1
|
Maurer DP, Vu M, Schmidt AG. Antigenic drift expands influenza viral escape pathways from recalled humoral immunity. Immunity 2025; 58:716-727.e6. [PMID: 40023162 PMCID: PMC11906258 DOI: 10.1016/j.immuni.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/16/2024] [Accepted: 02/05/2025] [Indexed: 03/04/2025]
Abstract
Initial exposure to a rapidly evolving virus establishes B cell memory that biases later responses to antigenically drifted strains. This "immune imprinting" implies that subsequent exposure to a drifted strain can induce affinity maturation of memory B cells toward cross-reactivity with the drifted strain and hence toward greater overall breadth. Here, we used deep mutational scanning of H1 influenza hemagglutinins (HAs) to investigate how viruses evolve in response to these broad antibody response. We identified escape mutations from clonal antibody lineages that targeted the receptor binding site and lateral patch. By adjusting the antigen-antibody contacts, antibody affinity maturation restricted the potential escape routes for the eliciting strain. However, escape occurred readily in drifted strains. We attribute this escape-prone property of the drifted strains to epistatic networks within HA. Our data explain how the influenza virus continues to evolve in the human population by escaping even broad antibody responses.
Collapse
Affiliation(s)
- Daniel P Maurer
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Mya Vu
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Aaron G Schmidt
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Feldman J, Ramos ASF, Vu M, Maurer DP, Rosado VC, Lingwood D, Bajic G, Schmidt AG. Human naïve B cells recognize prepandemic influenza virus hemagglutinins. Sci Immunol 2025; 10:eado9572. [PMID: 39854479 DOI: 10.1126/sciimmunol.ado9572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 12/10/2024] [Indexed: 01/26/2025]
Abstract
Understanding the naïve B cell repertoire and its specificity for potential zoonotic threats, such as the highly pathogenic avian influenza (HPAI) H5Nx viruses, may allow prediction of infection- or vaccine-specific responses. However, this naïve repertoire and the possibility to respond to emerging, prepandemic viruses are largely undetermined. Here, we profiled naïve B cell reactivity against a prototypical HPAI H5 hemagglutinin (HA), the major target of antibody responses. We found that the frequency of H5-specific human naïve B cells targeting the HA "head" domain was increased relative to cross-reactive B cells to a circulating seasonal H1N1 strain. We classified the isolated monoclonal antibodies (mAbs) by the HA epitopes engaged and found that selected mAbs neutralized H5N1 at germline. We determined a cryo-electron microscopic structure of one mAb in complex with H5 HA to define its epitope. Our study defines the naïve human B cell repertoire recognizing a potentially zoonotic HPAI.
Collapse
Affiliation(s)
- Jared Feldman
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | | | - Mya Vu
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Daniel P Maurer
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Victoria C Rosado
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Daniel Lingwood
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Goran Bajic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Aaron G Schmidt
- Ragon Institute of Mass General, MIT, and Harvard, Cambridge, MA 02139, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Chen ZS, Huang HC, Wang X, Schön K, Jia Y, Lebens M, Besavilla DF, Murti JR, Ji Y, Sarshad AA, Deng G, Zhu Q, Angeletti D. Influenza A Virus H7 nanobody recognizes a conserved immunodominant epitope on hemagglutinin head and confers heterosubtypic protection. Nat Commun 2025; 16:432. [PMID: 39788944 PMCID: PMC11718266 DOI: 10.1038/s41467-024-55193-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025] Open
Abstract
Influenza remains a persistent global health challenge, largely due to the virus' continuous antigenic drift and occasional shift, which impede the development of a universal vaccine. To address this, the identification of broadly neutralizing antibodies and their epitopes is crucial. Nanobodies, with their unique characteristics and binding capacity, offer a promising avenue to identify such epitopes. Here, we isolate and purify a hemagglutinin (HA)-specific nanobody that recognizes an H7 subtype of influenza A virus. The nanobody, named E10, exhibits broad-spectrum binding, cross-group neutralization and in vivo protection across various influenza A subtypes. Through phage display and in vitro characterization, we demonstrate that E10 specifically targets an epitope on HA head which is part of the conserved lateral patch and is highly immunodominant upon H7 infection. Importantly, immunization with a peptide including the E10 epitope elicits cross-reactive antibodies and mediates partial protection from lethal viral challenge. Our data highlights the potential of E10 and its associated epitope as a candidate for future influenza prevention strategies.
Collapse
Affiliation(s)
- Zhao-Shan Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Hsiang-Chi Huang
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Xiangkun Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Karin Schön
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Yane Jia
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Michael Lebens
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Danica F Besavilla
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Janarthan R Murti
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Yanhong Ji
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Aishe A Sarshad
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Guohua Deng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Heilongjiang, China
| | - Qiyun Zhu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| | - Davide Angeletti
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
- SciLifeLab, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
4
|
Harrington WN, Turner JCM, Barman S, Feeroz MM, Hasan MK, Akhtar S, Jeevan T, Mukherjee N, Seiler P, Franks J, Walker D, McKenzie P, Kercher L, Webster RG, Webby RJ. Longitudinal Active Avian Influenza Surveillance in Bangladesh From 2017-2022 Reveals Differential IAV and H5 Infection and Viral Burden Associated With Bird Species, Sex, and Age. Transbound Emerg Dis 2024; 2024:5569836. [PMID: 40303010 PMCID: PMC12016783 DOI: 10.1155/tbed/5569836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/26/2024] [Indexed: 05/02/2025]
Abstract
Influenza viruses are a major global health burden with up to 650,000 associated deaths annually. Beyond seasonal illness, influenza A viruses (IAVs) pose a constant pandemic threat due to novel emergent viruses that have evolved the ability to jump from their natural avian hosts to humans. Because of this threat, active surveillance of circulating IAV strains in wild and domestic bird populations is vital to our pandemic preparedness and response strategies. Here, we report on IAV surveillance data collected from 2017 to 2022 from wild and domestic birds in Bangladesh. We note evidence to suggest that male birds show a higher risk of IAV, including highly pathogenic avian influenza (HPAI) A(H5) virus, positivity than female birds. The data was stratified to control for selection bias and confounding variables to test the hypothesis that male birds are at a higher risk of IAV positivity relative to female birds. The association of IAV and A(H5) largely held in each stratum, and double stratification suggested that the phenomena was largely specific to ducks. Finally, we show that chickens, male birds, and juvenile birds generally have higher viral loads compared to their counterparts. These observations warrant further validation through active surveillance across various populations. Such efforts could significantly contribute to the enhancement of pandemic prediction and risk assessment models.
Collapse
Affiliation(s)
- Walter N. Harrington
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jasmine C. M. Turner
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Subrata Barman
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | - Md. Kamrul Hasan
- Department of Zoology, Jahangirnagar University, Savar, Bangladesh
| | - Sharmin Akhtar
- Department of Zoology, Jahangirnagar University, Savar, Bangladesh
| | - Trushar Jeevan
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Nabanita Mukherjee
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Patrick Seiler
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - John Franks
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - David Walker
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Pamela McKenzie
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Lisa Kercher
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Robert G. Webster
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Richard J. Webby
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
5
|
Lederhofer J, Borst AJ, Nguyen L, Gillespie RA, Williams CJ, Walker EL, Raab JE, Yap C, Ellis D, Creanga A, Tan HX, Do THT, Ravichandran M, McDermott AB, Sage VL, Andrews SF, Graham BS, Wheatley AK, Reed DS, King NP, Kanekiyo M. Structural Convergence and Water-Mediated Substrate Mimicry Enable Broad Neuraminidase Inhibition by Human Antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625426. [PMID: 39677750 PMCID: PMC11642763 DOI: 10.1101/2024.11.27.625426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Influenza has been responsible for multiple global pandemics and seasonal epidemics and claimed millions of lives. The imminent threat of a panzootic outbreak of avian influenza H5N1 virus underscores the urgent need for pandemic preparedness and effective countermeasures, including monoclonal antibodies (mAbs). Here, we characterize human mAbs that target the highly conserved catalytic site of viral neuraminidase (NA), termed NCS mAbs, and the molecular basis of their broad specificity. Cross-reactive NA-specific B cells were isolated by using stabilized NA probes of non-circulating subtypes. We found that NCS mAbs recognized multiple NAs of influenza A as well as influenza B NAs and conferred prophylactic protections in mice against H1N1, H5N1, and influenza B viruses. Cryo-electron microscopy structures of two NCS mAbs revealed that they rely on structural mimicry of sialic acid, the substrate of NA, by coordinating not only amino acid side chains but also water molecules, enabling inhibition of NA activity across multiple influenza A and B viruses, including avian influenza H5N1 clade 2.3.4.4b viruses. Our results provide a molecular basis for the broad reactivity and inhibitory activity of NCS mAbs targeting the catalytic site of NA through substrate mimicry.
Collapse
Affiliation(s)
- Julia Lederhofer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Andrew J. Borst
- Institute for Protein Design, University of Washington, Seattle, WA 98195, United States
- Department of Biochemistry, University of Washington, Seattle, WA 98195, United States
| | - Lam Nguyen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Rebecca A. Gillespie
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Connor J. Williams
- Department of Immunology, Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Emma L. Walker
- Department of Immunology, Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Julie E. Raab
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Christina Yap
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Daniel Ellis
- Institute for Protein Design, University of Washington, Seattle, WA 98195, United States
- Department of Biochemistry, University of Washington, Seattle, WA 98195, United States
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195, United States
| | - Adrian Creanga
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Thi H. T. Do
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Michelle Ravichandran
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Adrian B. McDermott
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Valerie Le Sage
- Department of Immunology, Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarah F. Andrews
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Barney S. Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Adam K. Wheatley
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Douglas S. Reed
- Department of Immunology, Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Neil P. King
- Institute for Protein Design, University of Washington, Seattle, WA 98195, United States
- Department of Biochemistry, University of Washington, Seattle, WA 98195, United States
| | - Masaru Kanekiyo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|
6
|
Xiong W, Zhang Z. Influenza Virus Genomic Mutations, Host Barrier and Cross-species Transmission. Curr Genomics 2024; 26:161-174. [PMID: 40433418 PMCID: PMC12105246 DOI: 10.2174/0113892029316603240926051325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/01/2024] [Accepted: 09/06/2024] [Indexed: 05/29/2025] Open
Abstract
Influenza is a global epidemic infectious disease that causes a significant number of illnesses and deaths annually. Influenza exhibits high variability and infectivity, constantly jumping from birds to mammals. Genomic mutations of the influenza virus are a central mechanism leading to viral variation and antigenic evolution. Amino acid substitutions and avoidance of microRNA recognition elements are crucial in facilitating the virus to cross species barriers. This review summarizes the types of genomic mutations in the influenza virus, their roles and mechanisms in crossing species barriers, and analyzes the impact of these mutations on human health.
Collapse
Affiliation(s)
- Wenyan Xiong
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Zongde Zhang
- Inflammation & Allergic Diseases Research Unit, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, 646000, China
| |
Collapse
|
7
|
Goodwin E, Gibbs JS, Yewdell JW, Eisenlohr LC, Hensley SE. Influenza virus antibodies inhibit antigen-specific de novo B cell responses in mice. J Virol 2024; 98:e0076624. [PMID: 39194245 PMCID: PMC11406888 DOI: 10.1128/jvi.00766-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Antibody responses to influenza vaccines tend to be focused on epitopes encountered during prior influenza exposures, with little production of de novo responses to novel epitopes. To examine the contribution of circulating antibodies to this phenomenon, we passively transferred a hemagglutinin (HA)-specific monoclonal antibody (mAb) into mice before immunizing with whole inactivated virions. The HA mAb inhibited de novo HA-specific antibodies, plasmablasts, germinal center B cells, and memory B cells, while responses to a second antigen in the vaccine, neuraminidase (NA), were uninhibited. The HA mAb potently inhibited de novo antibody responses against epitopes near the HA mAb binding site. The HA mAb also promoted IgG1 class switching, an effect that, unlike the inhibition of HA responses, relied on signaling through Fc-gamma receptors. These studies suggest that circulating antibodies inhibit de novo B cell responses in an antigen-specific manner, which likely contributes to differences in antibody specificities elicited during primary and secondary influenza virus exposures.IMPORTANCEMost humans are exposed to influenza viruses in childhood and then subsequently exposed to antigenically drifted influenza variants later in life. It is unclear if antibodies elicited by earlier influenza virus exposures impact immunity against new influenza virus strains. Here, we used a mouse model to investigate how an anti-hemagglutinin (HA) monoclonal antibody (mAb) affects de novo B cell and antibody responses to the protein targeted by the monoclonal antibody (HA) and a second protein not targeted by the monoclonal antibody [neuraminidase (NA)]. Collectively, our studies suggest that circulating anti-influenza virus antibodies can potently modulate the magnitude and specificity of antibody responses elicited by secondary influenza virus exposures.
Collapse
Affiliation(s)
- Eileen Goodwin
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James S. Gibbs
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jonathan W. Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Laurence C. Eisenlohr
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Scott E. Hensley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Zhuang Z, Zhuo J, Yuan Y, Chen Z, Zhang S, Zhu A, Zhao J, Zhao J. Harnessing T-Cells for Enhanced Vaccine Development against Viral Infections. Vaccines (Basel) 2024; 12:478. [PMID: 38793729 PMCID: PMC11125924 DOI: 10.3390/vaccines12050478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
Despite significant strides in vaccine research and the availability of vaccines for many infectious diseases, the threat posed by both known and emerging infectious diseases persists. Moreover, breakthrough infections following vaccination remain a concern. Therefore, the development of novel vaccines is imperative. These vaccines must exhibit robust protective efficacy, broad-spectrum coverage, and long-lasting immunity. One promising avenue in vaccine development lies in leveraging T-cells, which play a crucial role in adaptive immunity and regulate immune responses during viral infections. T-cell recognition can target highly variable or conserved viral proteins, and memory T-cells offer the potential for durable immunity. Consequently, T-cell-based vaccines hold promise for advancing vaccine development efforts. This review delves into the latest research advancements in T-cell-based vaccines across various platforms and discusses the associated challenges.
Collapse
Affiliation(s)
- Zhen Zhuang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China; (Z.Z.); (J.Z.); (Y.Y.); (Z.C.); (S.Z.); (A.Z.); (J.Z.)
| | - Jianfen Zhuo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China; (Z.Z.); (J.Z.); (Y.Y.); (Z.C.); (S.Z.); (A.Z.); (J.Z.)
- Guangzhou National Laboratory, Guangzhou 510005, China
| | - Yaochang Yuan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China; (Z.Z.); (J.Z.); (Y.Y.); (Z.C.); (S.Z.); (A.Z.); (J.Z.)
| | - Zhao Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China; (Z.Z.); (J.Z.); (Y.Y.); (Z.C.); (S.Z.); (A.Z.); (J.Z.)
| | - Shengnan Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China; (Z.Z.); (J.Z.); (Y.Y.); (Z.C.); (S.Z.); (A.Z.); (J.Z.)
| | - Airu Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China; (Z.Z.); (J.Z.); (Y.Y.); (Z.C.); (S.Z.); (A.Z.); (J.Z.)
| | - Jingxian Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China; (Z.Z.); (J.Z.); (Y.Y.); (Z.C.); (S.Z.); (A.Z.); (J.Z.)
- Guangzhou National Laboratory, Guangzhou 510005, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510182, China; (Z.Z.); (J.Z.); (Y.Y.); (Z.C.); (S.Z.); (A.Z.); (J.Z.)
- Guangzhou National Laboratory, Guangzhou 510005, China
| |
Collapse
|
9
|
Goodwin E, Gibbs JS, Yewdell JW, Eisenlohr LC, Hensley SE. Influenza virus antibodies inhibit antigen-specific de novo B cell responses in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.589218. [PMID: 38659819 PMCID: PMC11042189 DOI: 10.1101/2024.04.12.589218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Antibody responses to influenza vaccines tend to be focused on epitopes encountered during prior influenza exposures, with little production of de novo responses to novel epitopes. To examine the contribution of circulating antibody to this phenomenon, we passively transferred a hemagglutinin (HA)-specific monoclonal antibody (mAb) into mice before immunizing with whole inactivated virions. The HA mAb inhibited de novo HA-specific antibodies, plasmablasts, germinal center B cells, and memory B cells, while responses to a second antigen in the vaccine, neuraminidase (NA), were uninhibited. The HA mAb potently inhibited de novo antibody responses against epitopes near the HA mAb binding site. The HA mAb also promoted IgG1 class switching, an effect that, unlike the inhibition of HA responses, relied on signaling through Fc-gamma receptors. These studies suggest that circulating antibodies inhibit de novo B cell responses in an antigen-specific manner, which likely contributes to differences in antibody specificities elicited during primary and secondary influenza virus exposures.
Collapse
Affiliation(s)
- Eileen Goodwin
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - James S. Gibbs
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Jonathan W. Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Laurence C. Eisenlohr
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Scott E. Hensley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
10
|
Maurer DP, Vu M, Schmidt AG. Antigenic drift expands viral escape pathways from imprinted host humoral immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585891. [PMID: 38562862 PMCID: PMC10983950 DOI: 10.1101/2024.03.20.585891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
An initial virus exposure can imprint antibodies such that future responses to antigenically drifted strains are dependent on the identity of the imprinting strain. Subsequent exposure to antigenically distinct strains followed by affinity maturation can guide immune responses toward generation of cross-reactive antibodies. How viruses evolve in turn to escape these imprinted broad antibody responses is unclear. Here, we used clonal antibody lineages from two human donors recognizing conserved influenza virus hemagglutinin (HA) epitopes to assess viral escape potential using deep mutational scanning. We show that even though antibody affinity maturation does restrict the number of potential escape routes in the imprinting strain through repositioning the antibody variable domains, escape is still readily observed in drifted strains and attributed to epistatic networks within HA. These data explain how influenza virus continues to evolve in the human population by escaping even broad antibody responses.
Collapse
|
11
|
Kosik I, Da Silva Santos J, Angel M, Hu Z, Holly J, Gibbs JS, Gill T, Kosikova M, Li T, Bakhache W, Dolan PT, Xie H, Andrews SF, Gillespie RA, Kanekiyo M, McDermott AB, Pierson TC, Yewdell JW. C1q enables influenza hemagglutinin stem binding antibodies to block viral attachment and broadens the antibody escape repertoire. Sci Immunol 2024; 9:eadj9534. [PMID: 38517951 DOI: 10.1126/sciimmunol.adj9534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/14/2024] [Indexed: 03/24/2024]
Abstract
Antigenic drift, the gradual accumulation of amino acid substitutions in the influenza virus hemagglutinin (HA) receptor protein, enables viral immune evasion. Antibodies (Abs) specific for the drift-resistant HA stem region are a promising universal influenza vaccine target. Although anti-stem Abs are not believed to block viral attachment, here we show that complement component 1q (C1q), a 460-kilodalton protein with six Ab Fc-binding domains, confers attachment inhibition to anti-stem Abs and enhances their fusion and neuraminidase inhibition. As a result, virus neutralization activity in vitro is boosted up to 30-fold, and in vivo protection from influenza PR8 infection in mice is enhanced. These effects reflect increased steric hindrance and not increased Ab avidity. C1q greatly expands the anti-stem Ab viral escape repertoire to include residues throughout the HA, some of which cause antigenic alterations in the globular region or modulate HA receptor avidity. We also show that C1q enhances the neutralization activity of non-receptor binding domain anti-SARS-CoV-2 spike Abs, an effect dependent on spike density on the virion surface. These findings demonstrate that C1q can greatly expand Ab function and thereby contribute to viral evolution and immune escape.
Collapse
Affiliation(s)
- Ivan Kosik
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Jefferson Da Silva Santos
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Mathew Angel
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Zhe Hu
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Jaroslav Holly
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - James S Gibbs
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Tanner Gill
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Martina Kosikova
- Laboratory of Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Tiansheng Li
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - William Bakhache
- Quantitative Virology and Evolution Unit, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Patrick T Dolan
- Quantitative Virology and Evolution Unit, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Hang Xie
- Laboratory of Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Sarah F Andrews
- Vaccine Immunology Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca A Gillespie
- Molecular Immunoengineering Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Masaru Kanekiyo
- Molecular Immunoengineering Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adrian B McDermott
- Vaccine Immunology Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Theodore C Pierson
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Jonathan W Yewdell
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| |
Collapse
|
12
|
Hinke DM, Anderson AM, Katta K, Laursen MF, Tesfaye DY, Werninghaus IC, Angeletti D, Grødeland G, Bogen B, Braathen R. Applying valency-based immuno-selection to generate broadly cross-reactive antibodies against influenza hemagglutinins. Nat Commun 2024; 15:850. [PMID: 38346952 PMCID: PMC10861589 DOI: 10.1038/s41467-024-44889-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/09/2024] [Indexed: 02/15/2024] Open
Abstract
Conserved epitopes shared between virus subtypes are often subdominant, making it difficult to induce broadly reactive antibodies by immunization. Here, we generate a plasmid DNA mix vaccine that encodes protein heterodimers with sixteen different influenza A virus hemagglutinins (HA) representing all HA subtypes except H1 (group 1) and H7 (group 2). Each single heterodimer expresses two different HA subtypes and is targeted to MHC class II on antigen presenting cells (APC). Female mice immunized with the plasmid mix produce antibodies not only against the 16 HA subtypes, but also against non-included H1 and H7. We demonstrate that individual antibody molecules cross-react between different HAs. Furthermore, the mix vaccine induces T cell responses to conserved HA epitopes. Immunized mice are partially protected against H1 viruses. The results show that application of valency-based immuno-selection to diversified antigens can be used to direct antibody responses towards conserved (subdominant) epitopes on viral antigens.
Collapse
Affiliation(s)
- Daniëla Maria Hinke
- K.G. Jebsen Centre for Influenza Vaccine Research, University of Oslo, Oslo, Norway
- Institute of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Ane Marie Anderson
- K.G. Jebsen Centre for Influenza Vaccine Research, University of Oslo, Oslo, Norway
- Institute of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Kirankumar Katta
- Institute of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo, Norway
| | | | - Demo Yemane Tesfaye
- Institute of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo, Norway
| | | | - Davide Angeletti
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Gunnveig Grødeland
- K.G. Jebsen Centre for Influenza Vaccine Research, University of Oslo, Oslo, Norway
- Institute of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Bjarne Bogen
- K.G. Jebsen Centre for Influenza Vaccine Research, University of Oslo, Oslo, Norway.
- Institute of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo, Norway.
| | - Ranveig Braathen
- K.G. Jebsen Centre for Influenza Vaccine Research, University of Oslo, Oslo, Norway.
- Institute of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
13
|
Lobby JL, Danzy S, Holmes KE, Lowen AC, Kohlmeier JE. Both Humoral and Cellular Immunity Limit the Ability of Live Attenuated Influenza Vaccines to Promote T Cell Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:107-116. [PMID: 37982700 PMCID: PMC10842048 DOI: 10.4049/jimmunol.2300343] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/20/2023] [Indexed: 11/21/2023]
Abstract
One potential advantage of live attenuated influenza vaccines (LAIVs) is their ability to establish both virus-specific Ab and tissue-resident memory T cells (TRM) in the respiratory mucosa. However, it is hypothesized that pre-existing immunity from past infections and/or immunizations prevents LAIV from boosting or generating de novo CD8+ T cell responses. To determine whether we can overcome this limitation, we generated a series of drifted influenza A/PR8 LAIVs with successive mutations in the hemagglutinin protein, allowing for increasing levels of escape from pre-existing Ab. We also inserted a CD8+ T cell epitope from the Sendai virus nucleoprotein (NP) to assess both generation of a de novo T cell response and boosting of pre-existing influenza-specific CD8+ T cells following LAIV immunization. Increasing the level of escape from Ab enabled boosting of pre-existing TRM, but we were unable to generate de novo Sendai virus NP+ CD8+ TRM following LAIV immunization in PR8 influenza-immune mice, even with LAIV strains that can fully escape pre-existing Ab. As these data suggested a role for cell-mediated immunity in limiting LAIV efficacy, we investigated several scenarios to assess the impact of pre-existing LAIV-specific TRM in the upper and lower respiratory tract. Ultimately, we found that deletion of the immunodominant influenza NP366-374 epitope allowed for sufficient escape from cellular immunity to establish de novo CD8+ TRM. When combined, these studies demonstrate that both pre-existing humoral and cellular immunity can limit the effectiveness of LAIV, which is an important consideration for future design of vaccine vectors against respiratory pathogens.
Collapse
Affiliation(s)
- Jenna L. Lobby
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, 30322 USA
| | - Shamika Danzy
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, 30322 USA
| | - Katie E. Holmes
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, 30322 USA
| | - Anice C. Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, 30322 USA
| | - Jacob E. Kohlmeier
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, 30322 USA
| |
Collapse
|
14
|
Zhang Y, Cui P, Shi J, Chen Y, Zeng X, Jiang Y, Tian G, Li C, Chen H, Kong H, Deng G. Key Amino Acid Residues That Determine the Antigenic Properties of Highly Pathogenic H5 Influenza Viruses Bearing the Clade 2.3.4.4 Hemagglutinin Gene. Viruses 2023; 15:2249. [PMID: 38005926 PMCID: PMC10674173 DOI: 10.3390/v15112249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
The H5 subtype highly pathogenic avian influenza viruses bearing the clade 2.3.4.4 HA gene have been pervasive among domestic poultry and wild birds worldwide since 2014, presenting substantial risks to human and animal health. Continued circulation of clade 2.3.4.4 viruses has resulted in the emergence of eight subclades (2.3.4.4a-h) and multiple distinct antigenic groups. However, the key antigenic substitutions responsible for the antigenic change of these viruses remain unknown. In this study, we analyzed the HA gene sequences of 5713 clade 2.3.4.4 viruses obtained from a public database and found that 23 amino acid residues were highly variable among these strains. We then generated a series of single-amino-acid mutants based on the H5-Re8 (a vaccine seed virus) background and tested their reactivity with a panel of eight monoclonal antibodies (mAbs). Six mutants bearing amino acid substitutions at positions 120, 126, 141, 156, 185, or 189 (H5 numbering) led to reduced or lost reactivity to these mAbs. Further antigenic cartography analysis revealed that the amino acid residues at positions 126, 156, and 189 acted as immunodominant epitopes of H5 viruses. Collectively, our findings offer valuable guidance for the surveillance and early detection of emerging antigenic variants.
Collapse
Affiliation(s)
- Yuancheng Zhang
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150009, China; (Y.Z.); (P.C.); (J.S.); (Y.C.); (X.Z.); (Y.J.); (G.T.); (C.L.); (H.C.)
| | - Pengfei Cui
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150009, China; (Y.Z.); (P.C.); (J.S.); (Y.C.); (X.Z.); (Y.J.); (G.T.); (C.L.); (H.C.)
| | - Jianzhong Shi
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150009, China; (Y.Z.); (P.C.); (J.S.); (Y.C.); (X.Z.); (Y.J.); (G.T.); (C.L.); (H.C.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yuan Chen
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150009, China; (Y.Z.); (P.C.); (J.S.); (Y.C.); (X.Z.); (Y.J.); (G.T.); (C.L.); (H.C.)
| | - Xianying Zeng
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150009, China; (Y.Z.); (P.C.); (J.S.); (Y.C.); (X.Z.); (Y.J.); (G.T.); (C.L.); (H.C.)
| | - Yongping Jiang
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150009, China; (Y.Z.); (P.C.); (J.S.); (Y.C.); (X.Z.); (Y.J.); (G.T.); (C.L.); (H.C.)
| | - Guobin Tian
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150009, China; (Y.Z.); (P.C.); (J.S.); (Y.C.); (X.Z.); (Y.J.); (G.T.); (C.L.); (H.C.)
| | - Chengjun Li
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150009, China; (Y.Z.); (P.C.); (J.S.); (Y.C.); (X.Z.); (Y.J.); (G.T.); (C.L.); (H.C.)
| | - Hualan Chen
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150009, China; (Y.Z.); (P.C.); (J.S.); (Y.C.); (X.Z.); (Y.J.); (G.T.); (C.L.); (H.C.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Huihui Kong
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150009, China; (Y.Z.); (P.C.); (J.S.); (Y.C.); (X.Z.); (Y.J.); (G.T.); (C.L.); (H.C.)
| | - Guohua Deng
- State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150009, China; (Y.Z.); (P.C.); (J.S.); (Y.C.); (X.Z.); (Y.J.); (G.T.); (C.L.); (H.C.)
| |
Collapse
|
15
|
Hsiao CY, Pan HC, Wu VC, Su CC, Yeh TH, Chuang MH, Tu KC, Wang HY, Kan WC, Yang CC, Chen JY. Acute kidney injury in patients with COVID-19 compared to those with influenza: a systematic review and meta-analysis. Front Med (Lausanne) 2023; 10:1252990. [PMID: 37795409 PMCID: PMC10547056 DOI: 10.3389/fmed.2023.1252990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/05/2023] [Indexed: 10/06/2023] Open
Abstract
Background COVID-19 and influenza can both lead to acute kidney injury (AKI) as a common complication. However, no meta-analysis has been conducted to directly compare the incidence of AKI between hospitalized patients with COVID-19 and influenza. The objective of our study aims to investigate the incidence and outcomes of AKI among hospitalized patients between these two groups. Materials and methods A systematic search of PubMed, Embase, and Cochrane databases was conducted from December 2019 to August 2023 to identify studies examining AKI and clinical outcomes among hospitalized patients with COVID-19 and influenza. The primary outcome of interest was the incidence of AKI, while secondary outcomes included in-hospital mortality, recovery from AKI, hospital and ICU stay duration. The quality of evidence was evaluated using Cochrane and GRADE methods. Results Twelve retrospective cohort studies, involving 17,618 hospitalized patients with COVID-19 and influenza, were analyzed. COVID-19 patients showed higher AKI incidence (29.37% vs. 20.98%, OR: 1.67, 95% CI 1.56-1.80, p < 0.01, I2 = 92.42%), and in-hospital mortality (30.95% vs. 5.51%, OR: 8.16, 95% CI 6.17-10.80, p < 0.01, I2 = 84.92%) compared to influenza patients with AKI. Recovery from AKI was lower in COVID-19 patients (57.02% vs., 80.23%, OR: 0.33, 95% CI 0.27-0.40, p < 0.01, I2 = 85.17%). COVID-19 patients also had a longer hospital stay (SMD: 0.69, 95% CI 0.65-0.72, p < 0.01, I2 = 98.94%) and longer ICU stay (SMD: 0.61, 95% CI 0.50-0.73, p < 0.01, I2 = 94.80%) than influenza patients. In our study, evidence quality was high (NOS score 7-9), with low certainty for AKI incidence and moderate certainty for recovery form AKI by GRADE assessment. Conclusion COVID-19 patients had higher risk of developing AKI, experiencing in-hospital mortality, and enduring prolonged hospital/ICU stays in comparison to influenza patients. Additionally, the likelihood of AKI recovery was lower among COVID-19 patients.
Collapse
Affiliation(s)
- Chiu-Ying Hsiao
- Division of Nephrology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan, Taiwan
| | - Heng-Chih Pan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Keelung Chang Gung Memorial Hospital, Keelungi, Taiwan
- Chang Gung University College of Medicine, Taoyuan, Taiwan
- Community Medicine Research Center, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Vin-Cent Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ching-Chun Su
- Division of Nephrology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan, Taiwan
| | - Tzu-Hsuan Yeh
- Division of Nephrology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan, Taiwan
| | - Min-Hsiang Chuang
- Division of Nephrology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan, Taiwan
| | - Kuan-Chieh Tu
- Division of Cardiology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Hsien-Yi Wang
- Division of Nephrology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan, Taiwan
- Department of Sport Management, College of Leisure and Recreation Management, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Wei-Chih Kan
- Division of Nephrology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Chun-Chi Yang
- Division of Hepato-gastroenterology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Jui-Yi Chen
- Department of Sport Management, College of Leisure and Recreation Management, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
- Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| |
Collapse
|
16
|
Jiang H, Zhang Z. Immune response in influenza virus infection and modulation of immune injury by viral neuraminidase. Virol J 2023; 20:193. [PMID: 37641134 PMCID: PMC10463456 DOI: 10.1186/s12985-023-02164-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
Influenza A viruses cause severe respiratory illnesses in humans and animals. Overreaction of the innate immune response to influenza virus infection results in hypercytokinemia, which is responsible for mortality and morbidity. The influenza A virus surface glycoprotein neuraminidase (NA) plays a vital role in viral attachment, entry, and virion release from infected cells. NA acts as a sialidase, which cleaves sialic acids from cell surface proteins and carbohydrate side chains on nascent virions. Here, we review progress in understanding the role of NA in modulating host immune response to influenza virus infection. We also discuss recent exciting findings targeting NA protein to interrupt influenza-induced immune injury.
Collapse
Affiliation(s)
- Hongyu Jiang
- The People's Hospital of Dayi Country, Chengdu, Sichuan, China
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Zongde Zhang
- The People's Hospital of Dayi Country, Chengdu, Sichuan, China.
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
17
|
Ferdous N, Reza MN, Hossain MU, Mahmud S, Napis S, Chowdhury K, Mohiuddin AKM. Mpropred: A machine learning (ML) driven Web-App for bioactivity prediction of SARS-CoV-2 main protease (Mpro) antagonists. PLoS One 2023; 18:e0287179. [PMID: 37352252 PMCID: PMC10289339 DOI: 10.1371/journal.pone.0287179] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 05/31/2023] [Indexed: 06/25/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic emerged in 2019 and still requiring treatments with fast clinical translatability. Frequent occurrence of mutations in spike glycoprotein of SARS-CoV-2 led the consideration of an alternative therapeutic target to combat the ongoing pandemic. The main protease (Mpro) is such an attractive drug target due to its importance in maturating several polyproteins during the replication process. In the present study, we used a classification structure-activity relationship (CSAR) model to find substructures that leads to to anti-Mpro activities among 758 non-redundant compounds. A set of 12 fingerprints were used to describe Mpro inhibitors, and the random forest approach was used to build prediction models from 100 distinct data splits. The data set's modelability (MODI index) was found to be robust, with a value of 0.79 above the 0.65 threshold. The accuracy (89%), sensitivity (89%), specificity (73%), and Matthews correlation coefficient (79%) used to calculate the prediction performance, was also found to be statistically robust. An extensive analysis of the top significant descriptors unveiled the significance of methyl side chains, aromatic ring and halogen groups for Mpro inhibition. Finally, the predictive model is made publicly accessible as a web-app named Mpropred in order to allow users to predict the bioactivity of compounds against SARS-CoV-2 Mpro. Later, CMNPD, a marine compound database was screened by our app to predict bioactivity of all the compounds and results revealed significant correlation with their binding affinity to Mpro. Molecular dynamics (MD) simulation and molecular mechanics/Poisson Boltzmann surface area (MM/PBSA) analysis showed improved properties of the complexes. Thus, the knowledge and web-app shown herein can be used to develop more effective and specific inhibitors against the SARS-CoV-2 Mpro. The web-app can be accessed from https://share.streamlit.io/nadimfrds/mpropred/Mpropred_app.py.
Collapse
Affiliation(s)
- Nadim Ferdous
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, Bangladesh
| | - Mahjerin Nasrin Reza
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, Bangladesh
| | - Mohammad Uzzal Hossain
- Department of Pharmacology, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
- Bioinformatics Division, National Institute of Biotechnology, Ashulia, Ganakbari, Savar, Dhaka, Bangladesh
| | - Shahin Mahmud
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, Bangladesh
| | - Suhami Napis
- Department of Molecular Biology, Universiti Putra Malaysia, Serdang, Selangor D.E., Malaysia
| | - Kamal Chowdhury
- Biology Department, Claflin University, Orangeburg, SC, United States of America
| | - A. K. M. Mohiuddin
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, Bangladesh
| |
Collapse
|
18
|
Sun T, Wang Y, Zou P, Wang Q, Liu J, Liu W, Huang J, Wu F. M2e-specific antibodies protect against influenza PR8 virus in an isotype and route dependent manner. J Med Virol 2023; 95:e28721. [PMID: 37185862 DOI: 10.1002/jmv.28721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023]
Abstract
The ectodomain of influenza matrix protein 2 (M2e) is a promising target for the development of universal prophylactic and therapeutic agents against influenza viruses of different subtypes. We constructed three M2e-specific monoclonal antibody variants, M2A1-1 (IgG1), M2A1-2a (IgG2a), M2A1-2b (IgG2b), which have the same Fab region targeting the M2e epitope but different isotypes, and compared their protective efficacy in influenza PR8-infected mice. We found that anti-M2e antibodies provided protection against influenza virus in a subtype-dependent manner, with the IgG2a variant providing significantly better protection with lower virus titers and milder lung injury than IgG1 and IgG2b isotypes. Additionally, we observed that the protective efficacy was dependent on the administration routes, with intranasal administration of antibody providing better protection than intraperitoneal administration. The timing of administration was also critical in determining the protective efficacy; while all the antibody isotypes provided protection when administered before influenza challenge, only IgG2a provided minimal protection when the antibodies were administered after virus challenge. These results provide valuable information for optimizing the therapeutics usage of M2e-based antibodies and furthering the development of M2e-based universal influenza vaccines.
Collapse
Affiliation(s)
- Tingting Sun
- Shanghai Public Health Clinical Center and Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| | - Yingdan Wang
- Shanghai Public Health Clinical Center and Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Peng Zou
- Shanghai Public Health Clinical Center and Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qimin Wang
- Shanghai Public Health Clinical Center and Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jiangyan Liu
- Shanghai Public Health Clinical Center and Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wanli Liu
- MOE Key Laboratory of Protein Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Institute for Immunology, Tsinghua University, Beijing, China
| | - Jinghe Huang
- Shanghai Public Health Clinical Center and Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Fan Wu
- Shanghai Immune Therapy Institute, Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital, Shanghai, China
| |
Collapse
|
19
|
Scheibner D, Salaheldin AH, Bagato O, Zaeck LM, Mostafa A, Blohm U, Müller C, Eweas AF, Franzke K, Karger A, Schäfer A, Gischke M, Hoffmann D, Lerolle S, Li X, Abd El-Hamid HS, Veits J, Breithaupt A, Boons GJ, Matrosovich M, Finke S, Pleschka S, Mettenleiter TC, de Vries RP, Abdelwhab EM. Phenotypic effects of mutations observed in the neuraminidase of human origin H5N1 influenza A viruses. PLoS Pathog 2023; 19:e1011135. [PMID: 36745654 PMCID: PMC9934401 DOI: 10.1371/journal.ppat.1011135] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/16/2023] [Accepted: 01/18/2023] [Indexed: 02/07/2023] Open
Abstract
Global spread and regional endemicity of H5Nx Goose/Guangdong avian influenza viruses (AIV) pose a continuous threat for poultry production and zoonotic, potentially pre-pandemic, transmission to humans. Little is known about the role of mutations in the viral neuraminidase (NA) that accompanied bird-to-human transmission to support AIV infection of mammals. Here, after detailed analysis of the NA sequence of human H5N1 viruses, we studied the role of A46D, L204M, S319F and S430G mutations in virus fitness in vitro and in vivo. Although H5N1 AIV carrying avian- or human-like NAs had similar replication efficiency in avian cells, human-like NA enhanced virus replication in human airway epithelia. The L204M substitution consistently reduced NA activity of H5N1 and nine other influenza viruses carrying NA of groups 1 and 2, indicating a universal effect. Compared to the avian ancestor, human-like H5N1 virus has less NA incorporated in the virion, reduced levels of viral NA RNA replication and NA expression. We also demonstrate increased accumulation of NA at the plasma membrane, reduced virus release and enhanced cell-to-cell spread. Furthermore, NA mutations increased virus binding to human-type receptors. While not affecting high virulence of H5N1 in chickens, the studied NA mutations modulated virulence and replication of H5N1 AIV in mice and to a lesser extent in ferrets. Together, mutations in the NA of human H5N1 viruses play different roles in infection of mammals without affecting virulence or transmission in chickens. These results are important to understand the genetic determinants for replication of AIV in mammals and should assist in the prediction of AIV with zoonotic potential.
Collapse
Affiliation(s)
- David Scheibner
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Ahmed H. Salaheldin
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Alexandria University, El-Beheira, Egypt
| | - Ola Bagato
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Water Pollution Research Department, Dokki, Giza, Egypt
| | - Luca M. Zaeck
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Water Pollution Research Department, Dokki, Giza, Egypt
| | - Ulrike Blohm
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Christin Müller
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
| | - Ahmed F. Eweas
- Department of Medicinal Chemistry, National Research Center, Dokki, Giza, Egypt; Department of Science, University of Technology and Applied Sciences-Rustaq, Rustaq, Sultanate of Oman
| | - Kati Franzke
- Institute of Infectology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Axel Karger
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Alexander Schäfer
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Marcel Gischke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Solène Lerolle
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Xuguang Li
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, HPFB, Health Canada, Ottawa, ON, Canada; Department of Biochemistry, Microbiology and Immunology and Emerging Pathogens Research Centre, University of Ottawa, Ottawa, Ontario, Canada
| | - Hatem S. Abd El-Hamid
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Damanhur University, Al-Buheira, Egypt
| | - Jutta Veits
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Angele Breithaupt
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Geert-Jan Boons
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Science, the Netherlands
| | | | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Stephan Pleschka
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research (DZIF) partner site Giessen-Marburg-Langen, Germany
| | - Thomas C. Mettenleiter
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Robert P. de Vries
- Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Science, the Netherlands
| | - Elsayed M. Abdelwhab
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
- * E-mail:
| |
Collapse
|
20
|
Rodrick TC, Siu Y, Carlock MA, Ross TM, Jones DR. Urine Metabolome Dynamics Discriminate Influenza Vaccination Response. Viruses 2023; 15:242. [PMID: 36680282 PMCID: PMC9861122 DOI: 10.3390/v15010242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Influenza represents a major and ongoing public health hazard. Current collaborative efforts are aimed toward creating a universal flu vaccine with the goals of both improving responses to vaccination and increasing the breadth of protection against multiple strains and clades from a single vaccine. As an intermediate step toward these goals, the current work is focused on evaluating the systemic host response to vaccination in both normal and high-risk populations, such as the obese and geriatric populations, which have been linked to poor responses to vaccination. We therefore employed a metabolomics approach using a time-course (n = 5 time points) of the response to human vaccination against influenza from the time before vaccination (pre) to 90 days following vaccination. We analyzed the urinary profiles of a cohort of subjects (n = 179) designed to evenly sample across age, sex, BMI, and other demographic factors, stratifying their responses to vaccination as “High”, “Low”, or “None” based on the seroconversion measured by hemagglutination inhibition assay (HAI) from plasma samples at day 28 post-vaccination. Overall, we putatively identified 15,903 distinct, named, small-molecule structures (4473 at 10% FDR) among the 895 samples analyzed, with the aim of identifying metabolite correlates of the vaccine response, as well as prognostic and diagnostic markers from the periods before and after vaccination, respectively. Notably, we found that the metabolic profiles could unbiasedly separate the high-risk High-responders from the high-risk None-responders (obese/geriatric) within 3 days post-vaccination. The purine metabolites Guanine and Hypoxanthine were negatively associated with high seroconversion (p = 0.0032, p < 0.0001, respectively), while Acetyl-Leucine and 5-Aminovaleric acid were positively associated. Further changes in Cystine, Glutamic acid, Kynurenine and other metabolites implicated early oxidative stress (3 days) after vaccination as a hallmark of the High-responders. Ongoing efforts are aimed toward validating these putative markers using a ferret model of influenza infection, as well as an independent cohort of human seasonal vaccination and human challenge studies with live virus.
Collapse
Affiliation(s)
- Tori C. Rodrick
- Metabolomics Core Resource Laboratory, NYU Langone Health, New York, NY 10016, USA
| | - Yik Siu
- Metabolomics Core Resource Laboratory, NYU Langone Health, New York, NY 10016, USA
| | - Michael A. Carlock
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
| | - Drew R. Jones
- Metabolomics Core Resource Laboratory, NYU Langone Health, New York, NY 10016, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| |
Collapse
|
21
|
Abbadi N, Mousa JJ. Broadly Protective Neuraminidase-Based Influenza Vaccines and Monoclonal Antibodies: Target Epitopes and Mechanisms of Action. Viruses 2023; 15:200. [PMID: 36680239 PMCID: PMC9861061 DOI: 10.3390/v15010200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023] Open
Abstract
Neuraminidase (NA) is an important surface protein on influenza virions, playing an essential role in the viral life cycle and being a key target of the immune system. Despite the importance of NA-based immunity, current vaccines are focused on the hemagglutinin (HA) protein as the target for protective antibodies, and the amount of NA is not standardized in virion-based vaccines. Antibodies targeting NA are predominantly protective, reducing infection severity and viral shedding. Recently, NA-specific monoclonal antibodies have been characterized, and their target epitopes have been identified. This review summarizes the characteristics of NA, NA-specific antibodies, the mechanism of NA inhibition, and the recent efforts towards developing NA-based and NA-incorporating influenza vaccines.
Collapse
Affiliation(s)
- Nada Abbadi
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Jarrod J. Mousa
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
22
|
Yau E, Yang L, Chen Y, Umstead TM, Atkins H, Katz ZE, Yewdell JW, Gandhi CK, Halstead ES, Chroneos ZC. Surfactant protein A alters endosomal trafficking of influenza A virus in macrophages. Front Immunol 2023; 14:919800. [PMID: 36960051 PMCID: PMC10028185 DOI: 10.3389/fimmu.2023.919800] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
Influenza A virus infection (IAV) often leads to acute lung injury that impairs breathing and can lead to death, with disproportionate mortality in children and the elderly. Surfactant Protein A (SP-A) is a calcium-dependent opsonin that binds a variety of pathogens to help control pulmonary infections by alveolar macrophages. Alveolar macrophages play critical roles in host resistance and susceptibility to IAV infection. The effect of SP-A on IAV infection and antiviral response of macrophages, however, is not understood. Here, we report that SP-A attenuates IAV infection in a dose-dependent manner at the level of endosomal trafficking, resulting in infection delay in a model macrophage cell line. The ability of SP-A to suppress infection was independent of its glycosylation status. Binding of SP-A to hemagglutinin did not rely on the glycosylation status or sugar binding properties of either protein. Incubation of either macrophages or IAV with SP-A slowed endocytic uptake rate of IAV. SP-A interfered with binding to cell membrane and endosomal exit of the viral genome as indicated by experiments using isolated cell membranes, an antibody recognizing a pH-sensitive conformational epitope on hemagglutinin, and microscopy. Lack of SP-A in mice enhanced IFNβ expression, viral clearance and reduced mortality from IAV infection. These findings support the idea that IAV is an opportunistic pathogen that co-opts SP-A to evade host defense by alveolar macrophages. Our study highlights novel aspects of host-pathogen interactions that may lead to better understanding of the local mechanisms that shape activation of antiviral and inflammatory responses to viral infection in the lung.
Collapse
Affiliation(s)
- Eric Yau
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Linlin Yang
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Yan Chen
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Todd M. Umstead
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Hannah Atkins
- Department of Comparative Medicine, Pennsylvania State University College of Medicine, PA, Hershey, United States
| | - Zoe E. Katz
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Jonathan W. Yewdell
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Chintan K. Gandhi
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - E. Scott Halstead
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Zissis C. Chroneos
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Pulmonary Immunology and Physiology Laboratory, Pennsylvania State University College of Medicine, Hershey, PA, United States
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, United States
- *Correspondence: Zissis C. Chroneos,
| |
Collapse
|
23
|
Liu T, Wang Y, Tan TJC, Wu NC, Brooke CB. The evolutionary potential of influenza A virus hemagglutinin is highly constrained by epistatic interactions with neuraminidase. Cell Host Microbe 2022; 30:1363-1369.e4. [PMID: 36150395 PMCID: PMC9588755 DOI: 10.1016/j.chom.2022.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/27/2022] [Accepted: 09/02/2022] [Indexed: 11/03/2022]
Abstract
Antigenic evolution of the influenza A virus (IAV) hemagglutinin (HA) gene limits efforts to effectively control the spread of the virus in the population. Efforts to understand the mechanisms governing HA antigenic evolution typically examine the HA gene in isolation. This can ignore the importance of balancing HA receptor binding activities with the receptor-destroying activities of the viral neuraminidase (NA) to maintain viral fitness. We hypothesize that the need to maintain functional balance with NA significantly constrains the evolutionary potential of the HA. We use deep mutational scanning and show that variation in NA activity significantly reshapes the HA fitness landscape by modulating the overall mutational robustness of HA. Consistent with this, we observe that different NA backgrounds support the emergence of distinct repertoires of HA escape variants under neutralizing antibody pressure. Our results reveal a critical role for intersegment epistasis in influencing the evolutionary potential of the HA gene.
Collapse
Affiliation(s)
- Tongyu Liu
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yiquan Wang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Timothy J C Tan
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Nicholas C Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Christopher B Brooke
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
24
|
Pliasas VC, Menne Z, Aida V, Yin JH, Naskou MC, Neasham PJ, North JF, Wilson D, Horzmann KA, Jacob J, Skountzou I, Kyriakis CS. A Novel Neuraminidase Virus-Like Particle Vaccine Offers Protection Against Heterologous H3N2 Influenza Virus Infection in the Porcine Model. Front Immunol 2022; 13:915364. [PMID: 35874791 PMCID: PMC9300842 DOI: 10.3389/fimmu.2022.915364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Influenza A viruses (IAVs) pose a global health threat, contributing to hundreds of thousands of deaths and millions of hospitalizations annually. The two major surface glycoproteins of IAVs, hemagglutinin (HA) and neuraminidase (NA), are important antigens in eliciting neutralizing antibodies and protection against disease. However, NA is generally ignored in the formulation and development of influenza vaccines. In this study, we evaluate the immunogenicity and efficacy against challenge of a novel NA virus-like particles (VLPs) vaccine in the porcine model. We developed an NA2 VLP vaccine containing the NA protein from A/Perth/16/2009 (H3N2) and the matrix 1 (M1) protein from A/MI/73/2015, formulated with a water-in-oil-in-water adjuvant. Responses to NA2 VLPs were compared to a commercial adjuvanted quadrivalent whole inactivated virus (QWIV) swine IAV vaccine. Animals were prime boost vaccinated 21 days apart and challenged four weeks later with an H3N2 swine IAV field isolate, A/swine/NC/KH1552516/2016. Pigs vaccinated with the commercial QWIV vaccine demonstrated high hemagglutination inhibition (HAI) titers but very weak anti-NA antibody titers and subsequently undetectable NA inhibition (NAI) titers. Conversely, NA2 VLP vaccinated pigs demonstrated undetectable HAI titers but high anti-NA antibody titers and NAI titers. Post-challenge, NA2 VLPs and the commercial QWIV vaccine showed similar reductions in virus replication, pulmonary neutrophilic infiltration, and lung inflammation compared to unvaccinated controls. These data suggest that anti-NA immunity following NA2 VLP vaccination offers comparable protection to QWIV swine IAV vaccines inducing primarily anti-HA responses.
Collapse
Affiliation(s)
- Vasilis C. Pliasas
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
| | - Zach Menne
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA, United States
| | - Virginia Aida
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
| | - Ji-Hang Yin
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Maria C. Naskou
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Peter J. Neasham
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
| | - J. Fletcher North
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
| | - Dylan Wilson
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Katharine A. Horzmann
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Joshy Jacob
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA, United States
| | - Ioanna Skountzou
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA, United States
- *Correspondence: Constantinos S. Kyriakis, ; Ioanna Skountzou,
| | - Constantinos S. Kyriakis
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Emory-UGA Center of Excellence for Influenza Research and Surveillance (CEIRS), Atlanta, GA, United States
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
- *Correspondence: Constantinos S. Kyriakis, ; Ioanna Skountzou,
| |
Collapse
|
25
|
Moise L, Meyers LM, Jang H, Grizotte-Lake M, Boyle CM, McGonnigal B, Ge P, Ross TM, De Groot AS. Novel H7N9 influenza immunogen design enhances mobilization of seasonal influenza T cell memory in H3N2 pre-immune mice. Hum Vaccin Immunother 2022; 18:2082191. [PMID: 35704783 DOI: 10.1080/21645515.2022.2082191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Strategies that improve influenza vaccine immunogenicity are critical for the development of vaccines for pandemic preparedness. Hemagglutinin (HA)-specific CD4+ T cell epitopes support protective B cell responses against seasonal influenza. However, in the case of avian H7N9, which poses a pandemic threat, HA elicits only weak neutralizing antibody responses in infection and vaccination without adjuvant. We hypothesized that an immune-engineered H7N9 HA incorporating a broadly reactive H3N2 HA-specific memory CD4+ T cell epitope that replaces a regulatory T cell-inducing epitope at the corresponding position in H7N9 HA could harness preexisting influenza T cell immunity to increase CD4+ T cells that are needed for protective antibody development. We designed and produced a virus-like particle (VLP) vaccine that carries the epitope augmented H7N9 HA (OPT1) and immunized HLA-DR3 transgenic mice with established H3N2 immunity. OPT1-VLPs stimulated higher stem cell, central, and effector memory CD4+ T cell levels over wild type VLP immunization. In addition, activated, IL-21-producing follicular helper T cell frequencies were enhanced. This novel immunogen design strategy illustrates that site-specific modifications aimed to augment T cell epitope content enhance CD4+ T cell responses among critical subpopulations capable of aiding protective immune responses upon antigen re-encounter and that mobilization of immune memory can be used to overcome the poor immunogenicity of avian influenza viruses.
Collapse
Affiliation(s)
- Leonard Moise
- EpiVax, Inc., Providence, RI, USA.,Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | | | - Hyesun Jang
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | | | | | | | - Pan Ge
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| | - Ted M Ross
- Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA.,Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Anne S De Groot
- EpiVax, Inc., Providence, RI, USA.,Center for Vaccines and Immunology, University of Georgia, Athens, GA, USA
| |
Collapse
|
26
|
Diefenbacher M, Tan TJC, Bauer DLV, Stadtmueller BM, Wu NC, Brooke CB. Interactions between Influenza A Virus Nucleoprotein and Gene Segment Untranslated Regions Facilitate Selective Modulation of Viral Gene Expression. J Virol 2022; 96:e0020522. [PMID: 35467364 PMCID: PMC9131868 DOI: 10.1128/jvi.00205-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/29/2022] [Indexed: 11/20/2022] Open
Abstract
The influenza A virus (IAV) genome is divided into eight negative-sense, single-stranded RNA segments. Each segment exhibits a unique level and temporal pattern of expression; however, the exact mechanisms underlying the patterns of individual gene segment expression are poorly understood. We previously demonstrated that a single substitution in the viral nucleoprotein (NP:F346S) selectively modulates neuraminidase (NA) gene segment expression while leaving other segments largely unaffected. Given what is currently known about NP function, there is no obvious explanation for how changes in NP can selectively modulate the replication of individual gene segments. In this study, we found that the specificity of this effect for the NA segment is virus strain specific and depends on the untranslated region (UTR) sequences of the NA segment. While the NP:F346S substitution did not significantly alter the RNA binding or oligomerization activities of NP in vitro, it specifically decreased the ability of NP to promote NA segment viral RNA (vRNA) synthesis. In addition to NP residue F346, we identified two other adjacent aromatic residues in NP (Y385 and F479) capable of similarly regulating NA gene segment expression, suggesting a larger role for this domain in gene-segment specific regulation. Our findings reveal a novel role for NP in selective regulation of viral gene segment replication and provide a framework for understanding how the expression patterns of individual viral gene segments can be modulated during adaptation to new host environments. IMPORTANCE Influenza A virus (IAV) is a respiratory pathogen that remains a significant source of morbidity and mortality. Escape from host immunity or emergence into new host species often requires mutations that modulate the functional activities of the viral glycoproteins hemagglutinin (HA) and neuraminidase (NA), which are responsible for virus attachment to and release from host cells, respectively. Maintaining the functional balance between the activities of HA and NA is required for fitness across multiple host systems. Thus, selective modulation of viral gene expression patterns may be a key determinant of viral immune escape and cross-species transmission potential. We identified a novel mechanism by which the viral nucleoprotein (NP) gene can selectively modulate NA segment replication and gene expression through interactions with the segment UTRs. Our work highlights an unexpected role for NP in selective regulation of expression from the individual IAV gene segments.
Collapse
Affiliation(s)
- Meghan Diefenbacher
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Timothy J. C. Tan
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - David L. V. Bauer
- RNA Virus Replication Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Beth M. Stadtmueller
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Nicholas C. Wu
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Christopher B. Brooke
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
27
|
Isaeva OI, Ketelaars SLC, Kvistborg P. In Silico Analysis Predicts a Limited Impact of SARS-CoV-2 Variants on CD8 T Cell Recognition. Front Immunol 2022; 13:891524. [PMID: 35572563 PMCID: PMC9094405 DOI: 10.3389/fimmu.2022.891524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Since the start of the COVID-19 pandemic, mutations have led to the emergence of new SARS-CoV-2 variants, and some of these have become prominent or dominant variants of concern. This natural course of development can have an impact on how protective the previously naturally or vaccine induced immunity is. Therefore, it is crucial to understand whether and how variant specific mutations influence host immunity. To address this, we have investigated how mutations in the recent SARS-CoV-2 variants of interest and concern influence epitope sequence similarity, predicted binding affinity to HLA, and immunogenicity of previously reported SARS-CoV-2 CD8 T cell epitopes. Our data suggests that the vast majority of SARS-CoV-2 CD8 T cell recognized epitopes are not altered by variant specific mutations. Interestingly, for the CD8 T cell epitopes that are altered due to variant specific mutations, our analyses show there is a high degree of sequence similarity between mutated and reference SARS-CoV-2 CD8 T cell epitopes. However, mutated epitopes, primarily derived from the spike protein, in SARS-CoV-2 variants Delta, AY.4.2 and Mu display reduced predicted binding affinity to their restriction element. These findings indicate that the recent SARS-CoV-2 variants of interest and concern have limited ability to escape memory CD8 T cell responses raised by vaccination or prior infection with SARS-CoV-2 early in the pandemic. The overall low impact of the mutations on CD8 T cell cross-recognition is in accordance with the notion that mutations in SARS-CoV-2 are primarily the result of receptor binding affinity and antibody selection pressures exerted on the spike protein, unrelated to T cell immunity.
Collapse
Affiliation(s)
- Olga I Isaeva
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands.,Department of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands.,Oncode Institute, Utrecht, Netherlands
| | - Steven L C Ketelaars
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Pia Kvistborg
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
28
|
Abstract
In 2017, the Iowa State University Veterinary Diagnostic Laboratory detected a reverse-zoonotic transmission of a human seasonal H3 influenza A virus into swine (IAV-S) in Oklahoma. Pairwise comparison between the recently characterized human seasonal H3 IAV-S (H3.2010.2) hemagglutinin (HA) sequences detected in swine and the most similar 2016-2017 human seasonal H3 revealed 99.9% nucleotide identity. To elucidate the origin of H3.2010.2 IAV-S, 45 HA and 27 neuraminidase (NA) sequences from 2017 to 2020 as well as 11 whole-genome sequences (WGS) were genetically characterized. Time to most recent common human ancestor was estimated between August and September 2016. The N2 NA was of human origin in all but one strain from diagnostic submissions with NA sequences, and the internal gene segments from WGS consisted of matrix genes originating from the 2009 pandemic H1N1 and another 5 internal genes of triple reassortant swine origin (TTTTPT). Pigs experimentally infected with H3.2010.2 demonstrated efficient nasal shedding and replication in the lungs, mild pneumonia, and minimal microscopic lung lesions and transmitted the virus to indirect contact swine. Antigenically, H3.2010.2 viruses were closer to a human seasonal vaccine strain, A/Hong Kong/4801/2014, than to the H3.2010.1 human seasonal H3 viruses detected in swine in 2012. This was the second sustained transmission of a human seasonal IAV into swine from the 2010 decade after H3.2010.1. Monitoring the spillover and detection of novel IAV from humans to swine may help vaccine antigen selection and could impact pandemic preparedness. IMPORTANCE H3.2010.2 is a new phylogenetic clade of H3N2 circulating in swine that became established after the spillover of a human seasonal H3N2 from the 2016-2017 influenza season. The novel H3.2010.2 transmitted and adapted to the swine host and demonstrated reassortment with internal genes from strains endemic to pigs, but it maintained human-like HA and NA. It is genetically and antigenically distinct from the H3.2010.1 H3N2 introduced earlier in the 2010 decade. Human seasonal IAV spillovers into swine become established in the population through adaptation and sustained transmission and contribute to the genetic and antigenic diversity of IAV circulating in swine. Continued IAV surveillance is necessary to detect emergence of novel strains in swine and assist with vaccine antigen selection to improve the ability to prevent respiratory disease in swine as well as the risk of zoonotic transmission.
Collapse
|
29
|
Abstract
The balance in the functions of hemagglutinin (HA) and neuraminidase (NA) plays an important role in influenza virus genesis. However, whether and how N2 neuraminidase-specific antibodies may affect the attributes of HA remains to be investigated. In this study, we examined the presence of amino acid mutations in the HA of mutants selected by incubation with N2-specific monoclonal antibodies (MAbs) and compared the HA properties to those of the wild-type (WT) A/Chicken/Jiangsu/XXM/1999 (XXM) H9N2 virus. The higher NA inhibition (NI) ability of N2-specific MAbs was found to result in greater proportions of mutations in the HA head. The HA mutations affected the thermal stability, switched the binding preferences from α2,6-linked sialic acid receptor to α2,3-linked sialic acid receptor, and promoted viral growth in mouse lungs. These mutations also caused significant HA antigenic drift as they decreased hemagglutination inhibition (HI) titers. The evolutionary analysis also proved that some HA mutations were highly correlated with NA antibody pressure. Our data demonstrate that HA mutations caused by NA-specific antibodies affect HA properties and may contribute to HA evolution. IMPORTANCE HA binds with the sialic acid receptor on the host cell and initiates the infection mode of influenza virus. NA cleaves the connection between receptor and HA of newborn virus at the end of viral production. The HA-NA functional balance is crucial for viral production and interspecies transmission. Here, we identified mutations in the HA head of H9N2 virus caused by NA antibody pressure. These HA mutations changed the thermal stability and switched the receptor-binding preference of the mutant virus. The HI results indicated that these mutations resulted in significant antigenic drift in mutant HA. The evolutionary analysis also shows that some mutations in HA of H9N2 virus may be caused by NA antibody pressure and may correlate with the increase in H9N2 infections in humans. Our results provide new evidence for HA-NA balance and an effect of NA antibody pressure on HA evolution.
Collapse
|
30
|
Abstract
Antigenic drift refers to the evolutionary accumulation of amino acid substitutions in viral proteins selected by host adaptive immune systems as the virus circulates in a population. Antigenic drift can substantially limit the duration of immunity conferred by infection and vaccination. Here, I explain the factors contributing to the rapid antigenic drift of the SARS-CoV-2 spike protein and receptor proteins of other viruses and discuss the implications for SARS-CoV-2 evolution and immunity.
Collapse
Affiliation(s)
- Jonathan W Yewdell
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA.
| |
Collapse
|
31
|
Amitai A. Viral surface geometry shapes influenza and coronavirus spike evolution through antibody pressure. PLoS Comput Biol 2021; 17:e1009664. [PMID: 34898597 PMCID: PMC8699686 DOI: 10.1371/journal.pcbi.1009664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 12/23/2021] [Accepted: 11/19/2021] [Indexed: 01/02/2023] Open
Abstract
The evolution of circulating viruses is shaped by their need to evade antibody response, which mainly targets the viral spike. Because of the high density of spikes on the viral surface, not all antigenic sites are targeted equally by antibodies. We offer here a geometry-based approach to predict and rank the probability of surface residues of SARS spike (S protein) and influenza H1N1 spike (hemagglutinin) to acquire antibody-escaping mutations utilizing in-silico models of viral structure. We used coarse-grained MD simulations to estimate the on-rate (targeting) of an antibody model to surface residues of the spike protein. Analyzing publicly available sequences, we found that spike surface sequence diversity of the pre-pandemic seasonal influenza H1N1 and the sarbecovirus subgenus highly correlates with our model prediction of antibody targeting. In particular, we identified an antibody-targeting gradient, which matches a mutability gradient along the main axis of the spike. This identifies the role of viral surface geometry in shaping the evolution of circulating viruses. For the 2009 H1N1 and SARS-CoV-2 pandemics, a mutability gradient along the main axis of the spike was not observed. Our model further allowed us to identify key residues of the SARS-CoV-2 spike at which antibody escape mutations have now occurred. Therefore, it can inform of the likely functional role of observed mutations and predict at which residues antibody-escaping mutation might arise.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/biosynthesis
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- COVID-19/epidemiology
- COVID-19/immunology
- COVID-19/virology
- Computational Biology
- Coronavirus Infections/immunology
- Coronavirus Infections/virology
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, B-Lymphocyte/genetics
- Evolution, Molecular
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Host Microbial Interactions/genetics
- Host Microbial Interactions/immunology
- Humans
- Immune Evasion/genetics
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza, Human/immunology
- Influenza, Human/virology
- Models, Immunological
- Molecular Dynamics Simulation
- Mutation
- Pandemics
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Viral Envelope Proteins/chemistry
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
Collapse
Affiliation(s)
- Assaf Amitai
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
32
|
Linderman SL, Ellebedy AH, Davis C, Eberhardt CS, Antia R, Ahmed R, Zarnitsyna VI. Influenza Immunization in the Context of Preexisting Immunity. Cold Spring Harb Perspect Med 2021; 11:a040964. [PMID: 32988981 PMCID: PMC8559541 DOI: 10.1101/cshperspect.a040964] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Although we develop influenza immunity from an early age, it is insufficient to prevent future infection with antigenically novel strains. One proposed way to generate long-term protective immunity against a broad range of influenza virus strains is to boost responses to the conserved epitopes on the hemagglutinin, the major surface glycoprotein on the influenza virus. Influenza-specific humoral immunity comprises a large fraction of the overall immune memory in humans, and it has been long recognized that preexisting immunity to influenza shapes the response to subsequent influenza infections and vaccinations. However, the mechanisms by which preexisting immunity modulates the response to influenza vaccination are still not completely understood. Using a set of mathematical models, we explore several hypotheses that may contribute to diminished boosting of antibodies to conserved epitopes after repeated vaccinations.
Collapse
Affiliation(s)
- Susanne L Linderman
- Emory Vaccine Center and Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Ali H Ellebedy
- Emory Vaccine Center and Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, Georgia 30322, USA
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | - Carl Davis
- Emory Vaccine Center and Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Christiane S Eberhardt
- Emory Vaccine Center and Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, Georgia 30322, USA
- Centre for Vaccinology and Department of Pediatrics, University Hospitals of Geneva and Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Rustom Antia
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | - Rafi Ahmed
- Emory Vaccine Center and Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, Georgia 30322, USA
| | - Veronika I Zarnitsyna
- Emory Vaccine Center and Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
33
|
Van den Hoecke S, Ballegeer M, Vrancken B, Deng L, Job ER, Roose K, Schepens B, Van Hoecke L, Lemey P, Saelens X. In Vivo Therapy with M2e-Specific IgG Selects for an Influenza A Virus Mutant with Delayed Matrix Protein 2 Expression. mBio 2021; 12:e0074521. [PMID: 34253060 PMCID: PMC8406285 DOI: 10.1128/mbio.00745-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022] Open
Abstract
The ectodomain of matrix protein 2 (M2e) of influenza A viruses is a universal influenza A vaccine candidate. Here, we report potential evasion strategies of influenza A viruses under in vivo passive anti-M2e IgG immune selection pressure in severe combined immune-deficient (SCID) mice. A/Puerto Rico/8/34-infected SCID mice were treated with the M2e-specific mouse IgG monoclonal antibodies (MAbs) MAb 65 (IgG2a) or MAb 37 (IgG1), which recognize amino acids 5 to 15 in M2e, or with MAb 148 (IgG1), which binds to the invariant N terminus of M2e. Treatment of challenged SCID mice with any of these MAbs significantly prolonged survival compared to isotype control IgG treatment. Furthermore, M2e-specific IgG2a protected significantly better than IgG1, and even resulted in virus clearance in some of the SCID mice. Deep sequencing analysis of viral RNA isolated at different time points after treatment revealed that the sequence variation in M2e was limited to P10H/L and/or I11T in anti-M2e MAb-treated mice. Remarkably, in half of the samples isolated from moribund MAb 37-treated mice and in all MAb 148-treated mice, virus was isolated with a wild-type M2 sequence but with nonsynonymous mutations in the polymerases and/or the hemagglutinin genes. Some of these mutations were associated with delayed M2 and other viral gene expression and with increased resistance to anti-M2e MAb treatment of SCID mice. Treatment with M2e-specific MAbs thus selects for viruses with limited variation in M2e. Importantly, influenza A viruses may also undergo an alternative escape route by acquiring mutations that result in delayed wild-type M2 expression. IMPORTANCE Broadly protective influenza vaccine candidates may have a higher barrier to immune evasion compared to conventional influenza vaccines. We used Illumina MiSeq deep sequence analysis to study the mutational patterns in A/Puerto Rico/8/34 viruses that evolve in chronically infected SCID mice that were treated with different M2e-specific MAbs. We show that under these circumstances, viruses emerged in vivo with mutations in M2e that were limited to positions 10 and 11. Moreover, we discovered an alternative route for anti-M2e antibody immune escape, in which a virus is selected with wild-type M2e but with mutations in other gene segments that result in delayed M2 and other viral protein expression. Delayed expression of the viral antigen that is targeted by a protective antibody thus represents an influenza virus immune escape mechanism that does not involve epitope alterations.
Collapse
Affiliation(s)
- Silvie Van den Hoecke
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Marlies Ballegeer
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Bram Vrancken
- KU Leuven—University of Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Leuven, Belgium
| | - Lei Deng
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Emma R. Job
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Kenny Roose
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Bert Schepens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Lien Van Hoecke
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium
| | - Philippe Lemey
- KU Leuven—University of Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Clinical and Epidemiological Virology, Leuven, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
34
|
Zost SJ, Dong J, Gilchuk IM, Gilchuk P, Thornburg NJ, Bangaru S, Kose N, Finn JA, Bombardi R, Soto C, Chen EC, Nargi RS, Sutton RE, Irving RP, Suryadevara N, Westover JB, Carnahan RH, Turner HL, Li S, Ward AB, Crowe JE. Canonical features of human antibodies recognizing the influenza hemagglutinin trimer interface. J Clin Invest 2021; 131:e146791. [PMID: 34156974 PMCID: PMC8321569 DOI: 10.1172/jci146791] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/16/2021] [Indexed: 12/14/2022] Open
Abstract
Broadly reactive antibodies targeting the influenza A virus hemagglutinin (HA) head domain are thought to be rare and to require extensive somatic mutations or unusual structural features to achieve breadth against divergent HA subtypes. Here we describe common genetic and structural features of protective human antibodies from several individuals recognizing the trimer interface (TI) of the influenza A HA head, a recently identified site of vulnerability. We examined the sequence of TI-reactive antibodies, determined crystal structures for TI antibody-antigen complexes, and analyzed the contact residues of the antibodies on HA to discover common genetic and structural features of TI antibodies. Our data reveal that many TI antibodies are encoded by a light chain variable gene segment incorporating a shared somatic mutation. In addition, these antibodies have a shared acidic residue in the heavy chain despite originating from diverse heavy chain variable gene segments. These studies show that the TI region of influenza A HA is a major antigenic site with conserved structural features that are recognized by a common human B cell public clonotype. The canonical nature of this antibody-antigen interaction suggests that the TI epitope might serve as an important target for structure-based vaccine design.
Collapse
Affiliation(s)
- Seth J Zost
- The Vanderbilt Vaccine Center and.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | | | | | - Sandhya Bangaru
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Jessica A Finn
- The Vanderbilt Vaccine Center and.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Cinque Soto
- The Vanderbilt Vaccine Center and.,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Elaine C Chen
- The Vanderbilt Vaccine Center and.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | | | | | - Jonna B Westover
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, USA
| | - Robert H Carnahan
- The Vanderbilt Vaccine Center and.,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Hannah L Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Sheng Li
- Department of Medicine and Biomedical Sciences, School of Medicine, University of California, San Diego, California, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - James E Crowe
- The Vanderbilt Vaccine Center and.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
35
|
Boonnak K, Mansanguan C, Schuerch D, Boonyuen U, Lerdsamran H, Jiamsomboon K, Sae Wang F, Huntrup A, Prasertsopon J, Kosoltanapiwat N, Puthavathana P. Molecular Characterization of Seasonal Influenza A and B from Hospitalized Patients in Thailand in 2018-2019. Viruses 2021; 13:977. [PMID: 34070388 PMCID: PMC8228477 DOI: 10.3390/v13060977] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/11/2022] Open
Abstract
Influenza viruses continue to be a major public health threat due to the possible emergence of more virulent influenza virus strains resulting from dynamic changes in virus adaptability, consequent of functional mutations and antigenic drift in surface proteins, especially hemagglutinin (HA) and neuraminidase (NA). In this study, we describe the genetic and evolutionary characteristics of H1N1, H3N2, and influenza B strains detected in severe cases of seasonal influenza in Thailand from 2018 to 2019. We genetically characterized seven A/H1N1 isolates, seven A/H3N2 isolates, and six influenza B isolates. Five of the seven A/H1N1 viruses were found to belong to clade 6B.1 and were antigenically similar to A/Switzerland/3330/2017 (H1N1), whereas two isolates belonged to clade 6B.1A1 and clustered with A/Brisbane/02/2018 (H1N1). Interestingly, we observed additional mutations at antigenic sites (S91R, S181T, T202I) as well as a unique mutation at a receptor binding site (S200P). Three-dimensional (3D) protein structure analysis of hemagglutinin protein reveals that this unique mutation may lead to the altered binding of the HA protein to a sialic acid receptor. A/H3N2 isolates were found to belong to clade 3C.2a2 and 3C.2a1b, clustering with A/Switzerland/8060/2017 (H3N2) and A/South Australia/34/2019 (H3N2), respectively. Amino acid sequence analysis revealed 10 mutations at antigenic sites including T144A/I, T151K, Q213R, S214P, T176K, D69N, Q277R, N137K, N187K, and E78K/G. All influenza B isolates in this study belong to the Victoria lineage. Five out of six isolates belong to clade 1A3-DEL, which relate closely to B/Washington/02/2009, with one isolate lacking the three amino acid deletion on the HA segment at position K162, N163, and D164. In comparison to the B/Colorado/06/2017, which is the representative of influenza B Victoria lineage vaccine strain, these substitutions include G129D, G133R, K136E, and V180R for HA protein. Importantly, the susceptibility to oseltamivir of influenza B isolates, but not A/H1N1 and A/H3N2 isolates, were reduced as assessed by the phenotypic assay. This study demonstrates the importance of monitoring genetic variation in influenza viruses regarding how acquired mutations could be associated with an improved adaptability for efficient transmission.
Collapse
Affiliation(s)
- Kobporn Boonnak
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (K.B.); (D.S.); (K.J.); (F.S.W.); (N.K.)
| | - Chayasin Mansanguan
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Dennis Schuerch
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (K.B.); (D.S.); (K.J.); (F.S.W.); (N.K.)
| | - Usa Boonyuen
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Hatairat Lerdsamran
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand; (H.L.); (J.P.)
| | - Kultida Jiamsomboon
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (K.B.); (D.S.); (K.J.); (F.S.W.); (N.K.)
| | - Fanny Sae Wang
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (K.B.); (D.S.); (K.J.); (F.S.W.); (N.K.)
| | - Arun Huntrup
- Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Jarunee Prasertsopon
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand; (H.L.); (J.P.)
| | - Nathamon Kosoltanapiwat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; (K.B.); (D.S.); (K.J.); (F.S.W.); (N.K.)
| | - Pilaipan Puthavathana
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand; (H.L.); (J.P.)
| |
Collapse
|
36
|
Harrington WN, Kackos CM, Webby RJ. The evolution and future of influenza pandemic preparedness. Exp Mol Med 2021; 53:737-749. [PMID: 33953324 PMCID: PMC8099712 DOI: 10.1038/s12276-021-00603-0] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 12/17/2022] Open
Abstract
The influenza virus is a global threat to human health causing unpredictable yet recurring pandemics, the last four emerging over the course of a hundred years. As our knowledge of influenza virus evolution, distribution, and transmission has increased, paths to pandemic preparedness have become apparent. In the 1950s, the World Health Organization (WHO) established a global influenza surveillance network that is now composed of institutions in 122 member states. This and other surveillance networks monitor circulating influenza strains in humans and animal reservoirs and are primed to detect influenza strains with pandemic potential. Both the United States Centers for Disease Control and Prevention and the WHO have also developed pandemic risk assessment tools that evaluate specific aspects of emerging influenza strains to develop a systematic process of determining research and funding priorities according to the risk of emergence and potential impact. Here, we review the history of influenza pandemic preparedness and the current state of preparedness, and we propose additional measures for improvement. We also comment on the intersection between the influenza pandemic preparedness network and the current SARS-CoV-2 crisis. We must continually evaluate and revise our risk assessment and pandemic preparedness plans and incorporate new information gathered from research and global crises.
Collapse
Affiliation(s)
- Walter N Harrington
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Christina M Kackos
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
- St. Jude Children's Research Hospital, Graduate School of Biomedical Sciences, Memphis, TN, USA
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
37
|
Le Sage V, Kormuth KA, Nturibi E, Lee JM, Frizzell SA, Myerburg MM, Bloom JD, Lakdawala SS. Cell-Culture Adaptation of H3N2 Influenza Virus Impacts Acid Stability and Reduces Airborne Transmission in Ferret Model. Viruses 2021; 13:719. [PMID: 33919124 PMCID: PMC8143181 DOI: 10.3390/v13050719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 12/14/2022] Open
Abstract
Airborne transmission of seasonal and pandemic influenza viruses is the reason for their epidemiological success and public health burden in humans. Efficient airborne transmission of the H1N1 influenza virus relies on the receptor specificity and pH of fusion of the surface glycoprotein hemagglutinin (HA). In this study, we examined the role of HA pH of fusion on transmissibility of a cell-culture-adapted H3N2 virus. Mutations in the HA head at positions 78 and 212 of A/Perth/16/2009 (H3N2), which were selected after cell culture adaptation, decreased the acid stability of the virus from pH 5.5 (WT) to pH 5.8 (mutant). In addition, the mutant H3N2 virus replicated to higher titers in cell culture but had reduced airborne transmission in the ferret model. These data demonstrate that, like H1N1 HA, the pH of fusion for H3N2 HA is a determinant of efficient airborne transmission. Surprisingly, noncoding regions of the NA segment can impact the pH of fusion of mutant viruses. Taken together, our data confirm that HA acid stability is an important characteristic of epidemiologically successful human influenza viruses and is influenced by HA/NA balance.
Collapse
Affiliation(s)
- Valerie Le Sage
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburg, PA 15219, USA; (V.L.S.); (K.A.K.); (E.N.)
| | - Karen A. Kormuth
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburg, PA 15219, USA; (V.L.S.); (K.A.K.); (E.N.)
| | - Eric Nturibi
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburg, PA 15219, USA; (V.L.S.); (K.A.K.); (E.N.)
| | - Juhye M. Lee
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (J.M.L.); (J.D.B.)
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Sheila A. Frizzell
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; (S.A.F.); (M.M.M.)
| | - Michael M. Myerburg
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; (S.A.F.); (M.M.M.)
| | - Jesse D. Bloom
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (J.M.L.); (J.D.B.)
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98103, USA
| | - Seema S. Lakdawala
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburg, PA 15219, USA; (V.L.S.); (K.A.K.); (E.N.)
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| |
Collapse
|
38
|
Strohmeier S, Carreño JM, Brito RN, Krammer F. Introduction of Cysteines in the Stalk Domain of Recombinant Influenza Virus N1 Neuraminidase Enhances Protein Stability and Immunogenicity in Mice. Vaccines (Basel) 2021; 9:404. [PMID: 33921722 PMCID: PMC8072926 DOI: 10.3390/vaccines9040404] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023] Open
Abstract
Influenza virus surface glycoproteins represent the main targets of the immune system during infection and vaccination. Current influenza virus vaccines rely mostly on the hemagglutinin, requiring a close match between the vaccine and circulating strains. Recently, the neuraminidase (NA) has become an attractive target; however low immunogenicity and stability in vaccine preparations remain an obstacles. Here, we took advantage of the hypervariable stalk domain of the NA to introduce cysteines at different positions and to produce more stable multimeric forms of the protein. We generated 11 N1 constructs and characterized the proteins by performing sodium dodecyl sulfate polyacrylamide gel electrophoresis and by testing their enzymatic activity and representation of antigenic epitopes. Moreover, we evaluated their potential to induce a protective immune response in vivo and characterized the polyclonal antibody responses of immunized mice. We observed that the introduction of cysteines at certain positions led to the formation of stable N1 dimers, which are capable of inducing a strong antibody response characterized by neuraminidase inhibiting activity and protection of mice from high dose viral challenge. Overall, our results provide evidence for the feasibility of introducing stalk modifications to enhance the stability and immunogenicity of NA-based recombinant antigens.
Collapse
Affiliation(s)
- Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (S.S.); (J.M.C.); (R.N.B.)
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (S.S.); (J.M.C.); (R.N.B.)
| | - Ruhi Nichalle Brito
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (S.S.); (J.M.C.); (R.N.B.)
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (S.S.); (J.M.C.); (R.N.B.)
| |
Collapse
|
39
|
Chabanon AL, Wague S, Moureau A, Nissila M, Serradell L. Enhanced passive safety surveillance of the quadrivalent inactivated split-virion influenza vaccine (IIV4) in Finland during the 2019/20 influenza season. BMC Public Health 2021; 21:358. [PMID: 33588815 PMCID: PMC7885465 DOI: 10.1186/s12889-021-10378-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND AND AIMS The Enhanced Passive Safety Surveillance is a requirement of the European Medicines Agency (EMA) for seasonal influenza vaccines, aiming to rapidly detect any significant change in frequency or severity of expected reactogenicity or allergic events prior to widespread use of a vaccine in any particular year. The aim of this surveillance was to assess the quadrivalent inactivated split-virion influenza vaccine (IIV4) during routine immunization in Finland, as per the national immunization program for 2019/20. The primary objective was to investigate the suspected adverse drug reactions (ADR) occurring within 7 days following vaccination. METHODS Passive surveillance of individuals vaccinated with IIV4 was conducted within the first 4 to 6 weeks of the influenza season in Finland. Potential ADRs were reported via phone or posted adverse event forms. The vaccinee reporting rate and ADR reporting rate were calculated and compared with the known or expected safety data in order to identify any change which was clinically significant. RESULTS Data were collected from 939 individuals, with 56 reports received for 163 suspected ADRs. Of these, 38 individuals reported 117 suspected ADRs within 7 days following vaccination, corresponding to an ADR reporting rate of 12.46% (95% CI: 10.41, 14.74%); vaccination-site pain, vaccination-site reaction, and pyrexia were the most frequently reported ADRs. The 18-to-65 years of age category had an ADR reporting rate of 12.56%, the over-65 years of age category had an ADR reporting rate of 16.22%, and no ADRs were reported for individuals aged 6 months to 18 years. No serious suspected ADRs were reported at any time post-vaccination, and the ADR rates were comparable to those reported for IIV4 in the 2018/19 seasonal assessment. The frequency of suspected ADRs was generally aligned with those reported in the Summary of Product Characteristics (SmPC), with the exception of asthenia, somnolence, and erythema, which were slightly higher. No reporting pattern by type, frequency, or severity was identified for the suspected ADRs. CONCLUSIONS No clinically significant changes in what is known or expected for IIV4 was reported for the 2019/20 season, which supports the overall safety profile.
Collapse
Affiliation(s)
- Anne-Laure Chabanon
- Sanofi Pasteur, Siège Mondial Campus Sanofi Lyon, 14 Espace Henry Vallée, 69007, Lyon, France
| | - Sophie Wague
- Sanofi Pasteur, Siège Mondial Campus Sanofi Lyon, 14 Espace Henry Vallée, 69007, Lyon, France
| | - Annick Moureau
- Global Biostatistical Sciences, Sanofi Pasteur, 1541 Avenue Marcel Mérieux, 69280, Marcy l'Etoile, France
| | - Markku Nissila
- Terveystalo Biobank and Clinical Research, Humalistonkatu 7b, 20100, Turku, Finland
| | - Laurence Serradell
- Sanofi Pasteur, Siège Mondial Campus Sanofi Lyon, 14 Espace Henry Vallée, 69007, Lyon, France.
| |
Collapse
|
40
|
Amitai A. Viral surface geometry shapes influenza and coronavirus spike evolution through antibody pressure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.10.20.347641. [PMID: 33106808 PMCID: PMC7587782 DOI: 10.1101/2020.10.20.347641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The evolution of circulating viruses is shaped by their need to evade antibody response, which mainly targets the glycoprotein (spike). However, not all antigenic sites are targeted equally by antibodies, leading to complex immunodominance patterns. We used 3D computational models to estimate antibody pressure on the seasonal influenza H1N1 and SARS spikes. Analyzing publically available sequences, we show that antibody pressure, through the geometrical organization of spikes on the viral surface, shaped their mutability. Studying the mutability patterns of SARS-CoV-2 and the 2009 H1N1 pandemic spikes, we find that they are not predominantly shaped by antibody pressure. However, for SARS-CoV-2, we find that over time, it acquired mutations at antibody-accessible positions, which could indicate possible escape as define by our model. We offer a geometry-based approach to predict and rank the probability of surface resides of SARS-CoV-2 spike to acquire antibody escaping mutations.
Collapse
Affiliation(s)
- Assaf Amitai
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
41
|
Sealy JE, Peacock TP, Sadeyen JR, Chang P, Everest HJ, Bhat S, Iqbal M. Adsorptive mutation and N-linked glycosylation modulate influenza virus antigenicity and fitness. Emerg Microbes Infect 2020; 9:2622-2631. [PMID: 33179567 PMCID: PMC7738305 DOI: 10.1080/22221751.2020.1850180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Influenza viruses have an error-prone polymerase complex that facilitates a mutagenic environment. Antigenic mutants swiftly arise from this environment with the capacity to persist in both humans and economically important livestock even in the face of vaccination. Furthermore, influenza viruses can adjust the antigenicity of the haemagglutinin (HA) protein, the primary influenza immunogen, using one of four molecular mechanisms. Two prominent mechanisms are: (1) enhancing binding avidity of HA toward cellular receptors to outcompete antibody binding and (2) amino acid substitutions that introduce an N-linked glycan on HA that sterically block antibody binding. In this study we investigate the impact that adsorptive mutation and N-linked glycosylation have on receptor-binding, viral fitness, and antigenicity. We utilize the H9N2 A/chicken/Pakistan/SKP-827/16 virus which naturally contains HA residue T180 that we have previously shown to be an adsorptive mutant relative to virus with T180A. We find that the addition of N-linked glycans can be beneficial or deleterious to virus replication depending on the background receptor binding avidity. We also find that in some cases, an N-linked glycan can trump the effect of an avidity enhancing substitution with respect to antigenicity. Taken together these data shed light on a potential route to the generation of a virus which is "fit" and able to overcome vaccine pressure.
Collapse
Affiliation(s)
| | - Thomas P Peacock
- Department of Infectious Diseases, Imperial College London, London, UK
| | | | | | - Holly J Everest
- Avian Influenza, The Pirbright Institute, Woking, UK.,Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sushant Bhat
- Avian Influenza, The Pirbright Institute, Woking, UK
| | - Munir Iqbal
- Avian Influenza, The Pirbright Institute, Woking, UK
| |
Collapse
|
42
|
A facile method of mapping HIV-1 neutralizing epitopes using chemically masked cysteines and deep sequencing. Proc Natl Acad Sci U S A 2020; 117:29584-29594. [PMID: 33168755 DOI: 10.1073/pnas.2010256117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Identification of specific epitopes targeted by neutralizing antibodies is essential to advance epitope-based vaccine design strategies. We report a facile methodology for rapid epitope mapping of neutralizing antibodies (NAbs) against HIV-1 Envelope (Env) at single-residue resolution, using Cys labeling, viral neutralization assays, and deep sequencing. This was achieved by the generation of a library of Cys mutations in Env glycoprotein on the viral surface, covalent labeling of the Cys residues using a Cys-reactive label that masks epitope residues, followed by infection of the labeled mutant virions in mammalian cells in the presence of NAbs. Env gene sequencing from NAb-resistant viruses was used to accurately delineate epitopes for the NAbs VRC01, PGT128, and PGT151. These agreed well with corresponding experimentally determined structural epitopes previously inferred from NAb:Env structures. HIV-1 infection is associated with complex and polyclonal antibody responses, typically composed of multiple antibody specificities. Deconvoluting the epitope specificities in a polyclonal response is a challenging task. We therefore extended our methodology to map multiple specificities of epitopes targeted in polyclonal sera, elicited in immunized animals as well as in an HIV-1-infected elite neutralizer capable of neutralizing tier 3 pseudoviruses with high titers. The method can be readily extended to other viruses for which convenient reverse genetics or lentiviral surface display systems are available.
Collapse
|
43
|
Meilleur CE, Memarnejadian A, Shivji AN, Benoit JM, Tuffs SW, Mele TS, Singh B, Dikeakos JD, Topham DJ, Mu HH, Bennink JR, McCormick JK, Haeryfar SMM. Discordant rearrangement of primary and anamnestic CD8+ T cell responses to influenza A viral epitopes upon exposure to bacterial superantigens: Implications for prophylactic vaccination, heterosubtypic immunity and superinfections. PLoS Pathog 2020; 16:e1008393. [PMID: 32433711 PMCID: PMC7239382 DOI: 10.1371/journal.ppat.1008393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 02/10/2020] [Indexed: 12/21/2022] Open
Abstract
Infection with (SAg)-producing bacteria may precede or follow infection with or vaccination against influenza A viruses (IAVs). However, how SAgs alter the breadth of IAV-specific CD8+ T cell (TCD8) responses is unknown. Moreover, whether recall responses mediating heterosubtypic immunity to IAVs are manipulated by SAgs remains unexplored. We employed wild-type (WT) and mutant bacterial SAgs, SAg-sufficient/deficient Staphylococcus aureus strains, and WT, mouse-adapted and reassortant IAV strains in multiple in vivo settings to address the above questions. Contrary to the popular view that SAgs delete or anergize T cells, systemic administration of staphylococcal enterotoxin B (SEB) or Mycoplasma arthritidis mitogen before intraperitoneal IAV immunization enlarged the clonal size of ‘select’ IAV-specific TCD8 and reshuffled the hierarchical pattern of primary TCD8 responses. This was mechanistically linked to the TCR Vβ makeup of the impacted clones rather than their immunodominance status. Importantly, SAg-expanded TCD8 retained their IFN-γ production and cognate cytolytic capacities. The enhancing effect of SEB on immunodominant TCD8 was also evident in primary responses to vaccination with heat-inactivated and live attenuated IAV strains administered intramuscularly and intranasally, respectively. Interestingly, in prime-boost immunization settings, the outcome of SEB administration depended strictly upon the time point at which this SAg was introduced. Accordingly, SEB injection before priming raised CD127highKLRG1low memory precursor frequencies and augmented the anamnestic responses of SEB-binding TCD8. By comparison, introducing SEB before boosting diminished recall responses to IAV-derived epitopes drastically and indiscriminately. This was accompanied by lower Ki67 and higher Fas, LAG-3 and PD-1 levels consistent with a pro-apoptotic and/or exhausted phenotype. Therefore, SAgs can have contrasting impacts on anti-IAV immunity depending on the naïve/memory status and the TCR composition of exposed TCD8. Finally, local administration of SEB or infection with SEB-producing S. aureus enhanced pulmonary TCD8 responses to IAV. Our findings have clear implications for superinfections and prophylactic vaccination. Exposure to bacterial superantigens (SAgs) is often a consequence of infection with common Gram-positive bacteria causing septic and toxic shock or food poisoning. How SAgs affect the magnitude, breadth and quality of infection/vaccine-elicited CD8+ T cell (TCD8) responses to respiratory viral pathogens, including influenza A viruses (IAVs), is far from clear. Also importantly, superinfections with IAVs and SAg-producing bacteria are serious clinical occurrences during seasonal and pandemic flu and require urgent attention. We demonstrate that two structurally distinct SAgs, including staphylococcal enterotoxin B (SEB), unexpectedly enhance primary TCD8 responses to ‘select’ IAV-derived epitopes depending on the TCR makeup of the responding clones. Intriguingly, the timing of exposure to SEB dictates the outcome of prime-boost immunization. Seeing a SAg before priming raises memory precursor frequencies and augments anamnestic TCD8 responses. Conversely, a SAg encounter before boosting renders TCD8 prone to death or exhaustion and impedes recall responses, thus likely compromising heterosubtypic immunity to IAVs. Finally, local exposure to SEB increases the pulmonary response of immunodominant IAV-specific TCD8. These findings shed new light on how bacterial infections and SAgs influence the effectiveness of anti-IAV TCD8 responses, and have, as such, wide-ranging implications for preventative vaccination and infection control.
Collapse
Affiliation(s)
- Courtney E. Meilleur
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Arash Memarnejadian
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Adil N. Shivji
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Jenna M. Benoit
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Stephen W. Tuffs
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Tina S. Mele
- Division of General Surgery, Department of Surgery, Western University, London, Ontario, Canada
- Division of Critical Care Medicine, Department of Medicine, Western University, London, Ontario, Canada
| | - Bhagirath Singh
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- Centre for Human Immunology, Western University, London, Ontario, Canada
| | - Jimmy D. Dikeakos
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - David J. Topham
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Hong-Hua Mu
- Division of Rheumatology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Jack R. Bennink
- Viral Immunology Section, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John K. McCormick
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- Centre for Human Immunology, Western University, London, Ontario, Canada
| | - S. M. Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Division of General Surgery, Department of Surgery, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
- Centre for Human Immunology, Western University, London, Ontario, Canada
- Division of Clinical Immunology & Allergy, Department of Medicine, Western University, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
44
|
Clemens E, Angeletti D, Holbrook BC, Kanekiyo M, Jorgensen MJ, Graham BS, Yewdell J, Alexander-Miller MA. Influenza-infected newborn and adult monkeys exhibit a strong primary antibody response to hemagglutinin stem. JCI Insight 2020; 5:135449. [PMID: 32078584 DOI: 10.1172/jci.insight.135449] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/12/2020] [Indexed: 01/06/2023] Open
Abstract
The specificity of antibodies (Abs) generated against influenza A virus (IAV) infection can significantly alter protection and viral clearance. At present, the impact of age upon this process is relatively unexplored. Here, we evaluated the Ab response in newborn and adult African green monkeys following infection with IAV using a strain that enables us to determine the immunodominance (ID) hierarchy of the Ab response to hemagglutinin (HA), the principal target of protective Abs. This revealed altered ID patterns in the early IgM anti-HA response in newborns versus adults that converged over time. While the IgG ID profiles for HA in newborn and adult monkeys were similar, this was not the case for IgA. Importantly, HA stem-specific Abs were generated robustly and similarly in newborns and adults in terms of quality and quantity. Together, these results demonstrate that newborns and adults can differ in the Ab ID pattern established following infection and that the ID pattern can vary across isotypes. In addition, newborns have the ability to generate potent HA stem-specific Ab responses. Our findings further the understanding of the newborn response to IAV antigens and inform the development of improved vaccines for this at-risk population.
Collapse
Affiliation(s)
- Elene Clemens
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Davide Angeletti
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden
| | - Beth C Holbrook
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | | | - Matthew J Jorgensen
- Section on Comparative Medicine, Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | | | - Jonathan Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Martha A Alexander-Miller
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
45
|
Bangaru S, Lang S, Schotsaert M, Vanderven HA, Zhu X, Kose N, Bombardi R, Finn JA, Kent SJ, Gilchuk P, Gilchuk I, Turner HL, García-Sastre A, Li S, Ward AB, Wilson IA, Crowe JE. A Site of Vulnerability on the Influenza Virus Hemagglutinin Head Domain Trimer Interface. Cell 2020; 177:1136-1152.e18. [PMID: 31100268 DOI: 10.1016/j.cell.2019.04.011] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 02/25/2019] [Accepted: 04/04/2019] [Indexed: 12/17/2022]
Abstract
Here, we describe the discovery of a naturally occurring human antibody (Ab), FluA-20, that recognizes a new site of vulnerability on the hemagglutinin (HA) head domain and reacts with most influenza A viruses. Structural characterization of FluA-20 with H1 and H3 head domains revealed a novel epitope in the HA trimer interface, suggesting previously unrecognized dynamic features of the trimeric HA protein. The critical HA residues recognized by FluA-20 remain conserved across most subtypes of influenza A viruses, which explains the Ab's extraordinary breadth. The Ab rapidly disrupted the integrity of HA protein trimers, inhibited cell-to-cell spread of virus in culture, and protected mice against challenge with viruses of H1N1, H3N2, H5N1, or H7N9 subtypes when used as prophylaxis or therapy. The FluA-20 Ab has uncovered an exceedingly conserved protective determinant in the influenza HA head domain trimer interface that is an unexpected new target for anti-influenza therapeutics and vaccines.
Collapse
Affiliation(s)
- Sandhya Bangaru
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Shanshan Lang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hillary A Vanderven
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Xueyong Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nurgun Kose
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robin Bombardi
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jessica A Finn
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Pavlo Gilchuk
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Iuliia Gilchuk
- The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hannah L Turner
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sheng Li
- Department of Medicine and Biomedical Sciences, School of Medicine, University of California, San Diego, CA 92093, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - James E Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; The Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
46
|
Mathew NR, Angeletti D. Recombinant Influenza Vaccines: Saviors to Overcome Immunodominance. Front Immunol 2020; 10:2997. [PMID: 31998299 PMCID: PMC6966699 DOI: 10.3389/fimmu.2019.02997] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/06/2019] [Indexed: 11/24/2022] Open
Abstract
It has been almost a decade since the 2009 influenza A virus pandemic hit the globe causing significant morbidity and mortality. Nonetheless, annual influenza vaccination, which elicits antibodies mainly against the head region of influenza hemagglutinin (HA), remains as the mainstay to combat and reduce symptoms of influenza infection. Influenza HA is highly antigenically variable, thus limiting vaccine efficacy. In addition, the variable HA head occupies the upper strata of the immunodominance hierarchy, thereby clouding the antibody response toward subdominant epitopes, which are usually conserved across different influenza strains. Isolation of monoclonal antibodies from individuals recognizing such epitopes has facilitated the development of recombinant vaccines that focus the adaptive immune response toward conserved, protective targets. Here, we review some significant leaps in recombinant vaccine development, which could possibly help to overcome B cell and antibody immunodominance and provide heterosubtypic immunity to influenza A virus.
Collapse
Affiliation(s)
- Nimitha R Mathew
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Davide Angeletti
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
47
|
de Vries E, Du W, Guo H, de Haan CA. Influenza A Virus Hemagglutinin-Neuraminidase-Receptor Balance: Preserving Virus Motility. Trends Microbiol 2020; 28:57-67. [PMID: 31629602 PMCID: PMC7172302 DOI: 10.1016/j.tim.2019.08.010] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022]
Abstract
Influenza A viruses (IAVs) occasionally cross the species barrier and adapt to novel host species. This requires readjustment of the functional balance of the sialic acid receptor-binding hemagglutinin (HA) and the receptor-destroying neuraminidase (NA) to the sialoglycan-receptor repertoire of the new host. Novel techniques have revealed mechanistic details of this HA-NA-receptor balance, emphasizing a previously underappreciated crucial role for NA in driving the motility of receptor-associated IAV particles. Motility enables virion penetration of the sialylated mucus layer as well as attachment to, and uptake into, underlying epithelial cells. As IAVs are essentially irreversibly bound in the absence of NA activity, the fine-tuning of the HA-NA-receptor balance rather than the binding avidity of IAV particles per se is an important factor in determining host species tropism.
Collapse
Affiliation(s)
- Erik de Vries
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands.
| | - Wenjuan Du
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Hongbo Guo
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands
| | - Cornelis A.M. de Haan
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands,Correspondence:
| |
Collapse
|
48
|
Van Braeckel-Budimir N, Varga SM, Badovinac VP, Harty JT. Repeated Antigen Exposure Extends the Durability of Influenza-Specific Lung-Resident Memory CD8 + T Cells and Heterosubtypic Immunity. Cell Rep 2019; 24:3374-3382.e3. [PMID: 30257199 DOI: 10.1016/j.celrep.2018.08.073] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/01/2018] [Accepted: 08/24/2018] [Indexed: 01/29/2023] Open
Abstract
Lung-resident primary memory CD8+ T cell populations (Trm) induced by a single influenza infection decline within months, rendering the host susceptible to new heterosubtypic influenza infections. Here, we demonstrate that, relative to single virus exposure, repeated antigen exposure dramatically alters the dynamics of influenza-specific lung Trm populations. Lung Trm derived from repeatedly stimulated circulating memory CD8+ T cells exhibit extended durability and protective heterosubtypic immunity relative to primary lung Trm. Parabiosis studies reveal that the enhanced durability of lung Trm after multiple antigen encounters resulted from the generation of long-lasting circulating effector memory (Tem) populations, which maintained the ability to be recruited to the lung parenchyma and converted to Trm, in combination with enhanced survival of these cells in the lung. Thus, generating a long-lasting Trm precursor pool through repeated intranasal immunizations might be a promising strategy to establish long-lasting lung Trm-mediated heterosubtypic immunity against influenza.
Collapse
Affiliation(s)
| | - Steven M Varga
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA; Department of Pathology, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Vladimir P Badovinac
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA; Department of Pathology, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - John T Harty
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA; Department of Pathology, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
49
|
Ilyushina NA, Komatsu TE, Ince WL, Donaldson EF, Lee N, O'Rear JJ, Donnelly RP. Influenza A virus hemagglutinin mutations associated with use of neuraminidase inhibitors correlate with decreased inhibition by anti-influenza antibodies. Virol J 2019; 16:149. [PMID: 31783761 PMCID: PMC6884823 DOI: 10.1186/s12985-019-1258-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/22/2019] [Indexed: 12/18/2022] Open
Abstract
Background Vaccination and the use of neuraminidase inhibitors (NAIs) are currently the front lines of defense against seasonal influenza. The activity of influenza vaccines and antivirals drugs such as the NAIs can be affected by mutations in the influenza hemagglutinin (HA) protein. Numerous HA substitutions have been identified in nonclinical NAI resistance-selection experiments as well as in clinical specimens from NAI treatment or surveillance studies. These mutations are listed in the prescribing information (package inserts) for FDA-approved NAIs, including oseltamivir, zanamivir, and peramivir. Methods NAI treatment-emergent H1 HA mutations were mapped onto the H1N1 HA1 trimeric crystal structure and most of them localized to the HA antigenic sites predicted to be important for anti-influenza immunity. Recombinant A/California/04/09 (H1N1)-like viruses carrying HA V152I, G155E, S162 N, S183P, and D222G mutations were generated. We then evaluated the impact of these mutations on the immune reactivity and replication potential of the recombinant viruses in a human respiratory epithelial cell line, Calu− 3. Results We found that the G155E and D222G mutations significantly increased viral titers ~ 13-fold compared to the wild-type virus. The hemagglutination and microneutralization activity of goat and ferret antisera, monoclonal antibodies, and human serum samples raised against pandemic A(H1N1)pdm09 viruses was ~ 100-fold lower against mutants carrying G155E or D222G compared to the wild-type virus. Conclusions Although the mechanism by which HA mutations emerge during NAI treatment is uncertain, some NAI treatment-emergent HA mutations correlate with decreased immunity to influenza virus.
Collapse
Affiliation(s)
- Natalia A Ilyushina
- Division of Biotechnology Review and Research II, Food and Drug Administration CDER, WO Bldg. 52/72, Room 2105, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA.
| | - Takashi E Komatsu
- Division of Antiviral Products, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - William L Ince
- Division of Antiviral Products, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - Eric F Donaldson
- Division of Antiviral Products, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - Nicolette Lee
- Division of Biotechnology Review and Research II, Food and Drug Administration CDER, WO Bldg. 52/72, Room 2105, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - Julian J O'Rear
- Division of Antiviral Products, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - Raymond P Donnelly
- Division of Biotechnology Review and Research II, Food and Drug Administration CDER, WO Bldg. 52/72, Room 2105, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| |
Collapse
|
50
|
Fitness Barriers Limit Reversion of a Proofreading-Deficient Coronavirus. J Virol 2019; 93:JVI.00711-19. [PMID: 31341046 PMCID: PMC6798108 DOI: 10.1128/jvi.00711-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/05/2019] [Indexed: 12/28/2022] Open
Abstract
Coronaviruses encode an exoribonuclease (ExoN) that is important for viral replication, fitness, and virulence, yet coronaviruses with a defective ExoN (ExoN-AA) have not reverted under diverse experimental conditions. In this study, we identify multiple impediments to MHV-ExoN-AA reversion. We show that ExoN-AA reversion is possible but evolutionarily unfavorable. Instead, compensatory mutations outside ExoN-AA motif I are more accessible and beneficial than partial reversion. We also show that coevolution between replicase proteins over long-term passage partially compensates for ExoN-AA motif I but renders the virus inhospitable to a reverted ExoN. Our results reveal the evolutionary basis for the genetic stability of ExoN-inactivating mutations, illuminate complex functional and evolutionary relationships between coronavirus replicase proteins, and identify potential mechanisms for stabilization of ExoN-AA coronavirus mutants. The 3′-to-5′ exoribonuclease in coronavirus (CoV) nonstructural protein 14 (nsp14-ExoN) mediates RNA proofreading during genome replication. ExoN catalytic residues are arranged in three motifs: I (DE), II (E), and III (D). Alanine replacement of the motif I residues (AA-E-D; four nucleotide substitutions) in murine hepatitis virus (MHV) and severe acute respiratory syndrome (SARS)-CoV yields viable mutants with impaired replication and fitness, increased mutation rates, and attenuated virulence in vivo. Despite these impairments, MHV- and SARS-CoV ExoN motif I AA mutants (ExoN-AA) have not reverted at motif I in diverse in vitro and in vivo environments, suggesting that profound fitness barriers prevent motif I reversion. To test this hypothesis, we engineered MHV-ExoN-AA with 1, 2, or 3 nucleotide mutations along genetic pathways to AA-to-DE reversion. We show that engineered intermediate revertants were viable but had no increased replication or competitive fitness compared to that of MHV-ExoN-AA. In contrast, a low-passage-number (passage 10 [P10]) MHV-ExoN-AA showed increased replication and competitive fitness without reversion of ExoN-AA. Finally, engineered reversion of ExoN-AA to ExoN-DE in the presence of ExoN-AA passage-adaptive mutations resulted in significant fitness loss. These results demonstrate that while reversion is possible, at least one alternative adaptive pathway is more rapidly advantageous than intermediate revertants and may alter the genetic background to render reversion detrimental to fitness. Our results provide an evolutionary rationale for lack of ExoN-AA reversion, illuminate potential multiprotein replicase interactions and coevolution, and support future studies aimed at stabilizing attenuated CoV ExoN-AA mutants. IMPORTANCE Coronaviruses encode an exoribonuclease (ExoN) that is important for viral replication, fitness, and virulence, yet coronaviruses with a defective ExoN (ExoN-AA) have not reverted under diverse experimental conditions. In this study, we identify multiple impediments to MHV-ExoN-AA reversion. We show that ExoN-AA reversion is possible but evolutionarily unfavorable. Instead, compensatory mutations outside ExoN-AA motif I are more accessible and beneficial than partial reversion. We also show that coevolution between replicase proteins over long-term passage partially compensates for ExoN-AA motif I but renders the virus inhospitable to a reverted ExoN. Our results reveal the evolutionary basis for the genetic stability of ExoN-inactivating mutations, illuminate complex functional and evolutionary relationships between coronavirus replicase proteins, and identify potential mechanisms for stabilization of ExoN-AA coronavirus mutants.
Collapse
|