysis. Chem Rev 2024;124:2352-2418. [PMID: 38408190 PMCID: PMC11809662 DOI: 10.1021/acs.chemrev.3c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
11
Su K, Yuan SX, Wu LY, Liu ZL, Zhang M, Lu TB. Nanoscale Janus Z-Scheme Heterojunction for Boosting Artificial Photosynthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023;19:e2301192. [PMID: 37069769 DOI: 10.1002/smll.202301192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/12/2023] [Indexed: 06/19/2023]
12
MXenes and their interfaces for the taming of carbon dioxide & nitrate: A critical review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
13
Wang K, Luo L, Wang C, Tang J. Photocatalytic methane activation by dual reaction sites co-modified WO3. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64169-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
14
Guo RT, Wang J, Bi ZX, Chen X, Hu X, Pan WG. Recent Advances and Perspectives of Core-Shell Nanostructured Materials for Photocatalytic CO2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023;19:e2206314. [PMID: 36515282 DOI: 10.1002/smll.202206314] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/14/2022] [Indexed: 06/17/2023]
15
Xie S, Deng C, Huang Q, Zhang C, Chen C, Zhao J, Sheng H. Facilitated Photocatalytic CO2 Reduction in Aerobic Environment on a Copper-Porphyrin Metal-Organic Framework. Angew Chem Int Ed Engl 2023;62:e202216717. [PMID: 36597591 DOI: 10.1002/anie.202216717] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
16
Yan K, Wu D, Wang T, Chen C, Liu S, Hu Y, Gao C, Chen H, Li B. Highly Selective Ethylene Production from Solar-Driven CO2 Reduction on the Bi2S3@In2S3 Catalyst with In–SV–Bi Active Sites. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
17
Park YH, Kim D, Hiragond CB, Lee J, Jung JW, Cho CH, In I, In SI. Phase-controlled 1T/2H-MoS2 interaction with reduced TiO2 for highly stable photocatalytic CO2 reduction into CO. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
18
Ni C, Huang M, Ren M, Li X, Yan X, Sun S. Effect of microstructure and reaction medium on photocatalytic performance and stability of BiO catalyst for CO2 reduction. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]  Open
19
Lai H, Huang X, Zhou F, Song T, Yin S, Mao G, Long B, Ali A, Deng GJ. Construction of dual active sites on the CuAg plasmonic aerogel for simultaneously efficient photocatalytic CO2 reduction and H2 production. J Colloid Interface Sci 2022;631:164-172. [DOI: 10.1016/j.jcis.2022.11.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022]
20
Li W, Ma DK, Hu X, Gou F, Yang X, MacSwain W, Qi C, Zheng W. General strategy for enhanced CH4 selectivity in photocatalytic CO2 reduction reactions by surface oxophilicity engineering. J Catal 2022. [DOI: 10.1016/j.jcat.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
21
Ali S, Abdul Nasir J, Nasir Dara R, Rehman Z. Modification strategies of metal oxide photocatalysts for clean energy and environmental applications: A review. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
22
Yang G, Xiong J, Lu M, Wang W, Li W, Wen Z, Li S, Li W, Chen R, Cheng G. Co-embedding oxygen vacancy and copper particles into titanium-based oxides (TiO2, BaTiO3, and SrTiO3) nanoassembly for enhanced CO2 photoreduction through surface/interface synergy. J Colloid Interface Sci 2022;624:348-361. [PMID: 35660903 DOI: 10.1016/j.jcis.2022.05.092] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
23
Wang J, Guo RT, Bi ZX, Chen X, Hu X, Pan WG. A review on TiO2-x-based materials for photocatalytic CO2 reduction. NANOSCALE 2022;14:11512-11528. [PMID: 35917276 DOI: 10.1039/d2nr02527b] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
24
Huang M, Wang T, Wu Z, Shang Y, Zhao Y, Li B. Rational fabrication of cadmium-sulfide/graphitic-carbon-nitride/hematite photocatalyst with type II and Z-scheme tandem heterojunctions to promote photocatalytic carbon dioxide reduction. J Colloid Interface Sci 2022;628:129-140. [PMID: 35987152 DOI: 10.1016/j.jcis.2022.08.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/28/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022]
25
Water coordinated on Cu(I)-based catalysts is the oxygen source in CO2 reduction to CO. Nat Commun 2022;13:2577. [PMID: 35562192 PMCID: PMC9095693 DOI: 10.1038/s41467-022-30289-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 04/12/2022] [Indexed: 11/21/2022]  Open
26
Huang M, Chen C, Wang T, Sui Q, Zhang K, Li B. Cadmium-sulfide/gold/graphitic-carbon-nitride sandwich heterojunction photocatalyst with regulated electron transfer for boosting carbon-dioxide reduction to hydrocarbon. J Colloid Interface Sci 2022;613:575-586. [DOI: 10.1016/j.jcis.2022.01.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
27
Pugliese E, Gotico P, Wehrung I, Boitrel B, Quaranta A, Ha-Thi MH, Pino T, Sircoglou M, Leibl W, Halime Z, Aukauloo A. Dissection of Light-Induced Charge Accumulation at a Highly Active Iron Porphyrin: Insights in the Photocatalytic CO2 Reduction. Angew Chem Int Ed Engl 2022;61:e202117530. [PMID: 35080122 DOI: 10.1002/anie.202117530] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Indexed: 11/09/2022]
28
Wang T, Chen L, Chen C, Huang M, Huang Y, Liu S, Li B. Engineering Catalytic Interfaces in Cuδ+/CeO2-TiO2 Photocatalysts for Synergistically Boosting CO2 Reduction to Ethylene. ACS NANO 2022;16:2306-2318. [PMID: 35137588 DOI: 10.1021/acsnano.1c08505] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
29
Xiong H, Dong Y, Liu D, Long R, Kong T, Xiong Y. Recent Advances in Porous Materials for Photocatalytic CO2 Reduction. J Phys Chem Lett 2022;13:1272-1282. [PMID: 35099983 DOI: 10.1021/acs.jpclett.1c03204] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
30
Pugliese E, Gotico P, Wehrung I, Boitrel B, Quaranta A, Ha‐Thi M, Pino T, Sircoglou M, Leibl W, Halime Z, Aukauloo A. Dissection of Light‐Induced Charge Accumulation at a Highly Active Iron Porphyrin: Insights in the Photocatalytic CO 2 Reduction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
31
Zhu X, Xiong J, Wang Z, Chen R, Cheng G, Wu Y. Metallic Copper-Containing Composite Photocatalysts: Fundamental, Materials Design, and Photoredox Applications. SMALL METHODS 2022;6:e2101001. [PMID: 35174995 DOI: 10.1002/smtd.202101001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/21/2021] [Indexed: 06/14/2023]
32
Chen C, Wang T, Yan K, Liu S, Zhao Y, Li B. Photocatalytic CO2 reduction on Cu single atoms incorporated in ordered macroporous TiO2 toward tunable products. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01155g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
33
Deng B, Huang M, Zhao X, Mou S, Dong F. Interfacial Electrolyte Effects on Electrocatalytic CO2 Reduction. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03501] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
34
Zhu Q, Cao Y, Tao Y, Li T, Zhang Y, Shang H, Song J, Li G. CO2 reduction to formic acid via NH2-C@Cu2O photocatalyst in situ derived from amino modified Cu-MOF. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101781] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
35
Xin Y, Yu K, Zhang L, Yang Y, Yuan H, Li H, Wang L, Zeng J. Copper-Based Plasmonic Catalysis: Recent Advances and Future Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021;33:e2008145. [PMID: 34050979 DOI: 10.1002/adma.202008145] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Indexed: 06/12/2023]
36
Mu YF, Zhang C, Zhang MR, Zhang W, Zhang M, Lu TB. Direct Z-Scheme Heterojunction of Ligand-Free FAPbBr3/α-Fe2O3 for Boosting Photocatalysis of CO2 Reduction Coupled with Water Oxidation. ACS APPLIED MATERIALS & INTERFACES 2021;13:22314-22322. [PMID: 33961390 DOI: 10.1021/acsami.1c01718] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
37
Xu Y, Zhang W, Su K, Feng YX, Mu YF, Zhang M, Lu TB. Glycine-Functionalized CsPbBr3 Nanocrystals for Efficient Visible-Light Photocatalysis of CO2 Reduction. Chemistry 2021;27:2305-2309. [PMID: 33107087 DOI: 10.1002/chem.202004682] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Indexed: 11/05/2022]
38
Chen L, Huang K, Xie Q, Lam SM, Sin JC, Su T, Ji H, Qin Z. The enhancement of photocatalytic CO2 reduction by the in situ growth of TiO2 on Ti3C2 MXene. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02212h] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
39
Yu X, Wen F, Zhang F, Yang P, Zhao Y, Wu Y, Wang Y, Liu Z. Photocatalytic Reduction of CO2 to CO over Quinacridone/BiVO4 Nanocomposites. CHEMSUSCHEM 2020;13:5565-5570. [PMID: 32830424 DOI: 10.1002/cssc.202001764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/15/2020] [Indexed: 06/11/2023]
40
Yin WJ, Wen B, Ge Q, Li XB, Teobaldi G, Liu LM. Activity and selectivity of CO2 photoreduction on catalytic materials. Dalton Trans 2020;49:12918-12928. [PMID: 32990705 DOI: 10.1039/d0dt02651d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
41
Li XB, Xin ZK, Xia SG, Gao XY, Tung CH, Wu LZ. Semiconductor nanocrystals for small molecule activation via artificial photosynthesis. Chem Soc Rev 2020;49:9028-9056. [DOI: 10.1039/d0cs00930j] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
42
Beller JN, Beller M. Spiers Memorial Lecture. Artificial photosynthesis: An introduction. Faraday Discuss 2019;215:9-14. [PMID: 31241641 DOI: 10.1039/c9fd90025j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA