1
|
Otake S, Chubachi S, Miyamoto J, Haneishi Y, Arai T, Iizuka H, Shimada T, Sakurai K, Okuzumi S, Kabata H, Asakura T, Miyata J, Irie J, Asano K, Nakamura H, Kimura I, Fukunaga K. Impact of smoking on gut microbiota and short-chain fatty acids in human and mice: Implications for COPD. Mucosal Immunol 2025; 18:353-365. [PMID: 39675727 DOI: 10.1016/j.mucimm.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 12/17/2024]
Abstract
We aimed to elucidate the dynamic changes in short-chain fatty acids (SCFA) produced by the gut microbiota following smoking exposure and their role in chronic obstructive pulmonary disease (COPD) pathogenesis. SCFA concentrations were measured in human plasma, comparing non-smokers (n = 6) and smokers (n = 12). Using a mouse COPD model induced by cigarette smoke exposure or elastase-induced emphysema, we modulated SCFA levels through dietary interventions and antibiotics to evaluate their effects on inflammation and alveolar destruction. Human smokers showed lower plasma SCFA concentrations than non-smokers, with plasma propionic acid positively correlating with forced expiratory volume in 1 s/forced vital capacity. Three-month smoking-exposed mice demonstrated altered gut microbiota and significantly reduced fecal SCFA concentrations compared to air-exposed controls. In these mice, a high-fiber diet increased fecal SCFAs and mitigated inflammation and alveolar destruction, while antibiotics decreased fecal SCFAs and exacerbated disease features. However, in the elastase-induced model, fecal SCFA concentration remained unchanged, and high-fiber diet or antibiotic interventions had no significant effect. These findings suggest that smoking exposure alters gut microbiota and SCFA production through its systemic effects. The anti-inflammatory properties of SCFAs may play a role in COPD pathogenesis, highlighting their potential as therapeutic targets.
Collapse
Affiliation(s)
- Shiro Otake
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Shinjuku-ku, 160-8582 Tokyo, Japan
| | - Shotaro Chubachi
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Shinjuku-ku, 160-8582 Tokyo, Japan.
| | - Junki Miyamoto
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, 183-8509 Tokyo, Japan.
| | - Yuri Haneishi
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, 183-8509 Tokyo, Japan
| | - Tetsuya Arai
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Shinjuku-ku, 160-8582 Tokyo, Japan
| | - Hideto Iizuka
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Shinjuku-ku, 160-8582 Tokyo, Japan
| | - Takashi Shimada
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Shinjuku-ku, 160-8582 Tokyo, Japan
| | - Kaori Sakurai
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Shinjuku-ku, 160-8582 Tokyo, Japan
| | - Shinichi Okuzumi
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, 183-8509 Tokyo, Japan
| | - Hiroki Kabata
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Shinjuku-ku, 160-8582 Tokyo, Japan.
| | - Takanori Asakura
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Shinjuku-ku, 160-8582 Tokyo, Japan; Department of Clinical Medicine (Laboratory of Bioregulatory Medicine), Kitasato University School of Pharmacy, 108-8641 Tokyo, Japan; Department of Respiratory Medicine, Kitasato University Kitasato Institute Hospital, 108-8642 Tokyo, Japan
| | - Jun Miyata
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Shinjuku-ku, 160-8582 Tokyo, Japan
| | - Junichiro Irie
- Department of Endocrinology, Metabolism and Nephrology, Keio University School of Medicine, Shinjuku-ku, 160-8582 Tokyo, Japan; Division of Diabetes, Department of Medicine 2, Kansai Medical University, 573-1191 Osaka, Japan
| | - Koichiro Asano
- Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, 259-1193 Kanagawa, Japan
| | - Hidetoshi Nakamura
- Department of Respiratory Medicine, Saitama Medical University, 350-0495 Saitama, Japan
| | - Ikuo Kimura
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, 606-8507 Kyoto, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Shinjuku-ku, 160-8582 Tokyo, Japan
| |
Collapse
|
2
|
Feng T, Cao J, Ma X, Wang X, Guo X, Yan N, Fan C, Bao S, Fan J. Animal models of chronic obstructive pulmonary disease: a systematic review. Front Med (Lausanne) 2024; 11:1474870. [PMID: 39512624 PMCID: PMC11540622 DOI: 10.3389/fmed.2024.1474870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/06/2024] [Indexed: 11/15/2024] Open
Abstract
Objective Experimental animal models have been used for decades to study the development and progression of chronic obstructive pulmonary disease (COPD). However, there is a lack of methods for constructing animal models of COPD for optimal modelling. This systematic literature review (SLR) aimed to assess the various methods used to establish COPD animal models, highlight their advantages and limitations, and explore more optimized approaches for establishing such models. Methods A systematic search was performed in four English databases (PubMed, Embase, Web of Science, and the Cochrane Library) and four Chinese databases (Chinese Biomedical Literature Database, China National Knowledge Infrastructure, China Science and Technology Journal Database, and Wanfang Database). Of the 8,015 retrieved full-text manuscripts, 453 were selected. Results Smoking (n = 140), smoking combined with lipopolysaccharide (LPS) (n = 275), smoking combined with protease drip (PPE) (n = 10), smoking combined with bacteria (n = 23), and smoking combined with particulate matter (PM2.5) (n = 5) were the most used methods for establishing animal models of COPD. Rats and mice were the most frequently selected experimental animals, with male animals accounting for 79.47% of the total. A total of 92.49 and 29.14% of the articles reviewed considered lung pathology of experimental animals only and lung pathology and lung function tests, respectively. Conclusion Our review suggests that the best way to establish an animal model of COPD is to combine smoking with LPS. Although findings from animal models of COPD cannot be directly extrapolated to human COPD, they could provide useful tools for further investigation into human COPD disease. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023407555, Identifier PROSPERO CRD42023407555.
Collapse
Affiliation(s)
- Tiantian Feng
- School of Public Health, Centre for Evidence-Based Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Juan Cao
- Department of Public Health, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiaoting Ma
- School of Nursing, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xinhua Wang
- School of Public Health, Centre for Evidence-Based Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiaolong Guo
- School of Public Health, Centre for Evidence-Based Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Na Yan
- School of Public Health, Centre for Evidence-Based Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Chunling Fan
- Department of Clinical Pharmacy, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - Shisan Bao
- School of Public Health, Centre for Evidence-Based Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jingchun Fan
- School of Public Health, Centre for Evidence-Based Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
3
|
Dong S, Liu Z, Chen H, Ma S, Wang F, Shen H, Li H, Zhang B. A synergistic mechanism of Liquiritin and Licochalcone B from Glycyrrhiza uralensis against COPD. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155664. [PMID: 38870751 DOI: 10.1016/j.phymed.2024.155664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/09/2024] [Accepted: 04/20/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Chronic Obstructive Pulmonary Disease (COPD) is a refractory respiratory disease mainly attributed to multiple pathological factors such as oxidative stress, infectious inflammation, and idiopathic fibrosis for decades. The medicinal plant Glycyrrhiza uralensis extract (ULE) was widely used to control respiratory diseases in China. However, the regulatory mechanism of scientific evidence to support the therapeutic benefits of ULE in the management of COPD is greatly limited. PURPOSE This study aims to discover the potential protection mechanism of ULE on COPD via a muti-targets strategy. STUDY DESIGN AND METHODS The present study set out to determine the potential protective effects of ULE on COPD through a multi-target strategy. In vivo and in vitro models of COPD were established using cigarette smoke and lipopolysaccharide to assess the protective effects of ULE. It was evaluated by measuring inflammatory cytokines and assessing pulmonary pathological changes. HPLC was used to verify the active compounds of the potential compounds that were collected and screened using HERB, works of literature, and ADME tools. The mechanisms of ULE in the treatment of COPD were explored using transcriptomics, connectivity-map, and network pharmacology approaches. The relevant targets were further investigated using RT-PCR, western blot, and immunohistochemistry. The HCK inhibitor (iHCK-37) was used to evaluate the potential mechanism of ULE's active compounds in the prevention of COPD. RESULTS ULE effectively protected the lungs of COPD mice from oxidative stress, inflammation, and fibrosis damage. After screening and verification using ADME properties and HPLC, 4 active compounds were identified in ULE: liquiritin (LQ), licochalcone B (LCB), licochalcone A (LCA), and echinatin (ET). Network pharmacology integrated with transcriptomics analysis showed that ULE mitigated oxidative stress, inflammation, and fibrosis in COPD by suppressing HCK. The combination of LCB and LQ was optimized for anti-inflammation, antioxidation, and anti-fibrosis activities. The iHCK-37 further validated the preventive treatment of LCB and LQ on COPD by inhibiting HCK to exert antioxidant, anti-inflammatory, and anti-fibrotic effects. The combination of LCB and LQ, in a 1:1 ratio, exerted synergistic antioxidative, anti-inflammatory, and anti-fibrotic effects in the treatment of COPD by downregulating HCK. CONCLUSION The combination of LCB and LQ performed a significant anti-COPD effect via downregulating HCK.
Collapse
Affiliation(s)
- Shi Dong
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, PR China; Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, 832003, PR China
| | - Zijing Liu
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, PR China
| | - Hongmei Chen
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, PR China
| | - Shaozhuang Ma
- Key Laboratory of Xinjiang Phytomedicine Resources and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, PR China
| | - Fei Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, 832003, PR China
| | - Haitao Shen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, 832003, PR China
| | - Hongbin Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, 832003, PR China.
| | - Bo Zhang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, PR China; Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, 832003, PR China.
| |
Collapse
|
4
|
Yang J, Shen X, Qin M, Zhou P, Huang FH, You Y, Wang L, Wu JM. Suppressing inflammatory signals and apoptosis-linked sphingolipid metabolism underlies therapeutic potential of Qing-Jin-Hua-Tan decoction against chronic obstructive pulmonary disease. Heliyon 2024; 10:e24336. [PMID: 38318072 PMCID: PMC10839876 DOI: 10.1016/j.heliyon.2024.e24336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Background Qing-Jin-Hua-Tan decoction (QJHTD) is a classic traditional Chinese medicine (TCM) prescription that first appeared in the ancient book Yi-Xue-Tong-Zhi. QJHTD has shown effectiveness for treating chronic obstructive pulmonary disease (COPD), although its mechanisms of action are still perplexing. The molecular mechanisms underlying the curative effects of QJHTD on COPD is worth exploring. Methods In vitro antiapoptotic and antiinflammatory activities of QJHTD were evaluated using cell viability, proliferation, apoptosis rate, and expression of IL-1β and TNF-α in BEAS-2B and RAW264.7 cells challenged with cigarette smoke (CS) extract (CSE) and lipopolysaccharide (LPS). In vivo therapeutic activities of QJHTD were evaluated using respiratory parameters (peak inspiratory flow (PIFb) and peak expiratory flow (PEFb) values), histopathology (mean linear intercept, MLI), and proinflammatory cytokine (IL-1β and TNF-α) and cleaved caspase-3 (c-Casp3) levels in the lung tissue of CS-LPS-exposed BALB/c mice. Network pharmacology-based prediction, transcriptomic analysis, and metabolic profiling were employed to investigate the signaling molecules and metabolites pertinent to the anti-COPD action of QJHTD. Results Increased cell viability and proliferation with decreased apoptosis rate and proinflammatory cytokine expression were noted after QJHTD intervention. QJHTD administration elevated PEFb and PIFb values, reduced MLI, and inhibited IL-1β, TNF-α, and c-Casp3 expression in vivo. Integrated network pharmacology-transcriptomics revealed that suppressing inflammatory signals (IL-1β, IL-6, TNF, IκB-NF-κB, TLR, and MAPK) and apoptosis contributed to the anti-COPD property of QJHTD. Metabolomic profiling unveiled prominent roles for the suppression of apoptosis and sphingolipid (SL) metabolism and the promotion of choline (Ch) metabolism in the anti-COPD effect of QJHTD. Integrative transcriptomics-metabolomics unraveled the correlation between SL metabolism and apoptosis. In silico molecular docking revealed that acacetin, as an active compound in QJHTD, could bind with high affinity to MEK1, MEK2, ERK1, ERK2, Bcl2, NF-κB, and alCDase target proteins. Conclusion The therapeutic effect of QJHTD on COPD is dependent on regulating inflammatory signals and apoptosis-directed SL metabolism. These findings provide deeper insights into the molecular mechanism of action of QJHTD against COPD and justify its theoretical promise in novel pharmacotherapy for this multifactorial disease.
Collapse
Affiliation(s)
- Jing Yang
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, PR China
- School of Pharmacy, Southwest Medical University, Luzhou 646000, PR China
| | - Xin Shen
- Department of Traditional Chinese Pharmacy, Chengdu First People's Hospital, Chengdu 610041, PR China
| | - Mi Qin
- School of Pharmacy, Southwest Medical University, Luzhou 646000, PR China
| | - Ping Zhou
- School of Pharmacy, Southwest Medical University, Luzhou 646000, PR China
| | - Fei-Hong Huang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, PR China
| | - Yun You
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, PR China
| | - Jian-Ming Wu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, PR China
| |
Collapse
|
5
|
Cantor J. Desmosine as a biomarker for the emergent properties of pulmonary emphysema. Front Med (Lausanne) 2023; 10:1322283. [PMID: 38164218 PMCID: PMC10758135 DOI: 10.3389/fmed.2023.1322283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024] Open
Abstract
Developing an effective treatment for pulmonary emphysema will require a better understanding of the molecular changes responsible for distention and rupture of alveolar walls. A potentially useful approach to studying this process involves the concept of emergence in which interactions at different levels of scale induce a phase transition comprising a spontaneous reorganization of chemical and physical systems. Recent studies in our laboratory provide evidence of this phenomenon in pulmonary emphysema by relating the emergence of airspace enlargement to the release of elastin-specific desmosine and isodesmosine (DID) crosslinks from damaged elastic fibers. When the mean alveolar diameter exceeded 400 μm, the level of peptide-free DID in human lungs was greatly increased, reflecting rapid acceleration of elastin breakdown, alveolar wall rupture, and a phase transition to an active disease state that is less responsive to treatment. Based on this finding, it is hypothesized that free DID in urine and other body fluids may serve as a biomarker for early detection of airspace enlargement, thereby facilitating timely therapeutic intervention and reducing the risk of respiratory failure.
Collapse
Affiliation(s)
- Jerome Cantor
- College of Pharmacy and Health Sciences, St John’s University, Queens, NY, United States
| |
Collapse
|
6
|
Lin Q, Zhang C, Weng H, Lin Y, Lin Y, Ruan Z. The utility of long non-coding RNAs in chronic obstructive pulmonary disease: a comprehensive analysis. BMC Pulm Med 2023; 23:340. [PMID: 37697291 PMCID: PMC10496340 DOI: 10.1186/s12890-023-02635-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/05/2023] [Indexed: 09/13/2023] Open
Abstract
OBJECTIVES Chronic obstructive pulmonary disease (COPD) is one of the main causes of morbidity and mortality in the world. However, there are some patients who are not diagnosed early and correctly through routine methods because of inconspicuous or serious symptoms. This study aims to assess the diagnostic role of long non-coding RNA (lncRNA) in COPD. METHODS We searched literature from electronic databases, after excluding non-COPD literature, the bibliometric analysis was performed, and VOSviewer software was used to represent the data analyzed. Literature evaluating the diagnostic test accuracy of lncRNA for COPD was eligible, and the QUADAS-2 checklist was used to evaluate the quality. The pooled sensitivity (SEN), specificity (SPE), diagnostic odds ratio (DOR), and summary receiver operating characteristic curve (sROC) were used to analyze the overall diagnostic performance. Subgroup and meta-regression analyses were performed to explore the heterogeneity, and a funnel plot was assessed for publication bias. Also, lncRNAs related to COPD were identified and explored for their potential biological function. RESULTS An increased annual growth rate of literature on this subject from 2016 focused on COPD, humans, RNA, and lncRNA. The meta-analysis enrolled 17 literature indicated that the SEN, SPE, and DOR differentiating COPD patients from normal controls (NCs) were 0.86 (95% CI [0.80, 0.90]), 0.78 (95% CI [0.67, 0.86]), and 21.59 (95% CI [11.39, 40.91]), respectively. Meanwhile, lncRNAs had the ability to distinguish acute exacerbations of COPD (AECOPD) patients from COPD; the SEN, SPE, and DOR were 0.75 (95% CI [0.62, 0.85]), 0.81 (95% CI [0.71, 0.89]), and 13.02 (95% CI [7.76, 21.85]), respectively. The area under the sROC were calculated to be greater than 0.8 at least. Subgroup and meta-regression analysis showed that the types of specimens and dysregulated lncRNAs might affect the diagnostic accuracy. The funnel plot showed there was a certain publication bias. 41 lncRNAs related to COPD were identified and mainly located in the nucleus and cytoplasm, associated with proliferation, invasion, and prognosis. These lncRNA-binding proteins were involved in the spliceosome, Rap1 signaling pathway, MAPK signaling pathway, and so on. CONCLUSION LncRNA suggests potential diagnostic biomarkers and therapeutic targets for COPD patients.
Collapse
Affiliation(s)
- Qi Lin
- Department of Pharmacy, The Affiliated Hospital of Putian University, Putian, Fujian Province, China.
- Pharmaceutical and Medical Technology College, Putian University, Putian, Fujian Province, China.
| | - Chaofeng Zhang
- Department of Hematology and Rheumatology, The Affiliated Hospital of Putian University, Putian, Fujian Province, China
- Key Laboratory of Translational Tumor Medicine in Fujian Province, Putian University, Putian, Fujian Province, China
| | - Huixin Weng
- Pharmaceutical and Medical Technology College, Putian University, Putian, Fujian Province, China
| | - Yating Lin
- Pharmaceutical and Medical Technology College, Putian University, Putian, Fujian Province, China
| | - Yucang Lin
- Department of Information, The Affiliated Hospital of Putian University, Putian, Fujian Province, China
| | - Zhipeng Ruan
- Pharmaceutical and Medical Technology College, Putian University, Putian, Fujian Province, China.
| |
Collapse
|
7
|
Thompson PJ, Criner GJ, Dransfield MT, Halpin DMG, Han MK, Lipson DA, Maghzal GJ, Martinez FJ, Midwinter D, Singh D, Tombs L, Wise RA. Effect of chronic mucus hypersecretion on treatment responses to inhaled therapies in patients with chronic obstructive pulmonary disease: Post hoc analysis of the IMPACT trial. Respirology 2022; 27:1034-1044. [PMID: 35970518 PMCID: PMC9804213 DOI: 10.1111/resp.14339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/18/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Chronic mucus hypersecretion (CMH) is a clinical phenotype of COPD. This exploratory post hoc analysis assessed relationship between CMH status and treatment response in IMPACT. METHODS Patients were randomized to once-daily fluticasone furoate/umeclidinium/vilanterol (FF/UMEC/VI) 100/62.5/25 μg, FF/VI 100/25 μg or UMEC/VI 62.5/25 μg and designated CMH+ if they scored 1/2 in St George's Respiratory Questionnaire (SGRQ) questions 1 and 2. Endpoints assessed by baseline CMH status included on-treatment exacerbation rates, change from baseline in trough forced expiratory volume in 1 second, SGRQ total score, COPD Assessment Test (CAT) score, proportion of SGRQ and CAT responders at Week 52 and safety. RESULTS Of 10,355 patients in the intent-to-treat population, 10,250 reported baseline SGRQ data (CMH+: 62% [n = 6383]). FF/UMEC/VI significantly (p < 0.001) reduced on-treatment moderate/severe exacerbation rates versus FF/VI and UMEC/VI in CMH+ (rate ratio: 0.87 and 0.72) and CMH- patients (0.82 and 0.80). FF/UMEC/VI significantly (p < 0.05) reduced on-treatment severe exacerbation rates versus UMEC/VI in CMH+ (0.62) and CMH- (0.74) subgroups. Similar improvements in health status and lung function with FF/UMEC/VI were observed, regardless of CMH status. In CMH+ patients, FF/VI significantly (p < 0.001) reduced on-treatment moderate/severe and severe exacerbation rates versus UMEC/VI (0.83 and 0.70). CONCLUSION FF/UMEC/VI had a favourable benefit: risk profile versus dual therapies irrespective of CMH status. The presence of CMH did not influence treatment response or exacerbations, lung function and/or health status. However, CMH did generate differences when dual therapies were compared and the impact of CMH should be considered in future trial design.
Collapse
Affiliation(s)
| | - Gerard J. Criner
- Lewis Katz School of Medicine at Temple UniversityPhiladelphiaPennsylvaniaUSA
| | - Mark T. Dransfield
- Division of Pulmonary, Allergy, and Critical Care Medicine, Lung Health CenterUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - David M. G. Halpin
- University of Exeter Medical School, College of Medicine and HealthUniversity of ExeterExeterUK
| | - MeiLan K. Han
- Pulmonary & Critical CareUniversity of MichiganAnn ArborMichiganUSA
| | - David A. Lipson
- GlaxoSmithKlineCollegevillePennsylvaniaUSA,Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | | | | | - Dave Singh
- Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, Manchester Academic Health Science CentreThe University of Manchester, Manchester University NHS Foundation Hospital TrustManchesterUK
| | | | - Robert A. Wise
- Division of Pulmonary and Critical Care MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
8
|
Zhu Z, Lian X, Bhatia M. Hydrogen Sulfide: A Gaseous Mediator and Its Key Role in Programmed Cell Death, Oxidative Stress, Inflammation and Pulmonary Disease. Antioxidants (Basel) 2022; 11:2162. [PMID: 36358533 PMCID: PMC9687070 DOI: 10.3390/antiox11112162] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/21/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Hydrogen sulfide (H2S) has been acknowledged as a novel gaseous mediator. The metabolism of H2S in mammals is tightly controlled and is mainly achieved by many physiological reactions catalyzed by a suite of enzymes. Although the precise actions of H2S in regulating programmed cell death, oxidative stress and inflammation are yet to be fully understood, it is becoming increasingly clear that H2S is extensively involved in these crucial processes. Since programmed cell death, oxidative stress and inflammation have been demonstrated as three important mechanisms participating in the pathogenesis of various pulmonary diseases, it can be inferred that aberrant H2S metabolism also functions as a critical contributor to pulmonary diseases, which has also been extensively investigated. In the meantime, substantial attention has been paid to developing therapeutic approaches targeting H2S for pulmonary diseases. In this review, we summarize the cutting-edge knowledge on the metabolism of H2S and the relevance of H2S to programmed cell death, oxidative stress and inflammation. We also provide an update on the crucial roles played by H2S in the pathogenesis of several pulmonary diseases. Finally, we discuss the perspective on targeting H2S metabolism in the treatment of pulmonary diseases.
Collapse
Affiliation(s)
- Zhixing Zhu
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362002, China
| | - Xihua Lian
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362002, China
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
| |
Collapse
|
9
|
Barnes PJ, Anderson GP, Fagerås M, Belvisi MG. Chronic lung diseases: prospects for regeneration and repair. Eur Respir Rev 2021; 30:30/159/200213. [PMID: 33408088 PMCID: PMC9488945 DOI: 10.1183/16000617.0213-2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
COPD and idiopathic pulmonary fibrosis (IPF) together represent a considerable unmet medical need, and advances in their treatment lag well behind those of other chronic conditions. Both diseases involve maladaptive repair mechanisms leading to progressive and irreversible damage. However, our understanding of the complex underlying disease mechanisms is incomplete; with current diagnostic approaches, COPD and IPF are often discovered at an advanced stage and existing definitions of COPD and IPF can be misleading. To halt or reverse disease progression and achieve lung regeneration, there is a need for earlier identification and treatment of these diseases. A precision medicine approach to treatment is also important, involving the recognition of disease subtypes, or endotypes, according to underlying disease mechanisms, rather than the current “one-size-fits-all” approach. This review is based on discussions at a meeting involving 38 leading global experts in chronic lung disease mechanisms, and describes advances in the understanding of the pathology and molecular mechanisms of COPD and IPF to identify potential targets for reversing disease degeneration and promoting tissue repair and lung regeneration. We also discuss limitations of existing disease measures, technical advances in understanding disease pathology, and novel methods for targeted drug delivery. Treatment outcomes with COPD and IPF are suboptimal. Better understanding of the diseases, such as targetable repair mechanisms, may generate novel therapies, and earlier diagnosis and treatment is needed to stop or even reverse disease progression.https://bit.ly/2Ga8J1g
Collapse
Affiliation(s)
- Peter J Barnes
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Gary P Anderson
- Lung Health Research Centre, University of Melbourne, Melbourne, Australia
| | | | - Maria G Belvisi
- National Heart & Lung Institute, Imperial College London, London, UK.,Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
10
|
Fuschillo S, Molino A, Stellato C, Motta A, Maniscalco M. Blood eosinophils as biomarkers of therapeutic response to chronic obstructive pulmonary disease: Still work in progress. Eur J Intern Med 2019; 68:1-5. [PMID: 31307853 DOI: 10.1016/j.ejim.2019.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/01/2019] [Accepted: 07/09/2019] [Indexed: 01/21/2023]
Abstract
Disease phenotyping is a key step towards an increasingly personalized approach to chronic obstructive pulmonary disease (COPD), leading to a more precise assessment, treatment and definition of disease outcomes. The search for biomarkers able to guide the identification of COPD phenotypes are of great importance for both researchers and clinicians. However, while several biomarkers of inflammation [e.g., peripheral blood eosinophils and fractional expired nitric oxide] have been identified and applied in asthma, none has been successfully linked to discrete clinical parameters of COPD such as exacerbations, natural progression, and treatment response or mortality risk. Recently, several studies have shown that blood eosinophils are a potential biomarker for patient subset stratification in COPD therapy. Here we reviewed the value of blood eosinophils in predicting the response of COPD patients to treatment.
Collapse
Affiliation(s)
- Salvatore Fuschillo
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Division of the Telese Terme Institute, Italy
| | - Antonio Molino
- Respiratory Division, Department of Respiratory Medicine, University of Naples "Federico II", 80131 Naples, Italy
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Salerno, Italy
| | - Andrea Motta
- Institute of Biomolecular Chemistry, National Research Council, 80078 Pozzuoli, Naples, Italy
| | - Mauro Maniscalco
- Istituti Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Division of the Telese Terme Institute, Italy.
| |
Collapse
|
11
|
Su Y, Luo H, Yang J. Heparin-binding EGF-like growth factor attenuates lung inflammation and injury in a murine model of pulmonary emphysema. Growth Factors 2018; 36:246-262. [PMID: 30600734 DOI: 10.1080/08977194.2018.1552270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pulmonary inflammation and progressive lung destruction are the major causes of chronic obstructive pulmonary disease (COPD), resulting in emphysema and irreversible pulmonary dysfunction. Heparin-binding EGF-like growth factor (HB-EGF), is known to play a protective role in the process of various inflammatory diseases. However, its effect on COPD is poorly understood. This study was designed to determine the effect of HB-EGF on lung inflammation and injury in a murine model of pulmonary emphysema. HB-EGF promoted percent survival and body weight, attenuated lung injury, inflammatory cells, and cytokines infiltration, and prevented lung function decline. Additionally, treatment of rHB-EGF suppressed the nuclear translocation of nuclear factor κB (NF-κB)/p65, decreased TUNEL-positive cells and the expression of caspase 3, and increased the expression of PCNA, HB-EGF, and EGF receptor (EGFR). We conclude that HB-EGF attenuates lung inflammation and injury, probably through the activation of EGFR, followed by suppression of NF-ΚB signalling, promotion of cell proliferation, and inhibition of apoptosis.
Collapse
Affiliation(s)
- Yanwei Su
- a School of Nursing, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Heng Luo
- b Department of Pathology, Union Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| | - Jixin Yang
- c Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College , Huazhong University of Science and Technology , Wuhan , China
| |
Collapse
|