1
|
Samet M, Yazdi M, Tajamolian M, Beygi M, Sheikhha MH, Hoseini SM. The Effect of Angiotensin-Converting Enzyme Insertion/Deletion Polymorphism on the Severity and Death Rate of COVID-19 in Iranian Patients. Biochem Genet 2024; 62:3568-3585. [PMID: 38145438 DOI: 10.1007/s10528-023-10614-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023]
Abstract
The study was designed to assess the association of ACE I/D polymorphism with the severity and prognosis of COVID-19 in the Iranian population. Hence, 186 adult patients were categorized into three clinical groups based on the severity of COVID-19: 1) Outpatients or mildly symptomatic patients as control (n = 71); 2) Hospitalized patients or severe symptomatic cases (n = 53); 3) Inpatients led to ICU/death or critically ill patients needed mechanical ventilation (n = 62). The possible association of ACE I/D polymorphism with the risk of comorbidities and serum level of C-reactive protein was evaluated in two severe cases. The results showed that the frequency of D and I alleles are 69.35% and 30.65%, respectively, in the total population. The analysis of allelic frequencies via Fisher's exact test confirmed significantly higher frequency of D allele in both severe groups than that in the mild one, 78.31% in Hospitalized patients (OR = 2.56; 95% CI 1.46 to 4.46; p-value = 0.0011) and 74.19% in Inpatients led to ICU/death (OR = 2.04; 95% CI = 1.22 to 3.43; p-value = 0.0094) compared to 58.45% in Outpatients. The results of genotype proportions displayed an association between COVID-19 severity and DD genotype. Overall, our findings in Iranian patients supported the undeniable role of the DD genotype in the intensity of the disease, comparable to other populations. Furthermore, there is no definite evidence regarding the protective effect of the I allele in our inquiry.
Collapse
Affiliation(s)
- Mohammad Samet
- Departments of Internal Medicine, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Mehran Yazdi
- Departments of Internal Medicine, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Masoud Tajamolian
- Medical Genetics Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahdi Beygi
- Medical Genetics Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Hasan Sheikhha
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Seyed Mehdi Hoseini
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran.
| |
Collapse
|
2
|
Benjamin KJM, Sauler M, Poonyagariyagorn H, Neptune ER. Cell type-specific expression of angiotensin receptors in the human lung with implications for health, aging, and chronic disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599425. [PMID: 38948835 PMCID: PMC11212981 DOI: 10.1101/2024.06.17.599425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The renin-angiotensin system is a highly characterized integrative pathway in mammalian homeostasis whose clinical spectrum has been expanded to lung disorders such as chronic obstructive pulmonary disease (COPD)-emphysema, idiopathic pulmonary fibrosis (IPF), and COVID pathogenesis. Despite this widespread interest, specific localization of this receptor family in the mammalian lung is limited, partially due to the imprecision of available antibody reagents. In this study, we establish the expression pattern of the two predominant angiotensin receptors in the human lung, AGTR1 and AGTR2, using complementary and comprehensive bulk and single-cell RNA-sequence datasets that are publicly available. We show these two receptors have distinct localization patterns and developmental trajectories in the human lung, pericytes for AGTR1 and a subtype of alveolar epithelial type 2 cells for AGTR2. In the context of disease, we further pinpoint AGTR2 localization to the COPD-associated subpopulation of alveolar epithelial type 2 (AT2B) and AGTR1 localization to fibroblasts, where their expression is upregulated in individuals with COPD, but not in individuals with IPF. Finally, we examine the genetic variation of the angiotensin receptors, finding AGTR2 associated with lung phenotype (i.e., cystic fibrosis) via rs1403543. Together, our findings provide a critical foundation for delineating this pathway's role in lung homeostasis and constructing rational approaches for targeting specific lung disorders.
Collapse
Affiliation(s)
- Kynon JM Benjamin
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maor Sauler
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Hataya Poonyagariyagorn
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Enid R Neptune
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Amirkhosravi A, Mirtajaddini Goki M, Heidari MR, Karami-Mohajeri S, Iranpour M, Torshabi M, Mehrabani M, Mandegary A, Mehrabani M. Combination of losartan with pirfenidone: a protective anti-fibrotic against pulmonary fibrosis induced by bleomycin in rats. Sci Rep 2024; 14:8729. [PMID: 38622264 PMCID: PMC11018867 DOI: 10.1038/s41598-024-59395-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 04/10/2024] [Indexed: 04/17/2024] Open
Abstract
Pirfenidone (PFD), one acceptable medication for treating idiopathic pulmonary fibrosis (IPF), is not well tolerated by patients at full doses. Hence, employing of some approaches such as combination therapy may be applicable for increasing therapeutic efficacy of PFD. Losartan (LOS), an angiotensin II receptor antagonist, could be a suitable candidate for combination therapy because of its stabilizing effect on the pulmonary function of IPF patients. Therefore, this study aimed to investigate the effects of LOS in combination with PFD on bleomycin (BLM)-induced lung fibrosis in rats. BLM-exposed rats were treated with LOS alone or in combination with PFD. The edema, pathological changes, level of transforming growth factor-β (TGF-β1), collagen content, and oxidative stress parameters were assessed in the lung tissues. Following BLM exposure, the inflammatory response, collagen levels, and antioxidant markers in rat lung tissues were significantly improved by PFD, and these effects were improved by combination with LOS. The findings of this in vivo study suggest that the combined administration of PFD and LOS may provide more potent protection against IPF than single therapy through boosting its anti-inflammatory, anti-fibrotic, and anti-oxidant effects. These results hold promise in developing a more effective therapeutic strategy for treating of lung fibrosis.
Collapse
Affiliation(s)
- Arian Amirkhosravi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Mahmoud Reza Heidari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Somayyeh Karami-Mohajeri
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Iranpour
- Department of Pathology, Pathology and Stem Cell Research Center, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Torshabi
- Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mitra Mehrabani
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Mandegary
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Mehrnaz Mehrabani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
4
|
Li H, Wang YG, Chen TF, Gao YH, Song L, Yang YF, Gao Y, Huo W, Zhang GP. Panax notoginseng saponin alleviates pulmonary fibrosis in rats by modulating the renin-angiotensin system. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116979. [PMID: 37532070 DOI: 10.1016/j.jep.2023.116979] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pulmonary fibrosis (PF) is a chronic, progressive, and often fatal interstitial lung disease. Traditional Chinese medicine formulations and their active ingredients have shown potential in the treatment of PF. Panax notoginseng saponin (PNS) is extracted from the widely used traditional Chinese medicinal herb Panax notoginseng (Burkill) F. H. Chen, exhibiting therapeutic effects in pulmonary diseases treatment. AIM OF THE STUDY This study aimed to investigate the effects and elucidate possible potential mechanisms of PNS on bleomycin (BLM)-induced PF in rats. MATERIALS AND METHODS PF was induced in rats by intratracheal administration of bleomycin (BLM, 5 mg/kg). After disease model induction, the rats were treated with PNS (50, 100, or 200 mg/kg per day) or pirfenidone (PFD, 50 mg/kg per day) for 28 days. Lung function, histopathological changes, collagen deposition, and E- and N-cadherin levels in lung tissue were evaluated. The mechanism of action of PNS was investigated using tandem mass tag-based quantitative proteomics analysis. Immunohistochemistry, enzyme-linked immunosorbent assay (ELISA), and Western blot analysis were performed to verify the proteomic results. RESULTS PNS treatment improved lung function, ameliorated the BLM-induced increase in the lung coefficient, attenuated the degree of alveolar inflammation and fibrosis, and reduced the elevated collagen level in PF rats. PNS treatment also down-regulated the expression of N-cadherin while up-regulating the expression of E-cadherin. Proteomic and bioinformatic analyses revealed that the renin-angiotensin system (RAS) was closely related to the therapeutic effect of PNS. Immunohistochemistry, Western blot, and ELISA results indicated that PNS exerted its anti-fibrotic effect via regulation of the balance between the angiotensin-converting enzyme (ACE)-angiotensin (Ang)II-AngII receptor type 1 (AT1R) and ACE2-Ang(1-7)-MasR axes. CONCLUSIONS PNS ameliorates BLM-induced PF in rats by modulating the RAS homeostasis, and is a new potential therapeutic agent for PF.
Collapse
Affiliation(s)
- Han Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100007, China.
| | - Yu-Guang Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Teng-Fei Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100007, China.
| | - Yun-Hang Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100007, China.
| | - Ling Song
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100007, China.
| | - Yi-Fei Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100007, China.
| | - Yue Gao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Wang Huo
- Department of Traditional Chinese Medicine, The Sixth Medical Center of PLA General Hospital, Beijing, 100048, China.
| | - Guang-Ping Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100007, China.
| |
Collapse
|
5
|
Luo W, Gu Y, Fu S, Wang J, Zhang J, Wang Y. Emerging opportunities to treat idiopathic pulmonary fibrosis: Design, discovery, and optimizations of small-molecule drugs targeting fibrogenic pathways. Eur J Med Chem 2023; 260:115762. [PMID: 37683364 DOI: 10.1016/j.ejmech.2023.115762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common fibrotic form of idiopathic diffuse lung disease. Due to limited treatment options, IPF patients suffer from poor survival. About ten years ago, Pirfenidone (Shionogi, 2008; InterMune, 2011) and Nintedanib (Boehringer Ingelheim, 2014) were approved, greatly changing the direction of IPF drug design. However, limited efficacy and side effects indicate that neither can reverse the process of IPF. With insights into the occurrence of IPF, novel targets and agents have been proposed, which have fundamentally changed the treatment of IPF. With the next-generation agents, targeting pro-fibrotic pathways in the epithelial-injury model offers a promising approach. Besides, several next-generation IPF drugs have entered phase II/III clinical trials with encouraging results. Due to the rising IPF treatment requirements, there is an urgent need to completely summarize the mechanisms, targets, problems, and drug design strategies over the past ten years. In this review, we summarize known mechanisms, target types, drug design, and novel technologies of IPF drug discovery, aiming to provide insights into the future development and clinical application of next-generation IPF drugs.
Collapse
Affiliation(s)
- Wenxin Luo
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yilin Gu
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Siyu Fu
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Jifa Zhang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| | - Yuxi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, Sichuan, China.
| |
Collapse
|
6
|
Young ON, Bourke JE, Widdop RE. Catch your breath: The protective role of the angiotensin AT 2 receptor for the treatment of idiopathic pulmonary fibrosis. Biochem Pharmacol 2023; 217:115839. [PMID: 37778444 DOI: 10.1016/j.bcp.2023.115839] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease whereby excessive deposition of extracellular matrix proteins (ECM) ultimately leads to respiratory failure. While there have been advances in pharmacotherapies for pulmonary fibrosis, IPF remains an incurable and irreversible disease. There remains an unmet clinical need for treatments that reverse fibrosis, or at the very least have a more tolerable side effect profile than currently available treatments. Transforming growth factor β1(TGFβ1) is considered the main driver of fibrosis in IPF. However, as our understanding of the role of the pulmonary renin-angiotensin system (PRAS) in the pathogenesis of IPF increases, it is becoming clear that targeting angiotensin receptors represents a potential novel treatment strategy for IPF - in particular, via activation of the anti-fibrotic angiotensin type 2 receptor (AT2R). This review describes the current understanding of the pathophysiology of IPF and the mediators implicated in its pathogenesis; focusing on TGFβ1, angiotensin II and related peptides in the PRAS and their contribution to fibrotic processes in the lung. Preclinical and clinical assessment of currently available AT2R agonists and the development of novel, highly selective ligands for this receptor will also be described, with a focus on compound 21, currently in clinical trials for IPF. Collectively, this review provides evidence of the potential of AT2R as a novel therapeutic target for IPF.
Collapse
Affiliation(s)
- Olivia N Young
- Department of Pharmacology and Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Jane E Bourke
- Department of Pharmacology and Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Robert E Widdop
- Department of Pharmacology and Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
7
|
Huang Z, Nie H, Liu G, Li P, Peng YH, Xiao J, Gu W, Li TS. Losartan alleviates renal fibrosis by inhibiting the biomechanical stress-induced epithelial-mesenchymal transition of renal epithelial cells. Arch Biochem Biophys 2023; 748:109770. [PMID: 37783367 DOI: 10.1016/j.abb.2023.109770] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/04/2023]
Abstract
Angiotensin receptor blockers (ARBs) have been reported to be beneficial of renal fibrosis, but the molecular and cellular mechanisms are still unclear. In this study, we investigated the effectiveness and relevant mechanism of ARBs in alleviating renal fibrosis, especially by focusing on biomechanical stress-induced epithelial to mesenchymal transition (EMT) of renal epithelial cells. Unilateral ureteral obstruction (UUO) renal fibrosis model was established in mice by ligating the left ureter, and then randomly received losartan at a low dose (1 mg/kg) or a regular dose (3 mg/kg) for 2 weeks. Compared to the control, histological analysis showed that losartan treatment at either a low dose or a regular dose effectively attenuated renal fibrosis in the UUO model. To further understand the mechanism, we ex vivo loaded primary human renal epithelial cells to 50 mmHg hydrostatic pressure. Western blot and immunostaining analyses indicated that the loading to 50 mmHg hydrostatic pressure for 24 h significantly upregulated vimentin, β-catenin and α-SMA, but downregulated E-cadherin in renal epithelial cells, suggesting the EMT. The addition of 10 or 100 nM losartan in medium effectively attenuated the EMT of renal epithelial cells induced by 50 mmHg hydrostatic pressure loading. Our in vivo and ex vivo experimental data suggest that losartan treatment, even at a low dose can effectively alleviate renal fibrosis in mouse UUO model, at least partly by inhibiting the biomechanical stress-induced EMT of renal epithelial cells. A low dose of ARBs may repurpose for renal fibrosis treatment.
Collapse
Affiliation(s)
- Zisheng Huang
- Department of Stem Cell Biology, Atomic Bomb Diseases Institute, Nagasaki University, Japan; Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Han Nie
- Department of Stem Cell Biology, Atomic Bomb Diseases Institute, Nagasaki University, Japan; Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Geng Liu
- Department of Stem Cell Biology, Atomic Bomb Diseases Institute, Nagasaki University, Japan; Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Peilin Li
- Department of Hepatopancreatobiliary Surgery, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Yong-Hua Peng
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Jie Xiao
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Weili Gu
- Department of Hepatopancreatobiliary Surgery, Guangzhou First People's Hospital, Guangzhou, 510180, China.
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Diseases Institute, Nagasaki University, Japan; Department of Stem Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| |
Collapse
|
8
|
Confalonieri F, Lumi X, Petrovski G. Spontaneous Epiretinal Membrane Resolution and Angiotensin Receptor Blockers: Case Observation, Literature Review and Perspectives. Biomedicines 2023; 11:1976. [PMID: 37509613 PMCID: PMC10377102 DOI: 10.3390/biomedicines11071976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/05/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
INTRODUCTION Epiretinal membrane (ERM) is a relatively common condition affecting the macula. When symptoms become apparent and compromise a patient's quality of vision, the only therapeutic approach available today is surgery with a vitrectomy and peeling of the ERM. Angiotensin receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors (ACE-Is) reduce the effect of angiotensin II, limit the amount of fibrosis, and demonstrate consequences on fibrinogenesis in the human body. Case Description and Materials and Methods: A rare case of spontaneous ERM resolution with concomitant administration of ARB is reported. The patient was set on ARB treatment for migraines and arterial hypertension, and a posterior vitreous detachment was already present at the first diagnosis of ERM. The scientific literature addressing the systemic relationship between ARB, ACE-Is, and fibrosis in the past 25 years was searched in the PubMed, Medline, and EMBASE databases. RESULTS In total, 38 and 16 original articles have been selected for ARBs and ACE-Is, respectively, in regard to fibrosis modulation. CONCLUSION ARBs and ACE-Is might have antifibrotic activity on ERM formation and resolution. Further clinical studies are necessary to explore this phenomenon.
Collapse
Affiliation(s)
- Filippo Confalonieri
- Department of Ophthalmology, Oslo University Hospital, Kirkeveien 166, 0450 Oslo, Norway
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway
| | - Xhevat Lumi
- Department of Ophthalmology, Oslo University Hospital, Kirkeveien 166, 0450 Oslo, Norway
- Eye Hospital, University Medical Centre Ljubljana, Zaloška Cesta 2, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Goran Petrovski
- Department of Ophthalmology, Oslo University Hospital, Kirkeveien 166, 0450 Oslo, Norway
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Institute for Clinical Medicine, University of Oslo, Kirkeveien 166, 0450 Oslo, Norway
- Department of Ophthalmology, University of Split School of Medicine and University Hospital Centre, 21000 Split, Croatia
| |
Collapse
|
9
|
Bozzao F, Tomietto P, Baratella E, Kodric M, Cifaldi R, Della Porta R, Prearo I, Pirronello SMG, Confalonieri P, Ruaro B, Fischetti F, Fabris B. Clinical Characterization and Predictive Factors for Progression in a Cohort of Patients with Interstitial Lung Disease and Features of Autoimmunity: The Need for a Revision of IPAF Classification Criteria. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:794. [PMID: 37109752 PMCID: PMC10146211 DOI: 10.3390/medicina59040794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023]
Abstract
Background and Objectives: The "interstitial pneumonia with autoimmune features" (IPAF) criteria have been criticized because of the exclusion of usual interstitial pneumonia (UIP) patients with a single clinical or serological feature. To classify these patients, the term UIPAF was proposed. This study aims to describe clinical characteristics and predictive factors for progression of a cohort of interstitial lung disease (ILD) patients with at least one feature of autoimmunity, applying criteria for IPAF, specific connective tissue diseases (CTD), and a definition of UIPAF when possible. Methods: We retrospectively evaluated data on 133 consecutive patients with ILD at onset associated with at least one feature of autoimmunity, referred by pulmonologists to rheumatologists from March 2009 to March 2020. Patients received 33 (16.5-69.5) months of follow-up. Results: Among the 101 ILD patients included, 37 were diagnosed with IPAF, 53 with ILD-onset CTD, and 11 with UIPAF. IPAF patients had a lower prevalence of UIP pattern compared to CTD-ILD and UIPAF patients (10.8% vs. 32.1% vs. 100%, p < 0.01). During the follow-up, 4 IPAF (10.8%) and 2 UIPAF (18.2%) patients evolved into CTD-ILD. IPAF patients presented features not included in IPAF criteria, such as sicca syndrome (8.1%), and were more frequently affected by systemic hypertension (p < 0.01). Over one year, ILD progression (greater extent of fibrosis on HRCT and/or decline in PFTs) was less frequent in the IPAF group compared to CTD-ILD and UIPAF (32.3% vs. 58.8% vs. 72.7, p = 0.02). A UIP pattern and an IPAF predicted a faster (OR: 3.80, p = 0.01) and a slower (OR: 0.28, p = 0.02) ILD progression, respectively. Conclusions: IPAF criteria help identify patients who might develop a CTD-ILD, even though a single clinical or serological feature is respected. Future revisions of IPAF criteria should include sicca syndrome and separate UIP-pattern into a different definition (UIPAF), given its association with a different prognosis, independently from ILD classification.
Collapse
Affiliation(s)
- Francesco Bozzao
- Internal Medicine Department, Azienda ULSS 2 “Marca Trevigiana”, 31100 Treviso, Italy
| | - Paola Tomietto
- Internal Medicine Department, Rheumatology Unit, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), 34128 Trieste, Italy
| | - Elisa Baratella
- Institute of Radiology, Department of Medical Surgical and Health Sciences, Cattinara Hospital, University of Trieste, 34128 Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34128 Trieste, Italy
| | - Metka Kodric
- Pneumology Unit, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), 34128 Trieste, Italy
| | - Rossella Cifaldi
- Pneumology Unit, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), 34128 Trieste, Italy
| | - Rossana Della Porta
- Pneumology Unit, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), 34128 Trieste, Italy
| | - Ilaria Prearo
- Vascular Medicine Unit, University Hospital LMU Munich, 81377 Munich, Germany
| | | | - Paola Confalonieri
- Pneumology Unit, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), 34128 Trieste, Italy
| | - Barbara Ruaro
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34128 Trieste, Italy
- Pneumology Unit, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), 34128 Trieste, Italy
| | - Fabio Fischetti
- Internal Medicine Department, Rheumatology Unit, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), 34128 Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34128 Trieste, Italy
| | - Bruno Fabris
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34128 Trieste, Italy
- Internal Medicine Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), 34128 Trieste, Italy
| |
Collapse
|
10
|
Zhang C, Ma Z, Nan X, Wang W, Zeng X, Chen J, Cai Z, Wang J. Comprehensive analysis to identify the influences of SARS-CoV-2 infections to inflammatory bowel disease. Front Immunol 2023; 14:1024041. [PMID: 36817436 PMCID: PMC9936160 DOI: 10.3389/fimmu.2023.1024041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) and inflammatory bowel disease (IBD) are both caused by a disordered immune response and have direct and profound impacts on health care services. In this study, we implemented transcriptomic and single-cell analysis to detect common molecular and cellular intersections between COVID-19 and IBD that help understand the linkage of COVID-19 to the IBD patients. METHODS Four RNA-sequencing datasets (GSE147507, GSE126124, GSE9686 and GSE36807) from Gene Expression Omnibus (GEO) database are extracted to detect mutual differentially expressed genes (DEGs) for IBD patients with the infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to find shared pathways, candidate drugs, hub genes and regulatory networks. Two single-cell RNA sequencing (scRNA-eq) datasets (GSE150728, PRJCA003980) are used to analyze the immune characteristics of hub genes and the proportion of immune cell types, so as to find common immune responses between COVID-19 and IBD. RESULTS A total of 121 common DEGs were identified among four RNA-seq datasets, and were all involved in the functional enrichment analysis related to inflammation and immune response. Transcription factors-DEGs interactions, miRNAs-DEGs coregulatory networks, and protein-drug interactions were identified based on these datasets. Protein-protein interactions (PPIs) was built and 59 hub genes were identified. Moreover, scRNA-seq of peripheral blood monocyte cells (PBMCs) from COVID-19 patients revealed a significant increase in the proportion of CD14+ monocytes, in which 38 of 59 hub genes were highly enriched. These genes, encoding inflammatory cytokines, were also highly expressed in inflammatory macrophages (IMacrophage) of intestinal tissues of IBD patients. CONCLUSIONS We conclude that COVID-19 may promote the progression of IBD through cytokine storms. The candidate drugs and DEGs-regulated networks may suggest effective therapeutic methods for both COVID-19 and IBD.
Collapse
Affiliation(s)
- Chengyan Zhang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Zeyu Ma
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xi Nan
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenhui Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianchang Zeng
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinming Chen
- Department of Anorectal, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhijian Cai
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
- Department of Orthopaedics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianli Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University, Hangzhou, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| |
Collapse
|
11
|
Kashyap MK, Bhat A, Janjua D, Rao R, Thakur K, Chhokar A, Aggarwal N, Yadav J, Tripathi T, Chaudhary A, Senrung A, Chandra Bharti A. Role of angiotensin in different malignancies. ANGIOTENSIN 2023:505-544. [DOI: 10.1016/b978-0-323-99618-1.00019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Cottin V, Bonniaud P, Cadranel J, Crestani B, Jouneau S, Marchand-Adam S, Nunes H, Wémeau-Stervinou L, Bergot E, Blanchard E, Borie R, Bourdin A, Chenivesse C, Clément A, Gomez E, Gondouin A, Hirschi S, Lebargy F, Marquette CH, Montani D, Prévot G, Quetant S, Reynaud-Gaubert M, Salaun M, Sanchez O, Trumbic B, Berkani K, Brillet PY, Campana M, Chalabreysse L, Chatté G, Debieuvre D, Ferretti G, Fourrier JM, Just N, Kambouchner M, Legrand B, Le Guillou F, Lhuillier JP, Mehdaoui A, Naccache JM, Paganon C, Rémy-Jardin M, Si-Mohamed S, Terrioux P. [French practical guidelines for the diagnosis and management of IPF - 2021 update, full version]. Rev Mal Respir 2022; 39:e35-e106. [PMID: 35752506 DOI: 10.1016/j.rmr.2022.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND Since the previous French guidelines were published in 2017, substantial additional knowledge about idiopathic pulmonary fibrosis has accumulated. METHODS Under the auspices of the French-speaking Learned Society of Pulmonology and at the initiative of the coordinating reference center, practical guidelines for treatment of rare pulmonary diseases have been established. They were elaborated by groups of writers, reviewers and coordinators with the help of the OrphaLung network, as well as pulmonologists with varying practice modalities, radiologists, pathologists, a general practitioner, a head nurse, and a patients' association. The method was developed according to rules entitled "Good clinical practice" in the overall framework of the "Guidelines for clinical practice" of the official French health authority (HAS), taking into account the results of an online vote using a Likert scale. RESULTS After analysis of the literature, 54 recommendations were formulated, improved, and validated by the working groups. The recommendations covered a wide-ranging aspects of the disease and its treatment: epidemiology, diagnostic modalities, quality criteria and interpretation of chest CT, indication and modalities of lung biopsy, etiologic workup, approach to familial disease entailing indications and modalities of genetic testing, evaluation of possible functional impairments and prognosis, indications for and use of antifibrotic therapy, lung transplantation, symptom management, comorbidities and complications, treatment of chronic respiratory failure, diagnosis and management of acute exacerbations of fibrosis. CONCLUSION These evidence-based guidelines are aimed at guiding the diagnosis and the management in clinical practice of idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- V Cottin
- Centre national coordonnateur de référence des maladies pulmonaires rares, service de pneumologie, hôpital Louis-Pradel, Hospices Civils de Lyon (HCL), Lyon, France; UMR 754, IVPC, INRAE, Université de Lyon, Université Claude-Bernard Lyon 1, Lyon, France; Membre d'OrphaLung, RespiFil, Radico-ILD2, et ERN-LUNG, Lyon, France.
| | - P Bonniaud
- Centre de référence constitutif des maladies pulmonaires rares, service de pneumologie et soins intensifs respiratoires, centre hospitalo-universitaire de Bourgogne et faculté de médecine et pharmacie, université de Bourgogne-Franche Comté, Dijon ; Inserm U123-1, Dijon, France
| | - J Cadranel
- Centre de référence constitutif des maladies pulmonaires rares, service de pneumologie et oncologie thoracique, Assistance publique-Hôpitaux de Paris (AP-HP), hôpital Tenon, Paris ; Sorbonne université GRC 04 Theranoscan, Paris, France
| | - B Crestani
- Centre de référence constitutif des maladies pulmonaires rares, service de pneumologie A, AP-HP, hôpital Bichat, Paris, France
| | - S Jouneau
- Centre de compétence pour les maladies pulmonaires rares de l'adulte, service de pneumologie, hôpital Pontchaillou, Rennes ; IRSET UMR1085, université de Rennes 1, Rennes, France
| | - S Marchand-Adam
- Centre de compétence pour les maladies pulmonaires rares de l'adulte, hôpital Bretonneau, service de pneumologie, CHRU, Tours, France
| | - H Nunes
- Centre de référence constitutif des maladies pulmonaires rares, service de pneumologie, AP-HP, hôpital Avicenne, Bobigny ; université Sorbonne Paris Nord, Bobigny, France
| | - L Wémeau-Stervinou
- Centre de référence constitutif des maladies pulmonaires rares, Institut Cœur-Poumon, service de pneumologie et immuno-allergologie, CHRU de Lille, Lille, France
| | - E Bergot
- Centre de compétence pour les maladies pulmonaires rares de l'adulte, service de pneumologie et oncologie thoracique, hôpital Côte de Nacre, CHU de Caen, Caen, France
| | - E Blanchard
- Centre de compétence pour les maladies pulmonaires rares de l'adulte, service de pneumologie, hôpital Haut Levêque, CHU de Bordeaux, Pessac, France
| | - R Borie
- Centre de référence constitutif des maladies pulmonaires rares, service de pneumologie A, AP-HP, hôpital Bichat, Paris, France
| | - A Bourdin
- Centre de compétence pour les maladies pulmonaires rares de l'adulte, département de pneumologie et addictologie, hôpital Arnaud-de-Villeneuve, CHU de Montpellier, Montpellier ; Inserm U1046, CNRS UMR 921, Montpellier, France
| | - C Chenivesse
- Centre de référence constitutif des maladies pulmonaires rares, service de pneumologie et d'immuno-allergologie, hôpital Albert Calmette ; CHRU de Lille, Lille ; centre d'infection et d'immunité de Lille U1019 - UMR 9017, Université de Lille, CHU Lille, CNRS, Inserm, Institut Pasteur de Lille, Lille, France
| | - A Clément
- Centre de ressources et de compétence de la mucoviscidose pédiatrique, centre de référence des maladies respiratoires rares (RespiRare), service de pneumologie pédiatrique, hôpital d'enfants Armand-Trousseau, CHU Paris Est, Paris ; Sorbonne université, Paris, France
| | - E Gomez
- Centre de compétence pour les maladies pulmonaires rares, département de pneumologie, hôpitaux de Brabois, CHRU de Nancy, Vandoeuvre-les Nancy, France
| | - A Gondouin
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie, CHU Jean-Minjoz, Besançon, France
| | - S Hirschi
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie, Nouvel Hôpital civil, Strasbourg, France
| | - F Lebargy
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie, CHU Maison Blanche, Reims, France
| | - C-H Marquette
- Centre de compétence pour les maladies pulmonaires rares, FHU OncoAge, département de pneumologie et oncologie thoracique, hôpital Pasteur, CHU de Nice, Nice cedex 1 ; Université Côte d'Azur, CNRS, Inserm, Institute of Research on Cancer and Aging (IRCAN), Nice, France
| | - D Montani
- Centre de compétence pour les maladies pulmonaires rares, centre national coordonnateur de référence de l'hypertension pulmonaire, service de pneumologie et soins intensifs pneumologiques, AP-HP, DMU 5 Thorinno, Inserm UMR S999, CHU Paris-Sud, hôpital de Bicêtre, Le Kremlin-Bicêtre ; Université Paris-Saclay, Faculté de médecine, Le Kremlin-Bicêtre, France
| | - G Prévot
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie, CHU Larrey, Toulouse, France
| | - S Quetant
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie et physiologie, CHU Grenoble Alpes, Grenoble, France
| | - M Reynaud-Gaubert
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie, AP-HM, CHU Nord, Marseille ; Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - M Salaun
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie, oncologie thoracique et soins intensifs respiratoires & CIC 1404, hôpital Charles Nicole, CHU de Rouen, Rouen ; IRIB, laboratoire QuantiIF-LITIS, EA 4108, université de Rouen, Rouen, France
| | - O Sanchez
- Centre de compétence pour les maladies pulmonaires rares, service de pneumologie et soins intensifs, hôpital européen Georges-Pompidou, AP-HP, Paris, France
| | | | - K Berkani
- Clinique Pierre de Soleil, Vetraz Monthoux, France
| | - P-Y Brillet
- Université Paris 13, UPRES EA 2363, Bobigny ; service de radiologie, AP-HP, hôpital Avicenne, Bobigny, France
| | - M Campana
- Service de pneumologie et oncologie thoracique, CHR Orléans, Orléans, France
| | - L Chalabreysse
- Service d'anatomie-pathologique, groupement hospitalier est, HCL, Bron, France
| | - G Chatté
- Cabinet de pneumologie et infirmerie protestante, Caluire, France
| | - D Debieuvre
- Service de pneumologie, GHRMSA, hôpital Emile-Muller, Mulhouse, France
| | - G Ferretti
- Université Grenoble Alpes, Grenoble ; service de radiologie diagnostique et interventionnelle, CHU Grenoble Alpes, Grenoble, France
| | - J-M Fourrier
- Association Pierre-Enjalran Fibrose Pulmonaire Idiopathique (APEFPI), Meyzieu, France
| | - N Just
- Service de pneumologie, CH Victor-Provo, Roubaix, France
| | - M Kambouchner
- Service de pathologie, AP-HP, hôpital Avicenne, Bobigny, France
| | - B Legrand
- Cabinet médical de la Bourgogne, Tourcoing ; Université de Lille, CHU Lille, ULR 2694 METRICS, CERIM, Lille, France
| | - F Le Guillou
- Cabinet de pneumologie, pôle santé de l'Esquirol, Le Pradet, France
| | - J-P Lhuillier
- Cabinet de pneumologie, La Varenne Saint-Hilaire, France
| | - A Mehdaoui
- Service de pneumologie et oncologie thoracique, CH Eure-Seine, Évreux, France
| | - J-M Naccache
- Service de pneumologie, allergologie et oncologie thoracique, GH Paris Saint-Joseph, Paris, France
| | - C Paganon
- Centre national coordonnateur de référence des maladies pulmonaires rares, service de pneumologie, hôpital Louis-Pradel, Hospices Civils de Lyon (HCL), Lyon, France
| | - M Rémy-Jardin
- Institut Cœur-Poumon, service de radiologie et d'imagerie thoracique, CHRU de Lille, Lille, France
| | - S Si-Mohamed
- Département d'imagerie cardiovasculaire et thoracique, hôpital Louis-Pradel, HCL, Bron ; Université de Lyon, INSA-Lyon, Université Claude-Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Villeurbanne, France
| | | |
Collapse
|
13
|
French practical guidelines for the diagnosis and management of idiopathic pulmonary fibrosis - 2021 update. Full-length version. Respir Med Res 2022; 83:100948. [PMID: 36630775 DOI: 10.1016/j.resmer.2022.100948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Since the latest 2017 French guidelines, knowledge about idiopathic pulmonary fibrosis has evolved considerably. METHODS Practical guidelines were drafted on the initiative of the Coordinating Reference Center for Rare Pulmonary Diseases, led by the French Language Pulmonology Society (SPLF), by a coordinating group, a writing group, and a review group, with the involvement of the entire OrphaLung network, pulmonologists practicing in various settings, radiologists, pathologists, a general practitioner, a health manager, and a patient association. The method followed the "Clinical Practice Guidelines" process of the French National Authority for Health (HAS), including an online vote using a Likert scale. RESULTS After a literature review, 54 guidelines were formulated, improved, and then validated by the working groups. These guidelines addressed multiple aspects of the disease: epidemiology, diagnostic procedures, quality criteria and interpretation of chest CT scans, lung biopsy indication and procedures, etiological workup, methods and indications for family screening and genetic testing, assessment of the functional impairment and prognosis, indication and use of antifibrotic agents, lung transplantation, management of symptoms, comorbidities and complications, treatment of chronic respiratory failure, diagnosis and management of acute exacerbations of fibrosis. CONCLUSION These evidence-based guidelines are intended to guide the diagnosis and practical management of idiopathic pulmonary fibrosis.
Collapse
|
14
|
Yeh JJ, Syue SH, Sun YF, Yeh YT, Zheng YC, Lin CL, Hsu CY, Kao CH. Hydroxychloroquine on the Pulmonary Vascular Diseases in Interstitial Lung Disease: Immunologic Effects, and Virus Interplay. Biomedicines 2022; 10:biomedicines10061290. [PMID: 35740313 PMCID: PMC9219797 DOI: 10.3390/biomedicines10061290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 02/05/2023] Open
Abstract
To investigate the effects of hydroxychloroquine (HCQ) drug use on the risk of pulmonary vascular disease (PVD) in an interstitial lung disease cohort (ILD cohort, ILD+ virus infection), we retrospectively enrolled the ILD cohort with HCQ (HCQ users, N = 4703) and the ILD cohort without HCQ (non-HCQ users, N = 4703) by time-dependence after propensity score matching. Cox models were used to analyze the risk of PVD. We calculated the adjusted hazard ratios (aHRs) and their 95% confidence intervals (CIs) for PVD after adjusting for sex, age, comorbidities, index date and immunosuppressants, such as steroids, etc. Compared with the HCQ nonusers, in HCQ users, the aHRs (95% CIs) for PVD were (2.24 (1.42, 3.54)), and the women’s aHRs for PVD were (2.54, (1.49, 4.35)). The aHRs based on the days of HCQ use for PVD of 28−30 days, 31−120 days, and >120 days were (1.27 (0.81, 1.99)), (3.00 (1.81, 4.87)) and (3.83 (2.46, 5.97)), respectively. The medium or long-term use of HCQ or young women receiving HCQ were associated with a higher aHR for PVD in the ILD cohort. These findings indicated interplay of the primary immunologic effect of ILD, comorbidities, women, age and virus in the HCQ users.
Collapse
Affiliation(s)
- Jun-Jun Yeh
- Department of Family Medicine, Geriatric Medicine, Chest Medicine and Medical Research, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600566, Taiwan;
- College of Medicine, China Medical University, Taichung 406040, Taiwan; (C.-L.L.); (C.Y.H.)
| | - Shih-Hueh Syue
- Department of Family Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600566, Taiwan; (S.-H.S.); (Y.-F.S.); (Y.-T.Y.); (Y.-C.Z.)
| | - Yi-Fun Sun
- Department of Family Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600566, Taiwan; (S.-H.S.); (Y.-F.S.); (Y.-T.Y.); (Y.-C.Z.)
| | - Yi-Ting Yeh
- Department of Family Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600566, Taiwan; (S.-H.S.); (Y.-F.S.); (Y.-T.Y.); (Y.-C.Z.)
| | - Ya-Chi Zheng
- Department of Family Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600566, Taiwan; (S.-H.S.); (Y.-F.S.); (Y.-T.Y.); (Y.-C.Z.)
| | - Cheng-Li Lin
- College of Medicine, China Medical University, Taichung 406040, Taiwan; (C.-L.L.); (C.Y.H.)
- Management Office for Health Data, China Medical University Hospital, China Medical University, Taichung 406040, Taiwan
| | - Chung Y. Hsu
- College of Medicine, China Medical University, Taichung 406040, Taiwan; (C.-L.L.); (C.Y.H.)
| | - Chia-Hung Kao
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, No. 2, Yuh-Der Road, Taichung 406040, Taiwan
- Department of Nuclear Medicine and PET Center, China Medical University Hospital, China Medical University, Taichung 406040, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
- Center of Augmented Intelligence in Healthcare, China Medical University Hospital, China Medical University, Taichung 406040, Taiwan
- Correspondence: or ; Tel.: +886-4-22052121
| |
Collapse
|
15
|
Fang Y, Zhang X. A propensity score-matching analysis of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker exposure on in-hospital mortality in patients with acute respiratory failure. Pharmacotherapy 2022; 42:387-396. [PMID: 35344607 PMCID: PMC9322533 DOI: 10.1002/phar.2677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 02/05/2023]
Abstract
STUDY OBJECTIVE To explore the impact of pre-hospital ACEI and ARB exposure on the prognosis of ARF patients. DESIGN A single-center retrospective cohort study. SETTING Medical Information Mart for Intensive Care-III (MIMIC-III) database. PATIENTS The patients meeting ICD-9 code of acute respiratory failure were enrolled. INTERVENTION The primary exposure was the pre-hospital exposure of ACEI and ARB. MEASUREMENT AND MAIN RESULTS The primary outcome was in-hospital mortality. Multiple logistic regression analysis was conducted to determine the independent effect of ACEI/ARB exposure on mortality. Propensity score matching (PSM) method was adopted to reduce bias of the confounders. Subgroup analysis and sensitivity analysis were used to test the stability of the conclusion. 5335 adult ARF patients were enrolled. Mortality was significantly decreased in patients with ACEI/ARB exposure before and after PSM, and the adjusted odds ratio (OR) of ACEI/ARB exposure was 0.56 (95% CI 0.43-0.72). In the subgroup analysis, ACEI/ARB lost its protective effect in young subgroup, but no significant interaction was found between ACEI/ARB exposure and age (p = 0.082). The point estimation and lower 95% limit of E-value was 2.97 and 2.12. In sensitivity analysis, ACEI/ARB exposure showed similar effect in ARDS cohort, but no significantly difference was found in the MIMIC-IV database, which may be explained by small sample size of the ACEI/ARB group. CONCLUSIONS Among patients with acute respiratory failure, pre-hospital ACEI/ARB exposure was associated with better outcomes and acted as an independent factor. The relationship between ACEI/ARB and prognosis of ARF is worth investigating further.
Collapse
Affiliation(s)
- Yi‐Peng Fang
- Laboratory of Molecular CardiologyThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
- Laboratory of Medical Molecular ImagingThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
- Shantou University Medical CollegeShantouChina
| | - Xin Zhang
- Laboratory of Molecular CardiologyThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
- Laboratory of Medical Molecular ImagingThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
- Shantou University Medical CollegeShantouChina
| |
Collapse
|
16
|
Zhang WT, Wang XJ, Xue CM, Ji XY, Pan L, Weng WL, Li QY, Hua GD, Zhu BC. The Effect of Cardiovascular Medications on Disease-Related Outcomes in Idiopathic Pulmonary Fibrosis: A Systematic Review and Meta-Analysis. Front Pharmacol 2021; 12:771804. [PMID: 34858190 PMCID: PMC8632524 DOI: 10.3389/fphar.2021.771804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/11/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Multiple studies have revealed that idiopathic pulmonary fibrosis (IPF) patients are more at risk for cardiovascular diseases and that many IPF patients receive cardiovascular medications like statins, angiotensin-converting enzyme inhibitor (ACEI), angiotensin receptor blocker (ARB), and anticoagulants. Existing studies have reported divergent findings on the link between cardiovascular medications and fibrotic disease processes. The aim of this study is to synthesize the evidence on the efficacy of cardiovascular medications in IPF. Methods: We searched studies reporting the effect of cardiovascular medications on IPF in the PubMed, Embase, Web of Science, Cochrane Library, and two Chinese databases (China National Knowledge Infrastructure database and China Wanfang database). We calculated survival data, forced vital capacity (FVC) decline, and IPF-related mortality to assess the efficacy of cardiovascular medications in IPF. We also estimated statistical heterogeneity by using I2 and Cochran Q tests, and publication bias was evaluated by risk of bias tools ROBINS-I. Results: A total of 12 studies were included in the analysis. The included studies had moderate-to-serious risk of bias. Statin use was associated with a reduction in mortality (hazard ratio (HR), 0.89; 95% CI 0.83-0.97). Meta-analysis did not demonstrate any significant relationship between statin use and the FVC decline (HR, 0.86; 95% CI 0.73-1.02), ACEI/ARB use, and survival data (HR, 0.92; 95% CI 0.73-1.15) as well as anticoagulant use and survival data (HR, 1.16; 95% CI 0.62-2.19). Conclusion: Our study suggested that there is a consistent relationship between statin therapy and survival data in IPF population. However, there is currently insufficient evidence to conclude the effect of ACEI, ARB, and anticoagulant therapy on IPF population especially to the disease-related outcomes in IPF.
Collapse
Affiliation(s)
- Wan-Tong Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xu-Jie Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chun-Miao Xue
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xin-Yu Ji
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lin Pan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wei-Liang Weng
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Qiu-Yan Li
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Guo-Dong Hua
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Bao-Chen Zhu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
17
|
Yeh JJ, Lin CL, Hsu NH, Kao CH. Effects of statins and steroids on coronary artery disease and stroke in patients with interstitial lung disease and pulmonary fibrosis: A general population study. PLoS One 2021; 16:e0259153. [PMID: 34705851 PMCID: PMC8550436 DOI: 10.1371/journal.pone.0259153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 10/11/2021] [Indexed: 11/19/2022] Open
Abstract
Purpose To determine the effects of statins and steroids on the risk of coronary artery disease (CAD) and stroke in patients with interstitial lung disease and pulmonary fibrosis (ILD-PF). Methods We retrospectively enrolled patients with ILD-PF who were using statins (statin cohort, N = 11,567) and not using statins (nonstatin cohort, N = 26,159). Cox proportional regression was performed to analyze the cumulative incidence of CAD and stroke. Adjusted hazard ratios (aHRs) and 95% confidence intervals (CIs) of CAD and stroke were determined after sex, age, and comorbidities, as well as the use of inhaler corticosteroids (ICSs), oral steroids (OSs), and statins, were controlled for. Results Compared with those of patients without statin use, the aHRs (95% CIs) of patients with statin use for CAD and ischemic stroke were 0.72 (0.65–0.79) and 0.52 (0.38–0.72), respectively. For patients taking single-use statins but not ICSs/OSs, the aHRs (95% CIs) for CAD and ischemic stroke were 0.72 (0.65–0.79)/0.69 (0.61–0.79) and 0.54 (0.39–0.74)/0.50 (0.32–0.79), respectively. For patients using ICSs/OSs, the aHRs (95% CIs) for CAD and ischemic stroke were 0.71 (0.42–1.18)/0.74 (0.64–0.85) and 0.23 (0.03–1.59)/0.54 (0.35–0.85), respectively. Conclusions The findings demonstrate that statin use, either alone or in combination with OS use, plays an auxiliary role in the management of CAD and ischemic stroke in patients with ILD-PF.
Collapse
Affiliation(s)
- Jun-Jun Yeh
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
- China medical university, Taichung, Taiwan
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Nai-Hua Hsu
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Chia-Hung Kao
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan
- Department of Nuclear Medicine and PET Center, China Medical University Hospital, Taichung, Taiwan
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan
- Center of Augmented Intelligence in Healthcare, China Medical University Hospital, Taichung, Taiwan
- * E-mail: ,
| |
Collapse
|
18
|
Mann J, Goh NSL, Holland AE, Khor YH. Cough in Idiopathic Pulmonary Fibrosis. FRONTIERS IN REHABILITATION SCIENCES 2021; 2:751798. [PMID: 36188759 PMCID: PMC9397801 DOI: 10.3389/fresc.2021.751798] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/20/2021] [Indexed: 11/25/2022]
Abstract
Chronic cough is experienced by most patients with idiopathic pulmonary fibrosis (IPF). It is often the first symptom and is associated with reduced quality of life, increased rates of depression and anxiety, more severe physiological impairment, and disease progression. Although not fully understood, recent gains in understanding the pathophysiology of chronic cough in IPF have been made. The pathophysiology is likely multifactorial and includes alterations in mucous production and clearance, architectural distortion, and increased cough reflex sensitivity, suggesting a role for targeted therapies and multidisciplinary treatment. Modifiable comorbidities can also induce cough in patients with IPF. There is a renewed emphasis on measuring cough in IPF, with clinical trials of novel and repurposed therapies for chronic cough emerging in this population. This review provides an update on the clinical characteristics, pathophysiology, and measurement of chronic cough in patients with IPF and summarizes recent developments in non-pharmacological and pharmacological therapies.
Collapse
Affiliation(s)
- Jennifer Mann
- Department of Respiratory and Sleep Medicine, Austin Health, Melbourne, VIC, Australia
- Institute for Breathing and Sleep, Melbourne, VIC, Australia
- Department of Medicine (Austin Health), University of Melbourne, Melbourne, VIC, Australia
- *Correspondence: Jennifer Mann
| | - Nicole S. L. Goh
- Department of Respiratory and Sleep Medicine, Austin Health, Melbourne, VIC, Australia
- Institute for Breathing and Sleep, Melbourne, VIC, Australia
- Department of Medicine (Austin Health), University of Melbourne, Melbourne, VIC, Australia
| | - Anne E. Holland
- Institute for Breathing and Sleep, Melbourne, VIC, Australia
- Department of Physiotherapy, Alfred Health, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Yet Hong Khor
- Department of Respiratory and Sleep Medicine, Austin Health, Melbourne, VIC, Australia
- Institute for Breathing and Sleep, Melbourne, VIC, Australia
- Department of Medicine (Austin Health), University of Melbourne, Melbourne, VIC, Australia
- Yet Hong Khor
| |
Collapse
|
19
|
Gupta D, Kumar A, Mandloi A, Shenoy V. Renin angiotensin aldosterone system in pulmonary fibrosis: Pathogenesis to therapeutic possibilities. Pharmacol Res 2021; 174:105924. [PMID: 34607005 DOI: 10.1016/j.phrs.2021.105924] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/21/2021] [Accepted: 09/29/2021] [Indexed: 01/12/2023]
Abstract
Pulmonary fibrosis is a devastating lung disease with multifactorial etiology characterized by alveolar injury, fibroblast proliferation and excessive deposition of extracellular matrix proteins, which progressively results in respiratory failure and death. Accumulating evidence from experimental and clinical studies supports a central role of the renin angiotensin aldosterone system (RAAS) in the pathogenesis and progression of idiopathic pulmonary fibrosis. Angiotensin II (Ang II), a key vasoactive peptide of the RAAS mediates pro-inflammatory and pro-fibrotic effects on the lungs, adversely affecting organ function. Recent years have witnessed seminal discoveries in the field of RAAS. Identification of new enzymes, peptides and receptors has led to the development of several novel concepts. Of particular interest is the establishment of a protective axis of the RAAS comprising of Angiotensin converting enzyme 2 (ACE2), Angiotensin-(1-7) [Ang-(1-7)], and the Mas receptor (the ACE2/Ang-(1-7)/Mas axis), and the discovery of a functional role for the Angiotensin type 2 (AT2) receptor. Herein, we will review our current understanding of the role of RAAS in lung fibrogenesis, provide evidence on the anti-fibrotic actions of the newly recognized RAAS components (the ACE2/Ang-(1-7)/Mas axis and AT2 receptor), discuss potential strategies and translational efforts to convert this new knowledge into effective therapeutics for PF.
Collapse
Affiliation(s)
- Dipankar Gupta
- Congenital Heart Center, Department of Pediatrics, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Ashok Kumar
- Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS, USA
| | - Avinash Mandloi
- College of Pharmacy, VNS Group of Institutions, Bhopal, India
| | - Vinayak Shenoy
- College of Pharmacy, California Health Sciences University, Clovis, CA, USA.
| |
Collapse
|
20
|
Assessment of Alamandine in Pulmonary Fibrosis and Respiratory Mechanics in Rodents. J Renin Angiotensin Aldosterone Syst 2021; 2021:9975315. [PMID: 34285714 PMCID: PMC8265028 DOI: 10.1155/2021/9975315] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
Introduction Pulmonary fibrosis (PF) is characterized by an accelerated decline in pulmonary function and has limited treatment options. Alamandine (ALA) is a recently described protective peptide of the renin-angiotensin system (RAS) with essential tasks in several conditions. Our group previously demonstrated that ALA is reduced by 365% in the plasma of patients with idiopathic PF, and thus, it is plausible to believe that stimulation of this peptide could represent an important therapeutic target. In this sense, this study investigates the effects of ALA in an experimental model of PF. Materials and Methods Bleomycin (BLM) was administrated in Wistar rats, and these fibrotic animals were treated with ALA for 14 days. Body weight, histology, respiratory, and hemodynamic parameters were analyzed to study the effects of ALA. Results ALA treatment attenuated the development of fibrosis (P < 0.0001), reduced respiratory system elastance (P < 0.0001), and preserved weight gain (P < 0.0001) in fibrotic animals without affecting the autonomic control of blood pressure and heart rate. Conclusion The data from this study demonstrate the potential of ALA to alleviate pulmonary fibrosis and improve respiratory system mechanics in vivo. The promising results encourage more detailed investigations of the potential of ALA as a future and efficient antifibrotic.
Collapse
|
21
|
Mascolo A, Scavone C, Rafaniello C, De Angelis A, Urbanek K, di Mauro G, Cappetta D, Berrino L, Rossi F, Capuano A. The Role of Renin-Angiotensin-Aldosterone System in the Heart and Lung: Focus on COVID-19. Front Pharmacol 2021; 12:667254. [PMID: 33959029 PMCID: PMC8093861 DOI: 10.3389/fphar.2021.667254] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
The renin-angiotensin-aldosterone system (RAAS) firstly considered as a cardiovascular circulating hormonal system, it is now accepted as a local tissue system that works synergistically or independently with the circulating one. Evidence states that tissue RAAS locally generates mediators with regulatory homeostatic functions, thus contributing, at some extent, to organ dysfunction or disease. Specifically, RAAS can be divided into the traditional RAAS pathway (or classic RAAS) mediated by angiotensin II (AII), and the non-classic RAAS pathway mediated by angiotensin 1–7. Both pathways operate in the heart and lung. In the heart, the classic RAAS plays a role in both hemodynamics and tissue remodeling associated with cardiomyocyte and endothelial dysfunction, leading to progressive functional impairment. Moreover, the local classic RAAS may predispose the onset of atrial fibrillation through different biological mechanisms involving inflammation, accumulation of epicardial adipose tissue, and electrical cardiac remodeling. In the lung, the classic RAAS regulates cell proliferation, immune-inflammatory response, hypoxia, and angiogenesis, contributing to lung injury and different pulmonary diseases (including COVID-19). Instead, the local non-classic RAAS counteracts the classic RAAS effects exerting a protective action on both heart and lung. Moreover, the non-classic RAAS, through the angiotensin-converting enzyme 2 (ACE2), mediates the entry of the etiological agent of COVID-19 (SARS-CoV-2) into cells. This may cause a reduction in ACE2 and an imbalance between angiotensins in favor of AII that may be responsible for the lung and heart damage. Drugs blocking the classic RAAS (angiotensin-converting enzyme inhibitors and angiotensin receptor blockers) are well known to exert a cardiovascular benefit. They are recently under evaluation for COVID-19 for their ability to block AII-induced lung injury altogether with drugs stimulating the non-classic RAAS. Herein, we discuss the available evidence on the role of RAAS in the heart and lung, summarizing all clinical data related to the use of drugs acting either by blocking the classic RAAS or stimulating the non-classic RAAS.
Collapse
Affiliation(s)
- Annamaria Mascolo
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Naples, Italy.,Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Cristina Scavone
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Naples, Italy.,Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Concetta Rafaniello
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Naples, Italy.,Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Konrad Urbanek
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Naples, Italy.,Department of Experimental and Clinical Medicine, Molecular and Cellular Cardiology, Magna Graecia University, Catanzaro, Italy
| | - Gabriella di Mauro
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Naples, Italy.,Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Donato Cappetta
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Francesco Rossi
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Naples, Italy.,Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Annalisa Capuano
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, Naples, Italy.,Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
22
|
Mahmud SMH, Al-Mustanjid M, Akter F, Rahman MS, Ahmed K, Rahman MH, Chen W, Moni MA. Bioinformatics and system biology approach to identify the influences of SARS-CoV-2 infections to idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease patients. Brief Bioinform 2021; 22:6224261. [PMID: 33847347 PMCID: PMC8083324 DOI: 10.1093/bib/bbab115] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/25/2021] [Accepted: 03/13/2021] [Indexed: 12/15/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), better known as COVID-19, has become a current threat to humanity. The second wave of the SARS-CoV-2 virus has hit many countries, and the confirmed COVID-19 cases are quickly spreading. Therefore, the epidemic is still passing the terrible stage. Having idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD) are the risk factors of the COVID-19, but the molecular mechanisms that underlie IPF, COPD, and CVOID-19 are not well understood. Therefore, we implemented transcriptomic analysis to detect common pathways and molecular biomarkers in IPF, COPD, and COVID-19 that help understand the linkage of SARS-CoV-2 to the IPF and COPD patients. Here, three RNA-seq datasets (GSE147507, GSE52463, and GSE57148) from Gene Expression Omnibus (GEO) is employed to detect mutual differentially expressed genes (DEGs) for IPF, and COPD patients with the COVID-19 infection for finding shared pathways and candidate drugs. A total of 65 common DEGs among these three datasets were identified. Various combinatorial statistical methods and bioinformatics tools were used to build the protein–protein interaction (PPI) and then identified Hub genes and essential modules from this PPI network. Moreover, we performed functional analysis under ontologies terms and pathway analysis and found that IPF and COPD have some shared links to the progression of COVID-19 infection. Transcription factors–genes interaction, protein–drug interactions, and DEGs-miRNAs coregulatory network with common DEGs also identified on the datasets. We think that the candidate drugs obtained by this study might be helpful for effective therapeutic in COVID-19.
Collapse
Affiliation(s)
- S M Hasan Mahmud
- Computer Science and Technology from the University of Electronic Science and Technology of China, China
| | | | - Farzana Akter
- Computer Science and Engineering from Daffodil International University, Bangladesh
| | | | - Kawsar Ahmed
- Information and Communication Technology (ICT) at Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Md Habibur Rahman
- Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Wenyu Chen
- University of Electronic Science and Technology of China, China
| | | |
Collapse
|
23
|
Raupp D, Fernandes RS, Antunes KH, Perin FA, Rigatto K. Impact of angiotensin II type 1 and G-protein-coupled Mas receptor expression on the pulmonary performance of patients with idiopathic pulmonary fibrosis. Peptides 2020; 133:170384. [PMID: 32777324 PMCID: PMC7411382 DOI: 10.1016/j.peptides.2020.170384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/24/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a severe interstitial disease with a mean survival of about 2.5-5 years after diagnosis. Its pathophysiology is still a major challenge for science. It is known that angiotensin II (Ang-II) binds AT1 receptor (AT1R) and its overactivation induces fibrosis, inflammation and oxidative stress. In contrast, activation of the Mas receptor (Mas-R) by angiotensin 1-7 opposes the harmful effects induced by Ang-II. Thus, our innovative objective was to analyze, in patients' lung with IPF, the balance between AT1R and Mas-R expression and their possible association with pulmonary spirometric parameters: forced expiratory volume in the first second (FEV1%) and forced vital capacity (FVC%). One cubic centimeter of lung tissue was obtained from IPF patients (n = 6) and from patients without IPF (n = 6) who underwent bronchial carcinoma resection. Receptor expression was quantified using western blot. AT1R expression was significantly higher (34 %) in patients with IPF (P = 0.006), whereas Mas-R was significantly less expressed (54 %) in these patients' lungs (P = 0.046). There was also a positive correlation between Mas-R expression and FEV1% (r = 0.62, P = 0.03) and FVC% (r = 0.58, P = 0.05). Conversely, AT1R expression was negatively correlated with FEV1% (r = 0.80, P = 0.002) and FVC% (r = 0.74, P = 0.006). In conclusion, our results demonstrated an increased expression of AT1R and reduced expression of Mas-R in the lung of patients with IPF. The dominance of AT1R expression is associated with reduced lung function, highlighting the role of the renin-angiotensin system peptides in the pathophysiology of IPF.
Collapse
Affiliation(s)
- Débora Raupp
- Laboratório de Fisiologia Translacional, Curso de Pós-Graduaçao em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Brazil
| | - Renata Streck Fernandes
- Laboratório de Fisiologia Translacional, Curso de Pós-Graduaçao em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Brazil
| | - Krist Helen Antunes
- Laboratório de Imunologia Clínica e Experimental da Pontifícia, Universidade Católica do Rio Grande do Sul, Brazil
| | - Fabíola Adélia Perin
- Complexo Hospitalar da Irmandade Santa Casa de Misericórdia de Porto Alegre, Brazil
| | - Katya Rigatto
- Laboratório de Fisiologia Translacional, Curso de Pós-Graduaçao em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Brazil.
| |
Collapse
|
24
|
Angiotensin Receptor Blockers and Subclinical Interstitial Lung Disease: The MESA Study. Ann Am Thorac Soc 2020; 16:1451-1453. [PMID: 31365837 DOI: 10.1513/annalsats.201903-198rl] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
25
|
Mosher CL, Mentz RJ. Cardiovascular implications of idiopathic pulmonary fibrosis: A way forward together? Am Heart J 2020; 226:69-74. [PMID: 32521292 DOI: 10.1016/j.ahj.2020.04.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 04/27/2020] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease has an increased prevalence among patients with idiopathic pulmonary fibrosis (IPF). Cardiovascular disease and IPF share similar symptoms with overlapping demographics and risk factors for disease development. Common cellular mediators leading to disease development and progression have been identified in both the cardiovascular and pulmonary organ systems. In this context, discovery of new therapeutic targets and medical therapies could be mutually beneficial across cardiopulmonary diseases. Here we present (1) a clinical review of IPF for the cardiovascular clinician and (2) common cellular mechanisms responsible for fibrosis in the heart and lungs and (3) highlight future research considerations and the potential role of novel therapeutic agents which may be mutually beneficial in cardiac and pulmonary fibrosis.
Collapse
|
26
|
Renin-Angiotensin System in Lung Tumor and Microenvironment Interactions. Cancers (Basel) 2020; 12:cancers12061457. [PMID: 32503281 PMCID: PMC7352181 DOI: 10.3390/cancers12061457] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/24/2020] [Accepted: 06/01/2020] [Indexed: 02/08/2023] Open
Abstract
The mechanistic involvement of the renin-angiotensin system (RAS) reaches beyond cardiovascular physiopathology. Recent knowledge pinpoints a pleiotropic role for this system, particularly in the lung, and mainly through locally regulated alternative molecules and secondary pathways. Angiotensin peptides play a role in cell proliferation, immunoinflammatory response, hypoxia and angiogenesis, which are critical biological processes in lung cancer. This manuscript reviews the literature supporting a role for the renin-angiotensin system in the lung tumor microenvironment and discusses whether blockade of this pathway in clinical settings may serve as an adjuvant therapy in lung cancer.
Collapse
|
27
|
Moor CC, Kreuter M, Luppi F, Wuyts WA. The world is not enough - the value of increasing registry data in idiopathic pulmonary fibrosis. Respir Res 2020; 21:105. [PMID: 32375778 PMCID: PMC7203830 DOI: 10.1186/s12931-020-01377-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- C C Moor
- Department of Respiratory Medicine, Erasmus Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - M Kreuter
- Center for Interstitial and Rare Lung Diseases, Pneumology and Respiratory Critical Care Medicine, Thoraxklinik, University of Heidelberg, Heidelberg, Germany
- German Center for Lung Research, Heidelberg, Germany
| | - F Luppi
- Respiratory Unit, University of Milano Bicocca. S. Gerardo Hospital, Monza, Italy
| | - W A Wuyts
- Department of Respiratory Medicine, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
28
|
Faverio P, Bocchino M, Caminati A, Fumagalli A, Gasbarra M, Iovino P, Petruzzi A, Scalfi L, Sebastiani A, Stanziola AA, Sanduzzi A. Nutrition in Patients with Idiopathic Pulmonary Fibrosis: Critical Issues Analysis and Future Research Directions. Nutrients 2020; 12:1131. [PMID: 32316662 PMCID: PMC7231241 DOI: 10.3390/nu12041131] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/12/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023] Open
Abstract
In idiopathic pulmonary fibrosis (IPF), several factors may have a negative impact on the nutritional status, including an increased respiratory muscles load, release of inflammation mediators, the coexistence of hypoxemia, and physical inactivity. Nutritional abnormalities also have an impact on IPF clinical outcomes. Given the relevance of nutritional status in IPF patients, we sought to focus on some critical issues, highlighting what is known and what should be further learned about these issues. We revised scientific literature published between 1995 and August 2019 by searching on Medline/PubMed and EMBASE databases including observational and interventional studies. We conducted a narrative review on nutritional assessment in IPF, underlining the importance of nutritional evaluation not only in the diagnostic process, but also during follow-up. We also highlighted the need to keep a high level of attention on cardiovascular comorbidities. We also focused on current clinical treatment in IPF with Nintedanib and Pirfenidone and management of gastrointestinal adverse events, such as diarrhea, induced by these antifibrotic drugs. Finally, we concentrated on the importance of pulmonary rehabilitation program, including nutritional assessment, education and behavioral change, and psychological support among its essential components. More attention should be devoted to the assessment of the undernutrition and overnutrition, as well as of muscle strength and physical performance in IPF patients, taking also into account that an adequate clinical management of gastrointestinal complications makes IPF drug treatments more feasible.
Collapse
Affiliation(s)
- Paola Faverio
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
- Respiratory Unit, San Gerardo Hospital, ASST Monza, 20900 Monza, Italy
| | - Marialuisa Bocchino
- Section of Respiratory Diseases, Department of Clinical Medicine and Surgery, Federico II University, 80131 Naples, Italy;
| | - Antonella Caminati
- Unit of Pneumology and Respiratory Semi-Intensive Care Unit, Respiratory Pathophysiology and Pulmonary Hemodynamics Service, San Giuseppe Hospital—MultiMedica IRCCS, 20123 Milan, Italy;
| | - Alessia Fumagalli
- Unit of Pulmonary Rehabilitation, IRCCS INRCA (Italian National Research Centre on Aging), 23880 Casatenovo, Italy;
| | - Monica Gasbarra
- Association “Un Respiro di Speranza” in Collaboration with the Department of Pulmonary Diseases of San Camillo-Forlanini Hospital, 00152 Rome, Italy;
| | - Paola Iovino
- Gastrointestinal Unit, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Salerno, Italy;
| | | | - Luca Scalfi
- Applied Nutrition and Health-Related Fitness, Department of Public Health, School of Medicine, Federico II University, 80131 Naples, Italy;
| | - Alfredo Sebastiani
- Department of Respiratory Diseases, San Camillo-Forlanini Hospital, 00152 Rome, Italy;
| | - Anna Agnese Stanziola
- Section of Respiratory Disease, Department of Clinical Medicine and Surgery, Monaldi Hospital, Federico II University, 80131 Naples, Italy; (A.A.S.); (A.S.)
| | - Alessandro Sanduzzi
- Section of Respiratory Disease, Department of Clinical Medicine and Surgery, Monaldi Hospital, Federico II University, 80131 Naples, Italy; (A.A.S.); (A.S.)
| |
Collapse
|
29
|
Nutrition in Patients with Idiopathic Pulmonary Fibrosis: Critical Issues Analysis and Future Research Directions. Nutrients 2020. [PMID: 32316662 DOI: 10.3390/nu12041131.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In idiopathic pulmonary fibrosis (IPF), several factors may have a negative impact on the nutritional status, including an increased respiratory muscles load, release of inflammation mediators, the coexistence of hypoxemia, and physical inactivity. Nutritional abnormalities also have an impact on IPF clinical outcomes. Given the relevance of nutritional status in IPF patients, we sought to focus on some critical issues, highlighting what is known and what should be further learned about these issues. We revised scientific literature published between 1995 and August 2019 by searching on Medline/PubMed and EMBASE databases including observational and interventional studies. We conducted a narrative review on nutritional assessment in IPF, underlining the importance of nutritional evaluation not only in the diagnostic process, but also during follow-up. We also highlighted the need to keep a high level of attention on cardiovascular comorbidities. We also focused on current clinical treatment in IPF with Nintedanib and Pirfenidone and management of gastrointestinal adverse events, such as diarrhea, induced by these antifibrotic drugs. Finally, we concentrated on the importance of pulmonary rehabilitation program, including nutritional assessment, education and behavioral change, and psychological support among its essential components. More attention should be devoted to the assessment of the undernutrition and overnutrition, as well as of muscle strength and physical performance in IPF patients, taking also into account that an adequate clinical management of gastrointestinal complications makes IPF drug treatments more feasible.
Collapse
|
30
|
Kreuter M, Lederer DJ, Cottin V, Kahn N, Ley B, Vancheri C, Weycker D, Atwood M, Kirchgaessler KU, Ryerson CJ. Concomitant medications and clinical outcomes in idiopathic pulmonary fibrosis. Eur Respir J 2019; 54:13993003.01188-2019. [PMID: 31537696 PMCID: PMC6906546 DOI: 10.1183/13993003.01188-2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/27/2019] [Indexed: 11/28/2022]
Abstract
Patients with idiopathic pulmonary fibrosis (IPF) frequently have a substantial burden of comorbidities [1]. Antifibrotic therapy is recommended to slow the progression of IPF [2]. Patients receiving antifibrotic therapy frequently receive concomitant medications for the management of comorbidities [1, 3–9]. Previous post hoc analyses of antacids, statins, metformin, anticoagulants and angiotensin modulators in patients with IPF enrolled in phase III randomised controlled trials (RCTs) have generated hypotheses on the impact of these treatments on IPF outcomes [3–9]. The effects of multiple concomitant medications in patients with IPF have been largely unexplored. The objective of the present analyses was to explore the association between use of combinations of frequently prescribed concomitant medications and disease outcomes in patients with IPF. This post hoc exploratory analysis found no clear associations between frequently used concomitant medication combinations and disease progression in 1450 patients with IPF enrolled in phase III trials, but several combinations may require further study.http://bit.ly/2ZzyMXR
Collapse
Affiliation(s)
- Michael Kreuter
- Center for Interstitial and Rare Lung Diseases, Pneumonology, Thoraxklinik, University of Heidelberg, Member of the German Center for Lung Research, Heidelberg, Germany
| | - David J Lederer
- Depts of Medicine and Epidemiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Vincent Cottin
- Dept of Respiratory Medicine, Reference Center for Rare Pulmonary Diseases, Louis Pradel Hospital, Claude Bernard University Lyon 1, UMR754, Lyon, France
| | - Nicolas Kahn
- Center for Interstitial and Rare Lung Diseases, Pneumonology, Thoraxklinik, University of Heidelberg, Member of the German Center for Lung Research, Heidelberg, Germany
| | - Brett Ley
- Dept of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Carlo Vancheri
- Dept of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | - Mark Atwood
- Policy Analysis Inc. (PAI), Brookline, MA, USA
| | | | | |
Collapse
|
31
|
Somogyi V, Chaudhuri N, Torrisi SE, Kahn N, Müller V, Kreuter M. The therapy of idiopathic pulmonary fibrosis: what is next? Eur Respir Rev 2019; 28:190021. [PMID: 31484664 PMCID: PMC9488691 DOI: 10.1183/16000617.0021-2019] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/16/2019] [Indexed: 12/21/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrosing interstitial lung disease, characterised by progressive scarring of the lung and associated with a high burden of disease and early death. The pathophysiological understanding, clinical diagnostics and therapy of IPF have significantly evolved in recent years. While the recent introduction of the two antifibrotic drugs pirfenidone and nintedanib led to a significant reduction in lung function decline, there is still no cure for IPF; thus, new therapeutic approaches are needed. Currently, several clinical phase I-III trials are focusing on novel therapeutic targets. Furthermore, new approaches in nonpharmacological treatments in palliative care, pulmonary rehabilitation, lung transplantation, management of comorbidities and acute exacerbations aim to improve symptom control and quality of life. Here we summarise new therapeutic attempts and potential future approaches to treat this devastating disease.
Collapse
Affiliation(s)
- Vivien Somogyi
- Center for Interstitial and Rare Lung Diseases, Thoraxklinik, University of Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany
- Dept of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Nazia Chaudhuri
- Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, UK
| | - Sebastiano Emanuele Torrisi
- Center for Interstitial and Rare Lung Diseases, Thoraxklinik, University of Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany
- Regional Referral Centre for Rare Lung Diseases, University Hospital "Policlinico", Dept of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Nicolas Kahn
- Center for Interstitial and Rare Lung Diseases, Thoraxklinik, University of Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany
| | - Veronika Müller
- Dept of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Michael Kreuter
- Center for Interstitial and Rare Lung Diseases, Thoraxklinik, University of Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany
| |
Collapse
|