1
|
Snoeck S, Johanndrees O, Nürnberger T, Zipfel C. Plant pattern recognition receptors: from evolutionary insight to engineering. Nat Rev Genet 2025; 26:268-278. [PMID: 39528738 DOI: 10.1038/s41576-024-00793-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
The plant immune system relies on germline-encoded pattern recognition receptors (PRRs) that sense foreign and plant-derived molecular patterns, and signal health threats. Genomic and pangenomic data sets provide valuable insights into the evolution of PRRs and their molecular triggers, which is furthering our understanding of plant-pathogen co-evolution and convergent evolution. Moreover, in silico and in vivo methods of PRR identification have accelerated the characterization of receptor-ligand complexes, and advances in protein structure prediction algorithms are revealing novel PRR sensor functions. Harnessing these recent advances to engineer PRRs presents an opportunity to enhance plant disease resistance against a broad spectrum of pathogens, enabling more sustainable agricultural practices. This Review summarizes both established and innovative approaches to leverage genomic data and translate resulting evolutionary insights into engineering PRR recognition specificities.
Collapse
Affiliation(s)
- Simon Snoeck
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Oliver Johanndrees
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Thorsten Nürnberger
- Center of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Cyril Zipfel
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland.
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.
| |
Collapse
|
2
|
Ordon J, Logemann E, Maier LP, Lee T, Dahms E, Oosterwijk A, Flores-Uribe J, Miyauchi S, Paoli L, Stolze SC, Nakagami H, Felix G, Garrido-Oter R, Ma KW, Schulze-Lefert P. Conserved immunomodulation and variation in host association by Xanthomonadales commensals in Arabidopsis root microbiota. NATURE PLANTS 2025; 11:612-631. [PMID: 39972185 PMCID: PMC11928319 DOI: 10.1038/s41477-025-01918-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/14/2025] [Indexed: 02/21/2025]
Abstract
Suppression of chronic Arabidopsis immune responses is a widespread but typically strain-specific trait across the major bacterial lineages of the plant microbiota. We show by phylogenetic analysis and in planta associations with representative strains that immunomodulation is a highly conserved, ancestral trait across Xanthomonadales, and preceded specialization of some of these bacteria as host-adapted pathogens. Rhodanobacter R179 activates immune responses, yet root transcriptomics suggest this commensal evades host immune perception upon prolonged association. R179 camouflage likely results from combined activities of two transporter complexes (dssAB) and the selective elimination of immunogenic peptides derived from all partners. The ability of R179 to mask itself and other commensals from the plant immune system is consistent with a convergence of distinct root transcriptomes triggered by immunosuppressive or non-suppressive synthetic microbiota upon R179 co-inoculation. Immunomodulation through dssAB provided R179 with a competitive advantage in synthetic communities in the root compartment. We propose that extensive immunomodulation by Xanthomonadales is related to their adaptation to terrestrial habitats and might have contributed to variation in strain-specific root association, which together accounts for their prominent role in plant microbiota establishment.
Collapse
Affiliation(s)
- Jana Ordon
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Elke Logemann
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Louis-Philippe Maier
- Center for Plant Molecular Biology, University Tuebingen, Tuebingen, Germany
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Tak Lee
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Eik Dahms
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Regional Computing Centre, University of Cologne, Cologne, Germany
| | - Anniek Oosterwijk
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Jose Flores-Uribe
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Shingo Miyauchi
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Lucas Paoli
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sara Christina Stolze
- Protein Mass Spectrometry Group, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Hirofumi Nakagami
- Protein Mass Spectrometry Group, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Georg Felix
- Center for Plant Molecular Biology, University Tuebingen, Tuebingen, Germany
| | - Ruben Garrido-Oter
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Cluster of Excellence on Plant Sciences, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Ka-Wai Ma
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan.
| | - Paul Schulze-Lefert
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
- Cluster of Excellence on Plant Sciences, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
| |
Collapse
|
3
|
Ma C, Liu W, Du X, Zhao C, Tian R, Li R, Yao C, Huang L. The flavonoid metabolic pathway genes Ac4CL1, Ac4CL3 and AcHCT1 positively regulate the kiwifruit immune response to Pseudomonas syringae pv. actinidiae. PLANT MOLECULAR BIOLOGY 2025; 115:21. [PMID: 39821123 DOI: 10.1007/s11103-024-01546-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/12/2024] [Indexed: 01/19/2025]
Abstract
Psa primarily utilises the type III secretion system (T3SS) to deliver effector proteins (T3Es) into host cells, thereby regulating host immune responses. However, the mechanism by which kiwifruit responds to T3SS remains unclear. To elucidate the molecular reaction of kiwifruit plants to Psa infection, M228 and mutant M228△hrcS strains were employed to inoculate Actinidia chinensis var. chinensis for performing comparative transcriptional and metabolomic analyses. Transcriptome analysis identified 973 differentially expressed genes (DEGs) related to flavonoid synthesis, pathogen interaction, and hormone signaling pathways during the critical period of Psa infection at 48 h post-inoculation. In the subsequent metabolomic analysis, flavonoid-related differential metabolites were significantly enriched after the loss of T3SS.Through multi-omics analysis, 22 differentially expressed genes related to flavonoid biosynthesis were identified. Finally, it was discovered that the transient overexpression of 3 genes significantly enhanced kiwifruit resistance to Psa. qRT-PCR analysis indicated that Ac4CL1, Ac4CL3 and AcHCT1 promote host resistance to disease, while Ac4CL3 negatively regulates host resistance to Psa. These findings enrich the plant immune regulation network involved in the interaction between kiwifruit and Psa, providing functional genes and directions with potential application for breeding kiwifruit resistance to canker disease.
Collapse
Affiliation(s)
- Chao Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Wei Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Xiaofei Du
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Chao Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Runze Tian
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Rui Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Chenxiao Yao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Lili Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Plant Protection, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
4
|
Keppler A, Roulier M, Pfeilmeier S, Petti GC, Sintsova A, Maier BA, Bortfeld-Miller M, Sunagawa S, Zipfel C, Vorholt JA. Plant microbiota feedbacks through dose-responsive expression of general non-self response genes. NATURE PLANTS 2025; 11:74-89. [PMID: 39627368 PMCID: PMC11757152 DOI: 10.1038/s41477-024-01856-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/22/2024] [Indexed: 01/25/2025]
Abstract
The ability of plants to perceive and react to biotic and abiotic stresses is critical for their health. We recently identified a core set of genes consistently induced by members of the leaf microbiota, termed general non-self response (GNSR) genes. Here we show that GNSR components conversely impact leaf microbiota composition. Specific strains that benefited from this altered assembly triggered strong plant responses, suggesting that the GNSR is a dynamic system that modulates colonization by certain strains. Examination of the GNSR to live and inactivated bacteria revealed that bacterial abundance, cellular composition and exposure time collectively determine the extent of the host response. We link the GNSR to pattern-triggered immunity, as diverse microbe- or danger-associated molecular patterns cause dynamic GNSR gene expression. Our findings suggest that the GNSR is the result of a dose-responsive perception and signalling system that feeds back to the leaf microbiota and contributes to the intricate balance of plant-microbiome interactions.
Collapse
Affiliation(s)
| | | | | | | | - Anna Sintsova
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | | | | | | | - Cyril Zipfel
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
- Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | | |
Collapse
|
5
|
Entila F, Tsuda K. Taming of the microbial beasts: Plant immunity tethers potentially pathogenic microbiota members. Bioessays 2025; 47:e2400171. [PMID: 39404753 DOI: 10.1002/bies.202400171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 12/22/2024]
Abstract
Plants are in intimate association with taxonomically structured microbial communities called the plant microbiota. There is growing evidence that the plant microbiota contributes to the holistic performance and general health of plants, especially under unfavorable situations. Despite the attached benefits, surprisingly, the plant microbiota in nature also includes potentially pathogenic strains, signifying that the plant hosts have tight control over these microbes. Despite the conceivable role of plant immunity in regulating its microbiota, we lack a complete understanding of its role in governing the assembly, maintenance, and function of the plant microbiota. Here, we highlight the recent progress on the mechanistic relevance of host immunity in orchestrating plant-microbiota dialogues and discuss the pluses and perils of these microbial assemblies.
Collapse
Affiliation(s)
- Frederickson Entila
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Kenichi Tsuda
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- Shenzhen Branch Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
| |
Collapse
|
6
|
Eastman S, Jiang T, Ficco K, Liao C, Jones B, Wen S, Olivas Biddle Y, Eyceoz A, Yatsishin I, Naumann TA, Conway JM. A type II secreted subtilase from commensal rhizobacteria cleaves immune elicitor peptides and suppresses flg22-induced immune activation. Cell Rep 2024; 43:115063. [PMID: 39673709 DOI: 10.1016/j.celrep.2024.115063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/02/2024] [Accepted: 11/21/2024] [Indexed: 12/16/2024] Open
Abstract
Plant roots grow in association with a community of microorganisms collectively known as the rhizosphere microbiome. Immune activation in response to elicitors like the flagellin-derived epitope flg22 restricts bacteria on plant roots but also inhibits plant growth. Some commensal root-associated bacteria are capable of suppressing the plant immune response to elicitors. In this study, we investigated the ability of 165 root-associated bacteria to suppress flg22-induced immune activation and growth restriction. We demonstrate that a type II secreted subtilase, which we term immunosuppressive subtilase A (IssA), from Dyella japonica strain MF79 cleaves the immune elicitor peptide flg22 and suppresses immune activation. IssA homologs are found in other plant-associated commensals, with particularly high conservation in the order Xanthomonadales. This represents a novel mechanism by which commensal microbes modulate flg22-induced immunity in the rhizosphere microbiome.
Collapse
Affiliation(s)
- Samuel Eastman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Ting Jiang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Kaeli Ficco
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Chao Liao
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Britley Jones
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Sarina Wen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Yvette Olivas Biddle
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Aya Eyceoz
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Ilya Yatsishin
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Todd A Naumann
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, Peoria, IL 61604, USA
| | - Jonathan M Conway
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA; High Meadows Environmental Institute, Princeton University, Princeton, NJ 08544, USA; Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
7
|
Li T, Moreno-Pérez A, Coaker G. Plant Pattern recognition receptors: Exploring their evolution, diversification, and spatiotemporal regulation. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102631. [PMID: 39303367 DOI: 10.1016/j.pbi.2024.102631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/02/2024] [Accepted: 08/29/2024] [Indexed: 09/22/2024]
Abstract
Plant genomes possess hundreds of candidate surface localized receptors capable of recognizing microbial components or modified-self molecules. Surface-localized pattern recognition receptors (PRRs) can recognize proteins, peptides, or structural microbial components as nonself, triggering complex signaling pathways leading to defense. PRRs possess diverse extracellular domains capable of recognizing epitopes, lipids, glycans and polysaccharides. Recent work highlights advances in our understanding of the diversity and evolution of PRRs recognizing pathogen components. We also discuss PRR functional diversification, pathogen strategies to evade detection, and the role of tissue and age-related resistance for effective plant defense.
Collapse
Affiliation(s)
- Tianrun Li
- Department of Plant Pathology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Alba Moreno-Pérez
- Department of Plant Pathology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
8
|
Zhang L, Yu G, Xue H, Li M, Lozano-Durán R, Macho AP. Ralstonia solanacearum Alters Root Developmental Programmes in Auxin-Dependent and -Independent Manners. MOLECULAR PLANT PATHOLOGY 2024; 25:e70043. [PMID: 39707703 DOI: 10.1111/mpp.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/10/2024] [Accepted: 12/02/2024] [Indexed: 12/23/2024]
Abstract
Microbial pathogens and other parasites can modify the development of their hosts, either as a target or a side effect of their virulence activities. The plant-pathogenic bacterium Ralstonia solanacearum, causal agent of the devastating bacterial wilt disease, is a soilborne microbe that invades host plants through their roots and later proliferates in xylem vessels. In this work, we studied the early stages of R. solanacearum infection in the model plant Arabidopsis thaliana, using an in vitro infection system. In addition to the previously reported inhibition of primary root length and increase in root hair formation at the root tip, we observed an earlier xylem differentiation during R. solanacearum infection that occurs in a HrpG-dependent manner, suggesting that the pathogen actively promotes the development of the vascular system upon invasion of the root. Moreover, we found that the phytohormone auxin, of which the accumulation is promoted by the bacterial infection, is required for the R. solanacearum-triggered induction of root hair formation but not earlier xylem differentiation. Altogether, our results shed light on the capacity of R. solanacearum to induce alterations of root developmental pathways and on the role of auxin in this process.
Collapse
Affiliation(s)
- Lu Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Gang Yu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Xue
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Meng Li
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Rosa Lozano-Durán
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University, Tübingen, Germany
| | - Alberto P Macho
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
9
|
Lee DH, Lee HS, Choi MS, Parys K, Honda K, Kondoh Y, Lee JM, Edelbacher N, Heo G, Enugutti B, Osada H, Shirasu K, Belkhadir Y. Reprogramming of flagellin receptor responses with surrogate ligands. Nat Commun 2024; 15:9811. [PMID: 39532858 PMCID: PMC11557590 DOI: 10.1038/s41467-024-54271-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Receptor kinase (RK) families process information from small molecules, short peptides, or glycan ligands to regulate core cellular pathways in plants. To date, whether individual plant RKs are capable of processing signals from distinct types of ligands remains largely unexplored. Addressing this requires the discovery of structurally unrelated ligands that engage the same receptor. Here, we focus on FLAGELLIN-SENSING 2 (FLS2), an RK that senses a peptide of bacterial flagellin to activate antibacterial immunity in Arabidopsis. We interrogate >20,000 potential interactions between small molecules and the sensory domain of FLS2 using a large-scale reverse chemical screen. We discover two small molecules that interact with FLS2 in atypical ways. The surrogate ligands weakly activate the receptor to drive a functional antibacterial response channeled via unusual gene expression programs. Thus, chemical probes acting as biased ligands can be exploited to discover unexpected levels of output flexibility in RKs signal transduction.
Collapse
Grants
- I 3654 Austrian Science Fund (Fonds zur Förderung der Wissenschaftlichen Forschung)
- LS17-047 Vienna Science and Technology Fund (Wiener Wissenschafts-, Forschungs- und Technologiefonds)
- NRF-2021R1A6A3A03039464 National Research Foundation of Korea (NRF)
- JP21H04720 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP20H05909 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP22H00364 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
Collapse
Affiliation(s)
- Du-Hwa Lee
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria.
- Department of Chemistry, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria.
| | - Ho-Seok Lee
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Korea
- Department of Biology, Kyung Hee University, Seoul, Korea
| | - Min-Soo Choi
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Katarzyna Parys
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
- Faculty of Biology, Genetics, University of Munich (LMU), Martinsried, Germany
| | - Kaori Honda
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Yasumitsu Kondoh
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Jung-Min Lee
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Natalie Edelbacher
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Geon Heo
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Balaji Enugutti
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Hiroyuki Osada
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- University of Shizuoka, Shizuoka, Japan
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Youssef Belkhadir
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria.
- Douar Ifraden, Residence Taghazout Ocean #13, Taghazout, Morocco.
| |
Collapse
|
10
|
Trinh J, Tran M, Coaker G. The perception and evolution of flagellin, cold shock protein and elongation factor Tu from vector-borne bacterial plant pathogens. MOLECULAR PLANT PATHOLOGY 2024; 25:e70019. [PMID: 39460504 PMCID: PMC11512079 DOI: 10.1111/mpp.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 10/28/2024]
Abstract
Vector-borne bacterial pathogens cause devastating plant diseases that cost billions of dollars in crop losses worldwide. These pathogens have evolved to be host- and vector-dependent, resulting in a reduced genome size compared to their free-living relatives. All known vector-borne bacterial plant pathogens belong to four different genera: 'Candidatus Liberibacter', 'Candidatus Phytoplasma', Spiroplasma and Xylella. To protect themselves against pathogens, plants have evolved pattern recognition receptors that can detect conserved pathogen features as non-self and mount an immune response. To gain an understanding of how vector-borne pathogen features are perceived in plants, we investigated three proteinaceous features derived from cold shock protein (csp22), flagellin (flg22) and elongation factor Tu (elf18) from vector-borne bacterial pathogens as well as their closest free-living relatives. In general, vector-borne pathogens have fewer copies of genes encoding flagellin and cold shock protein compared to their closest free-living relatives. Furthermore, epitopes from vector-borne pathogens were less likely to be immunogenic compared to their free-living counterparts. Most Liberibacter csp22 and elf18 epitopes do not trigger plant immune responses in tomato or Arabidopsis. Interestingly, csp22 from the citrus pathogen 'Candidatus Liberibacter asiaticus' triggers immune responses in solanaceous plants, while csp22 from the solanaceous pathogen 'Candidatus Liberibacter solanacearum' does not. Our findings suggest that vector-borne plant pathogenic bacteria evolved to evade host recognition.
Collapse
Affiliation(s)
- Jessica Trinh
- Department of Plant PathologyUniversity of California, DavisDavisCaliforniaUSA
| | - Megann Tran
- Department of Plant PathologyUniversity of California, DavisDavisCaliforniaUSA
| | - Gitta Coaker
- Department of Plant PathologyUniversity of California, DavisDavisCaliforniaUSA
| |
Collapse
|
11
|
Stevens DM, Moreno-Pérez A, Weisberg AJ, Ramsing C, Fliegmann J, Zhang N, Madrigal M, Martin G, Steinbrenner A, Felix G, Coaker G. Natural variation of immune epitopes reveals intrabacterial antagonism. Proc Natl Acad Sci U S A 2024; 121:e2319499121. [PMID: 38814867 PMCID: PMC11161748 DOI: 10.1073/pnas.2319499121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/01/2024] [Indexed: 06/01/2024] Open
Abstract
Plants and animals detect biomolecules termed microbe-associated molecular patterns (MAMPs) and induce immunity. Agricultural production is severely impacted by pathogens which can be controlled by transferring immune receptors. However, most studies use a single MAMP epitope and the impact of diverse multicopy MAMPs on immune induction is unknown. Here, we characterized the epitope landscape from five proteinaceous MAMPs across 4,228 plant-associated bacterial genomes. Despite the diversity sampled, natural variation was constrained and experimentally testable. Immune perception in both Arabidopsis and tomato depended on both epitope sequence and copy number variation. For example, Elongation Factor Tu is predominantly single copy, and 92% of its epitopes are immunogenic. Conversely, 99.9% of bacterial genomes contain multiple cold shock proteins, and 46% carry a nonimmunogenic form. We uncovered a mechanism for immune evasion, intrabacterial antagonism, where a nonimmunogenic cold shock protein blocks perception of immunogenic forms encoded in the same genome. These data will lay the foundation for immune receptor deployment and engineering based on natural variation.
Collapse
Affiliation(s)
- Danielle M. Stevens
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA95616
- Department of Plant Pathology, University of California, Davis, CA95616
| | - Alba Moreno-Pérez
- Department of Plant Pathology, University of California, Davis, CA95616
| | - Alexandra J. Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR97331
| | - Charis Ramsing
- Department of Plant Pathology, University of California, Davis, CA95616
| | - Judith Fliegmann
- Center for Plant Molecular Biology, University of Tübingen, Tübingen72074, Germany
| | - Ning Zhang
- Boyce Thompson Institute for Plant Research, Ithaca, NY14853
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY14853
| | - Melanie Madrigal
- Department of Plant Pathology, University of California, Davis, CA95616
| | - Gregory Martin
- Boyce Thompson Institute for Plant Research, Ithaca, NY14853
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY14853
| | | | - Georg Felix
- Center for Plant Molecular Biology, University of Tübingen, Tübingen72074, Germany
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, CA95616
| |
Collapse
|
12
|
Nakano RT, Shimasaki T. Long-Term Consequences of PTI Activation and Its Manipulation by Root-Associated Microbiota. PLANT & CELL PHYSIOLOGY 2024; 65:681-693. [PMID: 38549511 DOI: 10.1093/pcp/pcae033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/28/2024] [Accepted: 03/27/2024] [Indexed: 05/31/2024]
Abstract
In nature, plants are constantly colonized by a massive diversity of microbes engaged in mutualistic, pathogenic or commensal relationships with the host. Molecular patterns present in these microbes activate pattern-triggered immunity (PTI), which detects microbes in the apoplast or at the tissue surface. Whether and how PTI distinguishes among soil-borne pathogens, opportunistic pathogens, and commensal microbes within the soil microbiota remains unclear. PTI is a multimodal series of molecular events initiated by pattern perception, such as Ca2+ influx, reactive oxygen burst, and extensive transcriptional and metabolic reprogramming. These short-term responses may manifest within minutes to hours, while the long-term consequences of chronic PTI activation persist for days to weeks. Chronic activation of PTI is detrimental to plant growth, so plants need to coordinate growth and defense depending on the surrounding biotic and abiotic environments. Recent studies have demonstrated that root-associated commensal microbes can activate or suppress immune responses to variable extents, clearly pointing to the role of PTI in root-microbiota interactions. However, the molecular mechanisms by which root commensals interfere with root immunity and root immunity modulates microbial behavior remain largely elusive. Here, with a focus on the difference between short-term and long-term PTI responses, we summarize what is known about microbial interference with host PTI, especially in the context of root microbiota. We emphasize some missing pieces that remain to be characterized to promote the ultimate understanding of the role of plant immunity in root-microbiota interactions.
Collapse
|
13
|
Matsui S, Noda S, Kuwata K, Nomoto M, Tada Y, Shinohara H, Matsubayashi Y. Arabidopsis SBT5.2 and SBT1.7 subtilases mediate C-terminal cleavage of flg22 epitope from bacterial flagellin. Nat Commun 2024; 15:3762. [PMID: 38704378 PMCID: PMC11069567 DOI: 10.1038/s41467-024-48108-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 04/17/2024] [Indexed: 05/06/2024] Open
Abstract
Plants initiate specific defense responses by recognizing conserved epitope peptides within the flagellin proteins derived from bacteria. Proteolytic cleavage of epitope peptides from flagellin by plant apoplastic proteases is thought to be crucial for the perception of the epitope by the plant receptor. However, the identity of the plant proteases involved in this process remains unknown. Here, we establish an efficient identification system for the target proteases in Arabidopsis apoplastic fluid; the method employs native two-dimensional electrophoresis followed by an in-gel proteolytic assay using a fluorescence-quenching peptide substrate. We designed a substrate to specifically detect proteolytic activity at the C-terminus of the flg22 epitope in flagellin and identified two plant subtilases, SBT5.2 and SBT1.7, as specific proteases responsible for the C-terminal cleavage of flg22. In the apoplastic fluid of Arabidopsis mutant plants deficient in these two proteases, we observe a decrease in the C-terminal cleavage of the flg22 domain from flagellin, leading to a decrease in the efficiency of flg22 epitope liberation. Consequently, defensive reactive oxygen species (ROS) production is delayed in sbt5.2 sbt1.7 double-mutant leaf disks compared to wild type following flagellin exposure.
Collapse
Affiliation(s)
- Sayaka Matsui
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Saki Noda
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Mika Nomoto
- Center for Gene Research, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Yasuomi Tada
- Center for Gene Research, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Hidefumi Shinohara
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Eiheiji, 910-1195, Japan
| | - Yoshikatsu Matsubayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan.
| |
Collapse
|
14
|
Chen C, van der Hoorn RAL, Buscaill P. Releasing hidden MAMPs from precursor proteins in plants. TRENDS IN PLANT SCIENCE 2024; 29:428-436. [PMID: 37945394 DOI: 10.1016/j.tplants.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 11/12/2023]
Abstract
The recognition of pathogens by plants at the cell surface is crucial for activating plant immunity. Plants employ pattern recognition receptors (PRRs) to detect microbe-associated molecular patterns (MAMPs). However, our knowledge of the release of peptide MAMPs from their precursor proteins is very limited. Here, we explore seven protein precursors of well-known MAMP peptides and discuss the likelihood of processing being required for their recognition based on structural models and public knowledge. This analysis indicates the existence of multiple extracellular events that are likely pivotal for pathogen perception but remain to be uncovered.
Collapse
Affiliation(s)
- Changlong Chen
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China; The Plant Chemetics Laboratory, Department of Biology, University of Oxford, Oxford, UK
| | | | - Pierre Buscaill
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Stevens DM, Moreno-Pérez A, Weisberg AJ, Ramsing C, Fliegmann J, Zhang N, Madrigal M, Martin G, Steinbrenner A, Felix G, Coaker G. Natural variation of immune epitopes reveals intrabacterial antagonism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.21.558511. [PMID: 37790530 PMCID: PMC10543004 DOI: 10.1101/2023.09.21.558511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Plants and animals detect biomolecules termed Microbe-Associated Molecular Patterns (MAMPs) and induce immunity. Agricultural production is severely impacted by pathogens which can be controlled by transferring immune receptors. However, most studies use a single MAMP epitope and the impact of diverse multi-copy MAMPs on immune induction is unknown. Here we characterized the epitope landscape from five proteinaceous MAMPs across 4,228 plant-associated bacterial genomes. Despite the diversity sampled, natural variation was constrained and experimentally testable. Immune perception in both Arabidopsis and tomato depended on both epitope sequence and copy number variation. For example, Elongation Factor Tu is predominantly single copy and 92% of its epitopes are immunogenic. Conversely, 99.9% of bacterial genomes contain multiple Cold Shock Proteins and 46% carry a non-immunogenic form. We uncovered a new mechanism for immune evasion, intrabacterial antagonism, where a non-immunogenic Cold Shock Protein blocks perception of immunogenic forms encoded in the same genome. These data will lay the foundation for immune receptor deployment and engineering based on natural variation.
Collapse
Affiliation(s)
- Danielle M. Stevens
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, Davis CA 95616, USA
- Department of Plant Pathology, University of California, Davis, Davis CA 95616, USA
| | - Alba Moreno-Pérez
- Department of Plant Pathology, University of California, Davis, Davis CA 95616, USA
| | - Alexandra J. Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis OR, USA
| | - Charis Ramsing
- Department of Plant Pathology, University of California, Davis, Davis CA 95616, USA
| | - Judith Fliegmann
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72074 Tübingen, Germany
| | - Ning Zhang
- Boyce Thompson Institute for Plant Research, Ithaca NY, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca NY, USA
| | - Melanie Madrigal
- Department of Plant Pathology, University of California, Davis, Davis CA 95616, USA
| | - Gregory Martin
- Boyce Thompson Institute for Plant Research, Ithaca NY, USA
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca NY, USA
| | - Adam Steinbrenner
- University of Washington, Department of Biology, Box 351800, Seattle, WA, 98195, USA
| | - Georg Felix
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72074 Tübingen, Germany
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, Davis CA 95616, USA
| |
Collapse
|
16
|
Liu Y, Xu Z, Chen L, Xun W, Shu X, Chen Y, Sun X, Wang Z, Ren Y, Shen Q, Zhang R. Root colonization by beneficial rhizobacteria. FEMS Microbiol Rev 2024; 48:fuad066. [PMID: 38093453 PMCID: PMC10786197 DOI: 10.1093/femsre/fuad066] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024] Open
Abstract
Rhizosphere microbes play critical roles for plant's growth and health. Among them, the beneficial rhizobacteria have the potential to be developed as the biofertilizer or bioinoculants for sustaining the agricultural development. The efficient rhizosphere colonization of these rhizobacteria is a prerequisite for exerting their plant beneficial functions, but the colonizing process and underlying mechanisms have not been thoroughly reviewed, especially for the nonsymbiotic beneficial rhizobacteria. This review systematically analyzed the root colonizing process of the nonsymbiotic rhizobacteria and compared it with that of the symbiotic and pathogenic bacteria. This review also highlighted the approaches to improve the root colonization efficiency and proposed to study the rhizobacterial colonization from a holistic perspective of the rhizosphere microbiome under more natural conditions.
Collapse
Affiliation(s)
- Yunpeng Liu
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China
| | - Zhihui Xu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Lin Chen
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, 1 Shuizha West Road, Beijing 102300, P.R. China
| | - Weibing Xun
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Xia Shu
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, 1 Shizishan Street, Wuhan, P.R. China
| | - Yu Chen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Xinli Sun
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Zhengqi Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Yi Ren
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| | - Ruifu Zhang
- State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, The Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, P.R. China
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 6 Tongwei Road, Nanjing 210095, P.R. China
| |
Collapse
|
17
|
Entila F, Han X, Mine A, Schulze-Lefert P, Tsuda K. Commensal lifestyle regulated by a negative feedback loop between Arabidopsis ROS and the bacterial T2SS. Nat Commun 2024; 15:456. [PMID: 38212332 PMCID: PMC10784570 DOI: 10.1038/s41467-024-44724-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024] Open
Abstract
Despite the plant health-promoting effects of plant microbiota, these assemblages also comprise potentially detrimental microbes. How plant immunity controls its microbiota to promote plant health under these conditions remains largely unknown. We find that commensal bacteria isolated from healthy Arabidopsis plants trigger diverse patterns of reactive oxygen species (ROS) production dependent on the immune receptors and completely on the NADPH oxidase RBOHD that selectively inhibited specific commensals, notably Xanthomonas L148. Through random mutagenesis, we find that L148 gspE, encoding a type II secretion system (T2SS) component, is required for the damaging effects of Xanthomonas L148 on rbohD mutant plants. In planta bacterial transcriptomics reveals that RBOHD suppresses most T2SS gene expression including gspE. L148 colonization protected plants against a bacterial pathogen, when gspE was inhibited by ROS or mutation. Thus, a negative feedback loop between Arabidopsis ROS and the bacterial T2SS tames a potentially detrimental leaf commensal and turns it into a microbe beneficial to the host.
Collapse
Affiliation(s)
- Frederickson Entila
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, Cologne, 50829, Germany
| | - Xiaowei Han
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518120, China
| | - Akira Mine
- JST PRESTO, Kawaguchi-shi, Saitama, 332-0012, Japan
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Paul Schulze-Lefert
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, Cologne, 50829, Germany
| | - Kenichi Tsuda
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, Cologne, 50829, Germany.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070, China.
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, 518120, China.
| |
Collapse
|
18
|
Jian Y, Gong D, Wang Z, Liu L, He J, Han X, Tsuda K. How plants manage pathogen infection. EMBO Rep 2024; 25:31-44. [PMID: 38177909 PMCID: PMC10897293 DOI: 10.1038/s44319-023-00023-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/27/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
To combat microbial pathogens, plants have evolved specific immune responses that can be divided into three essential steps: microbial recognition by immune receptors, signal transduction within plant cells, and immune execution directly suppressing pathogens. During the past three decades, many plant immune receptors and signaling components and their mode of action have been revealed, markedly advancing our understanding of the first two steps. Activation of immune signaling results in physical and chemical actions that actually stop pathogen infection. Nevertheless, this third step of plant immunity is under explored. In addition to immune execution by plants, recent evidence suggests that the plant microbiota, which is considered an additional layer of the plant immune system, also plays a critical role in direct pathogen suppression. In this review, we summarize the current understanding of how plant immunity as well as microbiota control pathogen growth and behavior and highlight outstanding questions that need to be answered.
Collapse
Affiliation(s)
- Yinan Jian
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Dianming Gong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China
| | - Zhe Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Lijun Liu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Jingjing He
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Xiaowei Han
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Kenichi Tsuda
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, 430070, Wuhan, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China.
| |
Collapse
|
19
|
Webster SS, Guerinot ML. How plants iron out the competing interests of growth and defence. Nature 2024; 625:671-672. [PMID: 38200336 DOI: 10.1038/d41586-023-03995-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
|
20
|
Hou S, Rodrigues O, Liu Z, Shan L, He P. Small holes, big impact: Stomata in plant-pathogen-climate epic trifecta. MOLECULAR PLANT 2024; 17:26-49. [PMID: 38041402 PMCID: PMC10872522 DOI: 10.1016/j.molp.2023.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/09/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
The regulation of stomatal aperture opening and closure represents an evolutionary battle between plants and pathogens, characterized by adaptive strategies that influence both plant resistance and pathogen virulence. The ongoing climate change introduces further complexity, affecting pathogen invasion and host immunity. This review delves into recent advances on our understanding of the mechanisms governing immunity-related stomatal movement and patterning with an emphasis on the regulation of stomatal opening and closure dynamics by pathogen patterns and host phytocytokines. In addition, the review explores how climate changes impact plant-pathogen interactions by modulating stomatal behavior. In light of the pressing challenges associated with food security and the unpredictable nature of climate changes, future research in this field, which includes the investigation of spatiotemporal regulation and engineering of stomatal immunity, emerges as a promising avenue for enhancing crop resilience and contributing to climate control strategies.
Collapse
Affiliation(s)
- Shuguo Hou
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong 261325, China; School of Municipal & Environmental Engineering, Shandong Jianzhu University, Jinan, Shandong 250101, China.
| | - Olivier Rodrigues
- Unité de Recherche Physiologie, Pathologie et Génétique Végétales, Université de Toulouse Midi-Pyrénées, INP-PURPAN, 31076 Toulouse, France
| | - Zunyong Liu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Libo Shan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ping He
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
21
|
Oldstone-Jackson C, Huang F, Bergelson J. Microbe-associated molecular pattern recognition receptors have little effect on endophytic Arabidopsis thaliana microbiome assembly in the field. FRONTIERS IN PLANT SCIENCE 2023; 14:1276472. [PMID: 38023837 PMCID: PMC10663345 DOI: 10.3389/fpls.2023.1276472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023]
Abstract
Plant microbiome structure affects plant health and productivity. A limited subset of environmental microbes successfully establishes within plant tissues, but the forces underlying this selectivity remain poorly characterized. Transmembrane pattern recognition receptors (PRRs), used by plants to detect microbe-associated molecular patterns (MAMPs), are strong candidates for achieving this selectivity because PRRs can potentially interact with many members of the microbiome. Indeed, MAMPs found in many microbial taxa, including beneficials and commensals, can instigate a robust immune response that affects microbial growth. Surprisingly, we found that MAMP-detecting PRRs have little effect on endophytic bacterial and fungal microbiome structure in the field. We compared the microbiomes of four PRR knockout lines of Arabidopsis thaliana to wild-type plants in multiple tissue types over several developmental stages and detected only subtle shifts in fungal, but not bacterial, β-diversity in one of the four PRR mutants. In one developmental stage, lore mutants had slightly altered fungal β-diversity, indicating that LORE may be involved in plant-fungal interactions in addition to its known role in detecting certain bacterial lipids. No other effects of PRRs on α-diversity, microbiome variability, within-individual homogeneity, or microbial load were found. The general lack of effect suggests that individual MAMP-detecting PRRs are not critical in shaping the endophytic plant microbiome. Rather, we suggest that MAMP-detecting PRRs must either act in concert and/or are individually maintained through pleiotropic effects or interactions with coevolved mutualists or pathogens. Although unexpected, these results offer insights into the role of MAMP-detecting PRRs in plant-microbe interactions and help direct future efforts to uncover host genetic elements that control plant microbiome assembly.
Collapse
Affiliation(s)
| | - Feng Huang
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, United States
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Joy Bergelson
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, United States
- Center for Genomics and Systems Biology, Department of Biology, College of Arts and Science, New York University, New York, NY, United States
| |
Collapse
|
22
|
Shu LJ, Kahlon PS, Ranf S. The power of patterns: new insights into pattern-triggered immunity. THE NEW PHYTOLOGIST 2023; 240:960-967. [PMID: 37525301 DOI: 10.1111/nph.19148] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/16/2023] [Indexed: 08/02/2023]
Abstract
The plant immune system features numerous immune receptors localized on the cell surface to monitor the apoplastic space for danger signals from a broad range of plant colonizers. Recent discoveries shed light on the enormous complexity of molecular signals sensed by these receptors, how they are generated and removed to maintain cellular homeostasis and immunocompetence, and how they are shaped by host-imposed evolutionary constraints. Fine-tuning receptor sensing mechanisms at the molecular, cellular and physiological level is critical for maintaining a robust but adaptive host barrier to commensal, pathogenic, and symbiotic colonizers alike. These receptors are at the core of any plant-colonizer interaction and hold great potential for engineering disease resistance and harnessing beneficial microbiota to keep crops healthy.
Collapse
Affiliation(s)
- Lin-Jie Shu
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, 85354, Freising-Weihenstephan, Germany
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland
| | - Parvinderdeep S Kahlon
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, 85354, Freising-Weihenstephan, Germany
| | - Stefanie Ranf
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, 85354, Freising-Weihenstephan, Germany
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland
| |
Collapse
|
23
|
Russ D, Fitzpatrick CR, Teixeira PJPL, Dangl JL. Deep discovery informs difficult deployment in plant microbiome science. Cell 2023; 186:4496-4513. [PMID: 37832524 DOI: 10.1016/j.cell.2023.08.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 10/15/2023]
Abstract
Plant-associated microbiota can extend plant immune system function, improve nutrient acquisition and availability, and alleviate abiotic stresses. Thus, naturally beneficial microbial therapeutics are enticing tools to improve plant productivity. The basic definition of plant microbiota across species and ecosystems, combined with the development of reductionist experimental models and the manipulation of plant phenotypes with microbes, has fueled interest in its translation to agriculture. However, the great majority of microbes exhibiting plant-productivity traits in the lab and greenhouse fail in the field. Therapeutic microbes must reach détente, the establishment of uneasy homeostasis, with the plant immune system, invade heterogeneous pre-established plant-associated communities, and persist in a new and potentially remodeled community. Environmental conditions can alter community structure and thus impact the engraftment of therapeutic microbes. We survey recent breakthroughs, challenges, and opportunities in translating beneficial microbes from the lab to the field.
Collapse
Affiliation(s)
- Dor Russ
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Connor R Fitzpatrick
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Paulo J P L Teixeira
- Department of Biological Sciences, "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, SP, Brazil
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
24
|
Man J, Harrington TA, Lally K, Bartlett ME. Asymmetric Evolution of Protein Domains in the Leucine-Rich Repeat Receptor-Like Kinase Family of Plant Signaling Proteins. Mol Biol Evol 2023; 40:msad220. [PMID: 37787619 PMCID: PMC10588794 DOI: 10.1093/molbev/msad220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/29/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023] Open
Abstract
The coding sequences of developmental genes are expected to be deeply conserved, with cis-regulatory change driving the modulation of gene function. In contrast, proteins with roles in defense are expected to evolve rapidly, in molecular arms races with pathogens. However, some gene families include both developmental and defense genes. In these families, does the tempo and mode of evolution differ between genes with divergent functions, despite shared ancestry and structure? The leucine-rich repeat receptor-like kinase (LRR-RLKs) protein family includes members with roles in plant development and defense, thus providing an ideal system for answering this question. LRR-RLKs are receptors that traverse plasma membranes. LRR domains bind extracellular ligands; RLK domains initiate intracellular signaling cascades in response to ligand binding. In LRR-RLKs with roles in defense, LRR domains evolve faster than RLK domains. To determine whether this asymmetry extends to LRR-RLKs that function primarily in development, we assessed evolutionary rates and tested for selection acting on 11 subfamilies of LRR-RLKs, using deeply sampled protein trees. To assess functional evolution, we performed heterologous complementation assays in Arabidopsis thaliana (Arabidopsis). We found that the LRR domains of all tested LRR-RLK proteins evolved faster than their cognate RLK domains. All tested subfamilies of LRR-RLKs had strikingly similar patterns of molecular evolution, despite divergent functions. Heterologous transformation experiments revealed that multiple mechanisms likely contribute to the evolution of LRR-RLK function, including escape from adaptive conflict. Our results indicate specific and distinct evolutionary pressures acting on LRR versus RLK domains, despite diverse organismal roles for LRR-RLK proteins.
Collapse
Affiliation(s)
- Jarrett Man
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01002, USA
| | - T A Harrington
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01002, USA
| | - Kyra Lally
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01002, USA
| | - Madelaine E Bartlett
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01002, USA
| |
Collapse
|
25
|
Chakraborty J. Microbiota and the plant immune system work together to defend against pathogens. Arch Microbiol 2023; 205:347. [PMID: 37778013 DOI: 10.1007/s00203-023-03684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/25/2023] [Accepted: 09/10/2023] [Indexed: 10/03/2023]
Abstract
Plants are exposed to a myriad of microorganisms, which can range from helpful bacteria to deadly disease-causing pathogens. The ability of plants to distinguish between helpful bacteria and dangerous pathogens allows them to continuously survive under challenging environments. The investigation of the modulation of plant immunity by beneficial microbes is critical to understand how they impact plant growth improvement and defense against invasive pathogens. Beneficial bacterial populations can produce significant impact on plant immune responses, including regulation of immune receptors activity, MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) activation, transcription factors, and reactive oxygen species (ROS) signaling. To establish themselves, beneficial bacterial populations likely reduce plant immunity. These bacteria help plants to recover from various stresses and resume a regular growth pattern after they have been established. Contrarily, pathogens prevent their colonization by releasing toxins into plant cells, which have the ability to control the local microbiota via as-yet-unidentified processes. Intense competition among microbial communities has been found to be advantageous for plant development, nutrient requirements, and activation of immune signaling. Therefore, to protect themselves from pathogens, plants may rely on the beneficial microbiota in their environment and intercommunity competition amongst microbial communities.
Collapse
Affiliation(s)
- Joydeep Chakraborty
- Tel Aviv University, School of Plant Sciences and Food Security, Tel-Aviv, Israel.
| |
Collapse
|
26
|
Rubio-Somoza I, Blázquez MA. Plant-pathogen interactions: The need to evolve to stay the same. Curr Biol 2023; 33:R902-R904. [PMID: 37699346 DOI: 10.1016/j.cub.2023.07.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Plants and microorganisms have a long-standing relationship involving mutual and continuous adaptations. A new study shows that several molecular tools plants use to recognize their pathogens were already present when plants colonized the land.
Collapse
Affiliation(s)
- Ignacio Rubio-Somoza
- Molecular Reprogramming and Evolution (MoRE) Lab, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB), Campus UAB, Carrer Vall Moronta, 08193 Barcelona, Spain.
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universitat Politècnica de València), C/Ingeniero Fausto Elio s/n, 46022 Valencia, Spain.
| |
Collapse
|
27
|
Mesny F, Hacquard S, Thomma BPHJ. Co-evolution within the plant holobiont drives host performance. EMBO Rep 2023; 24:e57455. [PMID: 37471099 PMCID: PMC10481671 DOI: 10.15252/embr.202357455] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023] Open
Abstract
Plants interact with a diversity of microorganisms that influence their growth and resilience, and they can therefore be considered as ecological entities, namely "plant holobionts," rather than as singular organisms. In a plant holobiont, the assembly of above- and belowground microbiota is ruled by host, microbial, and environmental factors. Upon microorganism perception, plants activate immune signaling resulting in the secretion of factors that modulate microbiota composition. Additionally, metabolic interdependencies and antagonism between microbes are driving forces for community assemblies. We argue that complex plant-microbe and intermicrobial interactions have been selected for during evolution and may promote the survival and fitness of plants and their associated microorganisms as holobionts. As part of this process, plants evolved metabolite-mediated strategies to selectively recruit beneficial microorganisms in their microbiota. Some of these microbiota members show host-adaptation, from which mutualism may rapidly arise. In the holobiont, microbiota members also co-evolved antagonistic activities that restrict proliferation of microbes with high pathogenic potential and can therefore prevent disease development. Co-evolution within holobionts thus ultimately drives plant performance.
Collapse
Affiliation(s)
- Fantin Mesny
- Institute for Plant SciencesUniversity of CologneCologneGermany
| | - Stéphane Hacquard
- Department of Plant Microbe InteractionsMax Planck Institute for Plant Breeding ResearchCologneGermany
- Cluster of Excellence on Plant Sciences (CEPLAS)CologneGermany
| | - Bart PHJ Thomma
- Institute for Plant SciencesUniversity of CologneCologneGermany
- Cluster of Excellence on Plant Sciences (CEPLAS)CologneGermany
| |
Collapse
|
28
|
Adero M, Tripathi JN, Oduor R, Zipfel C, Tripathi L. Transgenic expression of Arabidopsis ELONGATION FACTOR-TU RECEPTOR (AtEFR) gene in banana enhances resistance against Xanthomonas campestris pv. musacearum. PLoS One 2023; 18:e0290884. [PMID: 37656732 PMCID: PMC10473477 DOI: 10.1371/journal.pone.0290884] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/18/2023] [Indexed: 09/03/2023] Open
Abstract
Banana Xanthomonas wilt (BXW) caused by Xanthomonas campestris pv. musacearum (Xcm) is a severe bacterial disease affecting banana production in East and Central Africa, where banana is cultivated as a staple crop. Classical breeding of banana is challenging because the crop is clonally propagated and has limited genetic diversity. Thus, genetic engineering serves as a viable alternative for banana improvement. Studies have shown that transfer of the elongation factor Tu receptor gene (AtEFR) from Arabidopsis thaliana to other plant species can enhance resistance against bacterial diseases. However, AtEFR activity in banana and its efficacy against Xcm has not been demonstrated. In this study, transgenic events of banana (Musa acuminata) cultivar dwarf Cavendish expressing the AtEFR gene were generated and evaluated for resistance against Xcm under greenhouse conditions. The transgenic banana events were responsive to the EF-Tu-derived elf18 peptide and exhibited enhanced resistance to BXW disease compared to non-transgenic control plants. This study suggests that the functionality of AtEFR is retained in banana with the potential of enhancing resistance to BXW under field conditions.
Collapse
Affiliation(s)
- Mark Adero
- International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
- Kenyatta University, Nairobi, Kenya
| | | | | | - Cyril Zipfel
- Department of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Leena Tripathi
- International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
| |
Collapse
|
29
|
Janda M, Rybak K, Krassini L, Meng C, Feitosa-Junior O, Stigliano E, Szulc B, Sklenar J, Menke FL, Malone JG, Brachmann A, Klingl A, Ludwig C, Robatzek S. Biophysical and proteomic analyses of Pseudomonas syringae pv. tomato DC3000 extracellular vesicles suggest adaptive functions during plant infection. mBio 2023; 14:e0358922. [PMID: 37366628 PMCID: PMC10470744 DOI: 10.1128/mbio.03589-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/03/2023] [Indexed: 06/28/2023] Open
Abstract
Vesiculation is a process employed by Gram-negative bacteria to release extracellular vesicles (EVs) into the environment. EVs from pathogenic bacteria play functions in host immune modulation, elimination of host defenses, and acquisition of nutrients from the host. Here, we observed EV production of the bacterial speck disease causal agent, Pseudomonas syringae pv. tomato (Pto) DC3000, as outer membrane vesicle release. Mass spectrometry identified 369 proteins enriched in Pto DC3000 EVs. The EV samples contained known immunomodulatory proteins and could induce plant immune responses mediated by bacterial flagellin. Having identified two biomarkers for EV detection, we provide evidence for Pto DC3000 releasing EVs during plant infection. Bioinformatic analysis of the EV-enriched proteins suggests a role for EVs in antibiotic defense and iron acquisition. Thus, our data provide insights into the strategies this pathogen may use to develop in a plant environment. IMPORTANCE The release of extracellular vesicles (EVs) into the environment is ubiquitous among bacteria. Vesiculation has been recognized as an important mechanism of bacterial pathogenesis and human disease but is poorly understood in phytopathogenic bacteria. Our research addresses the role of bacterial EVs in plant infection. In this work, we show that the causal agent of bacterial speck disease, Pseudomonas syringae pv. tomato, produces EVs during plant infection. Our data suggest that EVs may help the bacteria to adapt to environments, e.g., when iron could be limiting such as the plant apoplast, laying the foundation for studying the factors that phytopathogenic bacteria use to thrive in the plant environment.
Collapse
Affiliation(s)
- Martin Janda
- LMU Munich Biocenter, Ludwig-Maximilian-University of Munich, Munich, Germany
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
- Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Katarzyna Rybak
- LMU Munich Biocenter, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Laura Krassini
- LMU Munich Biocenter, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Chen Meng
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Gregor-Mendel-Strasse, Freising, United Kingdom
| | | | - Egidio Stigliano
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Beata Szulc
- LMU Munich Biocenter, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Jan Sklenar
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Frank L.H. Menke
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Jacob G. Malone
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Andreas Brachmann
- LMU Munich Biocenter, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Andreas Klingl
- LMU Munich Biocenter, Ludwig-Maximilian-University of Munich, Munich, Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Gregor-Mendel-Strasse, Freising, United Kingdom
| | - Silke Robatzek
- LMU Munich Biocenter, Ludwig-Maximilian-University of Munich, Munich, Germany
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
30
|
Torres Ascurra YC, Zhang L, Toghani A, Hua C, Rangegowda NJ, Posbeyikian A, Pai H, Lin X, Wolters PJ, Wouters D, de Blok R, Steigenga N, Paillart MJM, Visser RGF, Kamoun S, Nürnberger T, Vleeshouwers VGAA. Functional diversification of a wild potato immune receptor at its center of origin. Science 2023; 381:891-897. [PMID: 37616352 DOI: 10.1126/science.adg5261] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 07/11/2023] [Indexed: 08/26/2023]
Abstract
Plant cell surface pattern recognition receptors (PRRs) and intracellular immune receptors cooperate to provide immunity to microbial infection. Both receptor families have coevolved at an accelerated rate, but the evolution and diversification of PRRs is poorly understood. We have isolated potato surface receptor Pep-13 receptor unit (PERU) that senses Pep-13, a conserved immunogenic peptide pattern from plant pathogenic Phytophthora species. PERU, a leucine-rich repeat receptor kinase, is a bona fide PRR that binds Pep-13 and enhances immunity to Phytophthora infestans infection. Diversification in ligand binding specificities of PERU can be traced to sympatric wild tuber-bearing Solanum populations in the Central Andes. Our study reveals the evolution of cell surface immune receptor alleles in wild potato populations that recognize ligand variants not recognized by others.
Collapse
Affiliation(s)
| | - Lisha Zhang
- Department of Plant Biochemistry, Centre of Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | - AmirAli Toghani
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| | - Chenlei Hua
- Department of Plant Biochemistry, Centre of Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
| | | | | | - Hsuan Pai
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| | - Xiao Lin
- Plant Breeding, Wageningen University and Research, 6708 PB Wageningen, Netherlands
| | - Pieter J Wolters
- Plant Breeding, Wageningen University and Research, 6708 PB Wageningen, Netherlands
| | - Doret Wouters
- Plant Breeding, Wageningen University and Research, 6708 PB Wageningen, Netherlands
| | - Reinhoud de Blok
- Plant Breeding, Wageningen University and Research, 6708 PB Wageningen, Netherlands
| | - Niels Steigenga
- Plant Breeding, Wageningen University and Research, 6708 PB Wageningen, Netherlands
| | - Maxence J M Paillart
- Wageningen Food & Biobased Research, Wageningen University and Research, 6708 WG Wageningen, Netherlands
| | - Richard G F Visser
- Plant Breeding, Wageningen University and Research, 6708 PB Wageningen, Netherlands
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| | - Thorsten Nürnberger
- Department of Plant Biochemistry, Centre of Plant Molecular Biology (ZMBP), University of Tübingen, 72076 Tübingen, Germany
- Department of Biochemistry, University of Johannesburg, Johannesburg 2006, South Africa
| | | |
Collapse
|
31
|
Zhang L, Hua C, Janocha D, Fliegmann J, Nürnberger T. Plant cell surface immune receptors-Novel insights into function and evolution. CURRENT OPINION IN PLANT BIOLOGY 2023; 74:102384. [PMID: 37276832 DOI: 10.1016/j.pbi.2023.102384] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/02/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023]
Abstract
Plants use surface resident and intracellular immune receptors to provide robust immunity against microbial infections. The contribution of the two receptor types to plant immunity differs spatially and temporally. The ongoing identification of new plant cell surface immune receptors and their microbial-derived immunogenic ligands reveal a previously unexpected complexity of plant surface sensors involved in the detection of specific microbial species. Comparative analyses of the plant species distribution of cell surface immune receptors indicate that plants harbor larger sets of genus- or species-specific surface receptors in addition to very few widespread pattern sensors. Leucine-rich repeat surface and intracellular immune sensors emerge as two polymorphic receptor classes whose evolutionary trajectories appear to be linked. This is consistent with their functional cooperativity in providing full plant immunity.
Collapse
Affiliation(s)
- Lisha Zhang
- Department of Plant Biochemistry, Centre of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany.
| | - Chenlei Hua
- Department of Plant Biochemistry, Centre of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Denis Janocha
- Department of Plant Biochemistry, Centre of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Judith Fliegmann
- Department of Plant Biochemistry, Centre of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Thorsten Nürnberger
- Department of Plant Biochemistry, Centre of Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany; Department of Biochemistry, University of Johannesburg, Johannesburg, 2001, South Africa.
| |
Collapse
|
32
|
Tsai HH, Wang J, Geldner N, Zhou F. Spatiotemporal control of root immune responses during microbial colonization. CURRENT OPINION IN PLANT BIOLOGY 2023; 74:102369. [PMID: 37141807 DOI: 10.1016/j.pbi.2023.102369] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 05/06/2023]
Abstract
The entire evolutionary trajectory of plants towards large and complex multi-cellular organisms has been accompanied by incessant interactions with omnipresent unicellular microbes. This led to the evolution of highly complex microbial communities, whose members display the entire spectrum of pathogenic to mutualistic behaviors. Plant roots are dynamic, fractally growing organs and even small Arabidopsis roots harbor millions of individual microbes of diverse taxa. It is evident that microbes at different positions on a root surface could experience fundamentally different environments, which, moreover, rapidly change over time. Differences in spatial scales between microbes and roots compares to humans and the cities they inhabit. Such considerations make it evident that mechanisms of root-microbe interactions can only be understood if analyzed at relevant spatial and temporal scales. This review attempts to provide an overview of the rapid recent progress that has been made in mapping and manipulating plant damage and immune responses at cellular resolution, as well as in visualizing bacterial communities and their transcriptional activities. We further discuss the impact that such approaches will have for a more predictive understanding of root-microbe interactions.
Collapse
Affiliation(s)
- Huei-Hsuan Tsai
- Department of Plant Molecular Biology, Biophore, UNIL-Sorge, University of Lausanne, 1015 Lausanne, Switzerland
| | - Jiachang Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Niko Geldner
- Department of Plant Molecular Biology, Biophore, UNIL-Sorge, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Feng Zhou
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
33
|
Xu Z, Liu Y, Zhang N, Xun W, Feng H, Miao Y, Shao J, Shen Q, Zhang R. Chemical communication in plant-microbe beneficial interactions: a toolbox for precise management of beneficial microbes. Curr Opin Microbiol 2023; 72:102269. [PMID: 36682279 DOI: 10.1016/j.mib.2023.102269] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/14/2022] [Accepted: 01/05/2023] [Indexed: 01/22/2023]
Abstract
Harnessing the power of beneficial microbes in the rhizosphere to improve crop performance is a key goal of sustainable agriculture. However, the precise management of rhizosphere microbes for crop growth and health remains challenging because we lack a comprehensive understanding of the plant-rhizomicrobiome relationship. In this review, we discuss the latest research progress on root colonisation by representative beneficial microbes (e.g. Bacillus spp. and Pseudomonas spp.). We also highlight the bidirectional chemical communication between microbes and plant roots for precise functional control of beneficial microbes in the rhizosphere, as well as advances in understanding how beneficial microbes overcome the immune system of plants. Finally, we propose future research objectives that will help us better understand the complex network of plant-microbe interactions.
Collapse
Affiliation(s)
- Zhihui Xu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Yunpeng Liu
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Nan Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Weibing Xun
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Haichao Feng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Youzhi Miao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Jiahui Shao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Ruifu Zhang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China; Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| |
Collapse
|
34
|
Andrade MDO, da Silva JC, Soprano AS, Shimo HM, Leme AFP, Benedetti CE. Suppression of citrus canker disease mediated by flagellin perception. MOLECULAR PLANT PATHOLOGY 2023; 24:331-345. [PMID: 36691963 PMCID: PMC10013774 DOI: 10.1111/mpp.13300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Citrus cancer, caused by strains of Xanthomonas citri (Xc) and Xanthomonas aurantifolii (Xa), is one of the most economically important citrus diseases. Although our understanding of the molecular mechanisms underlying citrus canker development has advanced remarkably in recent years, exactly how citrus plants fight against these pathogens remains largely unclear. Using a Xa pathotype C strain that infects Mexican lime only and sweet oranges as a pathosystem to study the immune response triggered by this bacterium in these hosts, we herein report that the Xa flagellin C protein (XaFliC) acts as a potent defence elicitor in sweet oranges. Just as Xa blocked canker formation when coinfiltrated with Xc in sweet orange leaves, two polymorphic XaFliC peptides designated flgIII-20 and flgIII-27, not related to flg22 or flgII-28 but found in many Xanthomonas species, were sufficient to protect sweet orange plants from Xc infection. Accordingly, ectopic expression of XaFliC in a Xc FliC-defective mutant completely abolished the ability of this mutant to grow and cause canker in sweet orange but not Mexican lime plants. Because XaFliC and flgIII-27 also specifically induced the expression of several defence-related genes, our data suggest that XaFliC acts as a main immune response determinant in sweet orange plants.
Collapse
Affiliation(s)
- Maxuel de Oliveira Andrade
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM)CampinasBrazil
| | - Jaqueline Cristina da Silva
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM)CampinasBrazil
| | - Adriana Santos Soprano
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM)CampinasBrazil
| | - Hugo Massayoshi Shimo
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM)CampinasBrazil
| | - Adriana Franco Paes Leme
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM)CampinasBrazil
| | - Celso Eduardo Benedetti
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM)CampinasBrazil
| |
Collapse
|
35
|
Duplicated Flagellins in Pseudomonas Divergently Contribute to Motility and Plant Immune Elicitation. Microbiol Spectr 2023; 11:e0362122. [PMID: 36629446 PMCID: PMC9927476 DOI: 10.1128/spectrum.03621-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Flagellins are the main constituents of the flagellar filaments that provide bacterial motility, chemotactic ability, and host immune elicitation ability. Although the functions of flagellins have been extensively studied in bacteria with a single flagellin-encoding gene, the function of multiple flagellin-encoding genes in a single bacterial species is largely unknown. Here, the model plant-growth-promoting bacterium Pseudomonas kilonensis F113 was used to decipher the divergent functions of duplicated flagellins. We demonstrate that the two flagellins (FliC-1 and FliC-2) in 12 Pseudomonas strains, including F113, are evolutionarily distinct. Only the fliC-1 gene but not the fliC-2 gene in strain F113 is responsible for flagellar biogenesis, motility, and plant immune elicitation. The transcriptional expression of fliC-2 was significantly lower than that of fliC-1 in medium and in planta, most likely due to variations in promoter activity. In silico prediction revealed that all fliC-2 genes in the 12 Pseudomonas strains have a poorly conserved promoter motif. Compared to the Flg22-2 epitope (relative to FliC-2), Flg22-1 (relative to FliC-1) induced stronger FLAGELLIN SENSING 2 (FLS2)-mediated microbe-associated molecular pattern-triggered immunity and significantly inhibited plant root growth. A change in the 19th amino acid in Flg22-2 reduced its binding affinity to the FLS2/brassinosteroid insensitive 1-associated kinase 1 complex. Also, Flg22-2 epitopes in the other 11 Pseudomonas strains were presumed to have low binding affinity due to the same change in the 19th amino acid. These findings suggest that Pseudomonas has evolved duplicate flagellins, with only FliC-1 contributing to motility and plant immune elicitation. IMPORTANCE Flagellins have emerged as important microbial patterns. This work focuses on flagellin duplication in some plant-associated Pseudomonas. Our findings on the divergence of duplicated flagellins provide a conceptual framework for better understanding the functional determinant flagellin and its peptide in multiple-flagellin plant-growth-promoting rhizobacteria.
Collapse
|
36
|
Sakata N, Ishiga Y. Prevention of Stomatal Entry as a Strategy for Plant Disease Control against Foliar Pathogenic Pseudomonas Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12030590. [PMID: 36771673 PMCID: PMC9919041 DOI: 10.3390/plants12030590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/21/2023] [Accepted: 01/26/2023] [Indexed: 05/14/2023]
Abstract
The genus Pseudomonas includes some of the most problematic and studied foliar bacterial pathogens. Generally, in a successful disease cycle there is an initial epiphytic lifestyle on the leaf surface and a subsequent aggressive endophytic stage inside the leaf apoplast. Leaf-associated bacterial pathogens enter intercellular spaces and internal leaf tissues by natural surface opening sites, such as stomata. The stomatal crossing is complex and dynamic, and functional genomic studies have revealed several virulence factors required for plant entry. Currently, treatments with copper-containing compounds, where authorized and admitted, and antibiotics are commonly used against bacterial plant pathogens. However, strains resistant to these chemicals occur in the fields. Therefore, the demand for alternative control strategies has been increasing. This review summarizes efficient strategies to prevent bacterial entry. Virulence factors required for entering the leaf in plant-pathogenic Pseudomonas species are also discussed.
Collapse
Affiliation(s)
- Nanami Sakata
- Correspondence: (N.S.); (Y.I.); Tel./Fax: (+81)-029-853-4792 (Y.I.)
| | - Yasuhiro Ishiga
- Correspondence: (N.S.); (Y.I.); Tel./Fax: (+81)-029-853-4792 (Y.I.)
| |
Collapse
|
37
|
Clasen SJ, Bell MEW, Borbón A, Lee DH, Henseler ZM, de la Cuesta-Zuluaga J, Parys K, Zou J, Wang Y, Altmannova V, Youngblut ND, Weir JR, Gewirtz AT, Belkhadir Y, Ley RE. Silent recognition of flagellins from human gut commensal bacteria by Toll-like receptor 5. Sci Immunol 2023; 8:eabq7001. [PMID: 36608151 DOI: 10.1126/sciimmunol.abq7001] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Flagellin, the protein subunit of the bacterial flagellum, stimulates the innate immune receptor Toll-like receptor 5 (TLR5) after pattern recognition or evades TLR5 through lack of recognition. This binary response fails to explain the weak agonism of flagellins from commensal bacteria, raising the question of how TLR5 response is tuned. Here, we screened abundant flagellins present in metagenomes from human gut for both TLR5 recognition and activation and uncovered a class of flagellin-TLR5 interaction termed silent recognition. Silent flagellins were weak TLR5 agonists despite pattern recognition. Receptor activity was tuned by a TLR5-flagellin interaction distal to the site of pattern recognition that was present in Salmonella flagellin but absent in silent flagellins. This interaction enabled flagellin binding to preformed TLR5 dimers and increased TLR5 signaling by several orders of magnitude. Silent recognition by TLR5 occurred in human organoids and mice, and silent flagellin proteins were present in human stool. These flagellins were produced primarily by the abundant gut bacteria Lachnospiraceae and were enriched in nonindustrialized populations. Our findings provide a mechanism for the innate immune system to tolerate commensal-derived flagellins while remaining vigilant to the presence of flagellins produced by pathogens.
Collapse
Affiliation(s)
- Sara J Clasen
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Michael E W Bell
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Andrea Borbón
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - Du-Hwa Lee
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Zachariah M Henseler
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen 72076, Germany
| | | | - Katarzyna Parys
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Jun Zou
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Yanling Wang
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Veronika Altmannova
- Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring 9, Tübingen 72076, Germany
| | - Nicholas D Youngblut
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen 72076, Germany
| | - John R Weir
- Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring 9, Tübingen 72076, Germany
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Youssef Belkhadir
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Ruth E Ley
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen 72076, Germany.,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany
| |
Collapse
|
38
|
Lv F, Zhan Y, Lu W, Ke X, Shao Y, Ma Y, Zheng J, Yang Z, Jiang S, Shang L, Ma Y, Cheng L, Elmerich C, Yan Y, Lin M. Regulation of hierarchical carbon substrate utilization, nitrogen fixation, and root colonization by the Hfq/Crc/CrcZY genes in Pseudomonas stutzeri. iScience 2022; 25:105663. [PMID: 36505936 PMCID: PMC9730152 DOI: 10.1016/j.isci.2022.105663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/08/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Bacteria of the genus Pseudomonas consume preferred carbon substrates in nearly reverse order to that of enterobacteria, and this process is controlled by RNA-binding translational repressors and regulatory ncRNA antagonists. However, their roles in microbe-plant interactions and the underlying mechanisms remain uncertain. Here we show that root-associated diazotrophic Pseudomonas stutzeri A1501 preferentially catabolizes succinate, followed by the less favorable substrate citrate, and ultimately glucose. Furthermore, the Hfq/Crc/CrcZY regulatory system orchestrates this preference and contributes to optimal nitrogenase activity and efficient root colonization. Hfq has a central role in this regulatory network through different mechanisms of action, including repressing the translation of substrate-specific catabolic genes, activating the nitrogenase gene nifH posttranscriptionally, and exerting a positive effect on the transcription of an exopolysaccharide gene cluster. Our results illustrate an Hfq-mediated mechanism linking carbon metabolism to nitrogen fixation and root colonization, which may confer rhizobacteria competitive advantages in rhizosphere environments.
Collapse
Affiliation(s)
- Fanyang Lv
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuhua Zhan
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Lu
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiubin Ke
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yahui Shao
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yiyuan Ma
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Juan Zheng
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhimin Yang
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shanshan Jiang
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liguo Shang
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yao Ma
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Cheng
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | | | - Yongliang Yan
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China,Corresponding author
| | - Min Lin
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, China,Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China,Corresponding author
| |
Collapse
|
39
|
Chaube MA, Trattnig N, Lee D, Belkhadir Y, Pfrengle F. Synthesis of Fungal Cell Wall Oligosaccharides and Their Ability to Trigger Plant Immune Responses. European J Org Chem 2022; 2022:e202200313. [PMID: 36035813 PMCID: PMC9401017 DOI: 10.1002/ejoc.202200313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/20/2022] [Indexed: 12/04/2022]
Abstract
Oligosaccharide fragments of fungal cell wall glycans are important molecular probes for studying both the biology of fungi and fungal infections of humans, animals, and plants. The fungal cell wall contains large amounts of various polysaccharides that are ligands for pattern recognition receptors (PRRs), eliciting an immune response upon recognition. Towards the establishment of a glycan array platform for the identification of new ligands of plant PRRs, tri-, penta-, and heptasaccharide fragments of different cell wall polysaccharides were prepared. Chito- and β-(1→6)-gluco-oligosaccharides were synthesized by automated glycan assembly (AGA), and α-(1→3)- and α-(1→4)-gluco-oligosaccharides were synthesized in solution using a recently reported highly α-selective glycosylation methodology. Incubation of plants with the synthesized oligosaccharides revealed i) length dependence for plant activation by chito-oligosaccharides and ii) β-1,6-glucan oligosaccharides as a new class of glycans capable of triggering plant activation.
Collapse
Affiliation(s)
- Manishkumar A. Chaube
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Nino Trattnig
- Department of ChemistryUniversity of Natural Resources and Life Sciences,ViennaMuthgasse 181190ViennaAustria
| | - Du‐Hwa Lee
- Gregor Mendel Institute (GMI)Austrian Academy of SciencesVienna Biocenter (VBC)Dr Bohr Gasse 31030ViennaAustria
| | - Youssef Belkhadir
- Gregor Mendel Institute (GMI)Austrian Academy of SciencesVienna Biocenter (VBC)Dr Bohr Gasse 31030ViennaAustria
| | - Fabian Pfrengle
- Department of Biomolecular SystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Department of ChemistryUniversity of Natural Resources and Life Sciences,ViennaMuthgasse 181190ViennaAustria
| |
Collapse
|
40
|
Han X, Tsuda K. Evolutionary footprint of plant immunity. CURRENT OPINION IN PLANT BIOLOGY 2022; 67:102209. [PMID: 35430538 DOI: 10.1016/j.pbi.2022.102209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/24/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
There are pieces of evidence from genomic footprints and fossil records indicating that plants have co-evolved with microbes after terrestrialization for more than 407 million years. Therefore, to truly comprehend plant evolution, we need to understand the co-evolutionary process and history between plants and microbes. Recent developments in genomes and transcriptomes of a vast number of plant species as well as microbes have greatly expanded our knowledge of the evolution of the plant immune system. In this review, we summarize recent advances in the co-evolution between plants and microbes with emphasis on the plant side and point out future research needed for understanding plant-microbial co-evolution. Knowledge of the evolution and variation of the plant immune system will better equip us on designing crops with boosted performance in agricultural fields.
Collapse
Affiliation(s)
- Xiaowei Han
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Kenichi Tsuda
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| |
Collapse
|
41
|
Sanguankiattichai N, Buscaill P, Preston GM. How bacteria overcome flagellin pattern recognition in plants. CURRENT OPINION IN PLANT BIOLOGY 2022; 67:102224. [PMID: 35533494 DOI: 10.1016/j.pbi.2022.102224] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/03/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Efficient plant immune responses depend on the ability to recognise an invading microbe. The 22-amino acids in the N-terminal domain and the 28-amino acids in the central region of the bacterial flagellin, called flg22 and flgII-28, respectively, are important elicitors of plant immunity. Plant immunity is activated after flg22 or flgII-28 recognition by the plant transmembrane receptors FLS2 or FLS3, respectively. There is strong selective pressure on many plant pathogenic and endophytic bacteria to overcome flagellin-triggered immunity. Here we provide an overview of recent developments in our understanding of the evasion and suppression of flagellin pattern recognition by plant-associated bacteria.
Collapse
Affiliation(s)
| | - Pierre Buscaill
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Gail M Preston
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| |
Collapse
|
42
|
Snoeck S, Guayazán-Palacios N, Steinbrenner AD. Molecular tug-of-war: Plant immune recognition of herbivory. THE PLANT CELL 2022; 34:1497-1513. [PMID: 35026025 PMCID: PMC9048929 DOI: 10.1093/plcell/koac009] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/07/2022] [Indexed: 05/22/2023]
Abstract
Plant defense responses against insect herbivores are induced through wound-induced signaling and the specific perception of herbivore-associated molecular patterns (HAMPs). In addition, herbivores can deliver effectors that suppress plant immunity. Here we review plant immune recognition of HAMPs and effectors, and argue that these initial molecular interactions upon a plant-herbivore encounter mediate and structure effective resistance. While the number of distinct HAMPs and effectors from both chewing and piercing-sucking herbivores has expanded rapidly with omics-enabled approaches, paired receptors and targets in the host are still not well characterized. Herbivore-derived effectors may also be recognized as HAMPs depending on the host plant species, potentially through the evolution of novel immune receptor functions. We compile examples of HAMPs and effectors where natural variation between species may inform evolutionary patterns and mechanisms of plant-herbivore interactions. Finally, we discuss the combined effects of wounding and HAMP recognition, and review potential signaling hubs, which may integrate both sensing functions. Understanding the precise mechanisms for plant sensing of herbivores will be critical for engineering resistance in agriculture.
Collapse
Affiliation(s)
- Simon Snoeck
- Department of Biology, University of Washington, Seattle, Washington, USA
| | | | | |
Collapse
|
43
|
Knowing me, knowing you: Self and non-self recognition in plant immunity. Essays Biochem 2022; 66:447-458. [PMID: 35383834 DOI: 10.1042/ebc20210095] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 12/12/2022]
Abstract
Perception of non-self molecules known as microbe-associated molecular patterns (MAMPs) by host pattern recognition receptors (PRRs) activates plant pattern-triggered immunity (PTI). Pathogen infections often trigger the release of modified-self molecules, termed damage- or danger-associated molecular patterns (DAMPs), which modulate MAMP-triggered signaling to shape the frontline of plant immune responses against infections. In the context of advances in identifying MAMPs and DAMPs, cognate receptors, and their signaling, here, we focus on the most recent breakthroughs in understanding the perception and role of non-self and modified-self patterns. We highlight the commonalities and differences of MAMPs from diverse microbes, insects, and parasitic plants, as well as the production and perception of DAMPs upon infections. We discuss the interplay between MAMPs and DAMPs for emerging themes of the mutual potentiation and attenuation of PTI signaling upon MAMP and DAMP perception during infections.
Collapse
|
44
|
Malvino ML, Bott AJ, Green CE, Majumdar T, Hind SR. Influence of Flagellin Polymorphisms, Gene Regulation, and Responsive Memory on the Motility of Xanthomonas Species That Cause Bacterial Spot Disease of Solanaceous Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:157-169. [PMID: 34732057 DOI: 10.1094/mpmi-08-21-0211-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Increasingly, new evidence has demonstrated variability in the epitope regions of bacterial flagellin, including in regions harboring the microbe-associated molecular patterns flg22 and flgII-28 that are recognized by the pattern recognition receptors FLS2 and FLS3, respectively. Additionally, because bacterial motility is known to contribute to pathogen virulence and chemotaxis, reductions in or loss of motility can significantly reduce bacterial fitness. In this study, we determined that variations in flg22 and flgII-28 epitopes allow some but not all Xanthomonas spp. to evade both FLS2- and FLS3-mediated oxidative burst responses. We observed variation in the motility for many isolates, regardless of their flagellin sequence. Instead, we determined that past growth conditions may have a significant impact on the motility status of isolates, because we could minimize this variability by inducing motility using chemoattractant assays. Additionally, motility could be significantly suppressed under nutrient-limited conditions, and bacteria could "remember" its prior motility status after storage at ultracold temperatures. Finally, we observed larger bacterial populations of strains with flagellin variants predicted not to be recognized by either FLS2 or FLS3, suggesting that these bacteria can evade flagellin recognition in tomato plants. Although some flagellin variants may impart altered motility and differential recognition by the host immune system, external growth parameters and gene expression regulation appear to have more significant impacts on the motility phenotypes for these Xanthomonas spp.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Maria L Malvino
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, U.S.A
| | - Amie J Bott
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, U.S.A
| | - Cory E Green
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, U.S.A
| | - Tanvi Majumdar
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, U.S.A
| | - Sarah R Hind
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801, U.S.A
| |
Collapse
|
45
|
Tryptophan metabolism and bacterial commensals prevent fungal dysbiosis in Arabidopsis roots. Proc Natl Acad Sci U S A 2021; 118:2111521118. [PMID: 34853170 PMCID: PMC8670527 DOI: 10.1073/pnas.2111521118] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
Understanding how host–microbe homeostasis is controlled and maintained in plant roots is key to enhance plant productivity. However, the factors that contribute to the maintenance of this equilibrium between plant roots and their multikingdom microbial communities remain largely unknown. Here, we observed a link between fungal load in roots and plant health, and we showed that modulation of fungal abundance is tightly controlled by a two-layer regulatory circuit involving the host innate immune system on one hand and bacterial root commensals on another hand. Our results shed a light into how host–microbe and microbe–microbe interactions act in concert to prevent dysbiosis in Arabidopsis thaliana roots, thereby promoting plant health and maintaining growth-promoting activities of multikingdom microbial commensals. In nature, roots of healthy plants are colonized by multikingdom microbial communities that include bacteria, fungi, and oomycetes. A key question is how plants control the assembly of these diverse microbes in roots to maintain host–microbe homeostasis and health. Using microbiota reconstitution experiments with a set of immunocompromised Arabidopsis thaliana mutants and a multikingdom synthetic microbial community (SynCom) representative of the natural A. thaliana root microbiota, we observed that microbiota-mediated plant growth promotion was abolished in most of the tested immunocompromised mutants. Notably, more than 40% of between-genotype variation in these microbiota-induced growth differences was explained by fungal but not bacterial or oomycete load in roots. Extensive fungal overgrowth in roots and altered plant growth was evident at both vegetative and reproductive stages for a mutant impaired in the production of tryptophan-derived, specialized metabolites (cyp79b2/b3). Microbiota manipulation experiments with single- and multikingdom microbial SynComs further demonstrated that 1) the presence of fungi in the multikingdom SynCom was the direct cause of the dysbiotic phenotype in the cyp79b2/b3 mutant and 2) bacterial commensals and host tryptophan metabolism are both necessary to control fungal load, thereby promoting A. thaliana growth and survival. Our results indicate that protective activities of bacterial root commensals are as critical as the host tryptophan metabolic pathway in preventing fungal dysbiosis in the A. thaliana root endosphere.
Collapse
|
46
|
Nguyen VT, Sakata N, Usuki G, Ishiga T, Hashimoto Y, Ishiga Y. Multiple virulence factors regulated by AlgU contribute to the pathogenicity of Pseudomonas savastanoi pv. glycinea in soybean. PeerJ 2021; 9:e12405. [PMID: 34760389 PMCID: PMC8559602 DOI: 10.7717/peerj.12405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/08/2021] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas savastanoi pv. glycinea (Psg) causes bacterial blight of soybean. To identify candidate virulence factors, transposon-mediated mutational analysis of Psg was carried out. We syringe-inoculated soybean leaves with Psg transposon mutants and identified 28 mutants which showed reduced virulence from 1,000 mutants screened. Next, we spray-inoculated soybean leaves with these mutants and demonstrated that the algU mutant showed significantly reduced virulence together with reduced bacterial populations in planta. Expression profiles comparison between the Psg wild-type (WT) and algU mutant in HSC broth revealed that expression of coronatine (COR)-related genes (including cmaA and corR) were down-regulated in the algU mutant compared with Psg WT. Moreover, we also showed that COR production were reduced in the algU mutant compared with WT. We also demonstrated that algD, which is related to alginate biosynthesis, showed reduced expression and biofilm formation was significantly suppressed in the algU mutant. Furthermore, hrpL also showed less expression in the algU mutant. These results indicate that AlgU plays a critical role in promoting Psg pathogenesis by regulating multiple virulence factors.
Collapse
Affiliation(s)
- Viet Tru Nguyen
- Western Highlands Agriculture and Forestry Science Institute, Buon Ma Thuot, Daklak, Vietnam.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Nanami Sakata
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Giyu Usuki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takako Ishiga
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshiteru Hashimoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.,Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yasuhiro Ishiga
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
47
|
Yamaguchi K, Kawasaki T. Pathogen- and plant-derived peptides trigger plant immunity. Peptides 2021; 144:170611. [PMID: 34303752 DOI: 10.1016/j.peptides.2021.170611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 12/29/2022]
Abstract
Plants are constantly exposed to pathogens in their immediate environment. Plants sense the invasion of pathogens by recognizing the components including peptide fragments derived from pathogens, known as pathogen-associated molecular patterns (PAMPs). Plants also produce immunogenic peptides called phytocytokines that regulate immune responses. These molecules are recognized by pattern recognition receptors (PRRs) at plasma membrane. Activated PRRs induce a variety of immune responses including production of reactive oxygen species (ROS), induction of Ca2+ influx and activation of mitogen activated protein kinases (MAPKs). Pattern-triggered immunity (PTI) wards off microbes and pests. In this review, we summarize recent our advances in understanding how the peptide fragments are generated and perceived by plant PRRs at cell surface, and the activated PRRs transduce the downstream immune signaling.
Collapse
Affiliation(s)
- Koji Yamaguchi
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan
| | - Tsutomu Kawasaki
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan; Agricultural Technology and Innovation Research Institute, Kindai University, Nakamachi, Nara 631-8505, Japan.
| |
Collapse
|
48
|
Lee DH, Lee HS, Belkhadir Y. Coding of plant immune signals by surface receptors. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102044. [PMID: 33979769 DOI: 10.1016/j.pbi.2021.102044] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
The detection of molecular signals derived from other organisms is central to the evolutionary success of plants in the colonization of Earth. The sensory coding of these signals is critical for marshaling local and systemic immune responses that keep most invading organisms at bay. Plants detect immune signals inside and outside their cells using receptors. Here, we focus on receptors that function at the cell surface. We present recent work that expands our understanding of the repertoire of immune signals sensed by this family of receptors.
Collapse
Affiliation(s)
- Du-Hwa Lee
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Ho-Seok Lee
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Youssef Belkhadir
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria.
| |
Collapse
|
49
|
Li E, Zhang H, Jiang H, Pieterse CMJ, Jousset A, Bakker PAHM, de Jonge R. Experimental-Evolution-Driven Identification of Arabidopsis Rhizosphere Competence Genes in Pseudomonas protegens. mBio 2021; 12:e0092721. [PMID: 34101491 PMCID: PMC8262913 DOI: 10.1128/mbio.00927-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/30/2021] [Indexed: 11/20/2022] Open
Abstract
Beneficial plant root-associated microorganisms carry out a range of functions that are essential for plant performance. Establishment of a bacterium on plant roots, however, requires overcoming several challenges, including competition with neighboring microorganisms and host immunity. Forward and reverse genetics have led to the identification of mechanisms that are used by beneficial microorganisms to overcome these challenges, such as the production of iron-chelating compounds, the formation of strong biofilms, or the concealment of characteristic microbial molecular patterns that trigger the host immune system. However, how such mechanisms arose from an evolutionary perspective is much less understood. To study bacterial adaptation in the rhizosphere, we employed experimental evolution to track the physiological and genetic dynamics of root-dwelling Pseudomonas protegens in the Arabidopsis thaliana rhizosphere under axenic conditions. This simplified binary one plant/one bacterium system allows for the amplification of key adaptive mechanisms for bacterial rhizosphere colonization. We identified 35 mutations, including single-nucleotide polymorphisms, insertions, and deletions, distributed over 28 genes. We found that mutations in genes encoding global regulators and in genes for siderophore production, cell surface decoration, attachment, and motility accumulated in parallel, underlining the finding that bacterial adaptation to the rhizosphere follows multiple strategies. Notably, we observed that motility increased in parallel across multiple independent evolutionary lines. All together, these results underscore the strength of experimental evolution in identifying key genes, pathways, and processes for bacterial rhizosphere colonization and a methodology for the development of elite beneficial microorganisms with enhanced root-colonizing capacities that can support sustainable agriculture in the future. IMPORTANCE Beneficial root-associated microorganisms carry out many functions that are essential for plant performance. Establishment of a bacterium on plant roots, however, requires overcoming many challenges. Previously, diverse mechanisms that are used by beneficial microorganisms to overcome these challenges were identified. However, how such mechanisms have developed from an evolutionary perspective is much less understood. Here, we employed experimental evolution to track the evolutionary dynamics of a root-dwelling pseudomonad on the root of Arabidopsis. We found that mutations in global regulators, as well as in genes for siderophore production, cell surface decoration, attachment, and motility, accumulate in parallel, emphasizing these strategies for bacterial adaptation to the rhizosphere. We identified 35 mutations distributed over 28 genes. All together, our results demonstrate the power of experimental evolution in identifying key pathways for rhizosphere colonization and a methodology for the development of elite beneficial microorganisms that can support sustainable agriculture.
Collapse
Affiliation(s)
- Erqin Li
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| | - Hao Zhang
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| | - Henan Jiang
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| | - Corné M. J. Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| | - Alexandre Jousset
- Ecology and Biodiversity, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| | - Peter A. H. M. Bakker
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| | - Ronnie de Jonge
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
50
|
Stringlis IA, Pieterse CMJ. Evolutionary "hide and seek" between bacterial flagellin and the plant immune system. Cell Host Microbe 2021; 29:548-550. [PMID: 33857418 DOI: 10.1016/j.chom.2021.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Bacterial flagellin is a potent host immune activator. Parys et al. (2021) and Colaianni et al. (2021) dissected effects of flagellin epitope variants on host immune detection and bacterial motility. They report in this issue of Cell Host & Microbe that Arabidopsis-associated bacterial microbiota differentially evolved flg22 variants that allow tunability between motility and defense activation.
Collapse
Affiliation(s)
- Ioannis A Stringlis
- Plant-Microbe Interactions, Department of Biology, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Science for Life, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| |
Collapse
|