1
|
Xiao Q, Liu Y, Shu X, Li Y, Zhang X, Wang C, He S, Li J, Li T, Liu T, Liu Y. Molecular mechanisms of viral oncogenesis in haematological malignancies: perspectives from metabolic reprogramming, epigenetic regulation and immune microenvironment remodeling. Exp Hematol Oncol 2025; 14:69. [PMID: 40349096 PMCID: PMC12065340 DOI: 10.1186/s40164-025-00655-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/13/2025] [Indexed: 05/14/2025] Open
Abstract
Haematological malignancies are one of the most common tumors, with a rising incidence noted over recent decades. Viral infections play significant roles in the pathogenesis of these malignancies globally. This review delves into the contributions of various known viruses-specifically Epstein-Barr virus (EBV), human immunodeficiency virus (HIV), human T-cell leukemia virus type 1 (HTLV-1), Kaposi's sarcoma-associated herpesvirus (KSHV), human cytomegalovirus (HCMV), hepatitis B virus (HBV), hepatitis C virus (HCV), and human papillomavirus (HPV)-in the development of haematological malignancies. These viruses are shown to drive tumorigenesis through mechanisms, such as metabolic reprogramming, epigenetic modifications, and remodeling of the immune microenvironment. By directly disrupting fundamental cellular functions and altering metabolic and epigenetic pathways, these viruses foster an immune milieu that supports both viral persistence and tumor growth. A thorough understanding of these viral oncogenic processes is crucial not only for etiological discovery but also for developing targeted interventions. This review emphasizes the need for continued research into the specific ways these viruses manipulate the host cell's metabolic and epigenetic environments, aiming to provide insights that could guide future advancements in treatment modalities.
Collapse
Affiliation(s)
- Qing Xiao
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yi Liu
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Xuejiao Shu
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Ya Li
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Xiaomei Zhang
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Chaoyu Wang
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Sanxiu He
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Jun Li
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Tingting Li
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Tingting Liu
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yao Liu
- Department of Hematology-Oncology, Chongqing Key Laboratory for the Mechanism and Intervention of Cancer Metastasis, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
2
|
Iyer AR, Gurumurthy A, Chu SCA, Kodgule R, Aguilar AR, Saari T, Ramzan A, Rosa J, Gupta J, Emmanuel A, Hall CN, Runge JS, Owczarczyk AB, Cho JW, Weiss MB, Anyoha R, Sikkink K, Gemus S, Fulco CP, Perry AM, Schmitt AD, Engreitz JM, Brown NA, Cieslik MP, Ryan RJ. Selective Enhancer Dependencies in MYC-Intact and MYC-Rearranged Germinal Center B-cell Diffuse Large B-cell Lymphoma. Blood Cancer Discov 2025; 6:233-253. [PMID: 40067173 PMCID: PMC12050968 DOI: 10.1158/2643-3230.bcd-24-0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 12/28/2024] [Accepted: 03/10/2025] [Indexed: 03/15/2025] Open
Abstract
SIGNIFICANCE Aberrant MYC activity defines the most aggressive GCB-DLBCLs. We characterized a mechanism of MYC transcriptional activation via a native enhancer that is active in MYC-intact GCB-DLBCL, establishing fitness-sustaining cis- and trans-regulatory circuitry in GCB-DLBCL models that lack MYC enhancer-hijacking rearrangement. See related commentary by Mulet-Lazaro and Delwel, p. 149.
Collapse
Affiliation(s)
- Ashwin R. Iyer
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Aishwarya Gurumurthy
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Shih-Chun A. Chu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Rohan Kodgule
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Athalee R. Aguilar
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Travis Saari
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Abdullah Ramzan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jan Rosa
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Juhi Gupta
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Arvind Emmanuel
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Cody N. Hall
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - John S. Runge
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Anna B. Owczarczyk
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jang W. Cho
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Matthew B. Weiss
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Rockwell Anyoha
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | | | | | - Charles P. Fulco
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Anamarija M. Perry
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | | | - Jesse M. Engreitz
- Department of Genetics, Stanford University School of Medicine, Stanford, California
- BASE Initiative, Betty Irene Moore Children’s Heart Center, Lucile Packard Children’s Hospital, Stanford, California
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Noah A. Brown
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Marcin P. Cieslik
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Russell J.H. Ryan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
3
|
Havey L, You H, Asara JM, Wang Y, Guo R. Epstein-Barr Virus-Driven B-Cell Transformation under Germinal Center Hypoxia Requires External Unsaturated Fatty Acids. RESEARCH SQUARE 2025:rs.3.rs-6506954. [PMID: 40313738 PMCID: PMC12045359 DOI: 10.21203/rs.3.rs-6506954/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Epstein-Barr virus (EBV) contributes to over 200,000 cancers annually, predominantly aggressive lymphomas originating from hypoxic germinal centers (< 1% O2). However, conventional models fail to recapitulate the physiologically relevant hypoxic microenvironment which profoundly influences B-cell metabolic remodeling during transformation. Here, we establish an ex vivo model of EBV-driven B-cell transformation under 1% O2, demonstrating robust transformation and super-enhancer activation of oncogenic regulators, including MYC. Multi-omic analyses reveal distinct metabolic adaptations to hypoxia. Unlike normoxic B-cells, which rely on fatty acid desaturases and oxidation to mitigate lipotoxicity, hypoxically transformed B-cells suppress fatty acid synthesis while upregulating glycerophospholipid metabolism and lipid droplet formation to buffer excess saturated lipids. Consequently, these cells exhibit heightened dependence on external unsaturated fatty acids to support proliferation. Our findings provide the first physiologically relevant ex vivo model of EBV-driven B-cell transformation under hypoxia, uncovering metabolic vulnerabilities that could inform targeted therapeutic strategies for EBV-associated malignancies.
Collapse
Affiliation(s)
- Larissa Havey
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111
| | - Haixi You
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Yin Wang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115
| | - Rui Guo
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111
| |
Collapse
|
4
|
SoRelle ED, Luftig MA. Multiple sclerosis and infection: history, EBV, and the search for mechanism. Microbiol Mol Biol Rev 2025; 89:e0011923. [PMID: 39817754 PMCID: PMC11948499 DOI: 10.1128/mmbr.00119-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025] Open
Abstract
SUMMARYInfection has long been hypothesized as the cause of multiple sclerosis (MS), and recent evidence for Epstein-Barr virus (EBV) as the trigger of MS is clear and compelling. This clarity contrasts with yet uncertain viral mechanisms and their relation to MS neuroinflammation and demyelination. As long as this disparity persists, it will invigorate virologists, molecular biologists, immunologists, and clinicians to ascertain how EBV potentiates MS onset, and possibly the disease's chronic activity and progression. Such efforts should take advantage of the diverse body of basic and clinical research conducted over nearly two centuries since the first clinical descriptions of MS plaques. Defining the contribution of EBV to the complex and multifactorial pathology of MS will also require suitable experimental models and techniques. Such efforts will broaden our understanding of virus-driven neuroinflammation and specifically inform the development of EBV-targeted therapies for MS management and, ultimately, prevention.
Collapse
Affiliation(s)
- Elliott D. SoRelle
- Department of Molecular Genetics & Microbiology, Center for Virology, Duke University, Durham, North Carolina, USA
| | - Micah A. Luftig
- Department of Molecular Genetics & Microbiology, Center for Virology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
5
|
Borghol AH, Bitar ER, Hanna A, Naim G, Rahal EA. The role of Epstein-Barr virus in autoimmune and autoinflammatory diseases. Crit Rev Microbiol 2025; 51:296-316. [PMID: 38634723 DOI: 10.1080/1040841x.2024.2344114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/15/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
Epstein-Barr Virus (EBV), a dsDNA herpesvirus, is believed to play a significant role in exacerbating and potentially triggering autoimmune and autoinflammatory maladies. Around 90% of the world is infected with the virus, which establishes latency within lymphocytes. EBV is also known to cause infectious mononucleosis, a self-limited flu-like illness, in adolescents. EBV is often reactivated and it employs several mechanisms of evading the host immune system. It has also been implicated in inducing host immune dysfunction potentially resulting in exacerbation or triggering of inflammatory processes. EBV has therefore been linked to a number of autoimmune diseases, including systemic lupus erythematosus, multiple sclerosis, rheumatoid arthritis, and Sjögren's syndrome. The review examines the molecular mechanisms through which the virus alters host immune system components thus possibly resulting in autoimmune processes. Understanding the mechanisms underpinning EBV-associated autoimmunity is pivotal; however, the precise causal pathways remain elusive. Research on therapeutic agents and vaccines for EBV has been stagnant for a long number of years until recent advances shed light on potential therapeutic targets. The implications of EBV in autoimmunity underscore the importance of developing targeted therapeutic strategies and, potentially, vaccines to mitigate the autoimmune burden associated with this ubiquitous virus.
Collapse
Affiliation(s)
- Abdul Hamid Borghol
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| | - Elio R Bitar
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| | - Aya Hanna
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| | - Georges Naim
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| | - Elias A Rahal
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| |
Collapse
|
6
|
Yee TM, Wang LW. Metabolic Reprogramming in Epstein-Barr Virus Associated Diseases. J Med Virol 2025; 97:e70197. [PMID: 39895469 DOI: 10.1002/jmv.70197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/10/2025] [Indexed: 02/04/2025]
Abstract
Epstein-Barr virus (EBV) is the first human cancer-causing viral pathogen to be discovered; it has been epidemiologically associated with a wide range of diseases, including cancers, autoimmunity, and hyperinflammatory disorders. Its evolutionary success is underpinned by coordinated expression of viral transcription factors (EBV nuclear antigens), signaling proteins (EBV latent membrane proteins), and noncoding RNAs, which orchestrate cell transformation, immune evasion, and dissemination. Each of those activities entails significant metabolic rewiring, which is achieved by viral subversion of key host metabolic regulators such as the mammalian target of rapamycin (mTOR), MYC, and hypoxia-inducible factor (HIF). In this review, we systemically discuss how EBV-encoded factors regulate metabolism to achieve viral persistence and propagation, as well as potential research questions and directions in EBV-driven metabolism.
Collapse
Affiliation(s)
- Tiffany Melanie Yee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Liang Wei Wang
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| |
Collapse
|
7
|
Singh RK, Vangala R, Torne AS, Bose D, Robertson ES. Epigenetic and epitranscriptomic regulation during oncogenic γ-herpesvirus infection. Front Microbiol 2025; 15:1484455. [PMID: 39839102 PMCID: PMC11747046 DOI: 10.3389/fmicb.2024.1484455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025] Open
Abstract
Oncogenic gamma herpesviruses, including Epstein-Barr Virus (EBV) and Kaposi's Sarcoma-associated Herpesvirus (KSHV), are opportunistic cancer-causing viruses and induces oncogenesis through complex mechanisms, which involves manipulation of cellular physiology as well as epigenetic and epitranscriptomic reprogramming. In this review, we describe the intricate processes by which these viruses interact with the epigenetic machinery, leading to alterations in DNA methylation, histone modifications, and the involvement of non-coding RNAs. The key viral proteins such as EBNA1 and LMP1 encoded by EBV; LANA and vGPCR encoded by KSHV; play pivotal roles in these modifications by interacting with host factors, and dysregulating signaling pathways. The resultant reprogramming can lead to activation of oncogenes, silencing of tumor suppressor genes, and evasion of the immune response, which ultimately contributes to the oncogenic potential of these viruses. Furthermore, in this review, we explore current therapeutic strategies targeting these epigenetic alterations and discuss future directions for research and treatment. Through this comprehensive examination of the epigenetic and epitranscriptomic reprogramming mechanisms employed by oncogenic gamma herpesviruses, we aim to provide valuable insights into potential avenues for novel therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | | | - Erle S. Robertson
- Departments of Otorhinolaryngology-Head and Neck Surgery and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
8
|
Müller-Durovic B, Jäger J, Bantug GR, Hess C. Epstein-Barr virus hijacks B cell metabolism to establish persistent infection and drive pathogenesis. Trends Immunol 2025; 46:7-16. [PMID: 39709272 DOI: 10.1016/j.it.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/08/2024] [Accepted: 11/19/2024] [Indexed: 12/23/2024]
Abstract
When B cells engage in an immune response, metabolic reprogramming is key to meeting cellular energetic and biosynthetic demands. Epstein-Barr virus (EBV) is a highly prevalent gamma-herpesvirus, latently infecting B cells for the human host's lifetime. By hijacking signaling pathways of T cell-dependent humoral immunity, EBV activates B cells in a T cell-independent manner, forcing lymphoblastoid transformation. Interlinked with this coercion of signaling pathways, EBV has also evolved strategies to manipulate B cell metabolism. In this opinion article we integrate recent findings from studies of B cell metabolic reprogramming after EBV infection and during antigen-specific activation, respectively. We hypothesize that defining EBV host-cell metabolic vulnerabilities that differ from pathways required for B cell immunity might uncover novel therapeutic targets against EBV-related diseases.
Collapse
Affiliation(s)
- Bojana Müller-Durovic
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital and University of Zürich, Zürich, Switzerland.
| | - Jessica Jäger
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Glenn R Bantug
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Christoph Hess
- Immunobiology Laboratory, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland; Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Bao Y, Teng S, Zhai H, Zhang Y, Xu Y, Li C, Chen Z, Ren F, Wang Y. SE-lncRNAs in Cancer: Classification, Subcellular Localisation, Function and Corresponding TFs. J Cell Mol Med 2024; 28:e70296. [PMID: 39690143 DOI: 10.1111/jcmm.70296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/22/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024] Open
Abstract
Emerging evidence highlights certain long noncoding RNAs (lncRNAs) transcribed from or interacting with super-enhancer (SE) regulatory elements. These lncRNAs, known as SE-lncRNAs, are strongly linked to cancer and regulate cancer progression through multiple interactions with downstream targets. The expression of SE-lncRNAs is controlled by various transcription factors (TFs), and dysregulation of these TFs can contribute to cancer development. In this review, we discuss the characteristics, classification and subcellular distribution of SE-lncRNAs and summarise the role of key TFs in the transcription and regulation of SE-lncRNAs. Moreover, we examine the distinct functions and potential mechanisms of SE-lncRNAs in cancer progression.
Collapse
Affiliation(s)
- Yuxin Bao
- Fourth Department of Orthopaedic Surgery, Central Hospital Affiliated To Shenyang Medical College, Shenyang, Liaoning, P. R. China
| | - Songling Teng
- Department of Hand Surgery, Central Hospital Affiliated To Shenyang Medical College, Shenyang, Liaoning, P. R. China
| | - Hanjie Zhai
- Fourth Department of Orthopaedic Surgery, Central Hospital Affiliated To Shenyang Medical College, Shenyang, Liaoning, P. R. China
| | - Yuanzhuang Zhang
- Fourth Department of Orthopaedic Surgery, Central Hospital Affiliated To Shenyang Medical College, Shenyang, Liaoning, P. R. China
| | - Yeqiu Xu
- Fourth Department of Orthopaedic Surgery, Central Hospital Affiliated To Shenyang Medical College, Shenyang, Liaoning, P. R. China
| | - Chenghao Li
- Fourth Department of Orthopaedic Surgery, Central Hospital Affiliated To Shenyang Medical College, Shenyang, Liaoning, P. R. China
| | - Zhenjun Chen
- Department of Neurosurgery, Central Hospital Affiliated To Shenyang Medical College, Shenyang, Liaoning, P. R. China
| | - Fu Ren
- Department of Anatomy, School of Basic Medicine, Shenyang Medical College, Shenyang, Liaoning, P. R. China
| | - Yong Wang
- Fourth Department of Orthopaedic Surgery, Central Hospital Affiliated To Shenyang Medical College, Shenyang, Liaoning, P. R. China
| |
Collapse
|
10
|
Yu J, Wang Y, Wang H, Wei Z, Pei Y. Decoding Critical Targets and Signaling Pathways in EBV-Mediated Diseases Using Large Language Models. Viruses 2024; 16:1660. [PMID: 39599775 PMCID: PMC11598986 DOI: 10.3390/v16111660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Epstein-Barr virus (EBV), a member of the gamma herpesvirus, is the first identified human oncovirus and is associated with various malignancies. Understanding the intricate interactions between EBV antigens and cellular pathways is crucial to unraveling the molecular mechanisms in EBV-mediated diseases. However, fully elucidating EBV-host interactions and the associated pathogenesis remains a significant challenge. In this study, we employed large language models (LLMs) to screen 36,105 EBV-relevant scientific publications and summarize the current literature landscape on various EBV-associated diseases like Burkitt lymphoma (BL), diffuse large B-cell lymphoma (DLBCL), nasopharyngeal carcinoma (NPC), and so on. LLM-generated data indicate that the most-studied EBV-associated pathways are enriched in immune response, apoptosis, cell growth, and replication. The analyses of protein-protein interactions (PPIs) reveal three principal EBV-related protein clusters: TP53-centered apoptotic factors, EBV-associated transcription factors, and immune response elements. Utilizing our dataset and public databases, we demonstrated that BLLF3-targeted TLR2-associated factors are effective diagnostic markers for DLBCL. Next, we confirmed the co-expression of LMP1-targeted calcium pathway factors in BL. Finally, we demonstrated the correlation and co-expression of LMP1-induced PARP1, HIF1A, HK2, and key glycolysis-related factors, further suggesting that LMP1 actively regulates the glycolysis pathway. Therefore, our study presents a comprehensive functional encyclopedia of the interactions between EBV antigens and host signaling pathways across various EBV-associated diseases, providing valuable insights for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Jingwen Yu
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China; (J.Y.); (Y.W.); (H.W.)
| | - Yaohao Wang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China; (J.Y.); (Y.W.); (H.W.)
| | - Haidong Wang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China; (J.Y.); (Y.W.); (H.W.)
| | - Zhi Wei
- Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102, USA;
| | - Yonggang Pei
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China; (J.Y.); (Y.W.); (H.W.)
| |
Collapse
|
11
|
Lurain KA, Ramaswami R, Krug LT, Whitby D, Ziegelbauer JM, Wang HW, Yarchoan R. HIV-associated cancers and lymphoproliferative disorders caused by Kaposi sarcoma herpesvirus and Epstein-Barr virus. Clin Microbiol Rev 2024; 37:e0002223. [PMID: 38899877 PMCID: PMC11391709 DOI: 10.1128/cmr.00022-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
SUMMARYWithin weeks of the first report of acquired immunodeficiency syndrome (AIDS) in 1981, it was observed that these patients often had Kaposi sarcoma (KS), a hitherto rarely seen skin tumor in the USA. It soon became apparent that AIDS was also associated with an increased incidence of high-grade lymphomas caused by Epstein-Barr virus (EBV). The association of AIDS with KS remained a mystery for more than a decade until Kaposi sarcoma-associated herpesvirus (KSHV) was discovered and found to be the cause of KS. KSHV was subsequently found to cause several other diseases associated with AIDS and human immunodeficiency virus (HIV) infection. People living with HIV/AIDS continue to have an increased incidence of certain cancers, and many of these cancers are caused by EBV and/or KSHV. In this review, we discuss the epidemiology, virology, pathogenesis, clinical manifestations, and treatment of cancers caused by EBV and KSHV in persons living with HIV.
Collapse
Affiliation(s)
- Kathryn A Lurain
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Ramya Ramaswami
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Laurie T Krug
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Denise Whitby
- Viral Oncology Section, AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Joseph M Ziegelbauer
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| | - Hao-Wei Wang
- Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland, USA
| | - Robert Yarchoan
- The HIV and AIDS Malignancy Branch, Center for Cancer Research, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Zhang J, Xu S. High aggressiveness of papillary thyroid cancer: from clinical evidence to regulatory cellular networks. Cell Death Discov 2024; 10:378. [PMID: 39187514 PMCID: PMC11347646 DOI: 10.1038/s41420-024-02157-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024] Open
Abstract
The global incidence of thyroid cancer has increased over recent decades. Papillary thyroid cancer (PTC) is the most common type of thyroid cancer and accounts for nearly 90% of all cases. Typically, PTC has a good prognosis. However, some PTC variants exhibit more aggressive behaviour, which significantly increases the risk of postoperative recurrence. Over the past decade, the high metastatic potential of PTC has drawn the attention of many researchers and these studies have provided useful molecular markers for improved diagnosis, risk stratification and clinical approaches. The aim of this review is to discuss the progress in epidemiology, metastatic features, risk factors and molecular mechanisms associated with PTC aggressiveness. We present a detailed picture showing that epithelial-to-mesenchymal transition, cancer metabolic reprogramming, alterations in important signalling pathways, epigenetic aberrations and the tumour microenvironment are crucial drivers of PTC metastasis. Further research is needed to more fully elucidate the pathogenesis and biological behaviour underlying the aggressiveness of PTC.
Collapse
Affiliation(s)
- Junsi Zhang
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Sunwang Xu
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Department of Thyroid and Breast Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, Fuzhou, China.
| |
Collapse
|
13
|
Gewurz BE, Mosialos G, Rickinson AB, Swaminathan S. Elliott Dan Kieff (1943 to 2024): Epstein-Barr virus cancer biology pioneer. Proc Natl Acad Sci U S A 2024; 121:e2411131121. [PMID: 38950365 DOI: 10.1073/pnas.2411131121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024] Open
Affiliation(s)
- Benjamin E Gewurz
- Division of Infectious Diseases, Brigham & Women's Hospital, Boston, MA 02115
| | - George Mosialos
- School of Biology, Department of Genetics Development and Molecular Biology, Aristotle University of Thessaloniki, Thessaloniki GR54124, Greece
| | - Alan B Rickinson
- Institute of Cancer and Genomic Sciences, Emeritus Professor of Cancer Studies, College of Medical and Dental Sciences University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Sankar Swaminathan
- Division of Infectious Diseases, Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132
| |
Collapse
|
14
|
Cable JM, Reinoso-Vizcaino NM, White RE, Luftig MA. Epstein-Barr virus protein EBNA-LP engages YY1 through leucine-rich motifs to promote naïve B cell transformation. PLoS Pathog 2024; 20:e1011950. [PMID: 39083560 PMCID: PMC11318927 DOI: 10.1371/journal.ppat.1011950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 08/12/2024] [Accepted: 06/30/2024] [Indexed: 08/02/2024] Open
Abstract
Epstein-Barr Virus (EBV) is associated with numerous cancers including B cell lymphomas. In vitro, EBV transforms primary B cells into immortalized Lymphoblastoid Cell Lines (LCLs) which serves as a model to study the role of viral proteins in EBV malignancies. EBV induced cellular transformation is driven by viral proteins including EBV-Nuclear Antigens (EBNAs). EBNA-LP is important for the transformation of naïve but not memory B cells. While EBNA-LP was thought to promote gene activation by EBNA2, EBNA-LP Knockout (LPKO) virus-infected cells express EBNA2-activated cellular genes efficiently. Therefore, a gap in knowledge exists as to what roles EBNA-LP plays in naïve B cell transformation. We developed a trans-complementation assay wherein transfection with wild-type EBNA-LP rescues the transformation of peripheral blood- and cord blood-derived naïve B cells by LPKO virus. Despite EBNA-LP phosphorylation sites being important in EBNA2 co-activation; neither phospho-mutant nor phospho-mimetic EBNA-LP was defective in rescuing naïve B cell outgrowth. However, we identified conserved leucine-rich motifs in EBNA-LP that were required for transformation of adult naïve and cord blood B cells. Because cellular PPAR-g coactivator (PGC) proteins use leucine-rich motifs to engage transcription factors including YY1, a key regulator of DNA looping and metabolism, we examined the role of EBNA-LP in engaging transcription factors. We found a significant overlap between EBNA-LP and YY1 in ChIP-Seq data. By Cut&Run, YY1 peaks unique to WT compared to LPKO LCLs occur at more highly expressed genes. Moreover, Cas9 knockout of YY1 in primary B cells prior to EBV infection indicated YY1 to be important for EBV-mediated transformation. We confirmed EBNA-LP and YY1 biochemical association in LCLs by endogenous co-immunoprecipitation and found that the EBNA-LP leucine-rich motifs were required for YY1 interaction in LCLs. We propose that EBNA-LP engages YY1 through conserved leucine-rich motifs to promote EBV transformation of naïve B cells.
Collapse
Affiliation(s)
- Jana M. Cable
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Nicolás M. Reinoso-Vizcaino
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Robert E. White
- Section of Virology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Micah A. Luftig
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, United States of America
| |
Collapse
|
15
|
Liu S, Dai W, Jin B, Jiang F, Huang H, Hou W, Lan J, Jin Y, Peng W, Pan J. Effects of super-enhancers in cancer metastasis: mechanisms and therapeutic targets. Mol Cancer 2024; 23:122. [PMID: 38844984 PMCID: PMC11157854 DOI: 10.1186/s12943-024-02033-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
Metastasis remains the principal cause of cancer-related lethality despite advancements in cancer treatment. Dysfunctional epigenetic alterations are crucial in the metastatic cascade. Among these, super-enhancers (SEs), emerging as new epigenetic regulators, consist of large clusters of regulatory elements that drive the high-level expression of genes essential for the oncogenic process, upon which cancer cells develop a profound dependency. These SE-driven oncogenes play an important role in regulating various facets of metastasis, including the promotion of tumor proliferation in primary and distal metastatic organs, facilitating cellular migration and invasion into the vasculature, triggering epithelial-mesenchymal transition, enhancing cancer stem cell-like properties, circumventing immune detection, and adapting to the heterogeneity of metastatic niches. This heavy reliance on SE-mediated transcription delineates a vulnerable target for therapeutic intervention in cancer cells. In this article, we review current insights into the characteristics, identification methodologies, formation, and activation mechanisms of SEs. We also elaborate the oncogenic roles and regulatory functions of SEs in the context of cancer metastasis. Ultimately, we discuss the potential of SEs as novel therapeutic targets and their implications in clinical oncology, offering insights into future directions for innovative cancer treatment strategies.
Collapse
Affiliation(s)
- Shenglan Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 314000, China
| | - Wei Dai
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 314000, China
| | - Bei Jin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Feng Jiang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 314000, China
| | - Hao Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 314000, China
| | - Wen Hou
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 314000, China
| | - Jinxia Lan
- College of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, China
| | - Yanli Jin
- College of Pharmacy, Jinan University Institute of Tumor Pharmacology, Jinan University, Guangzhou, 510632, China
| | - Weijie Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Jiangxi Provincal Key Laboratory of Tissue Engineering, School of Pharmacy, Gannan Medical University, Ganzhou, 314000, China.
| | - Jingxuan Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510060, China.
| |
Collapse
|
16
|
Kim KD, Lieberman PM. Viral remodeling of the 4D nucleome. Exp Mol Med 2024; 56:799-808. [PMID: 38658699 PMCID: PMC11058267 DOI: 10.1038/s12276-024-01207-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 04/26/2024] Open
Abstract
The dynamic spatial organization of genomes across time, referred to as the four-dimensional nucleome (4DN), is a key component of gene regulation and biological fate. Viral infections can lead to a reconfiguration of viral and host genomes, impacting gene expression, replication, latency, and oncogenic transformation. This review provides a summary of recent research employing three-dimensional genomic methods such as Hi-C, 4C, ChIA-PET, and HiChIP in virology. We review how viruses induce changes in gene loop formation between regulatory elements, modify chromatin accessibility, and trigger shifts between A and B compartments in the host genome. We highlight the central role of cellular chromatin organizing factors, such as CTCF and cohesin, that reshape the 3D structure of both viral and cellular genomes. We consider how viral episomes, viral proteins, and viral integration sites can alter the host epigenome and how host cell type and conditions determine viral epigenomes. This review consolidates current knowledge of the diverse host-viral interactions that impact the 4DN.
Collapse
Affiliation(s)
- Kyoung-Dong Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Korea.
| | | |
Collapse
|
17
|
Liao Y, Yan J, Beri NR, Giulino-Roth L, Cesarman E, Gewurz BE. Germinal center cytokine driven epigenetic control of Epstein-Barr virus latency gene expression. PLoS Pathog 2024; 20:e1011939. [PMID: 38683861 PMCID: PMC11081508 DOI: 10.1371/journal.ppat.1011939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/09/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Epstein-Barr virus (EBV) persistently infects 95% of adults worldwide and is associated with multiple human lymphomas that express characteristic EBV latency programs used by the virus to navigate the B-cell compartment. Upon primary infection, the EBV latency III program, comprised of six Epstein-Barr Nuclear Antigens (EBNA) and two Latent Membrane Protein (LMP) antigens, drives infected B-cells into germinal center (GC). By incompletely understood mechanisms, GC microenvironmental cues trigger the EBV genome to switch to the latency II program, comprised of EBNA1, LMP1 and LMP2A and observed in GC-derived Hodgkin lymphoma. To gain insights into pathways and epigenetic mechanisms that control EBV latency reprogramming as EBV-infected B-cells encounter microenvironmental cues, we characterized GC cytokine effects on EBV latency protein expression and on the EBV epigenome. We confirmed and extended prior studies highlighting GC cytokine effects in support of the latency II transition. The T-follicular helper cytokine interleukin 21 (IL-21), which is a major regulator of GC responses, and to a lesser extent IL-4 and IL-10, hyper-induced LMP1 expression, while repressing EBNA expression. However, follicular dendritic cell cytokines including IL-15 and IL-27 downmodulate EBNA but not LMP1 expression. CRISPR editing highlighted that STAT3 and STAT5 were necessary for cytokine mediated EBNA silencing via epigenetic effects at the EBV genomic C promoter. By contrast, STAT3 was instead necessary for LMP1 promoter epigenetic remodeling, including gain of activating histone chromatin marks and loss of repressive polycomb repressive complex silencing marks. Thus, EBV has evolved to coopt STAT signaling to oppositely regulate the epigenetic status of key viral genomic promoters in response to GC cytokine cues.
Collapse
Affiliation(s)
- Yifei Liao
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jinjie Yan
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Nina R. Beri
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lisa Giulino-Roth
- Weill Cornell Medical College, New York, New York, United States of America
| | - Ethel Cesarman
- Weill Cornell Medical College, New York, New York, United States of America
| | - Benjamin E. Gewurz
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
18
|
Ye X, Guerin LN, Chen Z, Rajendren S, Dunker W, Zhao Y, Zhang R, Hodges E, Karijolich J. Enhancer-promoter activation by the Kaposi sarcoma-associated herpesvirus episome maintenance protein LANA. Cell Rep 2024; 43:113888. [PMID: 38416644 PMCID: PMC11005752 DOI: 10.1016/j.celrep.2024.113888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 12/29/2023] [Accepted: 02/14/2024] [Indexed: 03/01/2024] Open
Abstract
Higher-order genome structure influences the transcriptional regulation of cellular genes through the juxtaposition of regulatory elements, such as enhancers, close to promoters of target genes. While enhancer activation has emerged as an important facet of Kaposi sarcoma-associated herpesvirus (KSHV) biology, the mechanisms controlling enhancer-target gene expression remain obscure. Here, we discover that the KSHV genome tethering protein latency-associated nuclear antigen (LANA) potentiates enhancer-target gene expression in primary effusion lymphoma (PEL), a highly aggressive B cell lymphoma causally associated with KSHV. Genome-wide analyses demonstrate increased levels of enhancer RNA transcription as well as activating chromatin marks at LANA-bound enhancers. 3D genome conformation analyses identified genes critical for latency and tumorigenesis as targets of LANA-occupied enhancers, and LANA depletion results in their downregulation. These findings reveal a mechanism in enhancer-gene coordination and describe a role through which the main KSHV tethering protein regulates essential gene expression in PEL.
Collapse
Affiliation(s)
- Xiang Ye
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Lindsey N Guerin
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Ziche Chen
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Suba Rajendren
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - William Dunker
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Yang Zhao
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Ruilin Zhang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Emily Hodges
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Nashville, TN 37232, USA; Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - John Karijolich
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN 37232, USA; Vanderbilt Center for Immunobiology, Nashville, TN 37232, USA.
| |
Collapse
|
19
|
Ang DA, Carter JM, Deka K, Tan JHL, Zhou J, Chen Q, Chng WJ, Harmston N, Li Y. Aberrant non-canonical NF-κB signalling reprograms the epigenome landscape to drive oncogenic transcriptomes in multiple myeloma. Nat Commun 2024; 15:2513. [PMID: 38514625 PMCID: PMC10957915 DOI: 10.1038/s41467-024-46728-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
In multiple myeloma, abnormal plasma cells establish oncogenic niches within the bone marrow by engaging the NF-κB pathway to nurture their survival while they accumulate pro-proliferative mutations. Under these conditions, many cases eventually develop genetic abnormalities endowing them with constitutive NF-κB activation. Here, we find that sustained NF-κB/p52 levels resulting from such mutations favours the recruitment of enhancers beyond the normal B-cell repertoire. Furthermore, through targeted disruption of p52, we characterise how such enhancers are complicit in the formation of super-enhancers and the establishment of cis-regulatory interactions with myeloma dependencies during constitutive activation of p52. Finally, we functionally validate the pathological impact of these cis-regulatory modules on cell and tumour phenotypes using in vitro and in vivo models, confirming RGS1 as a p52-dependent myeloma driver. We conclude that the divergent epigenomic reprogramming enforced by aberrant non-canonical NF-κB signalling potentiates transcriptional programs beneficial for multiple myeloma progression.
Collapse
Affiliation(s)
- Daniel A Ang
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Jean-Michel Carter
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Kamalakshi Deka
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Joel H L Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Republic of Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore
- NUS Centre for Cancer Research, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Republic of Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore
- NUS Centre for Cancer Research, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS), 1E, Kent Ridge Road, Singapore, 119228, Republic of Singapore
| | - Nathan Harmston
- Division of Science, Yale-NUS College, Singapore, 138527, Singapore
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore
- Molecular Biosciences Division, Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Yinghui Li
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore.
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore.
| |
Collapse
|
20
|
Viel KCMF, Parameswaran S, Donmez OA, Forney CR, Hass MR, Yin C, Jones SH, Prosser HK, Diouf AA, Gittens OE, Edsall LE, Chen X, Rowden H, Dunn KA, Guo R, VonHandorf A, Leong MML, Ernst K, Kaufman KM, Lawson LP, Gewurz B, Zhao B, Kottyan LC, Weirauch MT. Shared and distinct interactions of type 1 and type 2 Epstein-Barr Nuclear Antigen 2 with the human genome. BMC Genomics 2024; 25:273. [PMID: 38475709 PMCID: PMC10935964 DOI: 10.1186/s12864-024-10183-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND There are two major genetic types of Epstein-Barr Virus (EBV): type 1 (EBV-1) and type 2 (EBV-2). EBV functions by manipulating gene expression in host B cells, using virus-encoded gene regulatory proteins including Epstein-Barr Nuclear Antigen 2 (EBNA2). While type 1 EBNA2 is known to interact with human transcription factors (hTFs) such as RBPJ, EBF1, and SPI1 (PU.1), type 2 EBNA2 shares only ~ 50% amino acid identity with type 1 and thus may have distinct binding partners, human genome binding locations, and functions. RESULTS In this study, we examined genome-wide EBNA2 binding in EBV-1 and EBV-2 transformed human B cells to identify shared and unique EBNA2 interactions with the human genome, revealing thousands of type-specific EBNA2 ChIP-seq peaks. Computational predictions based on hTF motifs and subsequent ChIP-seq experiments revealed that both type 1 and 2 EBNA2 co-occupy the genome with SPI1 and AP-1 (BATF and JUNB) hTFs. However, type 1 EBNA2 showed preferential co-occupancy with EBF1, and type 2 EBNA2 preferred RBPJ. These differences in hTF co-occupancy revealed possible mechanisms underlying type-specific gene expression of known EBNA2 human target genes: MYC (shared), CXCR7 (type 1 specific), and CD21 (type 2 specific). Both type 1 and 2 EBNA2 binding events were enriched at systemic lupus erythematosus (SLE) and multiple sclerosis (MS) risk loci, while primary biliary cholangitis (PBC) risk loci were specifically enriched for type 2 peaks. CONCLUSIONS This study reveals extensive type-specific EBNA2 interactions with the human genome, possible differences in EBNA2 interaction partners, and a possible new role for type 2 EBNA2 in autoimmune disorders. Our results highlight the importance of considering EBV type in the control of human gene expression and disease-related investigations.
Collapse
Affiliation(s)
- Kenyatta C M F Viel
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Sreeja Parameswaran
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Omer A Donmez
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Carmy R Forney
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Matthew R Hass
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Cailing Yin
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Sydney H Jones
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Hayley K Prosser
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Arame A Diouf
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Olivia E Gittens
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Lee E Edsall
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Hope Rowden
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Katelyn A Dunn
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Rui Guo
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 145 Harrison Ave, Boston, MA, 02111, USA
| | - Andrew VonHandorf
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Merrin Man Long Leong
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kevin Ernst
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Kenneth M Kaufman
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Lucinda P Lawson
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Ben Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Bo Zhao
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Leah C Kottyan
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
21
|
Malik S, Biswas J, Sarkar P, Nag S, Gain C, Ghosh Roy S, Bhattacharya B, Ghosh D, Saha A. Differential carbonic anhydrase activities control EBV-induced B-cell transformation and lytic cycle reactivation. PLoS Pathog 2024; 20:e1011998. [PMID: 38530845 PMCID: PMC10997083 DOI: 10.1371/journal.ppat.1011998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/05/2024] [Accepted: 03/01/2024] [Indexed: 03/28/2024] Open
Abstract
Epstein-Barr virus (EBV) contributes to ~1% of all human cancers including several B-cell neoplasms. A characteristic feature of EBV life cycle is its ability to transform metabolically quiescent B-lymphocytes into hyperproliferating B-cell blasts with the establishment of viral latency, while intermittent lytic cycle induction is necessary for the production of progeny virus. Our RNA-Seq analyses of both latently infected naïve B-lymphocytes and transformed B-lymphocytes upon lytic cycle replication indicate a contrasting expression pattern of a membrane-associated carbonic anhydrase isoform CA9, an essential component for maintaining cell acid-base homeostasis. We show that while CA9 expression is transcriptionally activated during latent infection model, lytic cycle replication restrains its expression. Pharmacological inhibition of CA-activity using specific inhibitors retards EBV induced B-cell transformation, inhibits B-cells outgrowth and colony formation ability of transformed B-lymphocytes through lowering the intracellular pH, induction of cell apoptosis and facilitating degradation of CA9 transcripts. Reanalyses of ChIP-Seq data along with utilization of EBNA2 knockout virus, ectopic expression of EBNA2 and sh-RNA mediated knockdown of CA9 expression we further demonstrate that EBNA2 mediated CA9 transcriptional activation is essential for EBV latently infected B-cell survival. In contrast, during lytic cycle reactivation CA9 expression is transcriptionally suppressed by the key EBV lytic cycle transactivator, BZLF1 through its transactivation domain. Overall, our study highlights the dynamic alterations of CA9 expression and its activity in regulating pH homeostasis act as one of the major drivers for EBV induced B-cell transformation and subsequent B-cell lymphomagenesis.
Collapse
Affiliation(s)
- Samaresh Malik
- Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India
| | - Joyanta Biswas
- Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India
| | - Purandar Sarkar
- Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India
| | - Subhadeep Nag
- Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India
| | - Chandrima Gain
- Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India
| | - Shatadru Ghosh Roy
- Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India
| | - Bireswar Bhattacharya
- National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | - Dipanjan Ghosh
- National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | - Abhik Saha
- Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India
| |
Collapse
|
22
|
Dai J, SoRelle ED, Heckenberg E, Song L, Cable JM, Crawford GE, Luftig MA. Epstein-Barr virus induces germinal center light zone chromatin architecture and promotes survival through enhancer looping at the BCL2A1 locus. mBio 2024; 15:e0244423. [PMID: 38059622 PMCID: PMC10790771 DOI: 10.1128/mbio.02444-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/20/2023] [Indexed: 12/08/2023] Open
Abstract
IMPORTANCE Epstein-Barr virus has evolved with its human host leading to an intimate relationship where infection of antibody-producing B cells mimics the process by which these cells normally recognize foreign antigens and become activated. Virtually everyone in the world is infected by adulthood and controls this virus pushing it into life-long latency. However, immune-suppressed individuals are at high risk for EBV+ cancers. Here, we isolated B cells from tonsils and compare the underlying molecular genetic differences between these cells and those infected with EBV. We find similar regulatory mechanism for expression of an important cellular protein that enables B cells to survive in lymphoid tissue. These findings link an underlying relationship at the molecular level between EBV-infected B cells in vitro with normally activated B cells in vivo. Our studies also characterize the role of a key viral control mechanism for B cell survival involved in long-term infection.
Collapse
Affiliation(s)
- Joanne Dai
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Elliott D. SoRelle
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Emma Heckenberg
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Lingyun Song
- Center for Genomic & Computational Biology, Duke University, Durham, North Carolina, USA
- Division of Medical Genetics, Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Jana M. Cable
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Gregory E. Crawford
- Center for Genomic & Computational Biology, Duke University, Durham, North Carolina, USA
- Division of Medical Genetics, Department of Pediatrics, Duke University, Durham, North Carolina, USA
| | - Micah A. Luftig
- Department of Molecular Genetics and Microbiology, Center for Virology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
23
|
Cable JM, Reinoso-Vizcaino NM, White RE, Luftig MA. Epstein-Barr virus protein EBNA-LP engages YY1 through leucine-rich motifs to promote naïve B cell transformation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.07.574580. [PMID: 38260266 PMCID: PMC10802455 DOI: 10.1101/2024.01.07.574580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Epstein-Barr Virus (EBV) is associated with numerous cancers including B cell lymphomas. In vitro, EBV transforms primary B cells into immortalized Lymphoblastoid Cell Lines (LCLs) which serves as a model to study the role of viral proteins in EBV malignancies. EBV induced cellular transformation is driven by viral proteins including EBV-Nuclear Antigens (EBNAs). EBNA-LP is important for the transformation of naïve but not memory B cells. While EBNA-LP was thought to promote gene activation by EBNA2, EBNA-LP Knock Out (LPKO) virus-infected cells express EBNA2-activated genes efficiently. Therefore, a gap in knowledge exists as to what roles EBNA-LP plays in naïve B cell transformation. We developed a trans-complementation assay wherein transfection with wild-type EBNA-LP rescues the transformation of peripheral blood- and cord blood-derived naïve B cells by LPKO virus. Despite EBNA-LP phosphorylation sites being important in EBNA2 co-activation; neither phospho-mutant nor phospho-mimetic EBNA-LP was defective in rescuing naïve B cell outgrowth. However, we identified conserved leucine-rich motifs in EBNA-LP that were required for transformation of adult naïve and cord blood B cells. Because cellular PPAR-γ coactivator (PGC) proteins use leucine-rich motifs to engage transcription factors including YY1, a key regulator of DNA looping and metabolism, we examined the role of EBNA-LP in engaging cellular transcription factors. We found a significant overlap between EBNA-LP and YY1 in ChIP-Seq data and confirmed their biochemical association in LCLs by endogenous co-immunoprecipitation. Moreover, we found that the EBNA-LP leucine-rich motifs were required for YY1 interaction in LCLs. Finally, we used Cas9 to knockout YY1 in primary total B cells and naïve B cells prior to EBV infection and found YY1 to be essential for EBV-mediated transformation. We propose that EBNA-LP engages YY1 through conserved leucine-rich motifs to promote EBV transformation of naïve B cells.
Collapse
Affiliation(s)
- Jana M Cable
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Nicolás M Reinoso-Vizcaino
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Robert E. White
- Section of Virology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Micah A Luftig
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
24
|
Yifei L, Jinjie Y, Beri NR, Roth LG, Ethel C, Benjamin E. G. Germinal Center Cytokines Driven Epigenetic Control of Epstein-Barr Virus Latency Gene Expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573986. [PMID: 38260430 PMCID: PMC10802360 DOI: 10.1101/2024.01.02.573986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Epstein-Barr virus (EBV) persistently infects 95% of adults worldwide and is associated with multiple human lymphomas that express characteristic EBV latency programs used by the virus to navigate the B-cell compartment. Upon primary infection, the EBV latency III program, comprised of six Epstein-Barr Nuclear Antigens (EBNA) and two Latent Membrane Protein (LMP) antigens, drives infected B-cells into germinal center (GC). By incompletely understood mechanisms, GC microenvironmental cues trigger the EBV genome to switch to the latency II program, comprised of EBNA1, LMP1 and LMP2A and observed in GC-derived Hodgkin lymphoma. To gain insights into pathways and epigenetic mechanisms that control EBV latency reprogramming as EBV-infected B-cells encounter microenvironmental cues, we characterized GC cytokine effects on EBV latency protein expression and on the EBV epigenome. We confirmed and extended prior studies highlighting GC cytokine effects in support of the latency II transition. The T-follicular helper cytokine interleukin 21 (IL-21), which is a major regulator of GC responses, and to a lesser extent IL-4 and IL-10, hyper-induced LMP1 expression, while repressing EBNA expression. However, follicular dendritic cell cytokines including IL-15 and IL-27 downmodulate EBNA but not LMP1 expression. CRISPR editing highlighted that STAT3 and STAT5 were necessary for cytokine mediated EBNA silencing via epigenetic effects at the EBV genomic C promoter. By contrast, STAT3 was instead necessary for LMP1 promoter epigenetic remodeling, including gain of activating histone chromatin marks and loss of repressive polycomb repressive complex silencing marks. Thus, EBV has evolved to coopt STAT signaling to oppositely regulate the epigenetic status of key viral genomic promoters in response to GC cytokine cues.
Collapse
Affiliation(s)
- Liao Yifei
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115
| | - Yan Jinjie
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115
| | - Nina R. Beri
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115
| | - Lisa G. Roth
- Weill Cornell Medical College, New York, NY 10065
| | | | - Gewurz Benjamin E.
- Division of Infectious Disease, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Center for Integrated Solutions to Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115
- Harvard Program in Virology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
25
|
Mitra B, Beri NR, Guo R, Burton EM, Murray-Nerger LA, Gewurz BE. Characterization of target gene regulation by the two Epstein-Barr virus oncogene LMP1 domains essential for B-cell transformation. mBio 2023; 14:e0233823. [PMID: 38009935 PMCID: PMC10746160 DOI: 10.1128/mbio.02338-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/09/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE Epstein-Barr virus (EBV) causes multiple human cancers, including B-cell lymphomas. In cell culture, EBV converts healthy human B-cells into immortalized ones that grow continuously, which model post-transplant lymphomas. Constitutive signaling from two cytoplasmic tail domains of the EBV oncogene latent membrane protein 1 (LMP1) is required for this transformation, yet there has not been systematic analysis of their host gene targets. We identified that only signaling from the membrane proximal domain is required for survival of these EBV-immortalized cells and that its loss triggers apoptosis. We identified key LMP1 target genes, whose abundance changed significantly with loss of LMP1 signals, or that were instead upregulated in response to switching on signaling by one or both LMP1 domains in an EBV-uninfected human B-cell model. These included major anti-apoptotic factors necessary for EBV-infected B-cell survival. Bioinformatics analyses identified clusters of B-cell genes that respond differently to signaling by either or both domains.
Collapse
Affiliation(s)
- Bidisha Mitra
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Integrated Solutions for Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Nina Rose Beri
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Integrated Solutions for Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Rui Guo
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Integrated Solutions for Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Eric M. Burton
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Integrated Solutions for Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Laura A. Murray-Nerger
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Integrated Solutions for Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Benjamin E. Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Center for Integrated Solutions for Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
26
|
Gutjahr E, Fremd C, Arnscheidt J, Penzel R, Wacker J, Sinn P. Non-Response of Epstein-Barr Virus-Associated Breast Cancer after Primary Chemotherapy: Report of Two Cases. Pathogens 2023; 12:1387. [PMID: 38133273 PMCID: PMC10747629 DOI: 10.3390/pathogens12121387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Based on epidemiological evidence and molecular findings, a possible association of Epstein-Barr virus (EBV) with the carcinogenesis of breast cancer has been described. However, the frequency of EBV in breast cancer and the role of EBV regarding tumor progression or therapeutic results is largely unexplored. Here, we report on two cases of advanced, lymph node-positive invasive breast cancer of no special type (NST), histologically showing no clinical or histological evidence of tumor regression as an equivalent of a lack of response to primary systemic therapy. Both tumors were considered to be EBV-associated due to their positivity in EBV-encoded RNA (EBER) in situ hybridization (ISH) and their immunoreactivity against EBV Epstein-Barr nuclear antigen 1 (EBNA1). We hypothesize that the unusual non-response to chemotherapy in these cases of breast cancer classified as triple-negative and HER2-positive may be linked to the EBV co-infection of tumor cells. Therefore, EBV tumor testing should be considered in patients with breast cancer presenting with resistance to chemotherapy. This hypothesis may provide a new aspect in the context of EBV-associated mechanisms of tumor progression.
Collapse
Affiliation(s)
- Ewgenija Gutjahr
- Department of General Pathology, University Hospital, 69121 Heidelberg, Germany
| | - Carlo Fremd
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital and German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany
| | - Johanna Arnscheidt
- Department of General Pathology, University Hospital, 69121 Heidelberg, Germany
| | - Roland Penzel
- Department of General Pathology, University Hospital, 69121 Heidelberg, Germany
| | - Jürgen Wacker
- Department of Obstetrics and Gynecology, Fuerst-Stirum-Hospital, 76646 Bruchsal, Germany
| | - Peter Sinn
- Department of General Pathology, University Hospital, 69121 Heidelberg, Germany
| |
Collapse
|
27
|
Mitra B, Beri NR, Guo R, Burton EM, Murray-Nerger LA, Gewurz BE. Characterization of Target Gene Regulation by the Two Epstein-Barr Virus Oncogene LMP1 Domains Essential for B-cell Transformation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536234. [PMID: 37090591 PMCID: PMC10120669 DOI: 10.1101/2023.04.10.536234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The Epstein-Barr virus (EBV) oncogene latent membrane protein 1 (LMP1) mimics CD40 signaling and is expressed by multiple malignancies. Two LMP1 C-terminal cytoplasmic tail regions, termed transformation essential sites (TES) 1 and 2, are critical for EBV transformation of B lymphocytes into immortalized lymphoblastoid cell lines (LCL). However, TES1 versus TES2 B-cell target genes have remained incompletely characterized, and whether both are required for LCL survival has remained unknown. To define LCL LMP1 target genes, we profiled transcriptome-wide effects of acute LMP1 CRISPR knockout (KO) prior to cell death. To then characterize specific LCL TES1 and TES2 roles, we conditionally expressed wildtype, TES1 null, TES2 null or double TES1/TES2 null LMP1 alleles upon endogenous LMP1 KO. Unexpectedly, TES1 but not TES2 signaling was critical for LCL survival. The LCL dependency factor cFLIP, which plays obligatory roles in blockade of LCL apoptosis, was highly downmodulated by loss of TES1 signaling. To further characterize TES1 vs TES2 roles, we conditionally expressed wildtype, TES1 and/or TES2 null LMP1 alleles in two Burkitt models. Systematic RNAseq analyses revealed gene clusters that responded more strongly to TES1 versus TES2, that respond strongly to both or that are oppositely regulated. Robust TES1 effects on cFLIP induction were again noted. TES1 and 2 effects on expression of additional LCL dependency factors, including BATF and IRF4, and on EBV super-enhancers were identified. Collectively, these studies suggest a model by which LMP1 TES1 and TES2 jointly remodel the B-cell transcriptome and highlight TES1 as a key therapeutic target.
Collapse
Affiliation(s)
- Bidisha Mitra
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston MA 02115, USA
- Center for Integrated Solutions in Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Nina Rose Beri
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston MA 02115, USA
- Center for Integrated Solutions in Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Rui Guo
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston MA 02115, USA
- Center for Integrated Solutions in Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Eric M. Burton
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston MA 02115, USA
- Center for Integrated Solutions in Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Laura A. Murray-Nerger
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston MA 02115, USA
- Center for Integrated Solutions in Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Benjamin E. Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston MA 02115, USA
- Center for Integrated Solutions in Infectious Disease, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
28
|
Li W, Lu J, Lu P, Gao Y, Bai Y, Chen K, Su X, Li M, Liu J, Chen Y, Wen L, Tang F. scNanoHi-C: a single-cell long-read concatemer sequencing method to reveal high-order chromatin structures within individual cells. Nat Methods 2023; 20:1493-1505. [PMID: 37640936 DOI: 10.1038/s41592-023-01978-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 07/19/2023] [Indexed: 08/31/2023]
Abstract
The high-order three-dimensional (3D) organization of regulatory genomic elements provides a topological basis for gene regulation, but it remains unclear how multiple regulatory elements across the mammalian genome interact within an individual cell. To address this, herein, we developed scNanoHi-C, which applies Nanopore long-read sequencing to explore genome-wide proximal high-order chromatin contacts within individual cells. We show that scNanoHi-C can reliably and effectively profile 3D chromatin structures and distinguish structure subtypes among individual cells. This method could also be used to detect genomic variations, including copy-number variations and structural variations, as well as to scaffold the de novo assembly of single-cell genomes. Notably, our results suggest that extensive high-order chromatin structures exist in active chromatin regions across the genome, and multiway interactions between enhancers and their target promoters were systematically identified within individual cells. Altogether, scNanoHi-C offers new opportunities to investigate high-order 3D genome structures at the single-cell level.
Collapse
Affiliation(s)
- Wen Li
- School of Life Sciences, Biomedical Pioneering Innovative Center, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
- Changping Laboratory, Beijing, China
| | - Jiansen Lu
- School of Life Sciences, Biomedical Pioneering Innovative Center, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
- Changping Laboratory, Beijing, China
| | - Ping Lu
- School of Life Sciences, Biomedical Pioneering Innovative Center, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Yun Gao
- School of Life Sciences, Biomedical Pioneering Innovative Center, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Yichen Bai
- School of Life Sciences, Biomedical Pioneering Innovative Center, Peking University, Beijing, China
| | - Kexuan Chen
- School of Life Sciences, Biomedical Pioneering Innovative Center, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Xinjie Su
- School of Life Sciences, Biomedical Pioneering Innovative Center, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Mengyao Li
- School of Life Sciences, Biomedical Pioneering Innovative Center, Peking University, Beijing, China
| | - Jun'e Liu
- School of Life Sciences, Biomedical Pioneering Innovative Center, Peking University, Beijing, China
| | - Yijun Chen
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Lu Wen
- School of Life Sciences, Biomedical Pioneering Innovative Center, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China
| | - Fuchou Tang
- School of Life Sciences, Biomedical Pioneering Innovative Center, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
- Beijing Advanced Innovation Center for Genomics (ICG), Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, China.
- Changping Laboratory, Beijing, China.
| |
Collapse
|
29
|
SoRelle ED, Reinoso-Vizcaino NM, Dai J, Barry AP, Chan C, Luftig MA. Epstein-Barr virus evades restrictive host chromatin closure by subverting B cell activation and germinal center regulatory loci. Cell Rep 2023; 42:112958. [PMID: 37561629 PMCID: PMC10559315 DOI: 10.1016/j.celrep.2023.112958] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/02/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Chromatin accessibility fundamentally governs gene expression and biological response programs that can be manipulated by pathogens. Here we capture dynamic chromatin landscapes of individual B cells during Epstein-Barr virus (EBV) infection. EBV+ cells that exhibit arrest via antiviral sensing and proliferation-linked DNA damage experience global accessibility reduction. Proliferative EBV+ cells develop expression-linked architectures and motif accessibility profiles resembling in vivo germinal center (GC) phenotypes. Remarkably, EBV elicits dark zone (DZ), light zone (LZ), and post-GC B cell chromatin features despite BCL6 downregulation. Integration of single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq), single-cell RNA sequencing (scRNA-seq), and chromatin immunoprecipitation sequencing (ChIP-seq) data enables genome-wide cis-regulatory predictions implicating EBV nuclear antigens (EBNAs) in phenotype-specific control of GC B cell activation, survival, and immune evasion. Knockouts validate bioinformatically identified regulators (MEF2C and NFE2L2) of EBV-induced GC phenotypes and EBNA-associated loci that regulate gene expression (CD274/PD-L1). These data and methods can inform high-resolution investigations of EBV-host interactions, B cell fates, and virus-mediated lymphomagenesis.
Collapse
Affiliation(s)
- Elliott D SoRelle
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Nicolás M Reinoso-Vizcaino
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Joanne Dai
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ashley P Barry
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Micah A Luftig
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
30
|
Sugimoto A, Watanabe T, Matsuoka K, Okuno Y, Yanagi Y, Narita Y, Mabuchi S, Nobusue H, Sugihara E, Hirayama M, Ide T, Onouchi T, Sato Y, Kanda T, Saya H, Iwatani Y, Kimura H, Murata T. Growth Transformation of B Cells by Epstein-Barr Virus Requires IMPDH2 Induction and Nucleolar Hypertrophy. Microbiol Spectr 2023; 11:e0044023. [PMID: 37409959 PMCID: PMC10433962 DOI: 10.1128/spectrum.00440-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
The in vitro growth transformation of primary B cells by Epstein-Barr virus (EBV) is the initial step in the development of posttransplant lymphoproliferative disorder (PTLD). We performed electron microscopic analysis and immunostaining of primary B cells infected with wild-type EBV. Interestingly, the nucleolar size was increased by two days after infection. A recent study found that nucleolar hypertrophy, which is caused by the induction of the IMPDH2 gene, is required for the efficient promotion of growth in cancers. In the present study, RNA-seq revealed that the IMPDH2 gene was significantly induced by EBV and that its level peaked at day 2. Even without EBV infection, the activation of primary B cells by the CD40 ligand and interleukin-4 increased IMPDH2 expression and nucleolar hypertrophy. Using EBNA2 or LMP1 knockout viruses, we found that EBNA2 and MYC, but not LMP1, induced the IMPDH2 gene during primary infections. IMPDH2 inhibition by mycophenolic acid (MPA) blocked the growth transformation of primary B cells by EBV, leading to smaller nucleoli, nuclei, and cells. Mycophenolate mofetil (MMF), which is a prodrug of MPA that is approved for use as an immunosuppressant, was tested in a mouse xenograft model. Oral MMF significantly improved the survival of mice and reduced splenomegaly. Taken together, these results indicate that EBV induces IMPDH2 expression through EBNA2-dependent and MYC-dependent mechanisms, leading to the hypertrophy of the nucleoli, nuclei, and cells as well as efficient cell proliferation. Our results provide basic evidence that IMPDH2 induction and nucleolar enlargement are crucial for B cell transformation by EBV. In addition, the use of MMF suppresses PTLD. IMPORTANCE EBV infections cause nucleolar enlargement via the induction of IMPDH2, which are essential for B cell growth transformation by EBV. Although the significance of IMPDH2 induction and nuclear hypertrophy in the tumorigenesis of glioblastoma has been reported, EBV infection brings about the change quickly by using its transcriptional cofactor, EBNA2, and MYC. Moreover, we present here, for the novel, basic evidence that an IMPDH2 inhibitor, namely, MPA or MMF, can be used for EBV-positive posttransplant lymphoproliferative disorder (PTLD).
Collapse
Affiliation(s)
- Atsuko Sugimoto
- Department of Virology, Fujita Health University School of Medicine, Toyoake, Japan
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takahiro Watanabe
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuhiro Matsuoka
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Yusuke Okuno
- Department of Virology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Yusuke Yanagi
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yohei Narita
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Seiyo Mabuchi
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Hiroyuki Nobusue
- Division of Gene Regulation, Cancer Center, Research Promotion Headquarters, Fujita Health University, Toyoake, Japan
| | - Eiji Sugihara
- Division of Gene Regulation, Cancer Center, Research Promotion Headquarters, Fujita Health University, Toyoake, Japan
- Open Facility Center, Research Promotion Headquarters, Fujita Health University, Toyoake, Japan
| | - Masaya Hirayama
- Department of Morphology and Diagnostic Pathology, School of Medical Sciences, Fujita Health University, Toyoake, Japan
- Department of Biomedical Molecular Sciences, Graduate School of Medicine, Fujita Health University, Toyoake, Japan
| | - Tomihiko Ide
- Department of Virology, Fujita Health University School of Medicine, Toyoake, Japan
- Open Facility Center, Research Promotion Headquarters, Fujita Health University, Toyoake, Japan
| | - Takanori Onouchi
- Open Facility Center, Research Promotion Headquarters, Fujita Health University, Toyoake, Japan
| | - Yoshitaka Sato
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Teru Kanda
- Department of Microbiology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Cancer Center, Research Promotion Headquarters, Fujita Health University, Toyoake, Japan
| | - Yasumasa Iwatani
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Hiroshi Kimura
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takayuki Murata
- Department of Virology, Fujita Health University School of Medicine, Toyoake, Japan
- Department of Virology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
31
|
Wang M, Chen Q, Wang S, Xie H, Liu J, Huang R, Xiang Y, Jiang Y, Tian D, Bian E. Super-enhancers complexes zoom in transcription in cancer. J Exp Clin Cancer Res 2023; 42:183. [PMID: 37501079 PMCID: PMC10375641 DOI: 10.1186/s13046-023-02763-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
Super-enhancers (SEs) consist of multiple typical enhancers enriched at high density with transcription factors, histone-modifying enzymes and cofactors. Oncogenic SEs promote tumorigenesis and malignancy by altering protein-coding gene expression and noncoding regulatory element function. Therefore, they play central roles in the treatment of cancer. Here, we review the structural characteristics, organization, identification, and functions of SEs and the underlying molecular mechanism by which SEs drive oncogenic transcription in tumor cells. We then summarize abnormal SE complexes, SE-driven coding genes, and noncoding RNAs involved in tumor development. In summary, we believe that SEs show great potential as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- MengTing Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - QingYang Chen
- Department of Clinical MedicineThe Second School of Clinical Medical, Anhui Medical University, Hefei, China
| | - ShuJie Wang
- Department of Clinical MedicineThe Second School of Clinical Medical, Anhui Medical University, Hefei, China
| | - Han Xie
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - Jun Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - RuiXiang Huang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - YuFei Xiang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - YanYi Jiang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China.
| | - DaSheng Tian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China.
| | - ErBao Bian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China.
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
32
|
Napoletani G, Soldan SS, Kannan T, Preston-Alp S, Vogel P, Maestri D, Caruso LB, Kossenkov A, Sobotka A, Lieberman PM, Tempera I. PARP1 Inhibition Halts EBV+ Lymphoma Progression by Disrupting the EBNA2/MYC Axis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.05.547847. [PMID: 37461649 PMCID: PMC10350008 DOI: 10.1101/2023.07.05.547847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
PARP1 has been shown to regulate EBV latency. However, the therapeutic effect of PARP1 inhibitors on EBV+ lymphomagenesis has not yet been explored. Here, we show that PARPi BMN-673 has a potent anti-tumor effect on EBV-driven LCL in a mouse xenograft model. We found that PARP1 inhibition induces a dramatic transcriptional reprogramming of LCLs driven largely by the reduction of the MYC oncogene expression and dysregulation of MYC targets, both in vivo and in vitro. PARP1 inhibition also reduced the expression of viral oncoprotein EBNA2, which we previously demonstrated depends on PARP1 for activation of MYC. Further, we show that PARP1 inhibition blocks the chromatin association of MYC, EBNA2, and tumor suppressor p53. Overall, our study strengthens the central role of PARP1 in EBV malignant transformation and identifies the EBNA2/MYC pathway as a target of PARP1 inhibitors and its utility for the treatment of EBNA2-driven EBV-associated cancers.
Collapse
Affiliation(s)
| | | | | | | | - Peter Vogel
- Department of Comparative Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Kiryluk K, Sanchez-Rodriguez E, Zhou XJ, Zanoni F, Liu L, Mladkova N, Khan A, Marasa M, Zhang JY, Balderes O, Sanna-Cherchi S, Bomback AS, Canetta PA, Appel GB, Radhakrishnan J, Trimarchi H, Sprangers B, Cattran DC, Reich H, Pei Y, Ravani P, Galesic K, Maixnerova D, Tesar V, Stengel B, Metzger M, Canaud G, Maillard N, Berthoux F, Berthelot L, Pillebout E, Monteiro R, Nelson R, Wyatt RJ, Smoyer W, Mahan J, Samhar AA, Hidalgo G, Quiroga A, Weng P, Sreedharan R, Selewski D, Davis K, Kallash M, Vasylyeva TL, Rheault M, Chishti A, Ranch D, Wenderfer SE, Samsonov D, Claes DJ, Akchurin O, Goumenos D, Stangou M, Nagy J, Kovacs T, Fiaccadori E, Amoroso A, Barlassina C, Cusi D, Del Vecchio L, Battaglia GG, Bodria M, Boer E, Bono L, Boscutti G, Caridi G, Lugani F, Ghiggeri G, Coppo R, Peruzzi L, Esposito V, Esposito C, Feriozzi S, Polci R, Frasca G, Galliani M, Garozzo M, Mitrotti A, Gesualdo L, Granata S, Zaza G, Londrino F, Magistroni R, Pisani I, Magnano A, Marcantoni C, Messa P, Mignani R, Pani A, Ponticelli C, Roccatello D, Salvadori M, Salvi E, Santoro D, Gembillo G, Savoldi S, Spotti D, Zamboli P, Izzi C, et alKiryluk K, Sanchez-Rodriguez E, Zhou XJ, Zanoni F, Liu L, Mladkova N, Khan A, Marasa M, Zhang JY, Balderes O, Sanna-Cherchi S, Bomback AS, Canetta PA, Appel GB, Radhakrishnan J, Trimarchi H, Sprangers B, Cattran DC, Reich H, Pei Y, Ravani P, Galesic K, Maixnerova D, Tesar V, Stengel B, Metzger M, Canaud G, Maillard N, Berthoux F, Berthelot L, Pillebout E, Monteiro R, Nelson R, Wyatt RJ, Smoyer W, Mahan J, Samhar AA, Hidalgo G, Quiroga A, Weng P, Sreedharan R, Selewski D, Davis K, Kallash M, Vasylyeva TL, Rheault M, Chishti A, Ranch D, Wenderfer SE, Samsonov D, Claes DJ, Akchurin O, Goumenos D, Stangou M, Nagy J, Kovacs T, Fiaccadori E, Amoroso A, Barlassina C, Cusi D, Del Vecchio L, Battaglia GG, Bodria M, Boer E, Bono L, Boscutti G, Caridi G, Lugani F, Ghiggeri G, Coppo R, Peruzzi L, Esposito V, Esposito C, Feriozzi S, Polci R, Frasca G, Galliani M, Garozzo M, Mitrotti A, Gesualdo L, Granata S, Zaza G, Londrino F, Magistroni R, Pisani I, Magnano A, Marcantoni C, Messa P, Mignani R, Pani A, Ponticelli C, Roccatello D, Salvadori M, Salvi E, Santoro D, Gembillo G, Savoldi S, Spotti D, Zamboli P, Izzi C, Alberici F, Delbarba E, Florczak M, Krata N, Mucha K, Pączek L, Niemczyk S, Moszczuk B, Pańczyk-Tomaszewska M, Mizerska-Wasiak M, Perkowska-Ptasińska A, Bączkowska T, Durlik M, Pawlaczyk K, Sikora P, Zaniew M, Kaminska D, Krajewska M, Kuzmiuk-Glembin I, Heleniak Z, Bullo-Piontecka B, Liberek T, Dębska-Slizien A, Hryszko T, Materna-Kiryluk A, Miklaszewska M, Szczepańska M, Dyga K, Machura E, Siniewicz-Luzeńczyk K, Pawlak-Bratkowska M, Tkaczyk M, Runowski D, Kwella N, Drożdż D, Habura I, Kronenberg F, Prikhodina L, van Heel D, Fontaine B, Cotsapas C, Wijmenga C, Franke A, Annese V, Gregersen PK, Parameswaran S, Weirauch M, Kottyan L, Harley JB, Suzuki H, Narita I, Goto S, Lee H, Kim DK, Kim YS, Park JH, Cho B, Choi M, Van Wijk A, Huerta A, Ars E, Ballarin J, Lundberg S, Vogt B, Mani LY, Caliskan Y, Barratt J, Abeygunaratne T, Kalra PA, Gale DP, Panzer U, Rauen T, Floege J, Schlosser P, Ekici AB, Eckardt KU, Chen N, Xie J, Lifton RP, Loos RJF, Kenny EE, Ionita-Laza I, Köttgen A, Julian BA, Novak J, Scolari F, Zhang H, Gharavi AG. Genome-wide association analyses define pathogenic signaling pathways and prioritize drug targets for IgA nephropathy. Nat Genet 2023; 55:1091-1105. [PMID: 37337107 PMCID: PMC11824687 DOI: 10.1038/s41588-023-01422-x] [Show More Authors] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 05/05/2023] [Indexed: 06/21/2023]
Abstract
IgA nephropathy (IgAN) is a progressive form of kidney disease defined by glomerular deposition of IgA. Here we performed a genome-wide association study of 10,146 kidney-biopsy-diagnosed IgAN cases and 28,751 controls across 17 international cohorts. We defined 30 genome-wide significant risk loci explaining 11% of disease risk. A total of 16 loci were new, including TNFSF4/TNFSF18, REL, CD28, PF4V1, LY86, LYN, ANXA3, TNFSF8/TNFSF15, REEP3, ZMIZ1, OVOL1/RELA, ETS1, IGH, IRF8, TNFRSF13B and FCAR. The risk loci were enriched in gene orthologs causing abnormal IgA levels when genetically manipulated in mice. We also observed a positive genetic correlation between IgAN and serum IgA levels. High polygenic score for IgAN was associated with earlier onset of kidney failure. In a comprehensive functional annotation analysis of candidate causal genes, we observed convergence of biological candidates on a common set of inflammatory signaling pathways and cytokine ligand-receptor pairs, prioritizing potential new drug targets.
Collapse
Affiliation(s)
- Krzysztof Kiryluk
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA.
- Institute for Genomic Medicine, Columbia University, New York City, NY, USA.
| | - Elena Sanchez-Rodriguez
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Xu-Jie Zhou
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
| | - Francesca Zanoni
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Lili Liu
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Nikol Mladkova
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Atlas Khan
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Maddalena Marasa
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Jun Y Zhang
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Olivia Balderes
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Simone Sanna-Cherchi
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
- Institute for Genomic Medicine, Columbia University, New York City, NY, USA
| | - Andrew S Bomback
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Pietro A Canetta
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Gerald B Appel
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Jai Radhakrishnan
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA
| | - Hernan Trimarchi
- Nephrology Service, Hospital Británico de Buenos Aires, Buenos Aires, Argentina
| | - Ben Sprangers
- Department of Microbiology and Immunology, Laboratory of Molecular Immunology, KU Leuven, Leuven, Belgium
- Division of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | - Daniel C Cattran
- Department of Nephrology, University of Toronto, Toronto General Hospital, Toronto, Ontario, Canada
| | - Heather Reich
- Department of Nephrology, University of Toronto, Toronto General Hospital, Toronto, Ontario, Canada
| | - York Pei
- Department of Nephrology, University of Toronto, Toronto General Hospital, Toronto, Ontario, Canada
| | - Pietro Ravani
- Division of Nephrology, Department of Internal Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Dita Maixnerova
- 1st Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic
| | - Vladimir Tesar
- 1st Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic
| | - Benedicte Stengel
- Centre for Research in Epidemiology and Population Health (CESP), Paris-Saclay University, Versailles Saint Quentin University, INSERM Clinical Epidemiology Team, Villejuif, France
| | - Marie Metzger
- Centre for Research in Epidemiology and Population Health (CESP), Paris-Saclay University, Versailles Saint Quentin University, INSERM Clinical Epidemiology Team, Villejuif, France
| | - Guillaume Canaud
- Université de Paris, Hôpital Necker-Enfants Malades, Paris, France
| | - Nicolas Maillard
- Nephrology, Dialysis, and Renal Transplantation Department, University North Hospital, Saint Etienne, France
| | - Francois Berthoux
- Nephrology, Dialysis, and Renal Transplantation Department, University North Hospital, Saint Etienne, France
| | | | - Evangeline Pillebout
- Center for Research on Inflammation, University of Paris, INSERM and CNRS, Paris, France
| | - Renato Monteiro
- Center for Research on Inflammation, University of Paris, INSERM and CNRS, Paris, France
| | - Raoul Nelson
- Division of Pediatric Nephrology, Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
| | - Robert J Wyatt
- Division of Pediatric Nephrology, University of Tennessee Health Sciences Center, Memphis, TN, USA
- Children's Foundation Research Center, Le Bonheur Children's Hospital, Memphis, TN, USA
| | - William Smoyer
- Division of Pediatric Nephrology, Nationwide Children's Hospital, Columbus, OH, USA
| | - John Mahan
- Division of Pediatric Nephrology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Al-Akash Samhar
- Division of Pediatric Nephrology, Driscoll Children's Hospital, Corpus Christi, TX, USA
| | - Guillermo Hidalgo
- Division of Pediatric Nephrology, Department of Pediatrics, HMH Hackensack University Medical Center, Hackensack, NJ, USA
| | - Alejandro Quiroga
- Division of Pediatric Nephrology, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Patricia Weng
- Division of Pediatric Nephrology, Mattel Children's Hospital, Los Angeles, CA, USA
| | - Raji Sreedharan
- Division of Pediatric Nephrology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - David Selewski
- Division of Pediatric Nephrology, Mott Children's Hospital, Ann Arbor, MI, USA
| | - Keefe Davis
- Division of Pediatric Nephrology, Department of Pediatrics, The Medical University of South Carolina (MUSC), Charleston, SC, USA
| | - Mahmoud Kallash
- Division of Pediatric Nephrology, SUNY Buffalo, Buffalo, NY, USA
| | - Tetyana L Vasylyeva
- Division of Pediatric Nephrology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, USA
| | - Michelle Rheault
- Division of Pediatric Nephrology, University of Minnesota, Minneapolis, MN, USA
| | - Aftab Chishti
- Division of Pediatric Nephrology, University of Kentucky, Lexington, KY, USA
| | - Daniel Ranch
- Division of Pediatric Nephrology, Department of Pediatrics, University of Kentucky, Lexington, KY, USA
| | - Scott E Wenderfer
- Division of Pediatric Nephrology, Baylor College of Medicine/Texas Children's Hospital, Houston, TX, USA
| | - Dmitry Samsonov
- Division of Pediatric Nephrology, Boston Children's Hospital, Boston, MA, USA
| | - Donna J Claes
- Division of Pediatric Nephrology, Department of Pediatrics, New York Medical College, New York City, NY, USA
| | - Oleh Akchurin
- Division of Pediatric Nephrology, Department of Pediatrics, Weill Cornell Medical College, New York City, NY, USA
| | | | - Maria Stangou
- The Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Judit Nagy
- 2nd Department of Internal Medicine, Nephrological and Diabetological Center, University of Pécs, Pécs, Hungary
| | - Tibor Kovacs
- 2nd Department of Internal Medicine, Nephrological and Diabetological Center, University of Pécs, Pécs, Hungary
| | - Enrico Fiaccadori
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Antonio Amoroso
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Cristina Barlassina
- Renal Division, Dipartimento di Medicina, Chirurgia e Odontoiatria, San Paolo Hospital, School of Medicine, University of Milan, Milan, Italy
| | - Daniele Cusi
- Renal Division, Dipartimento di Medicina, Chirurgia e Odontoiatria, San Paolo Hospital, School of Medicine, University of Milan, Milan, Italy
| | | | | | | | - Emanuela Boer
- Division of Nephrology and Dialysis, Gorizia Hospital, Gorizia, Italy
| | - Luisa Bono
- Nephrology and Dialysis, A.R.N.A.S. Civico and Benfratelli, Palermo, Italy
| | - Giuliano Boscutti
- Nephrology, Dialysis and Renal Transplant Unit, S. Maria della Misericordia Hospital, ASUFC, Udine, Italy
| | - Gianluca Caridi
- Division of Nephrology, Dialysis and Transplantation, IRCCS Giannina Gaslini Institute, Genova, Italy
| | - Francesca Lugani
- Division of Nephrology, Dialysis and Transplantation, IRCCS Giannina Gaslini Institute, Genova, Italy
| | - GianMarco Ghiggeri
- Division of Nephrology, Dialysis and Transplantation, IRCCS Giannina Gaslini Institute, Genova, Italy
| | - Rosanna Coppo
- Regina Margherita Children's Hospital, Torino, Italy
| | - Licia Peruzzi
- Regina Margherita Children's Hospital, Torino, Italy
| | | | | | | | | | - Giovanni Frasca
- Division of Nephrology, Dialysis and Renal Transplantation, Riuniti Hospital, Ancona, Italy
| | | | - Maurizio Garozzo
- Unità Operativa di Nefrologia e Dialisi, Ospedale di Acireale, Acireale, Italy
| | - Adele Mitrotti
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Loreto Gesualdo
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari, Italy
| | - Simona Granata
- Renal Unit, Department of Medicine, University of Verona, Verona, Italy
| | - Gianluigi Zaza
- Renal Unit, Department of Medicine, University of Verona, Verona, Italy
| | | | - Riccardo Magistroni
- Department of Surgical, Medical, Dental, Oncologic and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Isabella Pisani
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Magnano
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | - Piergiorgio Messa
- Nephrology Dialysis and Kidney Transplant Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | - Renzo Mignani
- Azienda Unità Sanitaria Locale Rimini, Rimini, Italy
| | - Antonello Pani
- Department of Nephrology and Dialysis, G. Brotzu Hospital, Cagliari, Italy
| | | | - Dario Roccatello
- Nephrology and Dialysis Unit, G. Bosco Hub Hospital (ERK-net Member) and University of Torino, Torino, Italy
| | - Maurizio Salvadori
- Division of Nephrology and Renal Transplantation, Carreggi Hospital, Florence, Italy
| | - Erica Salvi
- Renal Division, DMCO (Dipartimento di Medicina, Chirurgia e Odontoiatria), San Paolo Hospital, School of Medicine, University of Milan, Milan, Italy
| | - Domenico Santoro
- Unit of Nephrology and Dialysis, AOU G Martino, University of Messina, Messina, Italy
| | - Guido Gembillo
- Unit of Nephrology and Dialysis, AOU G Martino, University of Messina, Messina, Italy
| | - Silvana Savoldi
- Unit of Nephrology and Dialysis, ASL TO4-Consultorio Cirié, Turin, Italy
| | | | | | - Claudia Izzi
- Department of Medical and Surgical Specialties and Nephrology Unit, University of Brescia-ASST Spedali Civili, Brescia, Italy
| | - Federico Alberici
- Department of Medical and Surgical Specialties and Nephrology Unit, University of Brescia-ASST Spedali Civili, Brescia, Italy
| | - Elisa Delbarba
- Department of Medical and Surgical Specialties and Nephrology Unit, University of Brescia-ASST Spedali Civili, Brescia, Italy
| | - Michał Florczak
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Natalia Krata
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Krzysztof Mucha
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Leszek Pączek
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Stanisław Niemczyk
- Department of Internal Disease, Nephrology and Dialysotherapy, Military Institute of Medicine, Warsaw, Poland
| | - Barbara Moszczuk
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
- Department of Clinical Immunology, Medical University of Warsaw, Warsaw, Poland
| | | | | | | | - Teresa Bączkowska
- Department of Transplantation Medicine, Nephrology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Durlik
- Department of Transplantation Medicine, Nephrology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Krzysztof Pawlaczyk
- Department of Nephrology, Transplantology and Internal Medicine, Poznan Medical University, Poznan, Poland
| | - Przemyslaw Sikora
- Department of Pediatric Nephrology, Medical University of Lublin, Lublin, Poland
| | - Marcin Zaniew
- Department of Pediatrics, University of Zielona Góra, Zielona Góra, Poland
| | - Dorota Kaminska
- Clinical Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Magdalena Krajewska
- Clinical Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Izabella Kuzmiuk-Glembin
- Department of Nephrology, Transplantology and Internal Diseases, Medical University of Gdansk, Gdansk, Poland
| | - Zbigniew Heleniak
- Department of Nephrology, Transplantology and Internal Diseases, Medical University of Gdansk, Gdansk, Poland
| | - Barbara Bullo-Piontecka
- Department of Nephrology, Transplantology and Internal Diseases, Medical University of Gdansk, Gdansk, Poland
| | - Tomasz Liberek
- Department of Nephrology, Transplantology and Internal Diseases, Medical University of Gdansk, Gdansk, Poland
| | - Alicja Dębska-Slizien
- Department of Nephrology, Transplantology and Internal Diseases, Medical University of Gdansk, Gdansk, Poland
| | - Tomasz Hryszko
- 2nd Department of Nephrology and Hypertension with Dialysis Unit, Medical University of Bialystok, Bialystok, Poland
| | | | - Monika Miklaszewska
- Department of Pediatric Nephrology and Hypertension, Jagiellonian University Medical College, Krakow, Poland
| | - Maria Szczepańska
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
| | - Katarzyna Dyga
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
| | - Edyta Machura
- Department of Pediatrics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
| | - Katarzyna Siniewicz-Luzeńczyk
- Department of Pediatrics, Immunology and Nephrology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Monika Pawlak-Bratkowska
- Department of Pediatrics, Immunology and Nephrology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Marcin Tkaczyk
- Department of Pediatrics, Immunology and Nephrology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Dariusz Runowski
- Department of Nephrology, Kidney Transplantation and Hypertension, Children's Memorial Health Institute, Warsaw, Poland
| | - Norbert Kwella
- Department of Nephrology, Hypertension and Internal Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Dorota Drożdż
- Department of Pediatric Nephrology and Hypertension, Jagiellonian University Medical College, Krakow, Poland
| | - Ireneusz Habura
- Department of Nephrology, Karol Marcinkowski Hospital, Zielona Góra, Poland
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Larisa Prikhodina
- Division of Inherited and Acquired Kidney Diseases, Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Moscow, Russia
| | - David van Heel
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Bertrand Fontaine
- Sorbonne University, INSERM, Center of Research in Myology, Institute of Myology, University Hospital Pitie-Salpetriere, Paris, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Service of Neuro-Myology, University Hospital Pitie-Salpetriere, Paris, France
| | - Chris Cotsapas
- Departments of Neurology and Genetics, Yale University, New Haven, CT, USA
| | | | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Vito Annese
- CBP American Hospital, Dubai, United Arab Emirates
| | - Peter K Gregersen
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, North Shore LIJ Health System, New York City, NY, USA
| | | | - Matthew Weirauch
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Leah Kottyan
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - John B Harley
- US Department of Veterans Affairs Medical Center and Cincinnati Education and Research for Veterans Foundation, Cincinnati, OH, USA
| | - Hitoshi Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shin Goto
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hajeong Lee
- Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong Ki Kim
- Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yon Su Kim
- Biomedical Science, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin-Ho Park
- Department of Family Medicine, Seoul National University College of Medicine and Seoul National University Hospital, Seoul, Republic of Korea
| | - BeLong Cho
- Department of Family Medicine, Seoul National University College of Medicine and Seoul National University Hospital, Seoul, Republic of Korea
- Institute on Aging, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Murim Choi
- Biomedical Science, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ans Van Wijk
- Amsterdam University Medical Centre, VU University Medical Center (VUMC), Amsterdam, the Netherlands
| | - Ana Huerta
- Hospital Universitario Puerta del Hierro Majadahonda, REDINREN, IISCIII, Madrid, Spain
| | - Elisabet Ars
- Molecular Biology Laboratory and Nephrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau, Universitat Autònoma de Barcelona, REDINREN, IISCIII, Barcelona, Spain
| | - Jose Ballarin
- Molecular Biology Laboratory and Nephrology Department, Fundació Puigvert, Instituto de Investigaciones Biomédicas Sant Pau, Universitat Autònoma de Barcelona, REDINREN, IISCIII, Barcelona, Spain
| | - Sigrid Lundberg
- Department of Nephrology, Danderyd University Hospital, and Department of Clinical Sciences, Karolinska Institutet, Stockholm, Sweden
| | - Bruno Vogt
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Laila-Yasmin Mani
- Department of Nephrology and Hypertension, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Yasar Caliskan
- Division of Nephrology, Saint Louis University, Saint Louis, MO, USA
| | - Jonathan Barratt
- John Walls Renal Unit, University Hospitals of Leicester, Leicester, UK
| | | | | | - Daniel P Gale
- Department of Renal Medicine, University College London, London, UK
| | | | - Thomas Rauen
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Jürgen Floege
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Pascal Schlosser
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Arif B Ekici
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nan Chen
- Department of Nephrology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jingyuan Xie
- Department of Nephrology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Richard P Lifton
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York City, NY, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Eimear E Kenny
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Department of Genetics and Genomic Sciences, Mount Sinai Health System, New York City, NY, USA
- Center for Population Genomic Health, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Iuliana Ionita-Laza
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York City, NY, USA
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Bruce A Julian
- Departments of Microbiology and Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jan Novak
- Departments of Microbiology and Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Francesco Scolari
- Department of Medical and Surgical Specialties and Nephrology Unit, University of Brescia-ASST Spedali Civili, Brescia, Italy
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China
| | - Ali G Gharavi
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York City, NY, USA.
- Institute for Genomic Medicine, Columbia University, New York City, NY, USA.
| |
Collapse
|
34
|
Zhou J, Toh SHM, Tan TK, Balan K, Lim JQ, Tan TZ, Xiong S, Jia Y, Ng SB, Peng Y, Jeyasekharan AD, Fan S, Lim ST, Ong CAJ, Ong CK, Sanda T, Chng WJ. Super-enhancer-driven TOX2 mediates oncogenesis in Natural Killer/T Cell Lymphoma. Mol Cancer 2023; 22:69. [PMID: 37032358 PMCID: PMC10084643 DOI: 10.1186/s12943-023-01767-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 03/24/2023] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND Extranodal natural killer/T-cell lymphoma (NKTL) is an aggressive type of non-Hodgkin lymphoma with dismal outcome. A better understanding of disease biology and key oncogenic process is necessary for the development of targeted therapy. Super-enhancers (SEs) have been shown to drive pivotal oncogenes in various malignancies. However, the landscape of SEs and SE-associated oncogenes remain elusive in NKTL. METHODS We used Nano-ChIP-seq of the active enhancer marker histone H3 lysine 27 acetylation (H3K27ac) to profile unique SEs NKTL primary tumor samples. Integrative analysis of RNA-seq and survival data further pinned down high value, novel SE oncogenes. We utilized shRNA knockdown, CRISPR-dCas9, luciferase reporter assay, ChIP-PCR to investigate the regulation of transcription factor (TF) on SE oncogenes. Multi-color immunofluorescence (mIF) staining was performed on an independent cohort of clinical samples. Various function experiments were performed to evaluate the effects of TOX2 on the malignancy of NKTL in vitro and in vivo. RESULTS SE landscape was substantially different in NKTL samples in comparison with normal tonsils. Several SEs at key transcriptional factor (TF) genes, including TOX2, TBX21(T-bet), EOMES, RUNX2, and ID2, were identified. We confirmed that TOX2 was aberrantly overexpressed in NKTL relative to normal NK cells and high expression of TOX2 was associated with worse survival. Modulation of TOX2 expression by shRNA, CRISPR-dCas9 interference of SE function impacted on cell proliferation, survival and colony formation ability of NKTL cells. Mechanistically, we found that RUNX3 regulates TOX2 transcription by binding to the active elements of its SE. Silencing TOX2 also impaired tumor formation of NKTL cells in vivo. Metastasis-associated phosphatase PRL-3 has been identified and validated as a key downstream effector of TOX2-mediated oncogenesis. CONCLUSIONS Our integrative SE profiling strategy revealed the landscape of SEs, novel targets and insights into molecular pathogenesis of NKTL. The RUNX3-TOX2-SE-TOX2-PRL-3 regulatory pathway may represent a hallmark of NKTL biology. Targeting TOX2 could be a valuable therapeutic intervene for NKTL patients and warrants further study in clinic.
Collapse
Affiliation(s)
- Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- NUS Centre for Cancer Research (N2CR), 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Sabrina Hui-Min Toh
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Tze King Tan
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Kalpnaa Balan
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Jing Quan Lim
- Division of Cellular and Molecular Research, Lymphoma Genomic Translational Research Laboratory, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610, Singapore
- Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Tuan Zea Tan
- Genomics and Data Analytics Core (GeDaC), Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Singapore
| | - Sinan Xiong
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Yunlu Jia
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Siok-Bian Ng
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
| | - Yanfen Peng
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Anand D Jeyasekharan
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- NUS Centre for Cancer Research (N2CR), 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Shuangyi Fan
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
| | - Soon Thye Lim
- Director's office, National Cancer Centre, Singapore, 168583, Singapore
- Office of Education, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Chin-Ann Johnny Ong
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, National Cancer Centre, Singapore, 168583, Singapore
- Department of Sarcoma, Peritoneal and Rare Tumours (SPRinT), Division of Surgery and Surgical Oncology, Singapore General Hospital, Singapore, 168583, Singapore
- Laboratory of Applied Human Genetics, Division of Medical Sciences, National Cancer Centre, Singapore, 168583, Singapore
- SingHealth Duke-NUS Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore, 169857, Singapore
- SingHealth Duke-NUS Surgery Academic Clinical Program, Duke-NUS Medical School, Singapore, 169857, Singapore
- Institute of Molecular and Cell Biology, A*STAR Research Entities, Singapore, 138673, Singapore
| | - Choon Kiat Ong
- Division of Cellular and Molecular Research, Lymphoma Genomic Translational Research Laboratory, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610, Singapore.
- Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- NUS Centre for Cancer Research (N2CR), 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore.
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), National University Health System (NUHS), 1E, Kent Ridge Road, Singapore, 119228, Singapore.
| |
Collapse
|
35
|
Zhao B. Epstein-Barr Virus B Cell Growth Transformation: The Nuclear Events. Viruses 2023; 15:832. [PMID: 37112815 PMCID: PMC10146190 DOI: 10.3390/v15040832] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Epstein-Barr virus (EBV) is the first human DNA tumor virus identified from African Burkitt's lymphoma cells. EBV causes ~200,000 various cancers world-wide each year. EBV-associated cancers express latent EBV proteins, EBV nuclear antigens (EBNAs), and latent membrane proteins (LMPs). EBNA1 tethers EBV episomes to the chromosome during mitosis to ensure episomes are divided evenly between daughter cells. EBNA2 is the major EBV latency transcription activator. It activates the expression of other EBNAs and LMPs. It also activates MYC through enhancers 400-500 kb upstream to provide proliferation signals. EBNALP co-activates with EBNA2. EBNA3A/C represses CDKN2A to prevent senescence. LMP1 activates NF-κB to prevent apoptosis. The coordinated activity of EBV proteins in the nucleus allows efficient transformation of primary resting B lymphocytes into immortalized lymphoblastoid cell lines in vitro.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
36
|
Wang C, Liu X, Liang J, Narita Y, Ding W, Li D, Zhang L, Wang H, Leong MML, Hou I, Gerdt C, Jiang C, Zhong Q, Tang Z, Forney C, Kottyan L, Weirauch MT, Gewurz BE, Zeng MS, Jiang S, Teng M, Zhao B. A DNA tumor virus globally reprograms host 3D genome architecture to achieve immortal growth. Nat Commun 2023; 14:1598. [PMID: 36949074 PMCID: PMC10033825 DOI: 10.1038/s41467-023-37347-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 03/13/2023] [Indexed: 03/24/2023] Open
Abstract
Epstein-Barr virus (EBV) immortalization of resting B lymphocytes (RBLs) to lymphoblastoid cell lines (LCLs) models human DNA tumor virus oncogenesis. RBL and LCL chromatin interaction maps are compared to identify the spatial and temporal genome architectural changes during EBV B cell transformation. EBV induces global genome reorganization where contact domains frequently merge or subdivide during transformation. Repressed B compartments in RBLs frequently switch to active A compartments in LCLs. LCLs gain 40% new contact domain boundaries. Newly gained LCL boundaries have strong CTCF binding at their borders while in RBLs, the same sites have much less CTCF binding. Some LCL CTCF sites also have EBV nuclear antigen (EBNA) leader protein EBNALP binding. LCLs have more local interactions than RBLs at LCL dependency factors and super-enhancer targets. RNA Pol II HiChIP and FISH of RBL and LCL further validate the Hi-C results. EBNA3A inactivation globally alters LCL genome interactions. EBNA3A inactivation reduces CTCF and RAD21 DNA binding. EBNA3C inactivation rewires the looping at the CDKN2A/B and AICDA loci. Disruption of a CTCF site at AICDA locus increases AICDA expression. These data suggest that EBV controls lymphocyte growth by globally reorganizing host genome architecture to facilitate the expression of key oncogenes.
Collapse
Affiliation(s)
- Chong Wang
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115, USA
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Xiang Liu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Jun Liang
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - Yohei Narita
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - Weiyue Ding
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - Difei Li
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - Luyao Zhang
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - Hongbo Wang
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - Merrin Man Long Leong
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - Isabella Hou
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - Catherine Gerdt
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - Chang Jiang
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115, USA
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Qian Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhonghui Tang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510060, China
| | - Carmy Forney
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Leah Kottyan
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Benjamin E Gewurz
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Sizun Jiang
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02115, USA.
| | - Mingxiang Teng
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| | - Bo Zhao
- Division of Infectious Disease, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
37
|
Sehgal P, Chaturvedi P. Chromatin and Cancer: Implications of Disrupted Chromatin Organization in Tumorigenesis and Its Diversification. Cancers (Basel) 2023; 15:cancers15020466. [PMID: 36672415 PMCID: PMC9856863 DOI: 10.3390/cancers15020466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
A hallmark of cancers is uncontrolled cell proliferation, frequently associated with an underlying imbalance in gene expression. This transcriptional dysregulation observed in cancers is multifaceted and involves chromosomal rearrangements, chimeric transcription factors, or altered epigenetic marks. Traditionally, chromatin dysregulation in cancers has been considered a downstream effect of driver mutations. However, here we present a broader perspective on the alteration of chromatin organization in the establishment, diversification, and therapeutic resistance of cancers. We hypothesize that the chromatin organization controls the accessibility of the transcriptional machinery to regulate gene expression in cancerous cells and preserves the structural integrity of the nucleus by regulating nuclear volume. Disruption of this large-scale chromatin in proliferating cancerous cells in conventional chemotherapies induces DNA damage and provides a positive feedback loop for chromatin rearrangements and tumor diversification. Consequently, the surviving cells from these chemotherapies become tolerant to higher doses of the therapeutic reagents, which are significantly toxic to normal cells. Furthermore, the disorganization of chromatin induced by these therapies accentuates nuclear fragility, thereby increasing the invasive potential of these tumors. Therefore, we believe that understanding the changes in chromatin organization in cancerous cells is expected to deliver more effective pharmacological interventions with minimal effects on non-cancerous cells.
Collapse
|
38
|
Yan B, Wang C, Chakravorty S, Zhang Z, Kadadi SD, Zhuang Y, Sirit I, Hu Y, Jung M, Sahoo SS, Wang L, Shao K, Anderson NL, Trujillo‐Ochoa JL, Briggs SD, Liu X, Olson MR, Afzali B, Zhao B, Kazemian M. A comprehensive single cell data analysis of lymphoblastoid cells reveals the role of super-enhancers in maintaining EBV latency. J Med Virol 2023; 95:e28362. [PMID: 36453088 PMCID: PMC10027397 DOI: 10.1002/jmv.28362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022]
Abstract
We probed the lifecycle of Epstein-Barr virus (EBV) on a cell-by-cell basis using single cell RNA sequencing (scRNA-seq) data from nine publicly available lymphoblastoid cell lines (LCLs). While the majority of LCLs comprised cells containing EBV in the latent phase, two other clusters of cells were clearly evident and were distinguished by distinct expression of host and viral genes. Notably, both were high expressors of EBV LMP1/BNLF2 and BZLF1 compared to another cluster that expressed neither gene. The two novel clusters differed from each other in their expression of EBV lytic genes, including glycoprotein gene GP350. The first cluster, comprising GP350- LMP1hi cells, expressed high levels of HIF1A and was transcriptionally regulated by HIF1-α. Treatment of LCLs with Pevonedistat, a drug that enhances HIF1-α signaling, markedly induced this cluster. The second cluster, containing GP350+ LMP1hi cells, expressed EBV lytic genes. Host genes that are controlled by super-enhancers (SEs), such as transcription factors MYC and IRF4, had the lowest expression in this cluster. Functionally, the expression of genes regulated by MYC and IRF4 in GP350+ LMP1hi cells were lower compared to other cells. Indeed, induction of EBV lytic reactivation in EBV+ AKATA reduced the expression of these SE-regulated genes. Furthermore, CRISPR-mediated perturbation of the MYC or IRF4 SEs in LCLs induced the lytic EBV gene expression, suggesting that host SEs and/or SE target genes are required for maintenance of EBV latency. Collectively, our study revealed EBV-associated heterogeneity among LCLs that may have functional consequence on host and viral biology.
Collapse
Affiliation(s)
- Bingyu Yan
- Department of BiochemistryPurdue UniversityWest LafayetteIndianaUSA
| | - Chong Wang
- Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | | | - Zonghao Zhang
- Department of Agricultural and Biological EngineeringPurdue UniversityWest LafayetteIndianaUSA
| | - Simran D. Kadadi
- Department of Computer SciencePurdue UniversityWest LafayetteIndianaUSA
| | - Yuxin Zhuang
- Department of BiochemistryPurdue UniversityWest LafayetteIndianaUSA
| | - Isabella Sirit
- Department of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
| | - Yonghua Hu
- Department of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
| | - Minwoo Jung
- Department of Computer SciencePurdue UniversityWest LafayetteIndianaUSA
| | | | - Luopin Wang
- Department of Computer SciencePurdue UniversityWest LafayetteIndianaUSA
| | - Kunming Shao
- Department of Agricultural and Biological EngineeringPurdue UniversityWest LafayetteIndianaUSA
| | - Nicole L. Anderson
- Department of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
| | - Jorge L. Trujillo‐Ochoa
- Immunoregulation Section, Kidney Diseases BranchNational Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIHBethesdaMarylandUSA
| | - Scott D. Briggs
- Department of BiochemistryPurdue UniversityWest LafayetteIndianaUSA
| | - Xing Liu
- Department of BiochemistryPurdue UniversityWest LafayetteIndianaUSA
| | - Matthew R. Olson
- Department of Biological SciencesPurdue UniversityWest LafayetteIndianaUSA
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases BranchNational Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIHBethesdaMarylandUSA
| | - Bo Zhao
- Department of Medicine, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Majid Kazemian
- Department of BiochemistryPurdue UniversityWest LafayetteIndianaUSA
- Department of Computer SciencePurdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
39
|
Regulation of B cell receptor signalling by Epstein-Barr virus nuclear antigens. Biochem J 2022; 479:2395-2417. [PMID: 36383217 PMCID: PMC9788576 DOI: 10.1042/bcj20220417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/30/2022] [Accepted: 11/16/2022] [Indexed: 11/17/2022]
Abstract
The cancer-associated Epstein-Barr virus (EBV) latently infects and immortalises B lymphocytes. EBV latent membrane protein 2A and EBV-encoded microRNAs are known to manipulate B cell receptor signalling to control cell growth and survival and suppress lytic replication. Here, we show that the EBV transcription factors EBNA2, 3A, 3B and 3C bind to genomic sites around multiple B cell receptor (BCR) pathway genes, regulate their expression and affect BCR signalling. EBNA2 regulates the majority of BCR pathway genes associated with binding sites, where EBNA3 proteins regulate only 42% of targets predicted by binding. Both EBNA2 and 3 proteins predominantly repress BCR pathway gene expression and target some common genes. EBNA2 and at least one EBNA3 protein repress the central BCR components CD79A and CD79B and the downstream genes BLNK, CD22, CD72, NFATC1, PIK3CG and RASGRP3. Studying repression of CD79B, we show that EBNA2 decreases transcription by disrupting binding of Early B cell Factor-1 to the CD79B promoter. Consistent with repression of BCR signalling, we demonstrate that EBNA2 and EBNA3 proteins suppress the basal or active BCR signalling that culminates in NFAT activation. Additionally, we show that EBNA2, EBNA3A and EBNA3C expression can result in reductions in the active serine 473 phosphorylated form of Akt in certain cell contexts, consistent with transcriptional repression of the PI3K-Akt BCR signalling arm. Overall, we identify EBNA2, EBNA3A and EBNA3C-mediated transcription control of BCR signalling as an additional strategy through which EBV may control the growth and survival of infected B cells and maintain viral latency.
Collapse
|
40
|
Kuehnle N, Gottwein E. Druggable host gene dependencies in primary effusion lymphoma. Curr Opin Virol 2022; 56:101270. [PMID: 36182745 PMCID: PMC10043043 DOI: 10.1016/j.coviro.2022.101270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/20/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) causes primary effusion lymphoma (PEL). Here, we review what is known about human gene essentiality in PEL-derived cell lines. We provide an updated list of PEL-specific human gene dependencies, based on the improved definition of core essential genes across human cancer types. The requirements of PEL cell lines for interferon regulatory factor 4 (IRF4), basic leukine zipper ATF-like transcription factor (BATF), G1/S cyclin D2 (CCND2), CASP8 and FADD like apoptosis regulator (CFLAR), MCL1 apoptosis regulator (MCL1), and murine double minute 2 (MDM2) have been confirmed experimentally. KSHV co-opts IRF4 and BATF to drive superenhancer (SE)-mediated expression of IRF4 itself, MYC, and CCND2. IRF4 dependency of SE-mediated gene expression is shared with Epstein-Barr virus-transformed lymphoblastoid cell lines (LCLs) and human T-cell leukemia virus type 1-transformed adult T-cell leukemia/lymphoma (ATLL) cell lines, as well as several B-cell lymphomas of nonviral etiology. LCLs and ATLL cell lines similarly share dependencies on CCND2 and CFLAR with PEL, but also have distinct gene dependencies. Genetic dependencies could be exploited for therapeutic intervention in PEL and other cancers.
Collapse
Affiliation(s)
- Neil Kuehnle
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Eva Gottwein
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
41
|
SoRelle ED, Dai J, Reinoso-Vizcaino NM, Barry AP, Chan C, Luftig MA. Time-resolved transcriptomes reveal diverse B cell fate trajectories in the early response to Epstein-Barr virus infection. Cell Rep 2022; 40:111286. [PMID: 36044865 PMCID: PMC9879279 DOI: 10.1016/j.celrep.2022.111286] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/07/2022] [Accepted: 08/08/2022] [Indexed: 01/28/2023] Open
Abstract
Epstein-Barr virus infection of B lymphocytes elicits diverse host responses via well-adapted transcriptional control dynamics. Consequently, this host-pathogen interaction provides a powerful system to explore fundamental processes leading to consensus fate decisions. Here, we use single-cell transcriptomics to construct a genome-wide multistate model of B cell fates upon EBV infection. Additional single-cell data from human tonsils reveal correspondence of model states to analogous in vivo phenotypes within secondary lymphoid tissue, including an EBV+ analog of multipotent activated precursors that can yield early memory B cells. These resources yield exquisitely detailed perspectives of the transforming cellular landscape during an oncogenic viral infection that simulates antigen-induced B cell activation and differentiation. Thus, they support investigations of state-specific EBV-host dynamics, effector B cell fates, and lymphomagenesis. To demonstrate this potential, we identify EBV infection dynamics in FCRL4+/TBX21+ atypical memory B cells that are pathogenically associated with numerous immune disorders.
Collapse
Affiliation(s)
- Elliott D SoRelle
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Joanne Dai
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nicolás M Reinoso-Vizcaino
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ashley P Barry
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Micah A Luftig
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
42
|
EBNA2-EBF1 complexes promote MYC expression and metabolic processes driving S-phase progression of Epstein-Barr virus-infected B cells. Proc Natl Acad Sci U S A 2022; 119:e2200512119. [PMID: 35857872 PMCID: PMC9335265 DOI: 10.1073/pnas.2200512119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Epstein-Barr virus (EBV) is a human tumor virus which preferentially infects resting human B cells. Upon infection in vitro, EBV activates and immortalizes these cells. The viral latent protein EBV nuclear antigen 2 (EBNA2) is essential for B cell activation and immortalization; it targets and binds the cellular and ubiquitously expressed DNA-binding protein CBF1, thereby transactivating a plethora of viral and cellular genes. In addition, EBNA2 uses its N-terminal dimerization (END) domain to bind early B cell factor 1 (EBF1), a pioneer transcription factor specifying the B cell lineage. We found that EBNA2 exploits EBF1 to support key metabolic processes and to foster cell cycle progression of infected B cells in their first cell cycles upon activation. The α1-helix within the END domain was found to promote EBF1 binding. EBV mutants lacking the α1-helix in EBNA2 can infect and activate B cells efficiently, but activated cells fail to complete the early S phase of their initial cell cycle. Expression of MYC, target genes of MYC and E2F, as well as multiple metabolic processes linked to cell cycle progression are impaired in EBVΔα1-infected B cells. Our findings indicate that EBF1 controls B cell activation via EBNA2 and, thus, has a critical role in regulating the cell cycle of EBV-infected B cells. This is a function of EBF1 going beyond its well-known contribution to B cell lineage specification.
Collapse
|
43
|
Wang Z, Yan H, Boysen JC, Secreto CR, Tschumper RC, Ali D, Guo Q, Zhong J, Zhou J, Gan H, Yu C, Jelinek DF, Slager SL, Parikh SA, Braggio E, Kay NE. B cell receptor signaling drives APOBEC3 expression via direct enhancer regulation in chronic lymphocytic leukemia B cells. Blood Cancer J 2022; 12:99. [PMID: 35778390 PMCID: PMC9249768 DOI: 10.1038/s41408-022-00690-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/18/2022] [Accepted: 06/07/2022] [Indexed: 11/24/2022] Open
Abstract
Constitutively activated B cell receptor (BCR) signaling is a primary biological feature of chronic lymphocytic leukemia (CLL). The biological events controlled by BCR signaling in CLL are not fully understood and need investigation. Here, by analysis of the chromatin states and gene expression profiles of CLL B cells from patients before and after Bruton's tyrosine kinase inhibitor (BTKi) ibrutinib treatment, we show that BTKi treatment leads to a decreased expression of APOBEC3 family genes by regulating the activity of their enhancers. BTKi treatment reduces enrichment of enhancer marks (H3K4me1 and H3K27ac) and chromatin accessibility at putative APOBEC3 enhancers. CRISPR-Cas9 directed deletion or inhibition of the putative APOBEC3 enhancers leads to reduced APOBEC3 expression. We further find that transcription factor NFATc1 couples BCR signaling with the APOBEC3 enhancer activity to control APOBEC3 expression. We also find that enhancer-regulated APOBEC3 expression contributes to replication stress in malignant B cells. In total we demonstrate a novel mechanism for BTKi suppression of APOBEC3 expression via direct enhancer regulation in an NFATc1-dependent manner, implicating BCR signaling as a potential regulator of leukemic genomic instability.
Collapse
MESH Headings
- APOBEC Deaminases/biosynthesis
- APOBEC Deaminases/genetics
- APOBEC Deaminases/metabolism
- Chromatin
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Protein Kinase Inhibitors/pharmacology
- Pyrazoles/pharmacology
- Pyrimidines/pharmacology
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
Collapse
Affiliation(s)
- Zhiquan Wang
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Huihuang Yan
- Division of Computational Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Justin C Boysen
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Charla R Secreto
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Dania Ali
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Qianqian Guo
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jian Zhong
- Epigenomics Development Laboratory, Epigenomics Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jiaqi Zhou
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Haiyun Gan
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Chuanhe Yu
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Diane F Jelinek
- Department of Immunology, Mayo Clinic, Scottsdale, AZ, 85259, USA
| | - Susan L Slager
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
- Division of Computational Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Sameer A Parikh
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Esteban Braggio
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ, 85259, USA
| | - Neil E Kay
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
44
|
Tan Y, Jiang C, Jia Q, Wang J, Huang G, Tang F. A novel oncogenic seRNA promotes nasopharyngeal carcinoma metastasis. Cell Death Dis 2022; 13:401. [PMID: 35461306 PMCID: PMC9035166 DOI: 10.1038/s41419-022-04846-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 12/24/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a common malignant cancer in southern China that has highly invasive and metastatic features and causes high mortality, but the underlying mechanisms of this malignancy remain unclear. In this study, we utilized ChIP-Seq to identify metastasis-specific super enhancers (SEs) and found that the SE of LOC100506178 existed only in metastatic NPC cells and powerfully aggravated NPC metastasis. This metastatic SE transcribed into lncRNA LOC100506178, and it was verified as a seRNA through GRO-Seq. Furthermore, SE-derived seRNA LOC100506178 was found to be highly expressed in metastatic NPC cells and NPC lymph node metastatic tissues. Knockdown of seRNA LOC100506178 arrested the invasion and metastasis of NPC cells in vitro and in vivo, demonstrating that seRNA LOC100506178 accelerates the acquisition of NPC malignant phenotype. Mechanistic studies revealed that seRNA LOC100506178 specifically interacted with the transcription factor hnRNPK and modulated the expression of hnRNPK. Further, hnRNPK in combination with the promoter region of MICAL2 increased Mical2 transcription. Knockdown of seRNA LOC100506178 or hnRNPK markedly repressed MICAL2, Vimentin and Snail expression and upregulated E-cadherin expression. Overexpression of seRNA LOC100506178 or hnRNPK markedly increased MICAL2, Vimentin and Snail expression and decreased E-cadherin expression. Therefore, seRNA LOC100506178 may promote MICAL2 expression by upregulating hnRNPK, subsequently enhancing EMT process and accelerating the invasion and metastasis of NPC cells. seRNA LOC100506178 has the potential to serve as a novel prognostic biomarker and therapeutic target in NPC patients.
Collapse
Affiliation(s)
- Yuan Tan
- Clinical Laboratory of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Key Laboratory of Oncotarget Gene, Changsha, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Chonghua Jiang
- Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Qunying Jia
- Clinical Laboratory of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Key Laboratory of Oncotarget Gene, Changsha, China
| | - Jing Wang
- Clinical Laboratory of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Key Laboratory of Oncotarget Gene, Changsha, China
| | - Ge Huang
- Clinical Laboratory of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Key Laboratory of Oncotarget Gene, Changsha, China
| | - Faqing Tang
- Clinical Laboratory of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan Key Laboratory of Oncotarget Gene, Changsha, China.
| |
Collapse
|
45
|
Super enhancers as master gene regulators in the pathogenesis of hematologic malignancies. Biochim Biophys Acta Rev Cancer 2022; 1877:188697. [PMID: 35150791 DOI: 10.1016/j.bbcan.2022.188697] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/20/2022] [Accepted: 02/04/2022] [Indexed: 12/17/2022]
Abstract
Transcriptional deregulation of multiple oncogenes, tumor suppressors and survival pathways is a cancer cell hallmark. Super enhancers (SE) are long stretches of active enhancers in close linear proximity that ensure extraordinarily high expression levels of key genes associated with cell lineage, function and survival. SE landscape is intrinsically prone to changes and reorganization during the course of normal cell differentiation. This functional plasticity is typically utilized by cancer cells, which remodel their SE landscapes to ensure oncogenic transcriptional reprogramming. Multiple recent studies highlighted structural genetic mechanisms in non-coding regions that create new SE or hijack already existing ones. In addition, alterations in abundance/activity of certain SE-associated proteins or certain viral infections can elicit new super enhancers and trigger SE-driven transcriptional changes. For these reasons, SE profiling emerged as a powerful tool for discovering the core transcriptional regulatory circuits in tumor cells. This, in turn, provides new insights into cancer cell biology, and identifies main nodes of key cellular pathways to be potentially targeted. Since SEs are susceptible to inhibition, their disruption results in exponentially amassing 'butterfly' effect on gene expression and cell function. Moreover, many of SE elements are druggable, opening new therapeutic opportunities. Indeed, SE targeting drugs have been studied preclinically in various hematologic malignancies with promising effects. Herein, we review the unique features of SEs, present different cis- and trans-acting mechanisms through which hematologic tumor cells acquire SEs, and finally, discuss the potential of SE targeting in the therapy of hematologic malignancies.
Collapse
|
46
|
Belloucif Y, Lobry C. Super-Enhancers Dysregulations in Hematological Malignancies. Cells 2022; 11:196. [PMID: 35053311 PMCID: PMC8774084 DOI: 10.3390/cells11020196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/17/2021] [Accepted: 12/27/2021] [Indexed: 01/27/2023] Open
Abstract
Hematological malignancies affecting either the lymphoid or the myeloid lineages involve epigenetic mutations or dysregulation in the majority of cases. These epigenetic abnormalities can affect regulatory elements in the genome and, particularly, enhancers. Recently, large regulatory elements known as super-enhancers, initially identified for their critical roles in cell-type specific expression regulation of genes controlling cell identity, have been shown to also be involved in tumorigenesis in many cancer types and hematological malignancies via the regulation of numerous oncogenes, including MYC. In this review, we highlight the existing links between super-enhancers and hematological malignancies, with a particular focus on acute myeloid leukemia, a clonal hematopoietic neoplasm with dismal outcomes, resulting in an uncontrolled proliferation of myeloblasts, abnormally blocked during differentiation and accumulating within the patient's bone marrow. We report recent works, performed during the last few years, treating this subject and consider the possibility of targeting oncogenic regulatory elements, as well as the effectiveness and limitations reported so far for such strategies.
Collapse
Affiliation(s)
| | - Camille Lobry
- INSERM U944, CNRS UMR7212, Institut de Recherche Saint Louis, Université de Paris, 75010 Paris, France;
| |
Collapse
|
47
|
Hong T, Parameswaran S, Donmez OA, Miller D, Forney C, Lape M, Saint Just Ribeiro M, Liang J, Edsall LE, Magnusen AF, Miller W, Chepelev I, Harley JB, Zhao B, Kottyan LC, Weirauch MT. Epstein-Barr virus nuclear antigen 2 extensively rewires the human chromatin landscape at autoimmune risk loci. Genome Res 2021; 31:2185-2198. [PMID: 34799401 PMCID: PMC8647835 DOI: 10.1101/gr.264705.120] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/07/2021] [Indexed: 12/13/2022]
Abstract
The interplay between environmental and genetic factors plays a key role in the development of many autoimmune diseases. In particular, the Epstein-Barr virus (EBV) is an established contributor to multiple sclerosis, lupus, and other disorders. Previously, we showed that the EBV nuclear antigen 2 (EBNA2) transactivating protein occupies up to half of the risk loci for a set of seven autoimmune disorders. To further examine the mechanistic roles played by EBNA2 at these loci on a genome-wide scale, we globally examined gene expression, chromatin accessibility, chromatin looping, and EBNA2 binding in a B cell line that was (1) uninfected, (2) infected with a strain of EBV lacking EBNA2, or (3) infected with a strain that expresses EBNA2. We identified more than 400 EBNA2-dependent differentially expressed human genes and more than 5000 EBNA2 binding events in the human genome. ATAC-seq analysis revealed more than 2000 regions in the human genome with EBNA2-dependent chromatin accessibility, and HiChIP data revealed more than 1700 regions where EBNA2 altered chromatin looping interactions. Autoimmune genetic risk loci were highly enriched at the sites of these EBNA2-dependent chromatin-altering events. We present examples of autoimmune risk genotype-dependent EBNA2 events, nominating genetic risk mechanisms for autoimmune risk loci such as ZMIZ1 Taken together, our results reveal important interactions between host genetic variation and EBNA2-driven disease mechanisms. Further, our study highlights a critical role for EBNA2 in rewiring human gene regulatory programs through rearrangement of the chromatin landscape and nominates these interactions as components of genetic mechanisms that influence the risk of multiple autoimmune diseases.
Collapse
Affiliation(s)
- Ted Hong
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Pharmacology and Systems Physiology, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45229, USA
| | - Sreeja Parameswaran
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Omer A Donmez
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Daniel Miller
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Carmy Forney
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Michael Lape
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Mariana Saint Just Ribeiro
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Jun Liang
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Lee E Edsall
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Albert F Magnusen
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - William Miller
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45267, USA
| | - Iouri Chepelev
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45229, USA
| | - John B Harley
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45229, USA
- US Department of Veterans Affairs Medical Center, Cincinnati, Ohio 45229, USA
| | - Bo Zhao
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Leah C Kottyan
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45229, USA
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
- Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45229, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| |
Collapse
|
48
|
Molecular Basis of Epstein-Barr Virus Latency Establishment and Lytic Reactivation. Viruses 2021; 13:v13122344. [PMID: 34960613 PMCID: PMC8706188 DOI: 10.3390/v13122344] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/27/2022] Open
Abstract
Epstein–Barr virus (EBV) is a causative agent of infectious mononucleosis and several types of cancer. Like other herpesviruses, it establishes an asymptomatic, life-long latent infection, with occasional reactivation and shedding of progeny viruses. During latency, EBV expresses a small number of viral genes, and exists as an episome in the host–cell nucleus. Expression patterns of latency genes are dependent on the cell type, time after infection, and milieu of the cell (e.g., germinal center or peripheral blood). Upon lytic induction, expression of the viral immediate-early genes, BZLF1 and BRLF1, are induced, followed by early gene expression, viral DNA replication, late gene expression, and maturation and egress of progeny virions. Furthermore, EBV reactivation involves more than just progeny production. The EBV life cycle is regulated by signal transduction, transcription factors, promoter sequences, epigenetics, and the 3D structure of the genome. In this article, the molecular basis of EBV latency establishment and reactivation is summarized.
Collapse
|
49
|
Ha E, Bae SC, Kim K. Recent advances in understanding the genetic basis of systemic lupus erythematosus. Semin Immunopathol 2021; 44:29-46. [PMID: 34731289 DOI: 10.1007/s00281-021-00900-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/14/2021] [Indexed: 12/22/2022]
Abstract
Systemic lupus erythematosus (SLE) is a polygenic chronic autoimmune disease leading to multiple organ damage. A large heritability of up to 66% is estimated in SLE, with roughly 180 reported susceptibility loci that have been identified mostly by genome-wide association studies (GWASs) and account for approximately 30% of genetic heritability. A vast majority of risk variants reside in non-coding regions, which makes it quite challenging to interpret their functional implications in the SLE-affected immune system, suggesting the importance of understanding cell type-specific epigenetic regulation around SLE GWAS variants. The latest genetic studies have been highly fruitful as several dozens of SLE loci were newly discovered in the last few years and many loci have come to be understood in systemic approaches integrating GWAS signals with other biological resources. In this review, we summarize SLE-associated genetic variants in both the major histocompatibility complex (MHC) and non-MHC loci, examining polygenetic risk scores for SLE and their associations with clinical features. Finally, variant-driven pathogenetic functions underlying genetic associations are described, coupled with discussion about challenges and future directions in genetic studies on SLE.
Collapse
Affiliation(s)
- Eunji Ha
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea.,Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Sang-Cheol Bae
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Republic of Korea. .,Hanyang University Institute for Rheumatology Research, Seoul, Republic of Korea.
| | - Kwangwoo Kim
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea. .,Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
50
|
Abstract
Viral infection is an indisputable causal factor for nearly 17% of all human cancers. However, the diversity and complexity of oncogenic mechanisms raises new questions as to the mechanistic role of viruses in cancer. Classical viral oncogenes have been identified for all tumor-associated viruses. These oncogenes can have multiple oncogenic activities that may or may not be utilized in a particular tumor cell. In addition, stochastic events, like viral mutation and integration, as well as heritable host susceptibilities and immune deficiencies are also implicated in tumorigenesis. A more contemporary view of tumor biology highlights the importance of evolutionary forces that select for phenotypes better adapted to a complex and changing environment. Given the challenges of prioritizing singular mechanistic causes, it may be necessary to integrate concepts from evolutionary theory and systems biology to better understand viral cancer-driving forces. Here, we propose that viral infection provides a biological “entropy” that increases genetic variation and phenotypic plasticity, accelerating the main driving forces of cancer cell evolution. Viruses can also influence the evolutionary selection criteria by altering the tumor microenvironment and immune signaling. Utilizing concepts from cancer cell evolution, population genetics, thermodynamics, and systems biology may provide new perspectives on viral oncogenesis and identify novel therapeutic strategies for treating viruses and cancer.
Collapse
Affiliation(s)
- Italo Tempera
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, PA, United States
| | - Paul M Lieberman
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, PA, United States
| |
Collapse
|