1
|
Teh JL, Walvekar R, Ho KC, Khalid M. Biolubricants from waste cooking oil: A review of extraction technologies, conversion techniques, and performance enhancement using natural antioxidants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124267. [PMID: 39879924 DOI: 10.1016/j.jenvman.2025.124267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/26/2024] [Accepted: 01/19/2025] [Indexed: 01/31/2025]
Abstract
Effective management of agricultural and industrial by-products is essential for promoting circular economic practices and enhancing environmental sustainability. Agri-food wastes and waste cooking oil (WCO) represent two abundant residual streams with significant potential for sustainable biolubricant production. Valorizing biomass and WCO aligns with Sustainable Development Goal (SDG) 7, as it improves energy efficiency through enhanced lubricant performance and reduced energy loss. Furthermore, this sustainable approach contributes to SDG 12 and SDG 13 by minimizing waste production and accumulation, thereby mitigating negative environmental impacts and climate change. This critical review addresses existing gaps in the production of biolubricants from WCO and the incorporation of natural antioxidants as versatile additives. It examines and compares various techniques for the extraction, chemical and physical modification, and characterization of WCO-derived biolubricants. Specific methods, including esterification, transesterification, and antioxidant incorporation, are evaluated for their effectiveness in converting WCO into biolubricants. The review also discusses the influence of residual bioactive compounds on oxidative stability and lubricating properties. While vegetable oils demonstrate superior friction-reducing capabilities compared to petroleum-based lubricants, their triglyceride structure often results in poor oxidative stability, limiting their practical applications. Modification strategies and antioxidant inclusion are proposed to enhance this stability. A comprehensive analysis of the physicochemical properties and tribological performance of biolubricants, both pre- and post-processing, is presented. This systematic evaluation of extraction and upgrading methodologies aims to facilitate the development and industrial adoption of sustainable biolubricants.
Collapse
Affiliation(s)
- Jia Leang Teh
- Faculty of Innovation and Technology, School of Engineering, Chemical Engineering Programme, Taylor's University Malaysia, No.1 Jalan Taylor's, Subang Jaya, Selangor, 47500, Malaysia
| | - Rashmi Walvekar
- Department of Chemical and Process Engineering, University of Strathclyde, 75 Montrose Street, Glasgow, G1 1XJ, UK; Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh, 174103, India.
| | - Kah Chun Ho
- Faculty of Innovation and Technology, School of Engineering, Chemical Engineering Programme, Taylor's University Malaysia, No.1 Jalan Taylor's, Subang Jaya, Selangor, 47500, Malaysia
| | - Mohammad Khalid
- Materials and Manufacturing Research Group, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK; Faculty of Engineering, Manipal University Jaipur, Rajasthan, 303007, India; Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
2
|
Bertolucci V, Ninomiya AF, Longato GB, Kaneko LO, Nonose N, Scariot PPM, Messias LHD. Bioactive Compounds from Propolis on Bone Homeostasis: A Narrative Review. Antioxidants (Basel) 2025; 14:81. [PMID: 39857415 PMCID: PMC11762496 DOI: 10.3390/antiox14010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
This narrative review explores the potential effects of Propolis and its bioactive compounds on bone health. Propolis, a resinous product collected by bees, is renowned for its antimicrobial, anti-inflammatory, and antioxidant properties. Recent research emphasizes its positive role in osteogenesis, primarily through the modulation of osteoclast and osteoblast activity via molecular pathways. Key mechanisms include reducing inflammatory cytokines, protecting against oxidative stress, and upregulating growth factor essential for bone formation. While compounds such as Caffeic Acid Phenethyl Ester, Apigenin, Quercetin, and Ferulic Acid have been well-documented, emerging evidence points to the significant roles of less-studied compounds like Pinocembrin, Kaempferol, p-Coumaric acid, and Galangin. This review synthesizes the current literature, focusing on the mechanisms by which these bioactive compounds influence osteogenesis. Firstly, it explores the techniques for characterizing bioactive compounds presented in propolis, the chemogeographic variations in its composition, and the effects of both crude extracts and isolated compounds on bone tissue, offering a comprehensive analysis of recent findings across different experimental models. Further, it discusses the effects of Propolis compounds on bone health. In summary, these compounds modulate signaling pathways, including nuclear factor kappa beta, wingless-related integration site, mitogen-activated protein kinase, vascular endothelial growth factor, and reactive oxygen species. These pathways influence the receptor activator of nuclear factor kappa-β/receptor activator of nuclear factor kappa-β ligand/osteoprotegerin system, fostering bone cell differentiation. This regulation mitigates excessive osteoclast formation, stimulates osteoblast activity, and ultimately contributes to the restoration of bone homeostasis by maintaining a balanced bone remodeling process.
Collapse
Affiliation(s)
- Vanessa Bertolucci
- Research Group on Technology Applied to Exercise Physiology—GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil; (V.B.); (N.N.)
| | - André Felipe Ninomiya
- Research Group on Technology Applied to Exercise Physiology—GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil; (V.B.); (N.N.)
| | - Giovanna Barbarini Longato
- Research Laboratory in Molecular Pharmacology of Bioactive Compounds, São Francisco University, Bragança Paulista 12916-900, SP, Brazil;
| | - Luisa Oliveira Kaneko
- Research Group on Technology Applied to Exercise Physiology—GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil; (V.B.); (N.N.)
| | - Nilson Nonose
- Research Group on Technology Applied to Exercise Physiology—GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil; (V.B.); (N.N.)
| | - Pedro Paulo Menezes Scariot
- Research Group on Technology Applied to Exercise Physiology—GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil; (V.B.); (N.N.)
| | - Leonardo Henrique Dalcheco Messias
- Research Group on Technology Applied to Exercise Physiology—GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista 12916-900, SP, Brazil; (V.B.); (N.N.)
| |
Collapse
|
3
|
Sorita GD, Caicedo Chacon WD, Strieder MM, Rodriguez-García C, Fritz AM, Verruck S, Ayala Valencia G, Mendiola JA. Biorefining Brazilian Green Propolis: An Eco-Friendly Approach Based on a Sequential High-Pressure Extraction for Recovering High-Added-Value Compounds. Molecules 2025; 30:189. [PMID: 39795246 PMCID: PMC11722997 DOI: 10.3390/molecules30010189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Propolis is a valuable natural resource for extracting various beneficial compounds. This study explores a sustainable extraction approach for Brazilian green propolis. First, supercritical fluid extraction (SFE) process parameters were optimized (co-solvent: 21.11% v/v CPME, and temperature: 60 °C) to maximize yield, total phenolic content (TPC), antioxidant capacity, and LOX (lipoxygenase) inhibitory activity. GC-MS analysis identified 40 metabolites in SFE extracts, including fatty acids, terpenoids, phenolics, and sterols. After selecting the optimum SFE process parameters, a sequential high-pressure extraction (HPE) approach was developed, comprising SFE, pressurized liquid extraction (PLE) with EtOH/H2O, and subcritical water extraction (SWE). This process was compared to a similar sequential extraction using low-pressure extractions (LPE) with a Soxhlet extractor. The HPE process achieved a significantly higher overall yield (80.86%) than LPE (71.43%). SFE showed higher selectivity, resulting in a lower carbohydrate content in the non-polar fraction, and PLE extracted nearly twice the protein amount of LPE-2. Despite the HPE selectivity, LPE extracts exhibited better acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and LOX inhibition, demonstrating that the neuroprotective and anti-inflammatory activity of the extracts may be associated with a symbiosis of a set of compounds. Finally, a comprehensive greenness assessment revealed that the HPE process proved more sustainable and aligned with green chemistry principles than the LPE method.
Collapse
Affiliation(s)
- Guilherme Dallarmi Sorita
- Foodomics Laboratory, Institute of Food Science Research (CIAL) (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, Santa Catarina, Brazil
| | - Wilson Daniel Caicedo Chacon
- Foodomics Laboratory, Institute of Food Science Research (CIAL) (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, Santa Catarina, Brazil
| | - Monique Martins Strieder
- Foodomics Laboratory, Institute of Food Science Research (CIAL) (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), Universidade Estadual de Campinas, Campinas 13484-350, São Paulo, Brazil
| | - Camilo Rodriguez-García
- Foodomics Laboratory, Institute of Food Science Research (CIAL) (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain
- High Pressure Laboratory, Food Chemistry Research Group, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 30 No. 45-03, Bogotá D.C. 111321, Colombia
| | - Alcilene Monteiro Fritz
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, Santa Catarina, Brazil
| | - Silvani Verruck
- Department of Food Science and Technology, Federal University of Santa Catarina, Rodovia Admar Gonzaga, 1346, Itacorubi, Florianópolis 88034-000, Santa Catarina, Brazil
| | - Germán Ayala Valencia
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, Santa Catarina, Brazil
| | - José A. Mendiola
- Foodomics Laboratory, Institute of Food Science Research (CIAL) (CSIC-UAM), Nicolás Cabrera 9, 28049 Madrid, Spain
| |
Collapse
|
4
|
Sadeghi F, Kamali H, Kouhestanian S, Hadizadeh F, Nokhodchi A, Afrasiabi Garekani H. Supercritical CO 2 versus water as an antisolvent in the crystallization process to enhance dissolution rate of curcumin. Pharm Dev Technol 2022; 27:999-1008. [PMID: 36322612 DOI: 10.1080/10837450.2022.2143526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Antisolvent crystallization approach using either water (in conventional crystallization process (WAS)), or supercritical CO2 (in supercritical anti-solvent crystallization (SCAS)), was employed in presence of hydroxypropyl methylcellulose (HPMC) to enhance the dissolution of curcumin. The impact of pressure, temperature and depressurization time on the SCAS process was studied using the Box-Behnken design to achieve the highest saturation solubility. A physical mixture of curcumin-HPMC was prepared for comparison purposes. Saturation solubility, scanning electron microscopy, differential scanning calorimetry, X-ray diffraction analysis and Fourier transform infrared spectroscopy were conducted to characterize the solid-state characteristics of the crystallized samples. Dissolution studies helped in ascertaining the effects of the crystallization techniques on the performance of the formulation. Curcumin crystalized by different antisolvent displayed varied shapes, sizes, saturation solubility's and dissolution properties. In SCAS process, the maximum saturation solubility (2.83 µg/mL) was obtained when the pressure, temperature and depressurization time were 275 bars, 55 °C, and 22 min respectively. The SCAS samples showed the highest dissolution (70%) in 30 min compared to WAS (27%), physical mixture (18%) and unprocessed curcumin (16%). The improved dissolution rate of SCAS sample originates from the development of sponge-like particles with augmented porosity, decreased crystallinity as well as increased solubility of curcumin.
Collapse
Affiliation(s)
- Fatemeh Sadeghi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Kamali
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sepideh Kouhestanian
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, UK.,Lupin Pharmaceutical Research Center, Coral Springs, Florida, USA
| | - Hadi Afrasiabi Garekani
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Hashemi B, Shiri F, Švec F, Nováková L. Green solvents and approaches recently applied for extraction of natural bioactive compounds. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Recent progress on the recovery of bioactive compounds obtained from propolis as a natural resource: Processes, and applications. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Pattiram PD, Abas F, Suleiman N, Mohamad Azman E, Chong GH. Edible oils as a co-extractant for the supercritical carbon dioxide extraction of flavonoids from propolis. PLoS One 2022; 17:e0266673. [PMID: 35413072 PMCID: PMC9004773 DOI: 10.1371/journal.pone.0266673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 03/24/2022] [Indexed: 11/21/2022] Open
Abstract
Propolis is a good source for flavonoids, however, their recovery is challenging, as it is a waxy material. This study investigated edible oils virgin coconut oil (VCO), corn oil (CO), and ghee (G) as co-extractants for the supercritical carbon dioxide (scCO2) extraction of flavonoids from the propolis. The extraction of flavonoids using 20% VCO as co-extractant with scCO2 (25 g/min) for 210 min at 150 bar and 50°C was found to be the most appropriate, yielding a total flavonoid content (TFC) of 11.7 mg/g and 25% TFC recovery. At a higher temperature (60°C) and pressure (250 bar and 350 bar), the propolis became softer and compressed causing the extractions to retrograde. The extraction curves correlated to the diffusion model with 1.6% (AARD). The matrix diffusivities increased from 4.7 × 10−11 m2/s (scCO2) to 6.9 × 10−11–21.4 × 10−11 m2/s upon the addition of edible oils. Thus, edible oils could be used with scCO2 to improve the flavonoid extraction from propolis.
Collapse
Affiliation(s)
- Parveen Devi Pattiram
- Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Faridah Abas
- Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Norhidayah Suleiman
- Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Supercritical Fluid Center, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Ezzat Mohamad Azman
- Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Gun Hean Chong
- Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- Supercritical Fluid Center, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
- * E-mail:
| |
Collapse
|
8
|
Idham Z, Putra NR, Aziz AHA, Zaini AS, Rasidek NAM, Mili N, Yunus MAC. Improvement of extraction and stability of anthocyanins, the natural red pigment from roselle calyces using supercritical carbon dioxide extraction. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2021.101839] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Sadeghi F, Soleimanian Z, Hadizadeh F, Shirafkan A, Kamali H, Afrasiabi Garekani H. Anti-solvent crystallization of celecoxib in the presence of PVP for enhancing the dissolution rate: Comparison of water and supercritical CO2 as two antisolvents. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.11.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
BAKKALOGLU Z, ARICI M, KARASU S. Optimization of ultrasound-assisted extraction of turkish propolis and characterization of phenolic profile, antioxidant and antimicrobial activity. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.14520] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Optimization of Microwave-Assisted Alkali Pretreatment for Enhancement of Delignification Process of Cocoa Pod Husk. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2021. [DOI: 10.9767/bcrec.16.1.8872.31-43] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, the optimization of microwave-assisted alkaline (MAA) pretreatment is performed to attain the optimal operating parameters for the delignification of cocoa pod husk (CPH). The MAA performance was examined by heating the CPH solid with different particle sizes (60–120 mesh) and NaOH solution with a different sample to a solvent (SS) ratio (0.02–0.05 g/L), for short irradiation time (1–4 min). Box-Behnken Design (BBD) was utilized to optimize the percentage of lignocellulose composition changes. The results show that by enlarging particle size, the content of lignin and cellulose decreased while hemicellulose increased. By prolong irradiation time, the content of lignin and hemicellulose decreased while cellulose elevated. On the other hand, increasing the SS ratio was not significant for hemicellulose content changes. From FTIR and SEM characterization, the MAA drove the removal of lignin and hemicellulose of CPH and increased cellulose slightly. Supported by kinetic study which conducted in this work, it was exhibited that MAA pretreatment technology is an effective delignification method of CPH which can tackle the bottleneck of its commercial biofuel production. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
12
|
de Souza FG, Náthia-Neves G, de Araújo FF, Dias Audibert FL, Delafiori J, Neri-Numa IA, Catharino RR, de Alencar SM, de Almeida Meireles MA, Pastore GM. Evaluation of antioxidant capacity, fatty acid profile, and bioactive compounds from buritirana (Mauritiella armata Mart.) oil: A little-explored native Brazilian fruit. Food Res Int 2021; 142:110260. [PMID: 33773690 DOI: 10.1016/j.foodres.2021.110260] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/22/2021] [Accepted: 02/18/2021] [Indexed: 11/30/2022]
Abstract
Buritirana (Mauritiella armata Mart.) is a fruit species native to the Amazon and Cerrado region, belonging to the Arecaceae family. It has high nutritional and functional potential, yet little explored. In this study, we evaluated for the first time the overall yield, behavior of total carotenoids in the extraction kinetics, fatty acid profile, bioactive compounds, and the antioxidant capacity of the oil from buritirana fractions obtained by supercritical CO2. The highest extraction yield was found in the pulp and whole without seed at 60 °C (18.06 ± 0.40 and 14.55 ± 1.10 g 100 g-1 of the freeze-dried sample (fdw), respectively), and in the peel at 40 °C (8.31 ± 0.73 g 100 g-1 fdw). During the extraction kinetics, the pulp had the highest yields of oil (41.57%) and total carotenoids (8.34 mg g-1) after 61 min at 40 °C. The antioxidant potential, fatty acid profile, and α-tocopherol content were dependent on both fraction and temperature, with oleic acid being the main fatty acid. The oil from the whole fraction without seed had the largest number (20) of identified phenolic compounds. The extraction at 60 °C reduced the relative intensity of most compounds in the whole without seed and pulp. Moreover, it increased the intensity of the compounds in the peel. These results suggest that buritirana is a good oil source with great bioactive potential to produce new products with functional claims.
Collapse
Affiliation(s)
- Florisvaldo Gama de Souza
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil.
| | - Grazielle Náthia-Neves
- LASEFI - Department of Food Engineering, School of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Fábio Fernandes de Araújo
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil.
| | - Flavia Luísa Dias Audibert
- Innovare Laboratory of Biomarkers, Faculty of Pharmaceutical Sciences, University of Campinas, São Paulo, Brazil
| | - Jeany Delafiori
- Innovare Laboratory of Biomarkers, Faculty of Pharmaceutical Sciences, University of Campinas, São Paulo, Brazil
| | - Iramaia Angélica Neri-Numa
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Rodrigo Ramos Catharino
- Innovare Laboratory of Biomarkers, Faculty of Pharmaceutical Sciences, University of Campinas, São Paulo, Brazil
| | | | | | - Glaucia Maria Pastore
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
13
|
Yong H, Liu J. Active packaging films and edible coatings based on polyphenol‐rich propolis extract: A review. Compr Rev Food Sci Food Saf 2021; 20:2106-2145. [DOI: 10.1111/1541-4337.12697] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/17/2020] [Accepted: 12/06/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Huimin Yong
- College of Food Science and Engineering Yangzhou University Yangzhou PR China
| | - Jun Liu
- College of Food Science and Engineering Yangzhou University Yangzhou PR China
| |
Collapse
|
14
|
Supercritical Extraction of Red Propolis: Operational Conditions and Chemical Characterization. Molecules 2020; 25:molecules25204816. [PMID: 33092095 PMCID: PMC7587948 DOI: 10.3390/molecules25204816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/05/2022] Open
Abstract
The objective of this study was to determine the best operational conditions for obtaining red propolis extract with high antioxidant potential through supercritical fluid extraction (SFE) technology, using carbon dioxide (CO2) as the supercritical fluid and ethanol as the cosolvent. The following parameters were studied: overall extraction curve, S/F (mass of CO2/mass of sample), cosolvent percentage (0, 1, 2 and 4%) and global yield isotherms as a function of different pressures (250, 350 and 450 bar) and temperatures (31.7, 40 and 50 °C). Within the investigated parameters, the best conditions found were an S/F of 131 and the use of ethanol at the highest concentration (4% w/w), which resulted in higher extract yields and higher content of antioxidant compounds. Formononetin, the main biomarker of red propolis, was the compound found at the highest amounts in the extracts. As expected, the temperature and pressure conditions also influenced the process yield, with 350 bar and 40 °C being the best conditions for obtaining bioactive compounds from a sample of red propolis. The novel results for red propolis found in this study show that it is possible to obtain extracts with high antioxidant potential using a clean technology under the defined conditions.
Collapse
|
15
|
Zhang XH, Ma YX, Yi C, Qing XD, Liu Z, Zheng JJ, Lin F, Lv TF. Chemometrics-enhanced HPLC–DAD as a rapid and interference-free strategy for simultaneous quantitative analysis of flavonoids in Chinese propolis. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03543-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Oroian M, Ursachi F, Dranca F. Influence of ultrasonic amplitude, temperature, time and solvent concentration on bioactive compounds extraction from propolis. ULTRASONICS SONOCHEMISTRY 2020; 64:105021. [PMID: 32070901 DOI: 10.1016/j.ultsonch.2020.105021] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/22/2020] [Accepted: 02/11/2020] [Indexed: 05/28/2023]
Abstract
An ultrasound assisted method was investigated to extract bioactive compounds from propolis. This method was based on a simple ultrasound treatment using ethanol as an extraction medium to facilitate the disruption of the propolis cells. Four different variables were chosen for determining the influence on the extraction efficiency: ultrasonic amplitude, ethanol concentration, temperature and time; the variables were selected by Box-Behnken design experiments. These parameters were optimised in order to obtain the highest yield, and the results exhibited the optimum conditions for achieving the goal as 100% amplitude of ultrasonic treatment, 70% solvent concentration, 58 °C and 30 min. The extraction yield under modified optimum extraction conditions was, as follows: 459.92 mg GAE/g of TPC, 220.62 mg QE/g of TFC and 1.95% of balsam content. The results showed that the ultrasound assisted extraction was suitable for bioactive compounds extraction from propolis. The most abundant phenolic compound was kaempferol (228.8 mg/g propolis) followed by myricetin (115.5 mg/g propolis), luteolin (27.2 mg/g propolis) and quercetin (25.2 mg/g propolis).
Collapse
Affiliation(s)
- Mircea Oroian
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, Romania.
| | - Florin Ursachi
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, Romania
| | - Florina Dranca
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, Romania
| |
Collapse
|