1
|
Cuesta-Margolles G, Schlecht-Louf G, Bachelerie F. ACKR3 in Skin Homeostasis, an Overlooked Player in the CXCR4/CXCL12 Axis. J Invest Dermatol 2025; 145:1039-1049. [PMID: 39466217 DOI: 10.1016/j.jid.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 10/29/2024]
Abstract
CXCL12 and its receptor CXCR4 emerge as critical regulators within the intricate network of processes ensuring skin homeostasis. In this review, we discuss their spatial distribution and function in steady-state skin; delve into their role in acute wound healing, with emphasis on fibrotic and regenerative responses; and explore their relevance in skin responses to commensals and pathogens. Given the lack of knowledge surrounding ACKR3, the atypical receptor of CXCL12, we speculate whether and how it might be involved in the processes mentioned earlier. Is ACKR3 the (a)typical friend who enjoys missing the party, or do we need to take a closer look?
Collapse
Affiliation(s)
| | - Géraldine Schlecht-Louf
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, Orsay, France
| | - Françoise Bachelerie
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, Orsay, France
| |
Collapse
|
2
|
Cha J, Kim TG, Ryu JH. Conversation between skin microbiota and the host: from early life to adulthood. Exp Mol Med 2025; 57:703-713. [PMID: 40164684 PMCID: PMC12045987 DOI: 10.1038/s12276-025-01427-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/29/2024] [Accepted: 01/05/2025] [Indexed: 04/02/2025] Open
Abstract
Host life is inextricably linked to commensal microbiota, which play a crucial role in maintaining homeostasis and immune activation. A diverse array of commensal microbiota on the skin interacts with the host, influencing the skin physiology in various ways. Early-life exposure to commensal microbiota has long-lasting effects, and disruption of the epidermal barrier or transient exposure to these microorganisms can lead to skin dysbiosis and inflammation. Several commensal skin microbiota have the potential to function as either commensals or pathogens, both influencing and being influenced by the pathogenesis of skin inflammatory diseases. Here we explore the impact of various commensal skin microbiota on the host and elucidate the interactions between skin microbiota and host systems. A deeper understanding of these interactions may open new avenues for developing effective strategies to address skin diseases.
Collapse
Affiliation(s)
- Jimin Cha
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae-Gyun Kim
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji-Hwan Ryu
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Liu K, Deng S, Zhou Y, Xu B, Zhang Y, Li W, Liu X, Yao X. Crosstalk Between the Skin Environment and Microbial Community in Immune-Related Skin Diseases. Clin Rev Allergy Immunol 2025; 68:16. [PMID: 39954089 DOI: 10.1007/s12016-025-09029-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2025] [Indexed: 02/17/2025]
Abstract
The skin surface hosts diverse skin microbiota, including bacteria, fungi, and viruses. Intricate interactions between the skin microenvironment and microbial community are crucial for maintaining cutaneous homeostasis. This review explores the bidirectional relationship between the skin ecosystem and its microbiota. The skin microenvironment is shaped by a combination of intrinsic factors, dominated by sweat glands and pilosebaceous units, and external factors, such as UV radiation and personal care products, which create distinct niches that influence microbial colonization patterns across different skin regions. The skin microbiome, in turn, modulates the physical, chemical, immunological, and microbial barriers of the skin. We also discuss the alterations in this crosstalk in various immune-related skin conditions such as atopic dermatitis, psoriasis, rosacea, hidradenitis suppurativa, skin cancer, and aging. Understanding these interactions is vital for developing targeted microbiome-based therapies for various skin disorders. Further researches are needed to deepen insights into the microbial roles and their therapeutic potentials in skin health and disease.
Collapse
Affiliation(s)
- Kecheng Liu
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Shuting Deng
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Yuan Zhou
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Beilei Xu
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Yu Zhang
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
| | - Wei Li
- Department of Dermatology, Institute of Dermatology, Huashan Hospital, Fudan University, Shanghai, Shanghai, 200040, China
| | - Xiaochun Liu
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
| | - Xu Yao
- Department of Allergy and Rheumatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China.
| |
Collapse
|
4
|
Scharschmidt TC, Segre JA. Skin microbiome and dermatologic disorders. J Clin Invest 2025; 135:e184315. [PMID: 39895627 PMCID: PMC11785926 DOI: 10.1172/jci184315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Human skin acts as a physical barrier to prevent the entry of pathogenic microbes while simultaneously providing a home for commensal bacteria and fungi. Microbiome sequencing studies have demonstrated the unappreciated diversity and selectivity of these microbes. Functional studies have demonstrated the impact of specific strains to tune the immune system, sculpt the microbial community, provide colonization resistance, and promote epidermal barrier integrity. Recent studies have integrated the microbiome, immunity, and tissue integrity to understand their interplay in common disorders such as atopic dermatitis. In this Review, we explore microbiome shifts associated with cutaneous disorders with an eye toward how the microbiome can be mined to identify new therapeutic opportunities.
Collapse
Affiliation(s)
- Tiffany C. Scharschmidt
- Department of Dermatology, University of California, San Francisco, San Francisco, California, USA
| | - Julia A. Segre
- Microbial Genomics Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Lin X, Yu Z, Liu Y, Li C, Hu H, Hu J, Liu M, Yang Q, Gu P, Li J, Nandakumar KS, Hu G, Zhang Q, Chen X, Ma H, Huang W, Wang G, Wang Y, Huang L, Wu W, Liu N, Zhang C, Liu X, Zheng L, Chen P. Gut-X axis. IMETA 2025; 4:e270. [PMID: 40027477 PMCID: PMC11865426 DOI: 10.1002/imt2.270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 03/05/2025]
Abstract
Recent advances in understanding the modulatory functions of gut and gut microbiota on human diseases facilitated our focused attention on the contribution of the gut to the pathophysiological alterations of many extraintestinal organs, including the liver, heart, brain, lungs, kidneys, bone, skin, reproductive, and endocrine systems. In this review, we applied the "gut-X axis" concept to describe the linkages between the gut and other organs and discussed the latest findings related to the "gut-X axis," including the underlying modulatory mechanisms and potential clinical intervention strategies.
Collapse
Affiliation(s)
- Xu Lin
- Department of Endocrinology and MetabolismShunde Hospital of Southern Medical University (The First People's Hospital of Shunde)Foshan City528308China
| | - Zuxiang Yu
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Yang Liu
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Changzhou Li
- Department of Plastic and Aesthetic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Hui Hu
- Department of Laboratory Medicine, Shanghai East HospitalTongji University School of MedicineShanghai200123China
| | - Jia‐Chun Hu
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical CollegeBeijing100050China
| | - Mian Liu
- Department of Obstetrics and Gynecology, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Qin Yang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Peng Gu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Jiaxin Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Kutty Selva Nandakumar
- Department of Medical Biochemistry and BiophysicsKarolinska InstituteStockholm17177Sweden
| | - Gaofei Hu
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Qi Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Xinyu Chen
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Huihui Ma
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Wenye Huang
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
| | - Gaofeng Wang
- Department of Plastic and Aesthetic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural MedicinesInstitute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical CollegeBeijing100050China
| | - Liping Huang
- Department of Obstetrics and Gynecology, Nanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Wenjuan Wu
- Department of Laboratory Medicine, Shanghai East HospitalTongji University School of MedicineShanghai200123China
| | - Ning‐Ning Liu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single‐Cell Omics, School of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200240China
| | - Xingyin Liu
- State Key Laboratory of Reproductive Medicine and Offsprings Health, Center for Global HealthNanjing Medical UniversityNanjing211166China
- School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Leming Zheng
- State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, The Institute of Cardiovascular Sciences and Institute of Systems BiomedicinePeking UniversityBeijing100191China
| | - Peng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
| |
Collapse
|
6
|
Cinca-Morros S, Garcia-Rey S, Álvarez-Herms J, Basabe-Desmonts L, Benito-Lopez F. A physiological perspective of the relevance of sweat biomarkers and their detection by wearable microfluidic technology: A review. Anal Chim Acta 2024; 1327:342988. [PMID: 39266058 DOI: 10.1016/j.aca.2024.342988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 09/14/2024]
Abstract
The great majority of published microfluidic wearable platforms for sweat sensing focus on the development of the technology to fabricate the device, the integration of sensing materials and actuators and the fluidics of sweat within the device. However, very few papers have discussed the physiological relevance of the metabolites measured using these novel approaches. In fact, some of the analytes present in sweat, which serve as biomarkers in blood, do not show a correlation with blood levels. This discrepancy can be attributed to factors such as contamination during measurements, the metabolism of sweat glands, or challenges in obtaining significant samples. The objective of this review is to present a critical and meaningful insight into the real applicability and potential use of wearable technology for improving health and sport performance. It also discusses the current limitations and future challenges of microfluidics, aiming to provide accurate information about the actual needs in this field. This work is expected to contribute to the future development of more suitable wearable microfluidic technology for health and sports science monitoring, using sweat as the biofluid for analysis.
Collapse
Affiliation(s)
- Sergi Cinca-Morros
- Microfluidics Cluster UPV/EHU, Analytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC) Group, Analytical Chemistry Department, University of the Basque Country UPV/EHU, Spain; Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain.
| | - Sandra Garcia-Rey
- Microfluidics Cluster UPV/EHU, Analytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC) Group, Analytical Chemistry Department, University of the Basque Country UPV/EHU, Spain; Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | - Jesús Álvarez-Herms
- Research Group in Sports Genomics, Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country UPV/EHU, Leioa, Spain; PHYMOlab Research & Exercise Performance, Segovia, Spain
| | - Lourdes Basabe-Desmonts
- Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain; Basque Foundation of Science, IKERBASQUE, María Díaz Haroko Kalea, 3, 48013 Bilbao, Spain.
| | - Fernando Benito-Lopez
- Microfluidics Cluster UPV/EHU, Analytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC) Group, Analytical Chemistry Department, University of the Basque Country UPV/EHU, Spain.
| |
Collapse
|
7
|
Shi X, Liu Y, Ma T, Jin H, Zhao F, Sun Z. Delivery mode and maternal gestational diabetes are important factors in shaping the neonatal initial gut microbiota. Front Cell Infect Microbiol 2024; 14:1397675. [PMID: 39268487 PMCID: PMC11390658 DOI: 10.3389/fcimb.2024.1397675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024] Open
Abstract
Background The infant gut microbiome's establishment is pivotal for health and immune development. Understanding it unveils insights into growth, development, and maternal microbial interactions. Research often emphasizes gut bacteria, neglecting the phageome. Methods To investigate the influence of geographic or maternal factors (mode of delivery, mode of breastfeeding, gestational diabetes mellitus) on the gut microbiota and phages of newborns, we collected fecal samples from 34 pairs of mothers and their infants within 24 hours of delivery from three regions (9 pairs from Enshi, 7 pairs from Hohhot, and 18 pairs from Hulunbuir) using sterile containers. Gut microbiota analysis by Shotgun sequencing was subsequently performed. Results Our results showed that geographic location affects maternal gut microbiology (P < 0.05), while the effect on infant gut microbiology was not significant (P = 0.184). Among the maternal factors, mode of delivery had a significant (P < 0.05) effect on the newborn. Specific bacteria (e.g., Bacteroides, Escherichia spp., Phocaeicola vulgatus, Escherichia coli, Staphylococcus hominis, Veillonella spp.), predicted active metabolites, and bacteriophage vOTUs varied with delivery mode. Phocaeicola vulgatus significantly correlated with some metabolites and bacteriophages in the early infant gut (P < 0.05). In the GD group, a strong negative correlation of phage diversity between mother and infants was observed (R = -0.58, P=0.04). Conclusion In conclusion, neonatal early gut microbiome (including bacteria and bacteriophages) colonization is profoundly affected by the mode of delivery, and maternal gestational diabetes mellitus. The key bacteria may interact with bacteriophages to influence the levels of specific metabolites. Our study provides new evidence for the study of the infant microbiome, fills a gap in the analysis of the infant gut microbiota regarding the virome, and emphasizes the importance of maternal health for the infant initial gut virome.
Collapse
Affiliation(s)
- Xuan Shi
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Collaborative Innovation Center of Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Yanfang Liu
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Collaborative Innovation Center of Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Teng Ma
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Collaborative Innovation Center of Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Hao Jin
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Collaborative Innovation Center of Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Feiyan Zhao
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Collaborative Innovation Center of Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Zhihong Sun
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- Collaborative Innovation Center of Lactic Acid Bacteria and Fermented Dairy Products, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| |
Collapse
|
8
|
Rezaie M, Rafiee Z, Choi S. Unlocking Wearable Microbial Fuel Cells for Advanced Wound Infection Treatment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36117-36130. [PMID: 38950522 DOI: 10.1021/acsami.4c06303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Better infection control will accelerate wound healing and alleviate associated healthcare burdens. Traditional antibacterial dressings often inadequately control infections, inadvertently promoting antibacterial resistance. Our research unveils a novel, dual-functional living dressing that autonomously generates antibacterial agents and delivers electrical stimulation, harnessing the power of spore-forming Bacillus subtilis. This dressing is built on an innovative wearable microbial fuel cell (MFC) framework, using B. subtilis endospores as a powerful, dormant biocatalyst. The endospores are resilient, reactivating in nutrient-rich wound exudate to produce electricity and antibacterial compounds. The combination allows B. subtilis to outcompete pathogens for food and other resources, thus fighting infections. The strategy is enhanced by the extracellular synthesis of tin oxide and copper oxide nanoparticles on the endospore surface, boosting antibacterial action, and electrical stimulation. Moreover, the MFC framework introduces a pioneering dressing design featuring a conductive hydrogel embedded within a paper-based substrate. The arrangement ensures cell stability and sustains a healing-friendly moist environment. Our approach has proven very effective against three key pathogens in biofilms: Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus demonstrating exceptional capabilities in both in vitro and ex vivo models. Our innovation marks a significant leap forward in wearable MFC-based wound care, offering a potent solution for treating infected wounds.
Collapse
Affiliation(s)
- Maryam Rezaie
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Zahra Rafiee
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Seokheun Choi
- Bioelectronics & Microsystems Laboratory, Department of Electrical & Computer Engineering, State University of New York at Binghamton, Binghamton, New York 13902, United States
- Center for Research in Advanced Sensing Technologies & Environmental Sustainability, State University of New York at Binghamton, Binghamton, New York 13902, United States
| |
Collapse
|
9
|
Yamazaki Y, Ito T, Tamai M, Nakagawa S, Nakamura Y. The role of Staphylococcus aureus quorum sensing in cutaneous and systemic infections. Inflamm Regen 2024; 44:9. [PMID: 38429810 PMCID: PMC10905890 DOI: 10.1186/s41232-024-00323-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/15/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Staphylococcus aureus is a leading cause of human bacterial infections worldwide. It is the most common causative agent of skin and soft tissue infections, and can also cause various other infections, including pneumonia, osteomyelitis, as well as life-threatening infections, such as sepsis and infective endocarditis. The pathogen can also asymptomatically colonize human skin, nasal cavity, and the intestine. S. aureus colonizes approximately 20-30% of human nostrils, being an opportunistic pathogen for subsequent infection. Its strong ability to silently spread via human contact makes it difficult to eradicate S. aureus. A major concern with S. aureus is its capacity to develop antibiotic resistance and adapt to diverse environmental conditions. The variability in the accessory gene regulator (Agr) region of the genome contributes to a spectrum of phenotypes within the bacterial population, enhancing the likelihood of survival in different environments. Agr functions as a central quorum sensing (QS) system in S. aureus, allowing bacteria to adjust gene expression in response to population density. Depending on Agr expression, S. aureus secretes various toxins, contributing to virulence in infectious diseases. Paradoxically, expressing Agr may be disadvantageous in certain situations, such as in hospitals, causing S. aureus to generate Agr mutants responsible for infections in healthcare settings. MAIN BODY This review aims to demonstrate the molecular mechanisms governing the diverse phenotypes of S. aureus, ranging from a harmless colonizer to an organism capable of infecting various human organs. Emphasis will be placed on QS and its role in orchestrating S. aureus behavior across different contexts. SHORT CONCLUSION The pathophysiology of S. aureus infection is substantially influenced by phenotypic changes resulting from factors beyond Agr. Future studies are expected to give the comprehensive understanding of S. aureus overall profile in various settings.
Collapse
Affiliation(s)
- Yuriko Yamazaki
- Cutaneous Allergy and Host Defense, Immunology Frontier Research Center, Osaka, University, Osaka, 565-0871, Japan
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Tomoka Ito
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Masakazu Tamai
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Seitaro Nakagawa
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Yuumi Nakamura
- Cutaneous Allergy and Host Defense, Immunology Frontier Research Center, Osaka, University, Osaka, 565-0871, Japan.
- Department of Dermatology, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan.
| |
Collapse
|
10
|
Zubeldia-Varela E, Ibáñez-Sandín MD, Gomez-Casado C, Pérez-Gordo M. Allergy-associated biomarkers in early life identified by Omics techniques. FRONTIERS IN ALLERGY 2024; 5:1359142. [PMID: 38464396 PMCID: PMC10920277 DOI: 10.3389/falgy.2024.1359142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024] Open
Abstract
The prevalence and severity of allergic diseases have increased over the last 30 years. Understanding the mechanisms responsible for these diseases is a major challenge in current allergology, as it is crucial for the transition towards precision medicine, which encompasses predictive, preventive, and personalized strategies. The urge to identify predictive biomarkers of allergy at early stages of life is crucial, especially in the context of major allergic diseases such as food allergy and atopic dermatitis. Identifying these biomarkers could enhance our understanding of the immature immune responses, improve allergy handling at early ages and pave the way for preventive and therapeutic approaches. This minireview aims to explore the relevance of three biomarker categories (proteome, microbiome, and metabolome) in early life. First, levels of some proteins emerge as potential indicators of mucosal health and metabolic status in certain allergic diseases. Second, bacterial taxonomy provides insight into the composition of the microbiota through high-throughput sequencing methods. Finally, metabolites, representing the end products of bacterial and host metabolic activity, serve as early indicators of changes in microbiota and host metabolism. This information could help to develop an extensive identification of biomarkers in AD and FA and their potential in translational personalized medicine in early life.
Collapse
Affiliation(s)
- Elisa Zubeldia-Varela
- Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Department of Basic Medical Sciences, Facultad de Medicina. Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - María Dolores Ibáñez-Sandín
- Department of Allergy, H. Infantil Universitario Niño Jesús, FibHNJ, ARADyAL- RETICs Instituto de Salud Carlos III, IIS-P, Madrid, Spain
| | - Cristina Gomez-Casado
- Department of Dermatology, University Hospital Duesseldorf, Heinrich-Heine University, Duesseldorf, Germany
| | - Marina Pérez-Gordo
- Institute of Applied Molecular Medicine Nemesio Díez (IMMA), Department of Basic Medical Sciences, Facultad de Medicina. Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| |
Collapse
|
11
|
Cha J, Kim TG, Bhae E, Gwak HJ, Ju Y, Choe YH, Jang IH, Jung Y, Moon S, Kim T, Lee W, Park JS, Chung YW, Yang S, Kang YK, Hyun YM, Hwang GS, Lee WJ, Rho M, Ryu JH. Skin microbe-dependent TSLP-ILC2 priming axis in early life is co-opted in allergic inflammation. Cell Host Microbe 2024; 32:244-260.e11. [PMID: 38198924 DOI: 10.1016/j.chom.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 09/17/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
Although early life colonization of commensal microbes contributes to long-lasting immune imprinting in host tissues, little is known regarding the pathophysiological consequences of postnatal microbial tuning of cutaneous immunity. Here, we show that postnatal exposure to specific skin commensal Staphylococcus lentus (S. lentus) promotes the extent of atopic dermatitis (AD)-like inflammation in adults through priming of group 2 innate lymphoid cells (ILC2s). Early postnatal skin is dynamically populated by discrete subset of primed ILC2s driven by microbiota-dependent induction of thymic stromal lymphopoietin (TSLP) in keratinocytes. Specifically, the indole-3-aldehyde-producing tryptophan metabolic pathway, shared across Staphylococcus species, is involved in TSLP-mediated ILC2 priming. Furthermore, we demonstrate a critical contribution of the early postnatal S. lentus-TSLP-ILC2 priming axis in facilitating AD-like inflammation that is not replicated by later microbial exposure. Thus, our findings highlight the fundamental role of time-dependent neonatal microbial-skin crosstalk in shaping the threshold of innate type 2 immunity co-opted in adulthood.
Collapse
Affiliation(s)
- Jimin Cha
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Tae-Gyun Kim
- Department of Dermatology, Severance Hospital, Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 03722, Korea; Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Euihyun Bhae
- Department of Artificial Intelligence, Hanyang University, Seoul 04763, Korea
| | - Ho-Jin Gwak
- Department of Computer Science, Hanyang University, Seoul 04763, Korea
| | - Yeajin Ju
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea
| | - Young Ho Choe
- Department of Anatomy and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - In-Hwan Jang
- National Creative Research Initiative Center for Hologenomics and School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Youngae Jung
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea
| | - Sungmin Moon
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Taehyun Kim
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Wuseong Lee
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jung Sun Park
- Development and Differentiation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Youn Wook Chung
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Siyoung Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Yong-Kook Kang
- Development and Differentiation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Young-Min Hyun
- Department of Anatomy and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea; College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Won-Jae Lee
- National Creative Research Initiative Center for Hologenomics and School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Mina Rho
- Department of Computer Science, Hanyang University, Seoul 04763, Korea; Department of Biomedical Informatics, Hanyang University, Seoul 04763, Korea
| | - Ji-Hwan Ryu
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea.
| |
Collapse
|
12
|
Zhao H, Zhang Y, Zhou C, Zhang C, Liu B. Engineering pH responsive carboxyethyl chitosan and oxidized pectin -based hydrogels with self-healing, biodegradable and antibacterial properties for wound healing. Int J Biol Macromol 2023; 253:127364. [PMID: 37827409 DOI: 10.1016/j.ijbiomac.2023.127364] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
As an important organ of the human body, effective protection of the skin during trauma is crucial. An ideal wound dressing should have adhesion, adsorption of wound secretions, and good antibacterial properties. Two kinds of natural polysaccharide-based hydrogels, carboxyethyl chitosan/oxidized pectin hydrogel (CEC/OP) and carboxyethyl chitosan/oxidized pectin/polyethyleneimine hydrogel (CEC/OP/PEI), were reported by using carboxyethyl chitosan as the matrix, and oxidized pectin and branched polyethyleneimine as the crosslinking agents. Both hydrogels could be formed in a short time and exhibited the pH responsively due to the presence of imine bond. Compared with carboxyethyl chitosan/oxidized pectin hydrogel, polyethyleneimine containing hydrogel can form gel quickly, a more compact and stable three-dimensional space network structure was formed, which exhibited better swelling performance, the swelling ration, rheology property, self-repair ability, and antibacterial performance. When the mass fractions of carboxyethyl chitosan and oxidized pectin solutions are 4 wt% and 9 wt%, respectively, the hydrogel exhibited an antibacterial efficiency of >96 % against both Staphylococcus aureus and Escherichia coli. After adding 0.75 wt% polyethyleneimine, the antibacterial efficiency of hydrogel could reach up to >98 %. More importantly, the polyethyleneimine containing hydrogel has a significant effect in the treatment of bacterially infected wounds.
Collapse
Affiliation(s)
- Hengji Zhao
- School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Yushu Zhang
- School of Materials Science and Engineering, Jilin University, Changchun 130022, China
| | - Chao Zhou
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Chunling Zhang
- School of Materials Science and Engineering, Jilin University, Changchun 130022, China.
| | - Bo Liu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China.
| |
Collapse
|
13
|
Dhariwala MO, DeRogatis AM, Okoro JN, Weckel A, Tran VM, Habrylo I, Ojewumi OT, Tammen AE, Leech JM, Merana GR, Carale RO, Barrere-Cain R, Hiam-Galvez KJ, Spitzer MH, Scharschmidt TC. Commensal myeloid crosstalk in neonatal skin regulates long-term cutaneous type 17 inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560039. [PMID: 37873143 PMCID: PMC10592812 DOI: 10.1101/2023.09.29.560039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Early life microbe-immune interactions at barrier surfaces have lasting impacts on the trajectory towards health versus disease. Monocytes, macrophages and dendritic cells are primary sentinels in barrier tissues, yet the salient contributions of commensal-myeloid crosstalk during tissue development remain poorly understood. Here, we identify that commensal microbes facilitate accumulation of a population of monocytes in neonatal skin. Transient postnatal depletion of these monocytes resulted in heightened IL-17A production by skin T cells, which was particularly sustained among CD4+ T cells into adulthood and sufficient to exacerbate inflammatory skin pathologies. Neonatal skin monocytes were enriched in expression of negative regulators of the IL-1 pathway. Functional in vivo experiments confirmed a key role for excessive IL-1R1 signaling in T cells as contributing to the dysregulated type 17 response in neonatal monocyte-depleted mice. Thus, a commensal-driven wave of monocytes into neonatal skin critically facilitates long-term immune homeostasis in this prominent barrier tissue.
Collapse
Affiliation(s)
- Miqdad O. Dhariwala
- Department of Dermatology, University of California San Francisco; San Francisco, CA USA
| | - Andrea M. DeRogatis
- Department of Dermatology, University of California San Francisco; San Francisco, CA USA
| | - Joy N. Okoro
- Department of Dermatology, University of California San Francisco; San Francisco, CA USA
- Biomedical Sciences Program, University of California San Francisco; San Francisco, CA USA
| | - Antonin Weckel
- Department of Dermatology, University of California San Francisco; San Francisco, CA USA
| | - Victoria M. Tran
- Department of Dermatology, University of California San Francisco; San Francisco, CA USA
- Biomedical Sciences Program, University of California San Francisco; San Francisco, CA USA
| | - Irek Habrylo
- Department of Dermatology, University of California San Francisco; San Francisco, CA USA
- Biomedical Sciences Program, University of California San Francisco; San Francisco, CA USA
| | | | - Allison E. Tammen
- Department of Dermatology, University of California San Francisco; San Francisco, CA USA
| | - John M. Leech
- Department of Dermatology, University of California San Francisco; San Francisco, CA USA
| | - Geil R. Merana
- Department of Dermatology, University of California San Francisco; San Francisco, CA USA
- Biomedical Sciences Program, University of California San Francisco; San Francisco, CA USA
| | - Ricardo O. Carale
- Department of Dermatology, University of California San Francisco; San Francisco, CA USA
| | - Rio Barrere-Cain
- Department of Dermatology, University of California San Francisco; San Francisco, CA USA
| | - Kamir J. Hiam-Galvez
- Biomedical Sciences Program, University of California San Francisco; San Francisco, CA USA
- Department of Otolaryngology-Head and Neck Surgery, Department of Microbiology and Immunology, Parker Institute for Cancer Immunotherapy, University of California San Francisco; San Francisco, CA USA
| | - Matthew H. Spitzer
- Department of Otolaryngology-Head and Neck Surgery, Department of Microbiology and Immunology, Parker Institute for Cancer Immunotherapy, University of California San Francisco; San Francisco, CA USA
| | | |
Collapse
|
14
|
Serghiou IR, Webber MA, Hall LJ. An update on the current understanding of the infant skin microbiome and research challenges. Curr Opin Microbiol 2023; 75:102364. [PMID: 37586254 DOI: 10.1016/j.mib.2023.102364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 08/18/2023]
Abstract
Multiple factors contribute to establishment of skin microbial communities in early life, with perturbations in these ecosystems impacting health. This review provides an update on methods used to profile the skin microbiome and how this is helping enhance our understanding of infant skin microbial communities, including factors that influence composition and disease risk. We also provide insights into new interventional studies and treatments in this area. However, it is apparent that there are still research bottlenecks that include overreliance on high-income countries for skin microbiome 'surveys', many studies still focus solely on the bacterial microbiota, and also technical issues related to the lower microbial biomass of skin sites. These points link to pertinent open-research questions, such as how the whole infant skin microbiome interacts and how microbial-associated functions shape infant skin health and immunity.
Collapse
Affiliation(s)
- Iliana R Serghiou
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK; School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK.
| | - Mark A Webber
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK; Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK.
| | - Lindsay J Hall
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK; School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK; Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK; Intestinal Microbiome, School of Life Sciences, ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany.
| |
Collapse
|
15
|
Hassan M, Diab MA, Abd El-Wahab MG, Hegazi AH, Emwas AH, Jaremko M, Hagar M. Bismuth Oxide Composite-Based Agricultural Waste for Wound Dressing Applications. Molecules 2023; 28:5900. [PMID: 37570869 PMCID: PMC10421204 DOI: 10.3390/molecules28155900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 08/13/2023] Open
Abstract
The purpose of this study was to enhance the antimicrobial activity of bagasse paper by coating the paper with bismuth oxide (Bi2O3) and using it to accelerate the process of wound healing. Paper sheets were prepared from sugarcane waste (bagasse). First, the paper sheets were coated with different Bi2O3 concentrations to improve the antimicrobial activity of the paper. After that, the paper sheets were allowed to dry in an oven at 50 °C for 3 h. Then, in vitro antimicrobial activity was evaluated against different microbial species, including Gram-negative bacteria (i.e., Klebsiella pneumonia, Escherichia coli) and Gram-positive bacteria (i.e., Staphylococcus aureus, Streptococcus pyogenes). The obtained results showed that the paper coated with 25% and 100% Bi2O3 had activity against all models of bacteria; however, the paper coated with 100% Bi2O3 composite had the strongest inhibitory effect. Then, bagasse paper was coated with 100% Bi2O3 and different antibiotics, to investigate their wound-healing potency in a wounded rat model for 14 days. Moreover, the paper coated with 100% Bi2O3 inhibited the cellular migration in vitro. Conclusively, coating paper with Bi2O3 enhances the wound-healing potential when applied to wounds. This impact could be ascribed to Bi2O3's broad antibacterial activity, which reduced infection and accelerated the healing process.
Collapse
Affiliation(s)
- Mayar Hassan
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| | - Mohamed A. Diab
- National Research Center, Cellulose and Paper Department, 33El-Bohouth St. (Former El-Tahrir St.), Dokki, Giza 12622, Egypt
| | - Miral G. Abd El-Wahab
- Center of Excellence for Drug Preclinical Studies (CE-DPS), Pharmaceutical and Fermentation, Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab 21934, Egypt
| | - Abdelrahman H. Hegazi
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| | - Abdul-Hamid Emwas
- Core Labs., King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mohamed Hagar
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| |
Collapse
|
16
|
Xiao L, Zhao F. Microbial transmission, colonisation and succession: from pregnancy to infancy. Gut 2023; 72:772-786. [PMID: 36720630 PMCID: PMC10086306 DOI: 10.1136/gutjnl-2022-328970] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/10/2023] [Indexed: 02/02/2023]
Abstract
The microbiome has been proven to be associated with many diseases and has been used as a biomarker and target in disease prevention and intervention. Currently, the vital role of the microbiome in pregnant women and newborns is increasingly emphasised. In this review, we discuss the interplay of the microbiome and the corresponding immune mechanism between mothers and their offspring during the perinatal period. We aim to present a comprehensive picture of microbial transmission and potential immune imprinting before and after delivery. In addition, we discuss the possibility of in utero microbial colonisation during pregnancy, which has been highly debated in recent studies, and highlight the importance of the microbiome in infant development during the first 3 years of life. This holistic view of the role of the microbial interplay between mothers and infants will refine our current understanding of pregnancy complications as well as diseases in early life and will greatly facilitate the microbiome-based prenatal diagnosis and treatment of mother-infant-related diseases.
Collapse
Affiliation(s)
- Liwen Xiao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of System Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
17
|
Wang G, Lin Z, Li Y, Chen L, Reddy SK, Hu Z, Garza LA. Colonizing microbiota is associated with clinical outcomes in diabetic wound healing. Adv Drug Deliv Rev 2023; 194:114727. [PMID: 36758858 PMCID: PMC10163681 DOI: 10.1016/j.addr.2023.114727] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
With the development of society and the improvement of life quality, more than 500 million people are affected by diabetes. More than 10 % of people with diabetes will suffer from diabetic wounds, and 80 % of diabetic wounds will reoccur, so the development of new diabetic wound treatments is of great importance. The development of skin microbe research technology has gradually drawn people's attention to the complex relationship between microbes and diabetic wounds. Many studies have shown that skin microbes are associated with the outcome of diabetic wounds and can even be used as one of the indicators of wound prognosis. Skin microbes have also been found to have the potential to treat diabetic wounds. The wound colonization of different bacteria can exert opposing therapeutic effects. It is necessary to fully understand the skin microbes in diabetic wounds, which can provide valuable guidance for clinical diabetic wound treatment.
Collapse
Affiliation(s)
- Gaofeng Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China; Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA.
| | - Zhen Lin
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Yue Li
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Lu Chen
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Sashank K Reddy
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA; Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - L A Garza
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA; Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA.
| |
Collapse
|
18
|
The dynamic balance of the skin microbiome across the lifespan. Biochem Soc Trans 2023; 51:71-86. [PMID: 36606709 PMCID: PMC9988004 DOI: 10.1042/bst20220216] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023]
Abstract
For decades research has centered on identifying the ideal balanced skin microbiome that prevents disease and on developing therapeutics to foster this balance. However, this single idealized balance may not exist. The skin microbiome changes across the lifespan. This is reflected in the dynamic shifts of the skin microbiome's diverse, inter-connected community of microorganisms with age. While there are core skin microbial taxa, the precise community composition for any individual person is determined by local skin physiology, genetics, microbe-host interactions, and microbe-microbe interactions. As a key interface with the environment, the skin surface and its appendages are also constantly exchanging microbes with close personal contacts and the environment. Hormone fluctuations and immune system maturation also drive age-dependent changes in skin physiology that support different microbial community structures over time. Here, we review recent insights into the factors that shape the skin microbiome throughout life. Collectively, the works summarized within this review highlight how, depending on where we are in lifespan, our skin supports robust microbial communities, while still maintaining microbial features unique to us. This review will also highlight how disruptions to this dynamic microbial balance can influence risk for dermatological diseases as well as impact lifelong health.
Collapse
|
19
|
Swaney MH, Nelsen A, Sandstrom S, Kalan LR. Sweat and Sebum Preferences of the Human Skin Microbiota. Microbiol Spectr 2023; 11:e0418022. [PMID: 36602383 PMCID: PMC9927561 DOI: 10.1128/spectrum.04180-22] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/06/2022] [Indexed: 01/06/2023] Open
Abstract
The microorganisms inhabiting human skin must overcome numerous challenges that typically impede microbial growth, including low pH, osmotic pressure, and low nutrient availability. Yet the skin microbiota thrive on the skin and have adapted to these stressful conditions. The limited nutrients available for microbial use in this unique niche include those from host-derived sweat, sebum, and corneocytes. Here, we have developed physiologically relevant, synthetic skin-like growth media composed of compounds present in sweat and sebum. We find that skin-associated bacterial species exhibit unique growth profiles at different concentrations of artificial sweat and sebum. Most strains evaluated demonstrate a preference for high sweat concentrations, while the sebum preference is highly variable, suggesting that the capacity for sebum utilization may be a driver of the skin microbial community structure. In particular, the prominent skin commensal Staphylococcus epidermidis exhibits the strongest preference for sweat while growing equally well across sebum concentrations. Conversely, the growth of Corynebacterium kefirresidentii, another dominant skin microbiome member, is dependent on increasing concentrations of both sweat and sebum but only when sebum is available, suggesting a lipid requirement of this species. Furthermore, we observe that strains with similar growth profiles in the artificial media cluster by phylum, suggesting that phylogeny is a key factor in sweat and sebum use. Importantly, these findings provide an experimental rationale for why different skin microenvironments harbor distinct microbiome communities. In all, our study further emphasizes the importance of studying microorganisms in an ecologically relevant context, which is critical for our understanding of their physiology, ecology, and function on the skin. IMPORTANCE The human skin microbiome is adapted to survive and thrive in the harsh environment of the skin, which is low in nutrient availability. To study skin microorganisms in a system that mimics the natural skin environment, we developed and tested a physiologically relevant, synthetic skin-like growth medium that is composed of compounds found in the human skin secretions sweat and sebum. We find that most skin-associated bacterial species tested prefer high concentrations of artificial sweat but that artificial sebum concentration preference varies from species to species, suggesting that sebum utilization may be an important contributor to skin microbiome composition. This study demonstrates the utility of a skin-like growth medium, which can be applied to diverse microbiological systems, and underscores the importance of studying microorganisms in an ecologically relevant context.
Collapse
Affiliation(s)
- Mary Hannah Swaney
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin, Madison, Wisconsin, USA
| | - Amanda Nelsen
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Shelby Sandstrom
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Lindsay R. Kalan
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- Department of Medicine, Division of Infectious Disease, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
- M. G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
20
|
Caldwell R, Zhou W, Oh J. Strains to go: interactions of the skin microbiome beyond its species. Curr Opin Microbiol 2022; 70:102222. [PMID: 36242896 PMCID: PMC9701184 DOI: 10.1016/j.mib.2022.102222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 01/25/2023]
Abstract
An extraordinary biodiversity of bacteria, fungi, viruses, and even small multicellular eukaryota inhabit the human skin. Genomic innovations have accelerated characterization of this biodiversity both at a species as well as the subspecies, or strain level, which further imparts a tremendous genetic diversity to an individual's skin microbiome. In turn, these advances portend significant species- and strain-specificity in the skin microbiome's functional impact on cutaneous immunity, barrier integrity, aging, and other skin physiologic processes. Future advances in defining strain diversity, spatial distribution, and metabolic diversity for major skin species will be foundational for understanding the microbiome's essentiality to the skin ecosystem and for designing topical therapeutics that leverage or target the skin microbiome.
Collapse
Affiliation(s)
- Ryan Caldwell
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Wei Zhou
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States
| | - Julia Oh
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States.
| |
Collapse
|