1
|
Lehman SS, Verhoeve VI, Driscoll TP, Beckmann JF, Gillespie JJ. Metagenome diversity illuminates the origins of pathogen effectors. mBio 2024; 15:e0075923. [PMID: 38564675 PMCID: PMC11077975 DOI: 10.1128/mbio.00759-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 02/12/2024] [Indexed: 04/04/2024] Open
Abstract
Recent metagenome-assembled genome (MAG) analyses have profoundly impacted Rickettsiology systematics. The discovery of basal lineages (novel families Mitibacteraceae and Athabascaceae) with predicted extracellular lifestyles exposed an evolutionary timepoint for the transition to host dependency, which seemingly occurred independent of mitochondrial evolution. Notably, these basal rickettsiae carry the Rickettsiales vir homolog (rvh) type IV secretion system and purportedly use rvh to kill congener microbes rather than parasitize host cells as described for later-evolving rickettsial pathogens. MAG analysis also substantially increased diversity for the genus Rickettsia and delineated a sister lineage (the novel genus Tisiphia) that stands to inform on the emergence of human pathogens from protist and invertebrate endosymbionts. Herein, we probed Rickettsiales MAG and genomic diversity for the distribution of Rickettsia rvh effectors to ascertain their origins. A sparse distribution of most Rickettsia rvh effectors outside of Rickettsiaceae lineages illuminates unique rvh evolution from basal extracellular species and other rickettsial families. Remarkably, nearly every effector was found in multiple divergent forms with variable architectures, indicating profound roles for gene duplication and recombination in shaping effector repertoires in Rickettsia pathogens. Lateral gene transfer plays a prominent role in shaping the rvh effector landscape, as evinced by the discovery of many effectors on plasmids and conjugative transposons, as well as pervasive effector gene exchange between Rickettsia and Legionella species. Our study exemplifies how MAGs can yield insight into pathogen effector origins, particularly how effector architectures might become tailored to the discrete host cell functions of different eukaryotic hosts.IMPORTANCEWhile rickettsioses are deadly vector-borne human diseases, factors distinguishing Rickettsia pathogens from the innumerable bevy of environmental rickettsial endosymbionts remain lacking. Recent metagenome-assembled genome (MAG) studies revealed evolutionary timepoints for rickettsial transitions to host dependency. The rvh type IV secretion system was likely repurposed from congener killing in basal extracellular species to parasitizing host cells in later-evolving pathogens. Our analysis of MAG diversity for over two dozen rvh effectors unearthed their presence in some non-pathogens. However, most effectors were found in multiple divergent forms with variable architectures, indicating gene duplication and recombination-fashioned effector repertoires of Rickettsia pathogens. Lateral gene transfer substantially shaped pathogen effector arsenals, evinced by the discovery of effectors on plasmids and conjugative transposons, as well as pervasive effector gene exchanges between Rickettsia and Legionella species. Our study exemplifies how MAGs yield insight into pathogen effector origins and evolutionary processes tailoring effectors to eukaryotic host cell biology.
Collapse
Affiliation(s)
- Stephanie S. Lehman
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Victoria I. Verhoeve
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Timothy P. Driscoll
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - John F. Beckmann
- Department of Microbiology and Immunology, University of South Alabama, Mobile, Alabama, USA
| | - Joseph J. Gillespie
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Verhoeve VI, Lehman SS, Driscoll TP, Beckmann JF, Gillespie JJ. Metagenome diversity illuminates origins of pathogen effectors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.26.530123. [PMID: 36909625 PMCID: PMC10002696 DOI: 10.1101/2023.02.26.530123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Recent metagenome assembled genome (MAG) analyses have profoundly impacted Rickettsiology systematics. Discovery of basal lineages (Mitibacteraceae and Athabascaceae) with predicted extracellular lifestyles reveals an evolutionary timepoint for the transition to host dependency, which occurred independent of mitochondrial evolution. Notably, these basal rickettsiae carry the Rickettsiales vir homolog (rvh) type IV secretion system (T4SS) and purportedly use rvh to kill congener microbes rather than parasitize host cells as described for derived rickettsial pathogens. MAG analysis also substantially increased diversity for genus Rickettsia and delineated a basal lineage (Tisiphia) that stands to inform on the rise of human pathogens from protist and invertebrate endosymbionts. Herein, we probed Rickettsiales MAG and genomic diversity for the distribution of Rickettsia rvh effectors to ascertain their origins. A sparse distribution of most Rickettsia rvh effectors outside of Rickettsiaceae lineages indicates unique rvh evolution from basal extracellular species and other rickettsial families. Remarkably, nearly every effector was found in multiple divergent forms with variable architectures, illuminating profound roles for gene duplication and recombination in shaping effector repertoires in Rickettsia pathogens. Lateral gene transfer plays a prominent role shaping the rvh effector landscape, as evinced by the discover of many effectors on plasmids and conjugative transposons, as well as pervasive effector gene exchange between Rickettsia and Legionella species. Our study exemplifies how MAGs can provide incredible insight on the origins of pathogen effectors and how their architectural modifications become tailored to eukaryotic host cell biology.
Collapse
Affiliation(s)
- Victoria I Verhoeve
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Stephanie S Lehman
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Timothy P Driscoll
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - John F Beckmann
- Microbiology and Immunology, University of South Alabama, Mobile, AL, USA
| | - Joseph J Gillespie
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Pan YS, Cui XM, Du LF, Xia LY, Du CH, Bell-Sakyi L, Zhang MZ, Zhu DY, Dong Y, Wei W, Zhao L, Sun Y, Lv QY, Ye RZ, He ZH, Wang Q, Li LJ, Yao MG, Xiong T, Jiang JF, Cao WC, Jia N. Coinfection of Two Rickettsia Species in a Single Tick Species Provides New Insight into Rickettsia- Rickettsia and Rickettsia-Vector Interactions. Microbiol Spectr 2022; 10:e0232322. [PMID: 36173317 PMCID: PMC9603609 DOI: 10.1128/spectrum.02323-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/15/2022] [Indexed: 01/04/2023] Open
Abstract
Rickettsiae are obligate intracellular bacteria that can cause life-threatening illnesses. There is an ongoing debate as to whether established infections by one Rickettsia species preclude the maintenance of the second species in ticks. Here, we identified two Rickettsia species in inoculum from Haemaphysalis montgomeryi ticks and subsequently obtained pure isolates of each species by plaque selection. The two isolates were classified as a transitional group and spotted fever group rickettsiae and named Rickettsia hoogstraalii str CS and Rickettsia rhipicephalii str EH, respectively. The coinfection of these two Rickettsia species was detected in 25.6% of individual field-collected H. montgomeryi. In cell culture infection models, R. hoogstraalii str CS overwhelmed R. rhipicephalii str EH with more obvious cytopathic effects, faster plaque formation, and increased cellular growth when cocultured, and R. hoogstraalii str CS seemed to polymerize actin tails differently from R. rhipicephalii str EH in vitro. This work provides a model to investigate the mechanisms of both Rickettsia-Rickettsia and Rickettsia-vector interactions. IMPORTANCE The rickettsiae are a group of obligate intracellular Gram-negative bacteria that include human pathogens causing an array of clinical symptoms and even death. There is an important question in the field, that is whether one infection can block the superinfection of other rickettsiae. This work demonstrated the coinfection of two Rickettsia species in individual ticks and further highlighted that testing the rickettsial competitive exclusion hypothesis will undoubtedly be a promising area as methods for bioengineering and pathogen biocontrol become amenable for rickettsiae.
Collapse
Affiliation(s)
- Yu-Sheng Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Xiao-Ming Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Li-Feng Du
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Luo-Yuan Xia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Chun-Hong Du
- Yunnan Institute for Endemic Diseases Control and Prevention, Dali, Yunnan, People’s Republic of China
| | - Lesley Bell-Sakyi
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Ming-Zhu Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Dai-Yun Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Yi Dong
- Yunnan Institute for Endemic Diseases Control and Prevention, Dali, Yunnan, People’s Republic of China
| | - Wei Wei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Lin Zhao
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Yi Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Qing-Yu Lv
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Run-Ze Ye
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Zhi-Hai He
- Yunnan Institute for Endemic Diseases Control and Prevention, Dali, Yunnan, People’s Republic of China
| | - Qian Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Liang-Jing Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Ming-Guo Yao
- Yunnan Institute for Endemic Diseases Control and Prevention, Dali, Yunnan, People’s Republic of China
| | - Tao Xiong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Wu-Chun Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Spotted Fever Group Rickettsia Trigger Species-Specific Alterations in Macrophage Proteome Signatures with Different Impacts in Host Innate Inflammatory Responses. Microbiol Spectr 2021; 9:e0081421. [PMID: 34935429 PMCID: PMC8693926 DOI: 10.1128/spectrum.00814-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The molecular details underlying differences in pathogenicity between Rickettsia species remain to be fully understood. Evidence points to macrophage permissiveness as a key mechanism in rickettsial virulence. Different studies have shown that several rickettsial species responsible for mild forms of rickettsioses can also escape macrophage-mediated killing mechanisms and establish a replicative niche within these cells. However, their manipulative capacity with respect to host cellular processes is far from being understood. A deeper understanding of the interplay between mildly pathogenic rickettsiae and macrophages and the commonalities and specificities of host responses to infection would illuminate differences in immune evasion mechanisms and pathogenicity. We used quantitative proteomics by sequential windowed data independent acquisition of the total high-resolution mass spectra with tandem mass spectrometry (SWATH-MS/MS) to profile alterations resulting from infection of THP-1 macrophages with three mildly pathogenic rickettsiae: Rickettsia parkeri, Rickettsia africae, and Rickettsia massiliae, all successfully proliferating in these cells. We show that all three species trigger different proteome signatures. Our results reveal a significant impact of infection on proteins categorized as type I interferon responses, which here included several components of the retinoic acid-inducible gene I (RIG-1)-like signaling pathway, mRNA splicing, and protein translation. Moreover, significant differences in protein content between infection conditions provide evidence for species-specific induced alterations. Indeed, we confirm distinct impacts on host inflammatory responses between species during infection, demonstrating that these species trigger different levels of beta interferon (IFN-β), differences in the bioavailability of the proinflammatory cytokine interleukin 1β (IL-1β), and differences in triggering of pyroptotic events. This work reveals novel aspects and exciting nuances of macrophage-Rickettsia interactions, adding additional layers of complexity between Rickettsia and host cells' constant arms race for survival. IMPORTANCE The incidence of diseases caused by Rickettsia has been increasing over the years. It has long been known that rickettsioses comprise diseases with a continuous spectrum of severity. There are highly pathogenic species causing diseases that are life threatening if untreated, others causing mild forms of the disease, and a third group for which no pathogenicity to humans has been described. These marked differences likely reflect distinct capacities for manipulation of host cell processes, with macrophage permissiveness emerging as a key virulence trait. However, what defines pathogenicity attributes among rickettsial species is far from being resolved. We demonstrate that the mildly pathogenic Rickettsia parkeri, Rickettsia africae, and Rickettsia massiliae, all successfully proliferating in macrophages, trigger different proteome signatures in these cells and differentially impact critical components of innate immune responses by inducing different levels of beta interferon (IFN-β) and interleukin 1β (IL-1β) and different timing of pyroptotic events during infection. Our work reveals novel nuances in rickettsia-macrophage interactions, offering new clues to understand Rickettsia pathogenicity.
Collapse
|
5
|
Plastin 3 in health and disease: a matter of balance. Cell Mol Life Sci 2021; 78:5275-5301. [PMID: 34023917 PMCID: PMC8257523 DOI: 10.1007/s00018-021-03843-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/06/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023]
Abstract
For a long time, PLS3 (plastin 3, also known as T-plastin or fimbrin) has been considered a rather inconspicuous protein, involved in F-actin-binding and -bundling. However, in recent years, a plethora of discoveries have turned PLS3 into a highly interesting protein involved in many cellular processes, signaling pathways, and diseases. PLS3 is localized on the X-chromosome, but shows sex-specific, inter-individual and tissue-specific expression variability pointing towards skewed X-inactivation. PLS3 is expressed in all solid tissues but usually not in hematopoietic cells. When escaping X-inactivation, PLS3 triggers a plethora of different types of cancers. Elevated PLS3 levels are considered a prognostic biomarker for cancer and refractory response to therapies. When it is knocked out or mutated in humans and mice, it causes osteoporosis with bone fractures; it is the only protein involved in actin dynamics responsible for osteoporosis. Instead, when PLS3 is upregulated, it acts as a highly protective SMN-independent modifier in spinal muscular atrophy (SMA). Here, it seems to counteract reduced F-actin levels by restoring impaired endocytosis and disturbed calcium homeostasis caused by reduced SMN levels. In contrast, an upregulation of PLS3 on wild-type level might cause osteoarthritis. This emphasizes that the amount of PLS3 in our cells must be precisely balanced; both too much and too little can be detrimental. Actin-dynamics, regulated by PLS3 among others, are crucial in a lot of cellular processes including endocytosis, cell migration, axonal growth, neurotransmission, translation, and others. Also, PLS3 levels influence the infection with different bacteria, mycosis, and other pathogens.
Collapse
|
6
|
McGinn J, Lamason RL. The enigmatic biology of rickettsiae: recent advances, open questions and outlook. Pathog Dis 2021; 79:ftab019. [PMID: 33784388 PMCID: PMC8035066 DOI: 10.1093/femspd/ftab019] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/26/2021] [Indexed: 02/05/2023] Open
Abstract
Rickettsiae are obligate intracellular bacteria that can cause life-threatening illnesses and are among the oldest known vector-borne pathogens. Members of this genus are extraordinarily diverse and exhibit a broad host range. To establish intracellular infection, Rickettsia species undergo complex, multistep life cycles that are encoded by heavily streamlined genomes. As a result of reductive genome evolution, rickettsiae are exquisitely tailored to their host cell environment but cannot survive extracellularly. This host-cell dependence makes for a compelling system to uncover novel host-pathogen biology, but it has also hindered experimental progress. Consequently, the molecular details of rickettsial biology and pathogenesis remain poorly understood. With recent advances in molecular biology and genetics, the field is poised to start unraveling the molecular mechanisms of these host-pathogen interactions. Here, we review recent discoveries that have shed light on key aspects of rickettsial biology. These studies have revealed that rickettsiae subvert host cells using mechanisms that are distinct from other better-studied pathogens, underscoring the great potential of the Rickettsia genus for revealing novel biology. We also highlight several open questions as promising areas for future study and discuss the path toward solving the fundamental mysteries of this neglected and emerging human pathogen.
Collapse
Affiliation(s)
- Jon McGinn
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Rebecca L Lamason
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| |
Collapse
|
7
|
Mitochondrion-Dependent Apoptosis Is Essential for Rickettsia parkeri Infection and Replication in Vector Cells. mSystems 2021; 6:6/2/e01209-20. [PMID: 33727398 PMCID: PMC8546998 DOI: 10.1128/msystems.01209-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Apoptosis is an innate immune response induced by infection in eukaryotes that contributes significantly to protection from pathogens. However, little is known about the role of apoptosis in the interactions of arthropod vectors with the rickettsiae that they transmit. Rickettsia spp. are vector-borne obligately intracellular bacteria and display different degrees of virulence in their eukaryotic hosts. In this study, we found that infection with Rickettsia parkeri (Rp) activated the apoptosis pathway in an Amblyomma americanum tick cell line (AAE2), as evidenced by the loss of phospholipid membrane asymmetry and DNA fragmentations. Additionally, infection with Rp also led to apoptosis activation in cell lines of different tick species. Interestingly, suppressing apoptosis decreased Rp infection and replication, while the activation of apoptosis increased Rp accumulation at the early stage of infection. Moreover, mitochondrion-dependent apoptosis was essential for Rp infection and replication in vector cells, and apoptosis induction required intracellular rickettsia replication. We further showed that Rp utilizes two different survival strategies to modulate apoptosis in the arthropod vectors and mammalian host cells. There was no direct correlation between apoptosis activation in vector cells and rickettsial pathogenicity. These novel findings indicate a possible mechanism whereby apoptosis facilitates infection and replication of a Rickettsia sp. in an arthropod vector. These results contribute to our understanding of how the vector's responses to pathogen infection affect pathogen replication and therefore transmission. IMPORTANCE Rickettsioses, infections caused by the genus Rickettsia, are among the oldest known infectious diseases. Ticks are essential arthropod vectors for rickettsiae, and knowledge about the interactions between ticks, their hosts, and pathogens is fundamental for identifying drivers of tick-borne rickettsioses. Despite the rapid development in apoptosis research with rickettsiae, little is known regarding the role of apoptosis in the interactions between Rickettsia spp., vertebrate hosts, and arthropod vectors. Here, we demonstrated that mitochondrion-dependent apoptosis is essential for rickettsial infection and replication in vector cells and that apoptosis induction requires intracellular rickettsial replication. However, rickettsial pathogenicity is not linked with apoptosis activation in tick cells. Our findings improve understanding of the apoptosis mechanism in arthropods exploited by rickettsiae and also the potential to discover specific targets for new vaccines and drugs to prevent or treat rickettsial infections.
Collapse
|
8
|
Narra HP, Sahni A, Walker DH, Sahni SK. Recent research milestones in the pathogenesis of human rickettsioses and opportunities ahead. Future Microbiol 2020; 15:753-765. [PMID: 32691620 PMCID: PMC7787141 DOI: 10.2217/fmb-2019-0266] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 05/14/2020] [Indexed: 12/27/2022] Open
Abstract
Infections caused by pathogenic Rickettsia species continue to scourge human health across the globe. From the point of entry at the site of transmission by arthropod vectors, hematogenous dissemination of rickettsiae occurs to diverse host tissues leading to 'rickettsial vasculitis' as the salient feature of pathogenesis. This perspective article accentuates recent breakthrough developments in the context of host-pathogen-vector interactions during rickettsial infections. The subtopics include potential exploitation of circulating macrophages for spread, identification of new entry mechanisms and regulators of actin-based motility, appreciation of metabolites acquired from and effectors delivered into the host, importance of the toxin-antitoxin module in host-cell interactions, effects of the vector microbiome on rickettsial transmission, and niche-specific riboregulation and adaptation. Further research on these aspects will advance our understanding of the biology of rickettsiae as intracellular pathogens and should enable design and development of new approaches to counter rickettsioses in humans and other hosts.
Collapse
Affiliation(s)
- Hema P Narra
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Abha Sahni
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - David H Walker
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sanjeev K Sahni
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
9
|
Cutaneous Immunoprofiles of Three Spotted Fever Group Rickettsia Cases. Infect Immun 2020; 88:IAI.00686-19. [PMID: 31907196 PMCID: PMC7093127 DOI: 10.1128/iai.00686-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/20/2019] [Indexed: 12/20/2022] Open
Abstract
Spotted fever group rickettsia (SFGR) can cause mild to fatal illness. The early interaction between the host and rickettsia in skin is largely unknown, and the pathogenesis of severe rickettsiosis remains an important topic. A surveillance of SFGR infection by PCR of blood and skin biopsy specimens followed by sequencing and immunohistochemical (IHC) detection was performed on patients with a recent tick bite between 2013 and 2016. Humoral and cutaneous immunoprofiles were evaluated in different SFGR cases by serum cytokine and chemokine detection, skin IHC staining, and transcriptome sequencing (RNA-seq). Spotted fever group rickettsia (SFGR) can cause mild to fatal illness. The early interaction between the host and rickettsia in skin is largely unknown, and the pathogenesis of severe rickettsiosis remains an important topic. A surveillance of SFGR infection by PCR of blood and skin biopsy specimens followed by sequencing and immunohistochemical (IHC) detection was performed on patients with a recent tick bite between 2013 and 2016. Humoral and cutaneous immunoprofiles were evaluated in different SFGR cases by serum cytokine and chemokine detection, skin IHC staining, and transcriptome sequencing (RNA-seq). A total of 111 SFGR cases were identified, including 79 “Candidatus Rickettsia tarasevichiae,” 22 Rickettsia raoultii, 8 Rickettsia sibirica, and 2 Rickettsia heilongjiangensis cases. The sensitivity to detect SFGR in skin biopsy specimens (9/24, 37.5%) was significantly higher than that in blood samples (105/2,671, 3.9%) (P < 0.05). As early as 1 day after the tick bite, rickettsiae could be detected in the skin. R. sibirica infection was more severe than “Ca. Rickettsia” and R. raoultii infections. Increased levels of serum interleukin-18 (IL-18), IP10, and monokine induced by gamma interferon (MIG) and decreased levels of IL-2 were observed in febrile patients infected with R. sibirica compared to those infected with “Ca. Rickettsia.” RNA-seq and IHC staining could not discriminate between SFGR-infected and uninfected tick bite skin lesions. However, the type I interferon (IFN) response was differently expressed between R. sibirica and R. raoultii infections at the cutaneous interface. It is concluded that skin biopsy specimens were more reliable for the detection of SFGR infection in human patients although the immunoprofile may be complicated by immunomodulators induced by the tick bite.
Collapse
|
10
|
Ohkawa T, Welch MD. Baculovirus Actin-Based Motility Drives Nuclear Envelope Disruption and Nuclear Egress. Curr Biol 2018; 28:2153-2159.e4. [PMID: 30008331 DOI: 10.1016/j.cub.2018.05.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 03/30/2018] [Accepted: 05/10/2018] [Indexed: 12/15/2022]
Abstract
Viruses that replicate in the host cell nucleus face challenges in usurping cellular pathways to enable passage through the nuclear envelope [1]. Baculoviruses are enveloped, double-stranded DNA viruses that infect lepidopteran insects and are tools for protein expression, cell transduction, and pest management [2-4]. The type species Autographa californica M nucleopolyhedrovirus (AcMNPV) shares with other pathogens an ability to assemble host actin monomers (G-actin) into actin filaments (F-actin) to drive motility [5]. During early infection, actin-based motility in the cytoplasm speeds AcMNPV transit to the nucleus and passage through nuclear pores, enabling nuclear ingress [6, 7]. During late infection, AcMNPV assembles F-actin within the nucleus [8], which is essential for virus production [9, 10]. However, the function of nuclear F-actin is poorly understood [11], and its mechanistic role in AcMNPV infection was unknown. We show that AcMNPV mobilizes actin within the nucleus to promote egress. AcMNPV nucleocapsids exhibit intranuclear actin-based motility, mediated by the viral protein P78/83 and the host Arp2/3 complex. Viral motility drives transit to the nuclear periphery and is required for viruses to enter protrusions of the nuclear envelope. Moreover, actin polymerization is necessary for viral disruption of nuclear envelope integrity during egress. In the cytoplasm, viruses use actin-based motility to reach the plasma membrane to enable budding. Our results demonstrate that pathogens can harness actin polymerization to disrupt the nuclear envelope. Employing actin for nuclear envelope disruption may reflect viral appropriation of normal functions of nuclear actin in nuclear envelope integrity, stability, and remodeling.
Collapse
Affiliation(s)
- Taro Ohkawa
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Matthew D Welch
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
11
|
Lamason RL, Kafai NM, Welch MD. A streamlined method for transposon mutagenesis of Rickettsia parkeri yields numerous mutations that impact infection. PLoS One 2018; 13:e0197012. [PMID: 29723287 PMCID: PMC5933787 DOI: 10.1371/journal.pone.0197012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/24/2018] [Indexed: 11/18/2022] Open
Abstract
The rickettsiae are obligate intracellular alphaproteobacteria that exhibit a complex infectious life cycle in both arthropod and mammalian hosts. As obligate intracellular bacteria, rickettsiae are highly adapted to living inside a variety of host cells, including vascular endothelial cells during mammalian infection. Although it is assumed that the rickettsiae produce numerous virulence factors that usurp or disrupt various host cell pathways, they have been challenging to genetically manipulate to identify the key bacterial factors that contribute to infection. Motivated to overcome this challenge, we sought to expand the repertoire of available rickettsial loss-of-function mutants, using an improved mariner-based transposon mutagenesis scheme. Here, we present the isolation of over 100 transposon mutants in the spotted fever group species Rickettsia parkeri. Transposon insertions disrupted genes whose products are implicated in a variety of pathways, including bacterial replication and metabolism, the type IV secretion system, factors with previously established roles in host cell interactions and pathogenesis, or are of unknown function. Given the need to identify critical virulence factors, forward genetic screens such as this will provide an excellent platform to more directly investigate rickettsial biology and pathogenesis.
Collapse
Affiliation(s)
- Rebecca L. Lamason
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
- * E-mail: (RLL); (MDW)
| | - Natasha M. Kafai
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Matthew D. Welch
- Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
- * E-mail: (RLL); (MDW)
| |
Collapse
|
12
|
Speck S, Kern T, Aistleitner K, Dilcher M, Dobler G, Essbauer S. In vitro studies of Rickettsia-host cell interactions: Confocal laser scanning microscopy of Rickettsia helvetica-infected eukaryotic cell lines. PLoS Negl Trop Dis 2018; 12:e0006151. [PMID: 29432420 PMCID: PMC5825168 DOI: 10.1371/journal.pntd.0006151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 02/23/2018] [Accepted: 12/04/2017] [Indexed: 11/19/2022] Open
Abstract
Rickettsia (R.) helvetica is the most prevalent rickettsia found in Ixodes ricinus ticks in Germany. Several studies reported antibodies against R. helvetica up to 12.5% in humans investigated, however, fulminant clinical cases are rare indicating a rather low pathogenicity compared to other rickettsiae. We investigated growth characteristics of R. helvetica isolate AS819 in two different eukaryotic cell lines with focus on ultra-structural changes of host cells during infection determined by confocal laser scanning microscopy. Further investigations included partially sequencing of rickA, sca4 and sca2 genes, which have been reported to encode proteins involved in cell-to-cell spread and virulence in some rickettsiae. R. helvetica grew constantly but slowly in both cell lines used. Confocal laser scanning microscopy revealed that the dissemination of R. helvetica AS819 in both cell lines was rather mediated by cell break-down and bacterial release than cell-to-cell spread. The cytoskeleton of both investigated eukaryotic cell lines was not altered. R. helvetica possesses rickA, but its expression is not sufficient to promote actin-based motility as demonstrated by confocal laser scanning microscopy. Hypothetical Sca2 and Sca4 proteins were deduced from nucleotide gene sequences but the predicted amino acid sequences were disrupted or truncated compared to other rickettsiae most likely resulting in non-functional proteins. Taken together, these results might give a first hint to the underlying causes of the reduced virulence and pathogenicity of R. helvetica.
Collapse
Affiliation(s)
- Stephanie Speck
- Bundeswehr Institute of Microbiology, German Center of Infection Research DZIF Partner, Munich, Bavaria, Germany
| | - Tanja Kern
- Bundeswehr Institute of Microbiology, German Center of Infection Research DZIF Partner, Munich, Bavaria, Germany
| | - Karin Aistleitner
- Bundeswehr Institute of Microbiology, German Center of Infection Research DZIF Partner, Munich, Bavaria, Germany
| | - Meik Dilcher
- University Medical Center Göttingen, Department of Virology, Göttingen, Lower Saxony, Germany
| | - Gerhard Dobler
- Bundeswehr Institute of Microbiology, German Center of Infection Research DZIF Partner, Munich, Bavaria, Germany
| | - Sandra Essbauer
- Bundeswehr Institute of Microbiology, German Center of Infection Research DZIF Partner, Munich, Bavaria, Germany
- * E-mail:
| |
Collapse
|
13
|
Mitigating the Impact of Antibacterial Drug Resistance through Host-Directed Therapies: Current Progress, Outlook, and Challenges. mBio 2018; 9:mBio.01932-17. [PMID: 29382729 PMCID: PMC5790911 DOI: 10.1128/mbio.01932-17] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Increasing incidences of multidrug resistance in pathogenic bacteria threaten our ability to treat and manage bacterial infection. The development and FDA approval of novel antibiotics have slowed over the past decade; therefore, the adoption and improvement of alternative therapeutic strategies are critical for addressing the threat posed by multidrug-resistant bacteria. Host-directed therapies utilize small-molecule drugs and proteins to alter the host response to pathogen infection. Here, we highlight strategies for modulating the host inflammatory response to enhance bacterial clearance, small-molecule potentiation of innate immunity, and targeting of host factors that are exploited by pathogen virulence factors. Application of state-of-the-art "omic" technologies, including proteomics, transcriptomics, and image-omics (image-based high-throughput phenotypic screening), combined with powerful bioinformatics tools will enable the modeling of key signaling pathways in the host-pathogen interplay and aid in the identification of host proteins for therapeutic targeting and the discovery of host-directed small molecules that will regulate bacterial infection. We conclude with an outlook on research needed to overcome the challenges associated with transitioning host-directed therapies into a clinical setting.
Collapse
|
14
|
Sonenshine DE, Macaluso KR. Microbial Invasion vs. Tick Immune Regulation. Front Cell Infect Microbiol 2017; 7:390. [PMID: 28929088 PMCID: PMC5591838 DOI: 10.3389/fcimb.2017.00390] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/21/2017] [Indexed: 12/16/2022] Open
Abstract
Ticks transmit a greater variety of pathogenic agents that cause disease in humans and animals than any other haematophagous arthropod, including Lyme disease, Rocky Mountain spotted fever, human granulocytic anaplasmosis, babesiosis, tick-borne encephalitis, Crimean Congo haemorhagic fever, and many others (Gulia-Nuss et al., 2016). Although diverse explanations have been proposed to explain their remarkable vectorial capacity, among the most important are their blood feeding habit, their long term off-host survival, the diverse array of bioactive molecules that disrupt the host's natural hemostatic mechanisms, facilitate blood flow, pain inhibitors, and minimize inflammation to prevent immune rejection (Hajdušek et al., 2013). Moreover, the tick's unique intracellular digestive processes allow the midgut to provide a relatively permissive microenvironment for survival of invading microbes. Although tick-host-pathogen interactions have evolved over more than 300 million years (Barker and Murrell, 2008), few microbes have been able to overcome the tick's innate immune system, comprising both humoral and cellular processes that reject them. Similar to most eukaryotes, the signaling pathways that regulate the innate immune response, i.e., the Toll, IMD (Immunodeficiency) and JAK-STAT (Janus Kinase/ Signal Transducers and Activators of Transcription) also occur in ticks (Gulia-Nuss et al., 2016). Recognition of pathogen-associated molecular patterns (PAMPs) on the microbial surface triggers one or the other of these pathways. Consequently, ticks are able to mount an impressive array of humoral and cellular responses to microbial challenge, including anti-microbial peptides (AMPs), e.g., defensins, lysozymes, microplusins, etc., that directly kill, entrap or inhibit the invaders. Equally important are cellular processes, primarily phagocytosis, that capture, ingest, or encapsulate invading microbes, regulated by a primordial system of thioester-containing proteins, fibrinogen-related lectins and convertase factors (Hajdušek et al., 2013). Ticks also express reactive oxygen species (ROS) as well as glutathione-S-transferase, superoxide dismutase, heat shock proteins and even protease inhibitors that kill or inhibit microbes. Nevertheless, many tick-borne microorganisms are able to evade the tick's innate immune system and survive within the tick's body. The examples that follow describe some of the many different strategies that have evolved to enable ticks to transmit the agents of human and/or animal disease.
Collapse
Affiliation(s)
- Daniel E Sonenshine
- Department of Biological Sciences, Old Dominion UniversityNorfolk, VA, United States
| | - Kevin R Macaluso
- Department of Pathobiological Sciences, Louisiana State UniversityBaton Rouge, LA, United States
| |
Collapse
|
15
|
MicroRNA Signature of Human Microvascular Endothelium Infected with Rickettsia rickettsii. Int J Mol Sci 2017; 18:ijms18071471. [PMID: 28698491 PMCID: PMC5535962 DOI: 10.3390/ijms18071471] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/29/2017] [Accepted: 07/05/2017] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) mediate gene silencing by destabilization and/or translational repression of target mRNA. Infection of human microvascular endothelial cells as primary targets of Rickettsiarickettsii, the etiologic agent of Rocky Mountain spotted fever, triggers host responses appertaining to alterations in cellular gene expression. Microarray-based profiling of endothelial cells infected with R.rickettsii for 3 or 24 h revealed differential expression of 33 miRNAs, of which miRNAs129-5p, 200a-3p, 297, 200b-3p, and 595 were identified as the top five up-regulated miRNAs (5 to 20-fold, p ≤ 0.01) and miRNAs 301b-3p, 548a-3p, and 377-3p were down-regulated (2 to 3-fold, p ≤ 0.01). Changes in the expression of selected miRNAs were confirmed by q-RT-PCR in both in vitro and in vivo models of infection. As potential targets, expression of genes encoding NOTCH1, SMAD2, SMAD3, RIN2, SOD1, and SOD2 was either positively or negatively regulated. Using a miRNA-specific mimic or inhibitor, NOTCH1 was determined to be a target of miRNA 200a-3p in R. rickettsii-infected human dermal microvascular endothelial cells (HMECs). Predictive interactome mapping suggested the potential for miRNA-mediated modulation of regulatory gene networks underlying important host cell signaling pathways. This first demonstration of altered endothelial miRNA expression provides new insights into regulatory elements governing mechanisms of host responses and pathogenesis during human rickettsial infections.
Collapse
|
16
|
Lamason RL, Welch MD. Actin-based motility and cell-to-cell spread of bacterial pathogens. Curr Opin Microbiol 2016; 35:48-57. [PMID: 27997855 DOI: 10.1016/j.mib.2016.11.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 12/17/2022]
Abstract
Subversion of the host actin cytoskeleton is a critical virulence mechanism used by a variety of intracellular bacterial pathogens during their infectious life cycles. These pathogens manipulate host actin to promote actin-based motility and coordinate motility with cell-to-cell spread. Growing evidence suggests that the tactics employed by pathogens are surprisingly diverse. Here, we review recent advances suggesting that bacterial surface proteins exhibit divergent biochemical mechanisms of actin polymerization and recruit distinct host protein networks to drive motility, and that bacteria deploy secreted effector proteins that alter host cell mechanotransduction pathways to enable spread. Further investigation into the divergent strategies used by bacterial pathogens to mobilize actin will reveal new insights into pathogenesis and cytoskeleton regulation.
Collapse
Affiliation(s)
- Rebecca L Lamason
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| | - Matthew D Welch
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
17
|
Virulent Burkholderia species mimic host actin polymerases to drive actin-based motility. Cell 2015; 161:348-60. [PMID: 25860613 DOI: 10.1016/j.cell.2015.02.044] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/22/2014] [Accepted: 02/05/2015] [Indexed: 11/23/2022]
Abstract
Burkholderia pseudomallei and B. mallei are bacterial pathogens that cause melioidosis and glanders, whereas their close relative B. thailandensis is non-pathogenic. All use the trimeric autotransporter BimA to facilitate actin-based motility, host cell fusion, and dissemination. Here, we show that BimA orthologs mimic different host actin-polymerizing proteins. B. thailandensis BimA activates the host Arp2/3 complex. In contrast, B. pseudomallei and B. mallei BimA mimic host Ena/VASP actin polymerases in their ability to nucleate, elongate, and bundle filaments by associating with barbed ends, as well as in their use of WH2 motifs and oligomerization for activity. Mechanistic differences among BimA orthologs resulted in distinct actin filament organization and motility parameters, which affected the efficiency of cell fusion during infection. Our results identify bacterial Ena/VASP mimics and reveal that pathogens imitate the full spectrum of host actin-polymerizing pathways, suggesting that mimicry of different polymerization mechanisms influences key parameters of infection.
Collapse
|
18
|
Zheng K, Kitazato K, Wang Y, He Z. Pathogenic microbes manipulate cofilin activity to subvert actin cytoskeleton. Crit Rev Microbiol 2015; 42:677-95. [PMID: 25853495 DOI: 10.3109/1040841x.2015.1010139] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Actin-depolymerizing factor (ADF)/cofilin proteins are key players in controlling the temporal and spatial extent of actin dynamics, which is crucial for mediating host-pathogen interactions. Pathogenic microbes have evolved molecular mechanisms to manipulate cofilin activity to subvert the actin cytoskeletal system in host cells, promoting their internalization into the target cells, modifying the replication niche and facilitating their intracellular and intercellular dissemination. The study of how these pathogens exploit cofilin pathways is crucial for understanding infectious disease and providing potential targets for drug therapies.
Collapse
Affiliation(s)
- Kai Zheng
- a Department of Pharmacy, School of Medicine , Shenzhen University , Shenzhen , Guangdong , People's Republic of China .,c Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University , Guangzhou , China
| | - Kaio Kitazato
- b Division of Molecular Pharmacology of Infectious Agents, Department of Molecular Microbiology and Immunology , Nagasaki University , Nagasaki , Japan , and
| | - Yifei Wang
- c Guangzhou Jinan Biomedicine Research and Development Center, National Engineering Research Center of Genetic Medicine, Jinan University , Guangzhou , China
| | - Zhendan He
- a Department of Pharmacy, School of Medicine , Shenzhen University , Shenzhen , Guangdong , People's Republic of China
| |
Collapse
|
19
|
Paddock CD, Goddard J. The Evolving Medical and Veterinary Importance of the Gulf Coast tick (Acari: Ixodidae). JOURNAL OF MEDICAL ENTOMOLOGY 2015; 52:230-52. [PMID: 26336308 DOI: 10.1093/jme/tju022] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 12/02/2014] [Indexed: 05/24/2023]
Abstract
Amblyomma maculatum Koch (the Gulf Coast tick) is a three-host, ixodid tick that is distributed throughout much of the southeastern and south-central United States, as well as several countries throughout Central and South America. A considerable amount of scientific literature followed the original description of A. maculatum in 1844; nonetheless, the Gulf Coast tick was not recognized as a vector of any known pathogen of animals or humans for >150 years. It is now identified as the principal vector of Hepatozoon americanum, the agent responsible for American canine hepatozoonosis, and Rickettsia parkeri, the cause of an emerging, eschar-associated spotted fever group rickettsiosis identified throughout much of the Western Hemisphere. Coincident with these discoveries has been recognition that the geographical distribution of A. maculatum in the United States is far more extensive than described 70 yr ago, supporting the idea that range and abundance of certain tick species, particularly those with diverse host preferences, are not fixed in time or space, and may change over relatively short intervals. Renewed interest in the Gulf Coast tick reinforces the notion that the perceived importance of a particular tick species to human or animal health can be relatively fluid, and may shift dramatically with changes in the distribution and abundance of the arthropod, its vertebrate hosts, or the microbial agents that transit among these organisms.
Collapse
Affiliation(s)
- Christopher D Paddock
- Rickettsial Zoonoses Branch, Centers for Disease Control and Prevention, Building 17, Room 3224, 1600 Clifton Road, Atlanta, GA 30333.
| | - Jerome Goddard
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Box 9775, 100 Old Hwy 12 (Clay Lyle Building), Starkville, MS 39762
| |
Collapse
|
20
|
Gillespie JJ, Kaur SJ, Rahman MS, Rennoll-Bankert K, Sears KT, Beier-Sexton M, Azad AF. Secretome of obligate intracellular Rickettsia. FEMS Microbiol Rev 2014; 39:47-80. [PMID: 25168200 DOI: 10.1111/1574-6976.12084] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The genus Rickettsia (Alphaproteobacteria, Rickettsiales, Rickettsiaceae) is comprised of obligate intracellular parasites, with virulent species of interest both as causes of emerging infectious diseases and for their potential deployment as bioterrorism agents. Currently, there are no effective commercially available vaccines, with treatment limited primarily to tetracycline antibiotics, although others (e.g. josamycin, ciprofloxacin, chloramphenicol, and azithromycin) are also effective. Much of the recent research geared toward understanding mechanisms underlying rickettsial pathogenicity has centered on characterization of secreted proteins that directly engage eukaryotic cells. Herein, we review all aspects of the Rickettsia secretome, including six secretion systems, 19 characterized secretory proteins, and potential moonlighting proteins identified on surfaces of multiple Rickettsia species. Employing bioinformatics and phylogenomics, we present novel structural and functional insight on each secretion system. Unexpectedly, our investigation revealed that the majority of characterized secretory proteins have not been assigned to their cognate secretion pathways. Furthermore, for most secretion pathways, the requisite signal sequences mediating translocation are poorly understood. As a blueprint for all known routes of protein translocation into host cells, this resource will assist research aimed at uniting characterized secreted proteins with their apposite secretion pathways. Furthermore, our work will help in the identification of novel secreted proteins involved in rickettsial 'life on the inside'.
Collapse
Affiliation(s)
- Joseph J Gillespie
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Simran J Kaur
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - M Sayeedur Rahman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kristen Rennoll-Bankert
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Khandra T Sears
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Magda Beier-Sexton
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Abdu F Azad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
21
|
Clathrin light chains are required for the gyrating-clathrin recycling pathway and thereby promote cell migration. Nat Commun 2014; 5:3891. [PMID: 24852344 PMCID: PMC4050264 DOI: 10.1038/ncomms4891] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 04/14/2014] [Indexed: 02/07/2023] Open
Abstract
The clathrin light chain (CLC) subunits participate in several membrane traffic pathways involving both clathrin and actin, through binding the actin-organizing huntingtin-interacting proteins (Hip). However, CLCs are dispensable for clathrin-mediated endocytosis of many cargoes. Here we observe that CLC depletion affects cell migration through Hip binding and reduces surface expression of β1-integrin by interference with recycling following normal endocytosis of inactive β1-integrin. CLC depletion and expression of a modified CLC also inhibit the appearance of gyrating (G)-clathrin structures, known mediators of rapid recycling of transferrin receptor from endosomes. Expression of the modified CLC reduces β1-integrin and transferrin receptor recycling, as well as cell migration, implicating G-clathrin in these processes. Supporting a physiological role for CLC in migration, the CLCb isoform of CLC is upregulated in migratory human trophoblast cells during uterine invasion. Together, these studies establish CLCs as mediating clathrin–actin interactions needed for recycling by G-clathrin during migration. Clathrin light chain (CLC) subunits are dispensable for clathrin-mediated endocytosis of a number of cargoes. Majeed et al. report that CLCs are however required for gyrating-clathrin-dependent recycling of inactive β1-integrins, the absence of which impairs cell migration.
Collapse
|
22
|
Truong D, Copeland JW, Brumell JH. Bacterial subversion of host cytoskeletal machinery: hijacking formins and the Arp2/3 complex. Bioessays 2014; 36:687-96. [PMID: 24849003 DOI: 10.1002/bies.201400038] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The host actin nucleation machinery is subverted by many bacterial pathogens to facilitate their entry, motility, replication, and survival. The majority of research conducted in the past primarily focused on exploitation of a host actin nucleator, the Arp2/3 complex, by bacterial pathogens. Recently, new studies have begun to explore the role of formins, another family of host actin nucleators, in bacterial pathogenesis. This review provides an overview of recent advances in the study of the exploitation of the Arp2/3 complex and formins by bacterial pathogens. Secreted bacterial effector proteins seem to manipulate the regulation of these actin nucleators or functionally mimic them to drive bacterial entry, motility and survival within host cells. An enhanced understanding of how formins are exploited will provide us with greater insight into how a fundamental eurkaryotic cellular process is utilized by bacteria and will also advance our knowledge of host-pathogen interactions.
Collapse
Affiliation(s)
- Dorothy Truong
- Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
23
|
Capping protein regulatory cycle driven by CARMIL and V-1 may promote actin network assembly at protruding edges. Proc Natl Acad Sci U S A 2014; 111:E1970-9. [PMID: 24778263 DOI: 10.1073/pnas.1313738111] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although capping protein (CP) terminates actin filament elongation, it promotes Arp2/3-dependent actin network assembly and accelerates actin-based motility both in vitro and in vivo. In vitro, capping protein Arp2/3 myosin I linker (CARMIL) antagonizes CP by reducing its affinity for the barbed end and by uncapping CP-capped filaments, whereas the protein V-1/myotrophin sequesters CP in an inactive complex. Previous work showed that CARMIL can readily retrieve CP from the CP:V-1 complex, thereby converting inactive CP into a version with moderate affinity for the barbed end. Here we further clarify the mechanism of this exchange reaction, and we demonstrate that the CP:CARMIL complex created by complex exchange slows the rate of barbed-end elongation by rapidly associating with, and dissociating from, the barbed end. Importantly, the cellular concentrations of V-1 and CP determined here argue that most CP is sequestered by V-1 at steady state in vivo. Finally, we show that CARMIL is recruited to the plasma membrane and only at cell edges undergoing active protrusion. Assuming that CARMIL is active only at this location, our data argue that a large pool of freely diffusing, inactive CP (CP:V-1) feeds, via CARMIL-driven complex exchange, the formation of weak-capping complexes (CP:CARMIL) at the plasma membrane of protruding edges. In vivo, therefore, CARMIL should promote Arp2/3-dependent actin network assembly at the leading edge by promoting barbed-end capping there.
Collapse
|
24
|
Petchampai N, Sunyakumthorn P, Guillotte ML, Verhoeve VI, Banajee KH, Kearney MT, Macaluso KR. Novel identification of Dermacentor variabilis Arp2/3 complex and its role in rickettsial infection of the arthropod vector. PLoS One 2014; 9:e93768. [PMID: 24733187 PMCID: PMC3986078 DOI: 10.1371/journal.pone.0093768] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 03/07/2014] [Indexed: 01/03/2023] Open
Abstract
Tick-borne spotted fever group (SFG) Rickettsia species must be able to infect both vertebrate and arthropod host cells. The host actin-related protein 2/3 (Arp2/3) complex is important in the invasion process and actin-based motility for several intracellular bacteria, including SFG Rickettsia in Drosophila and mammalian cells. To investigate the role of the tick Arp2/3 complex in tick-Rickettsia interactions, open reading frames of all subunits of the protein including Arp2, Arp3, ARPC1, ARPC2, ARPC3, ARPC4, and ARPC5 were identified from Dermacentor variabilis. Amino acid sequence analysis showed variation (ranging from 25–88%) in percent identity compared to the corresponding subunits of the complex from Drosophila melanogaster, Mus musculus, Homo sapiens, and Saccharomyces cerevisiae. Potential ATP binding sites were identified in D. variabilis (Dv) Arp2 and Arp3 subunits as well as five putative WD (Trp-Asp) motifs which were observed in DvARPC1. Transcriptional profiles of all subunits of the DvArp2/3 complex revealed greater mRNA expression in both Rickettsia-infected and -uninfected ovary compared to midgut and salivary glands. In response to R. montanensis infection of the tick ovary, the mRNA level of only DvARPC4 was significantly upregulated compared to uninfected tissues. Arp2/3 complex inhibition bioassays resulted in a decrease in the ability of R. montanensis to invade tick tissues with a significant difference in the tick ovary, indicating a role for the Arp2/3 complex in rickettsial invasion of tick cells. Characterization of tick-derived molecules associated with rickettsial infection is imperative in order to better comprehend the ecology of tick-borne rickettsial diseases.
Collapse
Affiliation(s)
- Natthida Petchampai
- Vector-borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail:
| | - Piyanate Sunyakumthorn
- Vector-borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Mark L. Guillotte
- Vector-borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Victoria I. Verhoeve
- Vector-borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Kaikhushroo H. Banajee
- Vector-borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Michael T. Kearney
- Vector-borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Kevin R. Macaluso
- Vector-borne Disease Laboratories, Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| |
Collapse
|
25
|
Sahni SK, Narra HP, Sahni A, Walker DH. Recent molecular insights into rickettsial pathogenesis and immunity. Future Microbiol 2014; 8:1265-88. [PMID: 24059918 DOI: 10.2217/fmb.13.102] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Human infections with arthropod-borne Rickettsia species remain a major global health issue, causing significant morbidity and mortality. Epidemic typhus due to Rickettsia prowazekii has an established reputation as the 'scourge of armies', and as a major determinant of significant 'historical turning points'. No suitable vaccines for human use are currently available to prevent rickettsial diseases. The unique lifestyle features of rickettsiae include obligate intracellular parasitism, intracytoplasmic niche within the host cell, predilection for infection of microvascular endothelium in mammalian hosts, association with arthropods and the tendency for genomic reduction. The fundamental research in the field of Rickettsiology has witnessed significant recent progress in the areas of pathogen adhesion/invasion and host immune responses, as well as the genomics, proteomics, metabolomics, phylogenetics, motility and molecular manipulation of important rickettsial pathogens. The focus of this review article is to capture a snapshot of the latest developments pertaining to the mechanisms of rickettsial pathogenesis and immunity.
Collapse
Affiliation(s)
- Sanjeev K Sahni
- Department of Pathology & Institute for Human Infections & Immunity, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | | | | | | |
Collapse
|
26
|
Luce-Fedrow A, Macaluso KR, Richards AL. Growth ofRickettsia felisinDrosophila melanogasterS2 Cells. Vector Borne Zoonotic Dis 2014; 14:101-10. [DOI: 10.1089/vbz.2013.1370] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Alison Luce-Fedrow
- Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, Maryland
| | - Kevin R. Macaluso
- Louisiana State University, School of Veterinary Medicine, Skip Bertman Drive, Baton Rouge, Louisiana
| | - Allen L. Richards
- Naval Medical Research Center, 503 Robert Grant Avenue, Silver Spring, Maryland
| |
Collapse
|
27
|
Fischer K, Beatty WL, Weil GJ, Fischer PU. High pressure freezing/freeze substitution fixation improves the ultrastructural assessment of Wolbachia endosymbiont-filarial nematode host interaction. PLoS One 2014; 9:e86383. [PMID: 24466066 PMCID: PMC3895037 DOI: 10.1371/journal.pone.0086383] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/12/2013] [Indexed: 12/21/2022] Open
Abstract
Background Wolbachia α-proteobacteria are essential for growth, reproduction and survival for many filarial nematode parasites of medical and veterinary importance. Endobacteria were discovered in filarial parasites by transmission electron microscopy in the 1970’s using chemically fixed specimens. Despite improvements of fixation and electron microscopy techniques during the last decades, methods to study the Wolbachia/filaria interaction on the ultrastructural level remained unchanged and the mechanisms for exchange of materials and for motility of endobacteria are not known. Methodology/Principal Finding We used high pressure freezing/freeze substitution to improve fixation of Brugia malayi and its endosymbiont, and this led to improved visualization of different morphological forms of Wolbachia. The three concentric, bilayer membranes that surround the endobacterial cytoplasm were well preserved. Vesicles with identical membrane structures were identified close to the endobacteria, and multiple bacteria were sometimes enclosed within a single outer membrane. Immunogold electron microscopy using a monoclonal antibody directed against Wolbachia surface protein-1 labeled the membranes that enclose Wolbachia and Wolbachia-associated vesicles. High densities of Wolbachia were observed in the lateral chords of L4 larvae, immature, and mature adult worms. Extracellular Wolbachia were sometimes present in the pseudocoelomic cavity near the developing female reproductive organs. Wolbachia-associated actin tails were not observed. Wolbachia motility may be explained by their residence within vacuoles, as they may co-opt the host cell’s secretory pathway to move within and between cells. Conclusions/Significance High pressure freezing/freeze substitution significantly improved the preservation of filarial tissues for electron microscopy to reveal membranes and sub cellular structures that could be crucial for exchange of materials between Wolbachia and its host.
Collapse
Affiliation(s)
- Kerstin Fischer
- Infectious Diseases Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Wandy L. Beatty
- Imaging Facility, Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Gary J. Weil
- Infectious Diseases Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Peter U. Fischer
- Infectious Diseases Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
28
|
Péan CB, Dionne MS. Intracellular infections in Drosophila melanogaster: host defense and mechanisms of pathogenesis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:57-66. [PMID: 23648644 DOI: 10.1016/j.dci.2013.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/12/2013] [Accepted: 04/19/2013] [Indexed: 06/02/2023]
Abstract
The fruit-fly Drosophila melanogaster has emerged as a powerful model to study innate immunity against intracellular pathogens. To combat infection, the fly relies on multiple lines of defense, many of which are shared with mammals and arthropod vectors of human diseases. In addition to conserved immune pathways, the ease of performing sophisticated genetic screens has allowed the identification of novel host immune factors and novel pathogen virulence factors. Recently, some groups have exploited this to simultaneously analyze the host and pathogen genetics of intracellular infection. This review aims to unravel the Drosophila immune response against intracellular pathogens, highlighting recent discoveries.
Collapse
Affiliation(s)
- Claire B Péan
- Centre for Molecular and Cellular Biology of Inflammation and Peter Gorer Department of Immunobiology, King's College London School of Medicine, London SE1 1UL, UK
| | | |
Collapse
|
29
|
Valanne S. Functional genomic analysis of the Drosophila immune response. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:93-101. [PMID: 23707784 DOI: 10.1016/j.dci.2013.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 05/13/2013] [Accepted: 05/13/2013] [Indexed: 06/02/2023]
Abstract
Drosophila melanogaster has been widely used as a model organism for over a century now, and also as an immunological research model for over 20 years. With the emergence of RNA interference (RNAi) in Drosophila as a robust tool to silence genes of interest, large-scale or genome-wide functional analysis has become a popular way of studying the Drosophila immune response in cell culture. Drosophila immunity is composed of cellular and humoral immunity mechanisms, and especially the systemic, humoral response pathways have been extensively dissected using the functional genomic approach. Although most components of the main immune pathways had already been found using traditional genetic screening techniques, important findings including pathway components, positive and negative regulators and modifiers have been made with RNAi screening. Additionally, RNAi screening has produced new information on host-pathogen interactions related to the pathogenesis of many microbial species.
Collapse
Affiliation(s)
- Susanna Valanne
- Institute of Biomedical Technology and BioMediTech, Tampere University, 33520 Tampere, Finland.
| |
Collapse
|
30
|
Reed SCO, Lamason RL, Risca VI, Abernathy E, Welch MD. Rickettsia actin-based motility occurs in distinct phases mediated by different actin nucleators. Curr Biol 2013; 24:98-103. [PMID: 24361066 DOI: 10.1016/j.cub.2013.11.025] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/21/2013] [Accepted: 11/12/2013] [Indexed: 11/16/2022]
Abstract
Many intracellular bacterial pathogens undergo actin-based motility to promote cell-cell spread during infection [1]. For each pathogen, motility was assumed to be driven by a single actin polymerization pathway. Curiously, spotted fever group Rickettsia differ from other pathogens in possessing two actin-polymerizing proteins. RickA, an activator of the host Arp2/3 complex, was initially proposed to drive motility [2, 3]. Sca2, a mimic of host formins [4, 5], was later shown to be required for motility [6]. Whether and how their activities are coordinated has remained unclear. Here, we show that each protein directs an independent mode of Rickettsia parkeri motility at different times during infection. Early after invasion, motility is slow and meandering, generating short, curved actin tails that are enriched with Arp2/3 complex and cofilin. Early motility requires RickA and Arp2/3 complex and is correlated with transient RickA localization to the bacterial pole. Later in infection, motility is faster and directionally persistent, resulting in long, straight actin tails. Late motility is independent of Arp2/3 complex and RickA and requires Sca2, which accumulates at the bacterial pole. Both motility pathways facilitate cell-to-cell spread. The ability to exploit two actin assembly pathways may allow Rickettsia to establish an intracellular niche and spread between diverse cells throughout a prolonged infection.
Collapse
Affiliation(s)
- Shawna C O Reed
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Microbiology Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Rebecca L Lamason
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Viviana I Risca
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Emma Abernathy
- Microbiology Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Matthew D Welch
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Microbiology Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
31
|
Motility characteristics are altered for Rickettsia bellii transformed to overexpress a heterologous rickA gene. Appl Environ Microbiol 2013; 80:1170-6. [PMID: 24296498 DOI: 10.1128/aem.03352-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The rickettsial protein RickA activates host cell factors associated with the eukaryotic actin cytoskeleton and is likely involved with rickettsial host cell binding and infection and the actin-based motility of spotted fever group rickettsiae. The rickA gene sequence and protein vary substantially between Rickettsia species, as do observed motility-associated phenotypes. To help elucidate the function of RickA and determine the effects of species-specific RickA variations, we compared extracellular binding, intracellular motility, and intercellular spread phenotypes of three Rickettsia bellii variants. These included two shuttle vector-transformed R. bellii strains and the wild-type isolate from which they were derived, R. bellii RML 369C. Both plasmid shuttle vectors carried spectinomycin resistance and a GFPuv reporter; one contained Rickettsia monacensis-derived rickA, and the other lacked the rickA gene. Rickettsia bellii transformed to express R. monacensis rickA highly overexpressed this transcript in comparison to its native rickA. These rickettsiae also moved at higher velocities and followed a more curved path than the negative-control transformants. A lower proportion of R. monacensis rickA-expressing bacteria ever became motile, however, and they formed smaller plaques.
Collapse
|
32
|
Alvarez DE, Agaisse H. The formin FHOD1 and the small GTPase Rac1 promote vaccinia virus actin-based motility. ACTA ACUST UNITED AC 2013; 202:1075-90. [PMID: 24062339 PMCID: PMC3787377 DOI: 10.1083/jcb.201303055] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vaccinia virus actin–based motility relies on integration of the N-WASP–ARP2/3 and Rac1–FHOD1 pathways. Vaccinia virus dissemination relies on the N-WASP–ARP2/3 pathway, which mediates actin tail formation underneath cell-associated extracellular viruses (CEVs). Here, we uncover a previously unappreciated role for the formin FHOD1 and the small GTPase Rac1 in vaccinia actin tail formation. FHOD1 depletion decreased the number of CEVs forming actin tails and impaired the elongation rate of the formed actin tails. Recruitment of FHOD1 to actin tails relied on its GTPase binding domain in addition to its FH2 domain. In agreement with previous studies showing that FHOD1 is activated by the small GTPase Rac1, Rac1 was enriched and activated at the membrane surrounding actin tails. Rac1 depletion or expression of dominant-negative Rac1 phenocopied the effects of FHOD1 depletion and impaired the recruitment of FHOD1 to actin tails. FHOD1 overexpression rescued the actin tail formation defects observed in cells overexpressing dominant-negative Rac1. Altogether, our results indicate that, to display robust actin-based motility, vaccinia virus integrates the activity of the N-WASP–ARP2/3 and Rac1–FHOD1 pathways.
Collapse
Affiliation(s)
- Diego E Alvarez
- Department of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale School of Medicine, New Haven, CT, 06519
| | | |
Collapse
|
33
|
Humphries AC, Way M. The non-canonical roles of clathrin and actin in pathogen internalization, egress and spread. Nat Rev Microbiol 2013; 11:551-60. [PMID: 24020073 DOI: 10.1038/nrmicro3072] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The role of clathrin in pathogen entry has received much attention and has highlighted the adaptability of clathrin during internalization. Recent studies have now uncovered additional roles for clathrin and have put the spotlight on its role in pathogen spread. Here, we discuss the manipulation of clathrin by pathogens, with specific attention to the processes that occur at the plasma membrane. In the majority of cases, both clathrin and the actin cytoskeleton are hijacked, so we also examine the interplay between these two systems and their role during pathogen internalization, egress and spread.
Collapse
Affiliation(s)
- Ashley C Humphries
- Cancer Research UK London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK
| | | |
Collapse
|
34
|
Abstract
Several bacterial pathogens, including Listeria monocytogenes, Shigella flexneri and Rickettsia spp., have evolved mechanisms to actively spread within human tissues. Spreading is initiated by the pathogen-induced recruitment of host filamentous (F)-actin. F-actin forms a tail behind the microbe, propelling it through the cytoplasm. The motile pathogen then encounters the host plasma membrane, forming a bacterium-containing protrusion that is engulfed by an adjacent cell. Over the past two decades, much progress has been made in elucidating mechanisms of F-actin tail formation. Listeria and Shigella produce tails of branched actin filaments by subverting the host Arp2/3 complex. By contrast, Rickettsia forms tails with linear actin filaments through a bacterial mimic of eukaryotic formins. Compared with F-actin tail formation, mechanisms controlling bacterial protrusions are less well understood. However, recent findings have highlighted the importance of pathogen manipulation of host cell–cell junctions in spread. Listeria produces a soluble protein that enhances bacterial protrusions by perturbing tight junctions. Shigella protrusions are engulfed through a clathrin-mediated pathway at ‘tricellular junctions’—specialized membrane regions at the intersection of three epithelial cells. This review summarizes key past findings in pathogen spread, and focuses on recent developments in actin-based motility and the formation and internalization of bacterial protrusions.
Collapse
Affiliation(s)
- Keith Ireton
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
35
|
Humphries AC, Dodding MP, Barry DJ, Collinson LM, Durkin CH, Way M. Clathrin potentiates vaccinia-induced actin polymerization to facilitate viral spread. Cell Host Microbe 2012; 12:346-59. [PMID: 22980331 DOI: 10.1016/j.chom.2012.08.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 05/30/2012] [Accepted: 08/13/2012] [Indexed: 01/11/2023]
Abstract
During their egress, newly assembled vaccinia virus particles fuse with the plasma membrane and enhance their spread by inducing Arp2/3-dependent actin polymerization. Investigating the events surrounding vaccinia virus fusion, we discovered that vaccinia transiently recruits clathrin in a manner dependent on the clathrin adaptor AP-2. The recruitment of clathrin to vaccinia dramatically enhances the ability of the virus to induce actin-based motility. We demonstrate that clathrin promotes clustering of the virus actin tail nucleator A36 and host N-WASP, which activates actin nucleation through the Arp2/3 complex. Increased clustering enhances N-WASP stability, leading to more efficient actin tail initiation and sustained actin polymerization. Our observations uncover an unexpected role for clathrin during virus spread and have important implications for the regulation of actin polymerization.
Collapse
Affiliation(s)
- Ashley C Humphries
- Cell Motility Laboratory, Cancer Research UK, London Research Institute, London WC2A 3LY, UK
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
To ensure spread from one cell to another, exocytosed vaccinia virions recruit cellular actin polymerization machinery to blast off from the cell surface on actin tails. Humphries et al. (2012) now show that the virus exploits clathrin to organize viral factors into a launch pad that facilitates efficient actin tail formation.
Collapse
Affiliation(s)
- Florian I Schmidt
- Institute of Biochemistry, ETH Zürich, Schafmattstrasse 18, Zürich 8093, Switzerland
| | | |
Collapse
|
37
|
Welch MD, Reed SCO, Lamason RL, Serio AW. Expression of an epitope-tagged virulence protein in Rickettsia parkeri using transposon insertion. PLoS One 2012; 7:e37310. [PMID: 22624012 PMCID: PMC3356282 DOI: 10.1371/journal.pone.0037310] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 04/18/2012] [Indexed: 01/01/2023] Open
Abstract
Despite recent advances in our ability to genetically manipulate Rickettsia, little has been done to employ genetic tools to study the expression and localization of Rickettsia virulence proteins. Using a mariner-based Himar1 transposition system, we expressed an epitope-tagged variant of the actin polymerizing protein RickA under the control of its native promoter in Rickettsia parkeri, allowing the detection of RickA using commercially-available antibodies. Native RickA and epitope-tagged RickA exhibited similar levels of expression and were specifically localized to bacteria. To further facilitate protein expression in Rickettsia, we also developed a plasmid for Rickettsia insertion and expression (pRIE), containing a variant Himar1 transposon with enhanced flexibility for gene insertion, and used it to generate R. parkeri strains expressing diverse fluorescent proteins. Expression of epitope-tagged proteins in Rickettsia will expand our ability to assess the regulation and function of important virulence factors.
Collapse
Affiliation(s)
- Matthew D Welch
- Department of Molecular & Cell Biology, University of California, Berkeley, California, United States of America.
| | | | | | | |
Collapse
|
38
|
Sunyakumthorn P, Petchampai N, Kearney MT, Sonenshine DE, Macaluso KR. Molecular characterization and tissue-specific gene expression of Dermacentor variabilis α-catenin in response to rickettsial infection. INSECT MOLECULAR BIOLOGY 2012; 21:197-204. [PMID: 22221256 PMCID: PMC3299920 DOI: 10.1111/j.1365-2583.2011.01126.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Alpha catenin is a cytoskeleton protein that acts as a regulator of actin rearrangement by forming an E-cadherin adhesion complex. In Dermacentor variabilis, a putative α-catenin (Dvα-catenin) was previously identified as differentially regulated in ovaries of ticks chronically infected with Rickettsia montanensis. To begin characterizing the role(s) of Dvα-catenin during rickettsial infection, the full-length Dvα-catenin cDNA was cloned and analysed. Comparative sequence analysis demonstrates a 3069-bp cDNA with a 2718-bp open reading frame with a sequence similar to Ixodes scapularisα-catenin. A portion of Dvα-catenin is homologous to the vinculin-conserved domain containing a putative actin-binding region and β-catenin-binding and -dimerization regions. Quantitative reverse-transcription PCR analysis demonstrated that Dvα-catenin is predominantly expressed in tick ovaries and is responsive to tick feeding. The tissue-specific gene expression analysis of ticks exposed to Rickettsia demonstrates that Dvα-catenin expression was significantly downregulated 12 h after exposure to R. montanensis, but not in Rickettsia amblyommii-exposed ovaries, compared with Rickettsia-unexposed ticks. Studying tick-derived molecules associated with rickettsial infection will provide a better understanding of the transmission dynamics of tick-borne rickettsial diseases.
Collapse
Affiliation(s)
- Piyanate Sunyakumthorn
- Department of Pathobiological Sciences, Louisiana State University, School of Veterinary Medicine, Skip Bertman Drive, SVM-3213, Baton Rouge, Louisiana 70803, USA
| | - Natthida Petchampai
- Department of Pathobiological Sciences, Louisiana State University, School of Veterinary Medicine, Skip Bertman Drive, SVM-3213, Baton Rouge, Louisiana 70803, USA
| | - Michael T. Kearney
- Department of Pathobiological Sciences, Louisiana State University, School of Veterinary Medicine, Skip Bertman Drive, SVM-3213, Baton Rouge, Louisiana 70803, USA
| | - Daniel E. Sonenshine
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia 23529
| | - Kevin R. Macaluso
- Department of Pathobiological Sciences, Louisiana State University, School of Veterinary Medicine, Skip Bertman Drive, SVM-3213, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
39
|
Abstract
The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen-host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial-host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis-host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed.
Collapse
Affiliation(s)
- Christina O Igboin
- Division of Oral Biology, College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | | | | |
Collapse
|
40
|
Reed SCO, Serio AW, Welch MD. Rickettsia parkeri invasion of diverse host cells involves an Arp2/3 complex, WAVE complex and Rho-family GTPase-dependent pathway. Cell Microbiol 2012; 14:529-45. [PMID: 22188208 DOI: 10.1111/j.1462-5822.2011.01739.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rickettsiae are obligate intracellular pathogens that are transmitted to humans by arthropod vectors and cause diseases such as spotted fever and typhus. Although rickettsiae require the host cell actin cytoskeleton for invasion, the cytoskeletal proteins that mediate this process have not been completely described. To identify the host factors important during cell invasion by Rickettsia parkeri, a member of the spotted fever group (SFG), we performed an RNAi screen targeting 105 proteins in Drosophila melanogaster S2R+ cells. The screen identified 21 core proteins important for invasion, including the GTPases Rac1 and Rac2, the WAVE nucleation-promoting factor complex and the Arp2/3 complex. In mammalian cells, including endothelial cells, the natural targets of R. parkeri, the Arp2/3 complex was also crucial for invasion, while requirements for WAVE2 as well as Rho GTPases depended on the particular cell type. We propose that R. parkeri invades S2R+ arthropod cells through a primary pathway leading to actin nucleation, whereas invasion of mammalian endothelial cells occurs via redundant pathways that converge on the host Arp2/3 complex. Our results reveal a key role for the WAVE and Arp2/3 complexes, as well as a higher degree of variation than previously appreciated in actin nucleation pathways activated during Rickettsia invasion.
Collapse
Affiliation(s)
- Shawna C O Reed
- Microbiology Graduate Group, University of California, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
41
|
Haglund CM, Welch MD. Pathogens and polymers: microbe-host interactions illuminate the cytoskeleton. ACTA ACUST UNITED AC 2011; 195:7-17. [PMID: 21969466 PMCID: PMC3187711 DOI: 10.1083/jcb.201103148] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Intracellular pathogens subvert the host cell cytoskeleton to promote their own survival, replication, and dissemination. Study of these microbes has led to many discoveries about host cell biology, including the identification of cytoskeletal proteins, regulatory pathways, and mechanisms of cytoskeletal function. Actin is a common target of bacterial pathogens, but recent work also highlights the use of microtubules, cytoskeletal motors, intermediate filaments, and septins. The study of pathogen interactions with the cytoskeleton has illuminated key cellular processes such as phagocytosis, macropinocytosis, membrane trafficking, motility, autophagy, and signal transduction.
Collapse
Affiliation(s)
- Cat M Haglund
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | |
Collapse
|
42
|
A Rickettsia genome overrun by mobile genetic elements provides insight into the acquisition of genes characteristic of an obligate intracellular lifestyle. J Bacteriol 2011; 194:376-94. [PMID: 22056929 DOI: 10.1128/jb.06244-11] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We present the draft genome for the Rickettsia endosymbiont of Ixodes scapularis (REIS), a symbiont of the deer tick vector of Lyme disease in North America. Among Rickettsia species (Alphaproteobacteria: Rickettsiales), REIS has the largest genome sequenced to date (>2 Mb) and contains 2,309 genes across the chromosome and four plasmids (pREIS1 to pREIS4). The most remarkable finding within the REIS genome is the extraordinary proliferation of mobile genetic elements (MGEs), which contributes to a limited synteny with other Rickettsia genomes. In particular, an integrative conjugative element named RAGE (for Rickettsiales amplified genetic element), previously identified in scrub typhus rickettsiae (Orientia tsutsugamushi) genomes, is present on both the REIS chromosome and plasmids. Unlike the pseudogene-laden RAGEs of O. tsutsugamushi, REIS encodes nine conserved RAGEs that include F-like type IV secretion systems similar to that of the tra genes encoded in the Rickettsia bellii and R. massiliae genomes. An unparalleled abundance of encoded transposases (>650) relative to genome size, together with the RAGEs and other MGEs, comprise ~35% of the total genome, making REIS one of the most plastic and repetitive bacterial genomes sequenced to date. We present evidence that conserved rickettsial genes associated with an intracellular lifestyle were acquired via MGEs, especially the RAGE, through a continuum of genomic invasions. Robust phylogeny estimation suggests REIS is ancestral to the virulent spotted fever group of rickettsiae. As REIS is not known to invade vertebrate cells and has no known pathogenic effects on I. scapularis, its genome sequence provides insight on the origin of mechanisms of rickettsial pathogenicity.
Collapse
|
43
|
Chong R, Squires R, Swiss R, Agaisse H. RNAi screen reveals host cell kinases specifically involved in Listeria monocytogenes spread from cell to cell. PLoS One 2011; 6:e23399. [PMID: 21853127 PMCID: PMC3154492 DOI: 10.1371/journal.pone.0023399] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 07/15/2011] [Indexed: 12/04/2022] Open
Abstract
Intracellular bacterial pathogens, such as Listeria monocytogenes and Rickettsia conorii display actin-based motility in the cytosol of infected cells and spread from cell to cell through the formation of membrane protrusions at the cell cortex. Whereas the mechanisms supporting cytosolic actin-based motility are fairly well understood, it is unclear whether specific host factors may be required for supporting the formation and resolution of membrane protrusions. To address this gap in knowledge, we have developed high-throughput fluorescence microscopy and computer-assisted image analysis procedures to quantify pathogen spread in human epithelial cells. We used the approach to screen a siRNA library covering the human kinome and identified 7 candidate kinases whose depletion led to severe spreading defects in cells infected with L. monocytogenes. We conducted systematic validation procedures with redundant silencing reagents and confirmed the involvement of the serine/threonine kinases, CSNK1A1 and CSNK2B. We conducted secondary assays showing that, in contrast with the situation observed in CSNK2B-depleted cells, L. monocytogenes formed wild-type cytosolic tails and displayed wild-type actin-based motility in the cytosol of CSNK1A1-depleted cells. Furthermore, we developed a protrusion formation assay and showed that the spreading defect observed in CSNK1A1-depleted cells correlated with the formation of protrusion that did not resolve into double-membrane vacuoles. Moreover, we developed sending and receiving cell-specific RNAi procedures and showed that CSNK1A was required in the sending cells, but was dispensable in the receiving cells, for protrusion resolution. Finally, we showed that the observed defects were specific to Listeria monocytogenes, as Rickettsia conorii displayed wild-type cell-to-cell spread in CSNK1A1- and CSNK2B-depleted cells. We conclude that, in addition to the specific host factors supporting cytosolic actin-based motility, such as CSNK2B, Listeria monocytogenes requires specific host factors, such as CSNK1A1 in order to form productive membrane protrusions and spread from cell to cell.
Collapse
Affiliation(s)
- Ryan Chong
- Section of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Raynal Squires
- Section of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Rachel Swiss
- Section of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Hervé Agaisse
- Section of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
44
|
Abstract
A new biochemical analysis has revealed that the Rickettsia bacterial protein Sca2--recently shown to be essential for virulence and actin-dependent motility--assembles actin filaments using a mechanism that functionally resembles the processive elongation tactics used by formins.
Collapse
Affiliation(s)
- Art Alberts
- Laboratory of Cell Structure & Signal Integration, Van Andel Research Institute, Grand Rapids, MI 49503, USA.
| | | |
Collapse
|
45
|
Sitthidet C, Korbsrisate S, Layton AN, Field TR, Stevens MP, Stevens JM. Identification of motifs of Burkholderia pseudomallei BimA required for intracellular motility, actin binding, and actin polymerization. J Bacteriol 2011; 193:1901-10. [PMID: 21335455 PMCID: PMC3133048 DOI: 10.1128/jb.01455-10] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 02/09/2011] [Indexed: 01/03/2023] Open
Abstract
Actin-based motility of the melioidosis pathogen Burkholderia pseudomallei requires BimA (Burkholderia intracellular motility A). The mechanism by which BimA mediates actin assembly at the bacterial pole is ill-defined. Toward an understanding of the regions of B. pseudomallei BimA required for intracellular motility and the binding and polymerization of actin, we constructed plasmid-borne bimA variants and glutathione-S-transferase fusion proteins with in-frame deletions of specific motifs. A 13-amino-acid direct repeat and IP₇ proline-rich motif were dispensable for actin binding and assembly in vitro, and expression of the mutated proteins in a B. pseudomallei bimA mutant restored actin-based motility in J774.2 murine macrophage-like cells. However, two WASP homology 2 (WH2) domains were found to be required for actin binding, actin assembly, and plaque formation. A tract of five PDASX direct repeats influenced the polymerization of pyrene-actin monomers in vitro and was required for actin-based motility and intercellular spread, but not actin binding. None of the mutations impaired surface expression or polar targeting of BimA. The number of PDASX repeats varied in natural isolates from two to seven. Such repeats acted additively to promote pyrene-actin polymerization in vitro, with stepwise increases in the rate of polymerization as the number of repeats was increased. No differences in the efficiency of actin tail formation could be discerned between strains expressing BimA variants with two, five, or seven PDASX repeats. The data provide valuable new insights into the role of conserved and variable motifs of BimA in actin-based motility and intercellular spread of B. pseudomallei.
Collapse
Affiliation(s)
- Chayada Sitthidet
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkoknoi, Bangkok 10700, Thailand
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkoknoi, Bangkok 10700, Thailand
| | - Abigail N. Layton
- Enteric Bacterial Pathogens Laboratory, Institute for Animal Health, Compton, Berkshire RG20 7NN, United Kingdom
| | - Terence R. Field
- Enteric Bacterial Pathogens Laboratory, Institute for Animal Health, Compton, Berkshire RG20 7NN, United Kingdom
| | - Mark P. Stevens
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom
| | - Joanne M. Stevens
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom
| |
Collapse
|
46
|
Abstract
As biomedical research becomes increasingly data-intensive, it is increasingly essential to integrate genomic-scale datasets, so as to generate a more holistic picture of complex biological processes. The systems biology paradigm may differ in strategy from traditional reductionist scientific methods, but the goal remains the same: to generate tenable hypotheses driving the experimental elucidation of biological mechanisms. Intracellular pathogens provide an excellent opportunity for systems analysis, as many of these organisms are amenable to genetic manipulation, allowing their biology to be played off against that of the host. Moreover, many of the most fundamental biological properties of these microbes (host cell invasion, immune evasion, intracellular replication, long-term persistence) are directly linked to pathogenesis and readily quantifiable using genomic-scale technologies. In this review, we summarize and discuss some of the available and foreseeable functional genomics datasets pertaining to host-pathogen interactions and suggest that the host-pathogen interface represents a promising, tractable challenge for systems biological analysis. Success will require developing and leveraging new technologies, expanding data acquisition, and increasing public access to comprehensive datasets, to assemble quantitative and testable models of the host-pathogen relationship.
Collapse
Affiliation(s)
- Daniel P Beiting
- Department of Biology, Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
47
|
Haglund CM, Choe JE, Skau CT, Kovar DR, Welch MD. Rickettsia Sca2 is a bacterial formin-like mediator of actin-based motility. Nat Cell Biol 2010; 12:1057-63. [PMID: 20972427 PMCID: PMC3136050 DOI: 10.1038/ncb2109] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 09/14/2010] [Indexed: 12/15/2022]
Abstract
Diverse intracellular pathogens subvert the host actin-polymerization machinery to drive movement within and between cells during infection. Rickettsia in the spotted fever group (SFG) are Gram-negative, obligate intracellular bacterial pathogens that undergo actin-based motility and assemble distinctive 'comet tails' that consist of long, unbranched actin filaments. Despite this distinct organization, it was proposed that actin in Rickettsia comet tails is nucleated by the host Arp2/3 complex and the bacterial protein RickA, which assemble branched actin networks. However, a second bacterial gene, sca2, was recently implicated in actin-tail formation by R. rickettsii. Here, we demonstrate that Sca2 is a bacterial actin-assembly factor that functionally mimics eukaryotic formin proteins. Sca2 nucleates unbranched actin filaments, processively associates with growing barbed ends, requires profilin for efficient elongation, and inhibits the activity of capping protein, all properties shared with formins. Sca2 localizes to the Rickettsia surface and is sufficient to promote the assembly of actin filaments in cytoplasmic extract. These results suggest that Sca2 mimics formins to determine the unique organization of actin filaments in Rickettsia tails and drive bacterial motility, independently of host nucleators.
Collapse
Affiliation(s)
- Cat M. Haglund
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Julie E. Choe
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Colleen T. Skau
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | - David R. Kovar
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Matthew D. Welch
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| |
Collapse
|
48
|
Kalman D, Ono S. Rickettsia pays the piper; new actors and some bad actin'. Cell Host Microbe 2010; 7:335-6. [PMID: 20478532 DOI: 10.1016/j.chom.2010.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pathogens such as Listeria have been used to define host factors regulating actin dynamics, including the Arp2/3 complex. In this issue of Cell Host & Microbe, Serio et al. (2010) use Rickettsia to identify a new complex, based on profilin, which regulates actin dynamics in normal cells and which may be exploitable by diverse pathogens.
Collapse
Affiliation(s)
- Daniel Kalman
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA.
| | | |
Collapse
|