1
|
Zhang Y, Chen L, Yang S, Dai R, Sun H, Zhang L. Identification and Validation of Circadian Rhythm-Related Genes Involved in Intervertebral Disc Degeneration and Analysis of Immune Cell Infiltration via Machine Learning. JOR Spine 2025; 8:e70066. [PMID: 40225045 PMCID: PMC11994230 DOI: 10.1002/jsp2.70066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 04/15/2025] Open
Abstract
Background Low back pain is a significant burden worldwide, and intervertebral disc degeneration (IVDD) is identified as the primary cause. Recent research has emphasized the significant role of circadian rhythms (CRs) and immunity in affecting intervertebral discs (IVD). However, the influence of circadian rhythms and immunity on the mechanism of IVDD remains unclear. This study aimed to identify and validate key rhythm-related genes in IVDD and analyze their correlation with immune cell infiltration. Methods Two gene expression profiles related to IVDD and rhythm-related genes were obtained from the Gene Expression Omnibus and GeneCards databases to identify differentially expressed rhythm-related genes (DERGs). Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene set enrichment analysis (GSEA) were conducted to explore the biological functions of these genes. LASSO regression and SVM algorithms were employed to identify hub genes. We subsequently investigated the correlation between hub rhythm-related genes and immune cell infiltration. Finally, nucleus pulposus-derived mesenchymal stem cells (NPMSCs) were isolated from normal and degenerative human IVD tissues. Hub rhythm-related genes expression in NPMSCs was confirmed by real-time quantitative PCR (RT-qPCR). Results Six hub genes related to CRs (CCND1, FOXO1, FRMD8, NTRK2, PRRT1, and TFPI) were screened out. Immune infiltration analysis revealed that the IVDD group had significantly more M0 macrophages and significantly fewer follicular helper T cells than those of the control group. Specifically, M0 macrophages were significantly associated with FRMD8, PRRT1, and TFPI. T follicular helper cells were significantly associated with FRDM8, FOXO1, and CCND1. We further confirmed that CCND1, FRMD8, NTRK2, and TFPI were dysrhythmic within NPMSCs from degenerated IVD in vitro. Conclusion Six genes (CCND1, FOXO1, FRMD8, NTRK2, PRRT1 and TFPI) linked to circadian rhythms associated with IVDD progression, together with immunity. The identification of these DEGs may provide new insights for the diagnosis and treatment of IVDD.
Collapse
Affiliation(s)
- Yongbo Zhang
- Department of OrthopedicsNorthern Jiangsu People's Hospital Affiliated to Yangzhou UniversityYangzhouChina
- Department of OrthopedicsThe Yangzhou School of Clinical Medicine of Dalian Medical UniversityYangzhouChina
| | - Liuyang Chen
- Department of OrthopedicsNorthern Jiangsu People's Hospital Affiliated to Yangzhou UniversityYangzhouChina
- Department of OrthopedicsNorthern Jiangsu People's HospitalYangzhouChina
| | - Sheng Yang
- Department of OrthopedicsNorthern Jiangsu People's Hospital Affiliated to Yangzhou UniversityYangzhouChina
- Department of OrthopedicsThe Yangzhou School of Clinical Medicine of Dalian Medical UniversityYangzhouChina
| | - Rui Dai
- Department of OrthopedicsNorthern Jiangsu People's Hospital Affiliated to Yangzhou UniversityYangzhouChina
- Department of OrthopedicsNorthern Jiangsu People's HospitalYangzhouChina
| | - Hua Sun
- Department of OrthopedicsNorthern Jiangsu People's Hospital Affiliated to Yangzhou UniversityYangzhouChina
- Department of OrthopedicsNorthern Jiangsu People's HospitalYangzhouChina
| | - Liang Zhang
- Department of OrthopedicsNorthern Jiangsu People's Hospital Affiliated to Yangzhou UniversityYangzhouChina
- Department of OrthopedicsNorthern Jiangsu People's HospitalYangzhouChina
| |
Collapse
|
2
|
Zhang J, Liu D, Liu J, Cai C, Hu F, Cheng G, Xu L, Zeng Y. Effects of self-managed lifestyle behavioral changes on cognitive impairment control in Chinese older adults: a population-based prospective study. Transl Psychiatry 2025; 15:165. [PMID: 40360472 PMCID: PMC12075778 DOI: 10.1038/s41398-025-03365-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 03/14/2025] [Accepted: 03/31/2025] [Indexed: 05/15/2025] Open
Abstract
Few studies have examined the effects of self-managed lifestyle behavioral adjustment on cognitive status. This study aimed to explore the association between self-managed behavioral changes and transitions in cognitive status. The Hubei Memory and Aging Cohort Study was a prospective cohort study conducted from 2018-2023 in rural and urban areas. Home-dwelling adults aged ≥65 years completed neuropsychological, lifestyle, clinical, and cognitive assessments. The Cox regressions and cubic splines were used to assess the risk of incident cognitive impairment, and latent class analysis was used to group participants based on behavioral patterns and assess transitions in cognitive status. Among 2477 participants with a mean of 2.02 (SD, 1.25) years of follow-up were included in the study. Participants with low and intermediate compared with high baseline behavioral risk exhibited a reduced risk of incident cognitive impairment. At follow-up, those who maintained stable healthy behaviors or positively adjusted them had a 54% (HR, 0.46 [95% CI, 0.34-0.62]) and 84% (0.16 [0.07-0.35]) lower risk of developing cognitive impairment, respectively, compared with those who maintained unhealthy behaviors. The standard and reinforced behavioral adjustment patterns exhibited a 37% (0.63 [0.22-1.79]) and 77% (0.23 [0.05-0.97]) reduction in the risk of incident cognitive impairment, respectively, compared with the basic pattern. Optimal cognitive gains were attributed to positive adjustments in social networks, physical exercise, cognitive activity, and sleep health. Older adults who maintained healthy behaviors or positively adjusted their unhealthy behaviors exhibited a reduced risk of incident cognitive impairment. Positive behavior modification brought greater cognitive improvement to all participants and more pronounced effects for those with dementia.
Collapse
Affiliation(s)
- Jingjing Zhang
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
- Research Center for Medical AI, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dan Liu
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Jing Liu
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Cheng Cai
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Feifei Hu
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Guirong Cheng
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Lang Xu
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Yan Zeng
- Hubei Provincial Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China.
- Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Zhang H, Zhang X, Yun Z, Chen Y, Cang S, Shao Y, Jia E, Chen R. Loss of diurnal oscillatory rhythms in gut microbiota correlates with progression of atherosclerosis. Food Funct 2025; 16:3423-3438. [PMID: 40201963 DOI: 10.1039/d4fo05227g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Circadian rhythms in gut microbiota composition are crucial for metabolic function and disease progression, yet the diurnal oscillation patterns of gut microbiota in atherosclerotic cardiovascular disease (ASCVD) and their role in disease progression remain unknown. Here, we investigated gut bacterial dynamics in Apoe-/- mice over 24 hours and elucidated dynamic changes in fecal microbiota composition and function among C57BL/6 and Apoe-/- mice with standard chow diet or high-fat/high-cholesterol diet under ad libitum conditions. Compared with C57BL/6 mice, Apoe-/- mice exhibited significant differences in fecal microbial composition. Rhythmicity analysis revealed that the temporal dynamics of fecal microbiota composition and function in Apoe-/- mice differed significantly from those in C57BL/6 mice, particularly in B. coccoides-dominated oscillatory modules. Functional annotation showed that rhythmic B. coccoides strains inhibited ASCVD progression by enhancing intestinal and endothelial barrier functions. These findings demonstrate that diurnal oscillations in gut microbiota are closely associated with ASCVD progression and provide new insights for microbiota-targeted precision therapies.
Collapse
Affiliation(s)
- He Zhang
- School of Life Sciences, Xuzhou Medical University, 221004, Xuzhou, China.
| | - Xiaohan Zhang
- School of Life Sciences, Xuzhou Medical University, 221004, Xuzhou, China.
| | - Zihan Yun
- School of Life Sciences, Xuzhou Medical University, 221004, Xuzhou, China.
| | - Yang Chen
- School of Life Sciences, Xuzhou Medical University, 221004, Xuzhou, China.
| | - Suhua Cang
- School of Life Sciences, Xuzhou Medical University, 221004, Xuzhou, China.
| | - Yating Shao
- School of Life Sciences, Xuzhou Medical University, 221004, Xuzhou, China.
| | - Erteng Jia
- Thoracic Surgery Laboratory, the First College of Clinical Medicine, Xuzhou Medical University, 221004, Xuzhou, China.
| | - Renjin Chen
- School of Life Sciences, Xuzhou Medical University, 221004, Xuzhou, China.
| |
Collapse
|
4
|
Li HD, Zheng JY, Tan KW, Su JX, Chen W, Pang RK, Wu GL, Qiu YH, Li XX, Cai YF, Zhang SJ. Salvianolic acid B (SalB) improves high-fat diet (HFD)-caused cognitive impairment in mice by modulating the Trem2/Dap12 pathway in vivo and in vitro. Int Immunopharmacol 2025; 153:114461. [PMID: 40101423 DOI: 10.1016/j.intimp.2025.114461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/23/2025] [Accepted: 03/08/2025] [Indexed: 03/20/2025]
Abstract
Salvianolic acid B (SalB), which extracted from Salvia miltiorrhiza Bunge (Labiatae), is a traditional Chinese medicine. SalB is widely used in nervous system diseases. This study evaluated the protective effect of SalB on high-fat diet (HFD)-induced cognitive impairment and its mechanisms in vivo and in vitro. The behavior tests demonstrated that SalB alleviated motor skills and learning capacity in HFD mice. Animal experiments have confirmed that SalB reduced the mRNA expression of inflammatory markers and the Trem2/Dap12 pathway in HIP. Furthermore, SalB inhibited the microglia Trem2/Dap12 pathway in HIP. In vivo, palmitic acid (PA) was used to intervene in BV2 cells to construct an inflammatory. SalB reduced the mRNA expression of inflammatory markers and inhibited the Trem2/Dap12 pathway in BV2 cells. In conclusion, SalB treatment may serve as a possible therapy for cognitive impairment induced by HFD.
Collapse
Affiliation(s)
- Hong-Dan Li
- Department of Neurology, Nanning Hospital of Traditional Chinese Medicine, Nanning 530000, China; State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou 510000, China
| | - Jia-Yi Zheng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou 510000, China
| | - Kai-Wen Tan
- Department of Neurology, Nanning Hospital of Traditional Chinese Medicine, Nanning 530000, China
| | - Jin-Xun Su
- Department of Neurology, Nanning Hospital of Traditional Chinese Medicine, Nanning 530000, China
| | - Wei Chen
- Department of Neurology, Nanning Hospital of Traditional Chinese Medicine, Nanning 530000, China
| | - Rui-Kang Pang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou 510000, China
| | - Guang-Liang Wu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou 510000, China
| | - Yu-Hui Qiu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou 510000, China
| | - Xiao-Xiao Li
- Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong 999077, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China.
| | - Ye-Feng Cai
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou 510000, China.
| | - Shi-Jie Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou 510000, China.
| |
Collapse
|
5
|
Guo W, Zhang C, Zhou Q, Chen T, Xu X, Zhang J, Yu X, Wu H, Zhang X, Ma L, Qian K, Klionsky DJ, Kang R, Kroemer G, Yu Y, Tang D, Wang J. Mitochondrial CCN1 drives ferroptosis via fatty acid β-oxidation. Dev Cell 2025:S1534-5807(25)00206-0. [PMID: 40280135 DOI: 10.1016/j.devcel.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/16/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025]
Abstract
Ferroptosis is a type of oxidative cell death, although its key metabolic processes remain incompletely understood. Here, we employ a comprehensive multiomics screening approach that identified cellular communication network factor 1 (CCN1) as a metabolic catalyst of ferroptosis. Upon ferroptosis induction, CCN1 relocates to mitochondrial complexes, facilitating electron transfer flavoprotein subunit alpha (ETFA)-dependent fatty acid β-oxidation. Compared with a traditional carnitine O-palmitoyltransferase 2 (CPT2)-ETFA pathway, the CCN1-ETFA pathway provides additional substrates for mitochondrial reactive oxygen species production, thereby stimulating ferroptosis through lipid peroxidation. A high-fat diet can enhance the anticancer efficacy of ferroptosis in lung cancer mouse models, depending on CCN1. Furthermore, primary lung cancer cells derived from patients with hypertriglyceridemia or high CCN1 expression demonstrate increased susceptibility to ferroptosis in vitro and in vivo. These findings do not only identify the metabolic role of mitochondrial CCN1 but also establish a strategy for enhancing ferroptosis-based anticancer therapies.
Collapse
Affiliation(s)
- Wanxin Guo
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Congcong Zhang
- Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Qianjun Zhou
- Department of Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Tianxiang Chen
- Department of Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xin Xu
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Jianfeng Zhang
- Department of Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xuewen Yu
- Department of Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Han Wu
- Department of Surgical Oncology, Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Xiao Zhang
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Lifang Ma
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Kun Qian
- Institute of Medical Robotics and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, 94800 Villejuif, France; Department of Biology, Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
| | - Yongchun Yu
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Jiayi Wang
- Department of Clinical Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Medical Science Laboratory, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
6
|
Zhang M, Zhou C, Li X, Li H, Han Q, Chen Z, Tang W, Yin J. Interactions between Gut Microbiota, Host Circadian Rhythms, and Metabolic Diseases. Adv Nutr 2025:100416. [PMID: 40139315 DOI: 10.1016/j.advnut.2025.100416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 03/17/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025] Open
Abstract
The circadian rhythm arises endogenously from genetically encoded molecular clocks, wherein the components collaborate to induce cyclic fluctuations, occurring approximately every 24 h. The rhythms synchronize biological processes with regular and predictable environmental patterns to guarantee the host metabolism and energy homeostasis function and well-being. Disruptions to circadian rhythms are widely associated with metabolic disorders. Notably, microbial rhythms are influenced by both the host's intrinsic circadian clock and external rhythmic factors (i.e., light-dark cycle, diet patterns, and diet composition), which affect the structure of microbial communities and metabolic functions. Moreover, microbiota and the metabolites also reciprocally influence host rhythms, potentially impacting host metabolic function. This review aimed to explore the bidirectional interactions between the circadian clock, factors influencing host-microbial circadian rhythms, and the effects on lipid metabolism and energy homeostasis.
Collapse
Affiliation(s)
- Mingliang Zhang
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, China
| | | | - Xinguo Li
- Hunan Institute of Animal and Veterinary Science, Changsha, China
| | - Hui Li
- Xiangxi Vocational and Technical College for Nationalities, Jishou, China
| | - Qi Han
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, China
| | - Zhong Chen
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, China
| | - Wenjie Tang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China; Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animtche Group, Co Ltd, Chengdu, China.
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, China.
| |
Collapse
|
7
|
Nie T, Nepovimova E, Wu Q. Circadian rhythm, hypoxia, and cellular senescence: From molecular mechanisms to targeted strategies. Eur J Pharmacol 2025; 990:177290. [PMID: 39863143 DOI: 10.1016/j.ejphar.2025.177290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/03/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Cellular senescence precipitates a decline in physiological activities and metabolic functions, often accompanied by heightened inflammatory responses, diminished immune function, and impaired tissue and organ performance. Despite extensive research, the mechanisms underpinning cellular senescence remain incompletely elucidated. Emerging evidence implicates circadian rhythm and hypoxia as pivotal factors in cellular senescence. Circadian proteins are central to the molecular mechanism governing circadian rhythm, which regulates homeostasis throughout the body. These proteins mediate responses to hypoxic stress and influence the progression of cellular senescence, with protein Brain and muscle arnt-like 1 (BMAL1 or Arntl) playing a prominent role. Hypoxia-inducible factor-1α (HIF-1α), a key regulator of oxygen homeostasis within the cellular microenvironment, orchestrates the transcription of genes involved in various physiological processes. HIF-1α not only impacts normal circadian rhythm functions but also can induce or inhibit cellular senescence. Notably, HIF-1α may aberrantly interact with BMAL1, forming the HIF-1α-BMAL1 heterodimer, which can instigate multiple physiological dysfunctions. This heterodimer is hypothesized to modulate cellular senescence by affecting the molecular mechanism of circadian rhythm and hypoxia signaling pathways. In this review, we elucidate the intricate relationships among circadian rhythm, hypoxia, and cellular senescence. We synthesize diverse evidence to discuss their underlying mechanisms and identify novel therapeutic targets to address cellular senescence. Additionally, we discuss current challenges and suggest potential directions for future research. This work aims to deepen our understanding of the interplay between circadian rhythm, hypoxia, and cellular senescence, ultimately facilitating the development of therapeutic strategies for aging and related diseases.
Collapse
Affiliation(s)
- Tong Nie
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
8
|
Deota S, Pendergast JS, Kolthur-Seetharam U, Esser KA, Gachon F, Asher G, Dibner C, Benitah SA, Escobar C, Muoio DM, Zhang EE, Hotamışlıgil GS, Bass J, Takahashi JS, Rabinowitz JD, Lamia KA, de Cabo R, Kajimura S, Longo VD, Xu Y, Lazar MA, Verdin E, Zierath JR, Auwerx J, Drucker DJ, Panda S. The time is now: accounting for time-of-day effects to improve reproducibility and translation of metabolism research. Nat Metab 2025; 7:454-468. [PMID: 40097742 DOI: 10.1038/s42255-025-01237-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 02/07/2025] [Indexed: 03/19/2025]
Abstract
The constant expansion of the field of metabolic research has led to more nuanced and sophisticated understanding of the complex mechanisms that underlie metabolic functions and diseases. Collaborations with scientists of various fields such as neuroscience, immunology and drug discovery have further enhanced the ability to probe the role of metabolism in physiological processes. However, many behaviours, endocrine and biochemical processes, and the expression of genes, proteins and metabolites have daily ~24-h biological rhythms and thus peak only at specific times of the day. This daily variation can lead to incorrect interpretations, lack of reproducibility across laboratories and challenges in translating preclinical studies to humans. In this Review, we discuss the biological, environmental and experimental factors affecting circadian rhythms in rodents, which can in turn alter their metabolic pathways and the outcomes of experiments. We recommend that these variables be duly considered and suggest best practices for designing, analysing and reporting metabolic experiments in a circadian context.
Collapse
Affiliation(s)
- Shaunak Deota
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Ullas Kolthur-Seetharam
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
- Tata Institute of Fundamental Research, Hyderabad, India
| | - Karyn A Esser
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
| | - Frédéric Gachon
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Gad Asher
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Charna Dibner
- Department of Surgery and Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute for Science and Technology, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Carolina Escobar
- Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Deborah M Muoio
- Departments of Medicine and Pharmacology & Cancer Biology, Duke Molecular Physiology Institute, Durham, NC, USA
| | | | - Gökhan S Hotamışlıgil
- Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Joseph Bass
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Joseph S Takahashi
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Katja A Lamia
- Department of Molecular and Cellular Biology and Department of Molecular Medicine, the Scripps Research Institute, La Jolla, CA, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Shingo Kajimura
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School and Howard Hughes Medical Institute, Boston, MA, USA
| | - Valter D Longo
- Longevity Institute, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- AIRC Institute of Molecular Oncology, Italian Foundation for Cancer Research Institute of Molecular Oncology, Milan, Italy
| | - Ying Xu
- CAM-SU Genomic Resource Center, Soochow University, Suzhou, China
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity and Metabolism and Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Juleen R Zierath
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Daniel J Drucker
- The Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital and the Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
9
|
Shen J, Liang W, Zhao R, Chen Y, Liu Y, Cheng W, Chai T, Zhang Y, Chen S, Liu J, Chen X, Deng Y, Zhang Z, Huang Y, Yang H, Pang L, Qiu Q, Deng H, Pan S, Wang L, Ye J, Luo W, Jiang X, Huang X, Li W, Leung EL, Zhang L, Huang L, Yang Z, Chen R, Mei J, Yue Z, Wei H, Karsten K, Han L, Fang X. Cross-tissue multi-omics analyses reveal the gut microbiota's absence impacts organ morphology, immune homeostasis, bile acid and lipid metabolism. IMETA 2025; 4:e272. [PMID: 40027481 PMCID: PMC11865341 DOI: 10.1002/imt2.272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 03/05/2025]
Abstract
The gut microbiota influences host immunity and metabolism, and changes in its composition and function have been implicated in several non-communicable diseases. Here, comparing germ-free (GF) and specific pathogen-free (SPF) mice using spatial transcriptomics, single-cell RNA sequencing, and targeted bile acid metabolomics across multiple organs, we systematically assessed how the gut microbiota's absence affected organ morphology, immune homeostasis, bile acid, and lipid metabolism. Through integrated analysis, we detect marked aberration in B, myeloid, and T/natural killer cells, altered mucosal zonation and nutrient uptake, and significant shifts in bile acid profiles in feces, liver, and circulation, with the alternate synthesis pathway predominant in GF mice and pronounced changes in bile acid enterohepatic circulation. Particularly, autophagy-driven lipid droplet breakdown in ileum epithelium and the liver's zinc finger and BTB domain-containing protein (ZBTB20)-Lipoprotein lipase (LPL) (ZBTB20-LPL) axis are key to plasma lipid homeostasis in GF mice. Our results unveil the complexity of microbiota-host interactions in the crosstalk between commensal gut bacteria and the host.
Collapse
Affiliation(s)
- Juan Shen
- BGI ResearchShenzhenChina
- Qingdao‐Europe Advanced Institute for Life SciencesBGI ResearchQingdaoChina
| | | | | | - Yang Chen
- State Key Laboratory of Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine SyndromeThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Yanmin Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine SyndromeThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Wei Cheng
- College of Animal Sciences and TechnologyHuazhong Agricultural UniversityWuhanChina
| | | | | | | | | | | | - Yusheng Deng
- State Key Laboratory of Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine SyndromeThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
| | | | | | | | | | - Qinwei Qiu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine SyndromeThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
| | | | | | | | | | - Wen Luo
- Kangmeihuada (KMHD) GeneTech Co., Ltd.ShenzhenChina
- Zhuhai UM Science & Technology Research Institute‐Kangmeihuada (KMHD) joint labZhuhaiChina
| | - Xuanting Jiang
- Kangmeihuada (KMHD) GeneTech Co., Ltd.ShenzhenChina
- Zhuhai UM Science & Technology Research Institute‐Kangmeihuada (KMHD) joint labZhuhaiChina
| | | | | | - Elaine Lai‐Han Leung
- Zhuhai UM Science & Technology Research Institute‐Kangmeihuada (KMHD) joint labZhuhaiChina
- Cancer Center, Faculty of Health SciencesUniversity of MacauMacau (SAR)China
- MOE Frontiers Science Center for Precision OncologyUniversity of MacauMacau (SAR)China
| | - Lu Zhang
- Department of Computer ScienceHong Kong Baptist UniversityHong KongChina
| | - Li Huang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine SyndromeThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Zhimin Yang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine SyndromeThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
| | | | - Junpu Mei
- BGI ResearchShenzhenChina
- BGI ResearchSanyaChina
| | | | - Hong Wei
- College of Animal Sciences and TechnologyHuazhong Agricultural UniversityWuhanChina
- Yu‐Yue Pathology Scientific Research CenterChongqingChina
| | - Kristiansen Karsten
- BGI ResearchShenzhenChina
- Laboratory of Genomics and Molecular Biomedicine, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Lijuan Han
- Kangmeihuada (KMHD) GeneTech Co., Ltd.ShenzhenChina
- Zhuhai UM Science & Technology Research Institute‐Kangmeihuada (KMHD) joint labZhuhaiChina
- Kangmei Pharmaceutical Co., Ltd.JieyangChina
| | - Xiaodong Fang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine SyndromeThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouChina
- BGI ResearchSanyaChina
| |
Collapse
|
10
|
Costantini C, Brancorsini S, Grignani F, Romani L, Bellet MM. Circadian metabolic adaptations to infections. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230473. [PMID: 39842481 PMCID: PMC11753887 DOI: 10.1098/rstb.2023.0473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/22/2024] [Accepted: 05/16/2024] [Indexed: 01/24/2025] Open
Abstract
Circadian clocks are biological oscillators that evolved to coordinate rhythms in behaviour and physiology around the 24-hour day. In mammalian tissues, circadian rhythms and metabolism are highly intertwined. The clock machinery controls rhythmic levels of circulating hormones and metabolites, as well as rate-limiting enzymes catalysing biosynthesis or degradation of macromolecules in metabolic tissues, such control being exerted both at the transcriptional and post-transcriptional level. During infections, major metabolic adaptation occurs in mammalian hosts, at the level of both the single immune cell and the whole organism. Under these circumstances, the rhythmic metabolic needs of the host intersect with those of two other players: the pathogen and the microbiota. These three components cooperate or compete to meet their own metabolic demands across the 24 hours. Here, we review findings describing the circadian regulation of the host response to infection, the circadian metabolic adaptations occurring during host-microbiota-pathogen interactions and how such regulation can influence the immune response of the host and, ultimately, its own survival.This article is part of the Theo Murphy meeting issue 'Circadian rhythms in infection and immunity'.
Collapse
Affiliation(s)
- Claudio Costantini
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, Perugia06132, Italy
| | - Stefano Brancorsini
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, Perugia06132, Italy
| | - Francesco Grignani
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, Perugia06132, Italy
| | - Luigina Romani
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, Perugia06132, Italy
| | - Marina Maria Bellet
- Department of Medicine and Surgery, University of Perugia, P.le L. Severi 1, Perugia06132, Italy
| |
Collapse
|
11
|
Zhang R, Ding N, Feng X, Liao W. The gut microbiome, immune modulation, and cognitive decline: insights on the gut-brain axis. Front Immunol 2025; 16:1529958. [PMID: 39911400 PMCID: PMC11794507 DOI: 10.3389/fimmu.2025.1529958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/07/2025] [Indexed: 02/07/2025] Open
Abstract
The gut microbiome has emerged as a pivotal area of research due to its significant influence on the immune system and cognitive functions. Cognitive disorders, including dementia and Parkinson's disease, represent substantial global health challenges. This review explores the relationship between gut microbiota, immune modulation, and cognitive decline, with a particular focus on the gut-brain axis. Research indicates that gut bacteria produce metabolites, including short-chain fatty acids (SCFAs), which affect mucosal immunity, antigen presentation, and immune responses, thereby influencing cognitive functions. A noteworthy correlation has been identified between imbalances in the gut microbiome and cognitive impairments, suggesting novel pathways for the treatment of cognitive disorders. Additionally, factors such as diet, environment, and pharmaceuticals play a role in shaping the composition of the gut microbiome, subsequently impacting both immune and cognitive health. This article aims to clarify the complex interactions among gut microbiota, immune regulation, and cognitive disorders, evaluating their potential as therapeutic targets. The goal is to promote microbiome-based treatments and lay the groundwork for future research in this field.
Collapse
Affiliation(s)
- Ruyi Zhang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
- Basic Medical School, Hubei University of Science and Technology, Xianning, China
| | - Ning Ding
- Basic Medical School, Hubei University of Science and Technology, Xianning, China
| | - Xicui Feng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Wenli Liao
- Basic Medical School, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
12
|
Wang Y, Cui P, Cao M, Ai L, Zeng L, Li X, Chen D, Gong F, Fang L, Zhou C. Chronic restraint stress affects the diurnal rhythms of gut microbial composition and metabolism in a mouse model of depression. BMC Microbiol 2025; 25:38. [PMID: 39844033 PMCID: PMC11752688 DOI: 10.1186/s12866-025-03764-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 01/11/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Depression is a common mental disorder accompanied by gut microbiota dysbiosis, which disturbs the metabolism of the host. While diurnal oscillation of the intestinal microbiota is involved in regulating host metabolism, the characteristics of the intestinal microbial circadian rhythm in depression remain unknown. Our aim was to investigate the microbial circadian oscillation signature and related metabolic pathways in a mouse model with depression-like behaviours. METHODS Chronic restraint stress (CRS) was used to induce depressive-like behaviours in C57BL/6J mice. The open field test (OFT) and forced swimming test (FST) were used to evaluate anxiety- and depressive-like behaviours in the control and CRS groups. Afterwards, faecal samples from the two groups were collected every four hours from ZT2 (9:00 am) to ZT22 (5:00 am). Faecal 16 S rRNA gene sequencing and metabolomics analysis were performed, and the microbial circadian rhythm was analysed via the MetaCycle package in R/RStudio. RESULTS CRS mice exhibited depressive-like behaviours after 4 weeks of restriction. Alpha- and beta-diversity analyses revealed that the microbial composition in control and CRS mice oscillated throughout the day. The circadian rhythm analyses revealed that at the phylum level, Bacteroidota, Firmicutes, Cyanobacteria and Patescibacteria showed circadian rhythmicity in the CRS group. At the genus level, Dubosiella and Romboutsia showed circadian rhythmicity in the control group, and Dubosiella abundance was correlated with tryptophan and galactose metabolism. In the CRS group, Bacteroides, Parabacteroides, and Rikenellaceae_RC9_gut_group showed circadian rhythmicity; among these genera, Parabacteroides was related to tryptophan metabolism, axon regeneration, phenylalanine metabolism and tyrosine metabolism. CONCLUSION Our data highlight the importance of observing the diurnal oscillation of the microbiome in host with depressive-like states. Rhythmicity in the microbiome may affect the host by regulating distinct metabolic pathways during the light and dark phases. A better combination of microbiota composition and oscillation would help to offer novel insight into key genera and their potential effects on depression.
Collapse
Affiliation(s)
- Yue Wang
- Department of Pediatric, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Peijin Cui
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Maolin Cao
- Department of General Practice, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Ling Ai
- Department of General Practice, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Li Zeng
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Xue Li
- Central Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Dan Chen
- Central Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Fang Gong
- Department of Pediatric, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Liang Fang
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.
- Yongchuan Hospital of Chongqing Medical University, No. 439 Xuanhua Road, Yongchuan, Chongqing, 402160, China.
| | - Chanjuan Zhou
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.
- Central Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.
- Yongchuan Hospital of Chongqing Medical University, No. 439 Xuanhua Road, Yongchuan, Chongqing, 402160, China.
| |
Collapse
|
13
|
Sharma SA, Oladejo SO, Kuang Z. Chemical interplay between gut microbiota and epigenetics: Implications in circadian biology. Cell Chem Biol 2025; 32:61-82. [PMID: 38776923 PMCID: PMC11569273 DOI: 10.1016/j.chembiol.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/22/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Circadian rhythms are intrinsic molecular mechanisms that synchronize biological functions with the day/night cycle. The mammalian gut is colonized by a myriad of microbes, collectively named the gut microbiota. The microbiota impacts host physiology via metabolites and structural components. A key mechanism is the modulation of host epigenetic pathways, especially histone modifications. An increasing number of studies indicate the role of the microbiota in regulating host circadian rhythms. However, the mechanisms remain largely unknown. Here, we summarize studies on microbial regulation of host circadian rhythms and epigenetic pathways, highlight recent findings on how the microbiota employs host epigenetic machinery to regulate circadian rhythms, and discuss its impacts on host physiology, particularly immune and metabolic functions. We further describe current challenges and resources that could facilitate research on microbiota-epigenetic-circadian rhythm interactions to advance our knowledge of circadian disorders and possible therapeutic avenues.
Collapse
Affiliation(s)
- Samskrathi Aravinda Sharma
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Sarah Olanrewaju Oladejo
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Zheng Kuang
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA.
| |
Collapse
|
14
|
Selman A, Dai J, Driskill J, Reddy AP, Reddy PH. Depression and obesity: Focus on factors and mechanistic links. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167561. [PMID: 39505048 DOI: 10.1016/j.bbadis.2024.167561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Major depressive disorder (MDD) is defined as mood disorder causing a persistent loss of interest and despair for two weeks or greater, with related symptoms. Depression can interfere with daily life and can cause those affected to not work, study, eat, sleep, and enjoy previously enjoyed hobbies and life events as they did previously. If untreated, it can become a serious health condition. Depression is multifactorial with a variety of factors influencing the condition. These factors include: (1) poor diet and exercise, (2) socioeconomic status, (3) gender, (4) biological clocks, (5) genetics and epigenetics, and (6) personal stressors. Treatment of depressive disorders is thus also multifactorial and utilizes the following therapies: (1) diet and exercise, (2) bright light therapy, (3) cognitive behavioral therapy, and (4) pharmaceutical therapy. Obesity is defined as body mass index over 30 and above, is believed to be causally linked to MDD through both psychological and molecular means. Atypical depression, a common form of MDD, is most strongly correlated with a high proclivity for obesity. Obesity and depression have a bidirectional relationship, a patient experiencing either condition singularly is more likely to develop the other due to the neural links between the two, including emotional lability, physical health of the brain, hormones, cytokine secretion, appetite, diet and feeding habits, inflammatory state. In individuals consuming a high fat diet (HFD) commonly ingested by those with obesity, the gut-microbiome is altered leading to systemic inflammation and the dysregulation of mood and the HPA axis impacting their neural health. The purpose of this paper is to examine the interplay of potential molecular, psychological, societal, and environmental causal factors of depressive disorders and how obesity perpetuates depression. A secondary aim of this paper is to examine current interventions that may help improve those affected by both conditions.
Collapse
Affiliation(s)
- Ashley Selman
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jean Dai
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jackson Driskill
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Arubala P Reddy
- Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
15
|
Liu Y, Huang K, Zhang Y, Li S, Song H, Guan X. Oat anthranilamides regulates high-fat diet-induced intestinal inflammation by the TLR4/NF-κb signalling pathway and gut microbiota. Int J Food Sci Nutr 2024; 75:786-799. [PMID: 39285614 DOI: 10.1080/09637486.2024.2401130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/22/2024] [Accepted: 09/01/2024] [Indexed: 11/26/2024]
Abstract
Oat anthranilamides have demonstrated antioxidant and anti-inflammatory effects; however, the precise mechanism of action remains unclear. This study investigated the impact of oat anthranilamide B (AVN B) on high-fat diet (HFD)-induced intestinal inflammation in mice and its underlying mechanisms. The results indicated that AVN B supplementation mitigated weight gain and reduced inflammatory and oxidative stress markers in serum, liver, and intestines. It improved intestinal barrier dysfunction by upregulating the expression levels of Occludin and MUC2 while simultaneously reducing intestinal inflammation by inhibiting the TLR4/NF-κB signalling pathway. Additionally, AVN B treatment improved gut microbiota composition. It increased the abundance of beneficial flora and the production of short-chain fatty acids (SCFAs), especially propionate and butyrate, associated with reduced production of pro-inflammatory factors and enhanced intestinal protection. The findings provide scientific evidence for the potential of AVN B as an anti-inflammatory agent.
Collapse
Affiliation(s)
- Yongyong Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, P.R. China
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, P.R. China
| | - Yu Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, P.R. China
| | - Sen Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, P.R. China
| | - Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, P.R. China
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, P.R. China
| |
Collapse
|
16
|
Wang Z, Yang S, Liu L, Mao A, Kan H, Yu F, Ma X, Feng L, Zhou T. The gut microbiota-derived metabolite indole-3-propionic acid enhances leptin sensitivity by targeting STAT3 against diet-induced obesity. Clin Transl Med 2024; 14:e70053. [PMID: 39606796 PMCID: PMC11602751 DOI: 10.1002/ctm2.70053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/21/2024] [Accepted: 09/28/2024] [Indexed: 11/29/2024] Open
Abstract
Obesity is associated with the gut microbiome. Here, we report that gut commensal Clostridia bacteria regulate host energy balance through the tryptophan-derived metabolite indole-3-propionic acid (IPA). IPA acts as an endogenous leptin sensitiser to counteract obesity. Mechanistically, IPA is secreted from the gut into the circulation, and then targets to the STAT3 in the hypothalamic appetite regulation centre, promoting its phosphorylation and nuclear translocation, which enhances the body's response to leptin, and regulates the balance between appetite and energy metabolism. The in vitro pull-down assays involving site-directed mutagenesis demonstrate that Trp623 in the SH2 domain is the key binding site for STAT3-IPA interaction. High-fat diet (HFD), rather than genetic factors, induces excessive secretion of antimicrobial peptides by Paneth cells, inhibiting the growth of Clostridia in the gut and resulting in decreased production of the beneficial metabolite IPA. IPA or Clostridium sporogenes supplement effectively controls weight gain, improves glucose metabolism, and reduces inflammation in DIO mice. IPA fails to achieve such effects in ob/ob mice, while exogenous leptin administration restores the therapeutic effect of IPA. Our study suggests that the IPA-based gut-brain axis regulates host metabolism, and supplementation with microbiome-derived IPA could be a promising intervention strategy for treating obesity.
Collapse
Affiliation(s)
- Zhiwei Wang
- Department of PharmacologyWuxi School of MedicineJiangnan UniversityWuxiChina
| | - Shaying Yang
- Department of PharmacologyWuxi School of MedicineJiangnan UniversityWuxiChina
| | - Liangju Liu
- Department of PharmacologyWuxi School of MedicineJiangnan UniversityWuxiChina
| | - Aiqin Mao
- Department of PharmacologyWuxi School of MedicineJiangnan UniversityWuxiChina
| | - Hao Kan
- Department of PharmacologyWuxi School of MedicineJiangnan UniversityWuxiChina
| | - Fan Yu
- Department of PharmacologyWuxi School of MedicineJiangnan UniversityWuxiChina
| | - Xin Ma
- Department of PharmacologyWuxi School of MedicineJiangnan UniversityWuxiChina
- Medical Basic Research Innovation Center for Gut Microbiota and Chronic DiseasesWuxi School of MedicineJiangnan UniversityWuxiChina
| | - Lei Feng
- Department of PharmacologyWuxi School of MedicineJiangnan UniversityWuxiChina
| | - Tingting Zhou
- Department of PharmacologyWuxi School of MedicineJiangnan UniversityWuxiChina
| |
Collapse
|
17
|
Li T, Feng Y, Liu Y, Wang H. The role of organic anion transport peptides in cyclophosphamide-induced hepatotoxicity in high-fat diet mice. Life Sci 2024; 359:123239. [PMID: 39566716 DOI: 10.1016/j.lfs.2024.123239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/28/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
Clinically, patients with lipid metabolism disorders caused by factors such as high-fat diet (HFD) developed severer liver damage and lipid metabolism disorders after treatment with cyclophosphamide (CTX). This can lead to elevated levels of inflammatory cytokines, which in turn lead to changes in levels of various liver and kidney transporters, to increase drug accumulation, which may be a way to exacerbate liver injury. The role of organic anion transport peptides (OATPs), an important uptake transporter, in the transport process of CTX and in the aggravation of liver injury induced by CTX in HFD mice is unclear. The aim of this study was to characterize the hepatotoxicity and lipid metabolism disorders of HFD mice exposed to CTX and to investigate the possible mechanism from the perspective of drug in vivo process and transporter regulation. It has been verified that CTX induced severer liver injury in HFD mice compared with the control group, accompanied with upregulated Interleukin-1β (IL-1β) expression and down-regulated OATPs expression in liver and renal, and increased blood CTX concentration. This suggested that the down-regulation of OATPs involved in IL-1β may play an important role in HFD-CTX-induced liver injury, and then experiments in Hep G2 cells was used to validate the hypothesis. Pharmacokinetic and primary hepatocyte uptake experiments confirmed that OATPs may be an important factor involved in the in vivo process of CTX. In summary, this study demonstrated that HFD mice exhibited severer liver toxicity after exposure to CTX, which may be caused by the disorder of lipid levels and the up-regulation of inflammatory factors, and then the downregulation of liver and renal OATPs to increase the accumulation of CTX in vivo. These findings suggest that IL-1β and OATPs may be involved in the interactive regulation of CTX accumulation and endogenous lipid disturbance, and play very important role in the aggravation of liver injury induced by CTX in HFD mice.
Collapse
Affiliation(s)
- Tianyi Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Yuhao Feng
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Yan Liu
- Department of Pharmacy, Weifang People's Hospital, Weifang, Shandong, China
| | - Haina Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
18
|
Jakubowicz D, Matz Y, Landau Z, Rosenblum RC, Twito O, Wainstein J, Tsameret S. Interaction Between Early Meals (Big-Breakfast Diet), Clock Gene mRNA Expression, and Gut Microbiome to Regulate Weight Loss and Glucose Metabolism in Obesity and Type 2 Diabetes. Int J Mol Sci 2024; 25:12355. [PMID: 39596418 PMCID: PMC11594859 DOI: 10.3390/ijms252212355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/09/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
The circadian clock gene system plays a pivotal role in coordinating the daily rhythms of most metabolic processes. It is synchronized with the light-dark cycle and the eating-fasting schedule. Notably, the interaction between meal timing and circadian clock genes (CGs) allows for optimizing metabolic processes at specific times of the day. Breakfast has a powerful resetting effect on the CG network. A misaligned meal pattern, such as skipping breakfast, can lead to a discordance between meal timing and the endogenous CGs, and is associated with obesity and T2D. Conversely, concentrating most calories and carbohydrates (CH) in the early hours of the day upregulates metabolic CG expression, thus promoting improved weight loss and glycemic control. Recently, it was revealed that microorganisms in the gastrointestinal tract, known as the gut microbiome (GM), and its derived metabolites display daily oscillation, and play a critical role in energy and glucose metabolism. The timing of meal intake coordinates the oscillation of GM and GM-derived metabolites, which in turn influences CG expression, playing a crucial role in the metabolic response to food intake. An imbalance in the gut microbiota (dysbiosis) can also reciprocally disrupt CG rhythms. Evidence suggests that misaligned meal timing may cause such disruptions and can lead to obesity and hyperglycemia. This manuscript focuses on the reciprocal interaction between meal timing, GM oscillation, and circadian CG rhythms. It will also review studies demonstrating how aligning meal timing with the circadian clock can reset and synchronize CG rhythms and GM oscillations. This synchronization can facilitate weight loss and improve glycemic control in obesity and those with T2D.
Collapse
Affiliation(s)
- Daniela Jakubowicz
- Endocrinology and Diabetes Unit, Wolfson Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Holon 58100, Israel
| | - Yael Matz
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Zohar Landau
- Endocrinology and Diabetes Unit, Wolfson Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Holon 58100, Israel
| | - Rachel Chava Rosenblum
- Endocrinology and Diabetes Unit, Wolfson Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Holon 58100, Israel
| | - Orit Twito
- Endocrinology and Diabetes Unit, Wolfson Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Holon 58100, Israel
| | - Julio Wainstein
- Endocrinology and Diabetes Unit, Wolfson Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Holon 58100, Israel
| | - Shani Tsameret
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
19
|
Hu H, Qiu Y, Shen N, Chen H, Zhang J, Wang Y, Shi X, Li M. Effects of Low-Carbohydrate and Low-Fat Diets on Morbidity and Mortality of COPD. Int J Chron Obstruct Pulmon Dis 2024; 19:2443-2455. [PMID: 39575454 PMCID: PMC11578922 DOI: 10.2147/copd.s479602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024] Open
Abstract
Purpose Although low-carbohydrate and low-fat diets improve weight loss, cardiovascular disease, and diabetes, the relationship between these dietary patterns, highlighting macronutrient sources, and chronic obstructive pulmonary disease (COPD) remains unclear. This study aimed to assess the association between low-carbohydrate diets (LCDs) and low-fat diets (LFDs) and the odds of COPD and mortality among people with COPD in the National Health and Nutrition Examination Survey. Patients and Methods Clinical data were extracted from the 2007-2008, 2009-2010, and 2011-2012 National Health and Nutrition Examination Survey (NHANES) cycles that met the inclusion criteria. Multivariable logistic regression was used to evaluate the associations between LCD and LFD scores and COPD, and multivariable Cox proportional hazards regression and restricted cubic spline (RCS) regression were used to assess the relationship between all-cause mortality and LCD and LFD scores. Results Comparing extreme tertiles, multivariable-adjusted odds ratio (OR) were 1 (reference), 1.09 (95% CI, 0.77-1.55), 1.84 (95% CI, 1.09-3.09) (P = 0.045 for trend) for unhealthy LFD scores. After multivariate adjustment, a per 5-point increase in unhealthy LCD score was associated with a 21% higher risk of total mortality (hazard ratio, 1.21; 95% CI, 1.03-1.43); while a per 5-point increase in healthy LFD scores was associated with a 21% lower risk of total mortality (HR, 0.79; 95% CI, 0.67-0.94). Conclusion Higher unhealthy LFD score was associated with an increased odds of COPD. Unhealthy LCD scores were significantly associated with higher total mortality, whereas healthy LFD scores were associated with lower total mortality in patients with COPD.
Collapse
Affiliation(s)
- Huizhong Hu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Yuanjie Qiu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Nirui Shen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Huan Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Jia Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Yan Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Xiangyu Shi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|
20
|
Ma F, Li Z, Liu H, Chen S, Zheng S, Zhu J, Shi H, Ye H, Qiu Z, Gao L, Han B, Yang Q, Wang X, Zhang Y, Cheng L, Fan H, Lv S, Zhao X, Zhou H, Li J, Hong M. Dietary-timing-induced gut microbiota diurnal oscillations modulate inflammatory rhythms in rheumatoid arthritis. Cell Metab 2024; 36:2367-2382.e5. [PMID: 39260371 DOI: 10.1016/j.cmet.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/10/2024] [Accepted: 08/12/2024] [Indexed: 09/13/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune condition characterized by inflammatory activity with distinct rhythmic fluctuations. However, the precise mechanisms governing these inflammatory rhythms remain elusive. Here, we explore the interaction between dietary patterns, gut microbiota diurnal oscillations, and the rhythmicity of RA in both collagen-induced arthritis (CIA) mice and patients with RA and highlight the significance of dietary timing in modulating RA inflammatory rhythms linked to gut microbiota. Specifically, we discovered that Parabacteroides distasonis (P. distasonis) uses β-glucosidase (β-GC) to release glycitein (GLY) from the diet in response to daily nutritional cues, influencing RA inflammatory rhythms dependent on the sirtuin 5-nuclear factor-κB (SIRT5-NF-κB) axis. Notably, we validated the daily fluctuations of P. distasonis-β-GC-GLY in patients with RA through continuous sampling across day-night cycles. These findings underscore the crucial role of dietary timing in RA rhythmicity and propose potential clinical implications for novel therapeutic strategies to alleviate arthritis.
Collapse
Affiliation(s)
- Fopei Ma
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China; Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510000, China
| | - Zhuang Li
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China.
| | - Haihua Liu
- Department of Obstetrics & Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Shixian Chen
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Songyuan Zheng
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Junqing Zhu
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Hao Shi
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510000, China
| | - Haixin Ye
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510000, China
| | - Zhantu Qiu
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510000, China
| | - Lei Gao
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510000, China
| | - Bingqi Han
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510000, China
| | - Qian Yang
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Xing Wang
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Yang Zhang
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Lifang Cheng
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China
| | - Huijie Fan
- Department of Traditional Chinese Medicine, People's Hospital of Yangjiang, Yangjiang 529500, China
| | - Shuaijun Lv
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiaoshan Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Hongwei Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510000, China.
| | - Juan Li
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China; Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510000, China.
| | - Mukeng Hong
- Department of Rheumatology and Immunology, Nanfang Hospital, Southern Medical University, Guangzhou 510000, China.
| |
Collapse
|
21
|
Zhou Z, Zhang R, Zhang Y, Xu Y, Wang R, Chen S, Lv Y, Chen Y, Ren Y, Luo P, Cheng Q, Xu H, Weng S, Zuo A, Ba Y, Liu S, Han X, Liu Z. Circadian disruption in cancer hallmarks: Novel insight into the molecular mechanisms of tumorigenesis and cancer treatment. Cancer Lett 2024; 604:217273. [PMID: 39306230 DOI: 10.1016/j.canlet.2024.217273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Circadian rhythms are 24-h rhythms governing temporal organization of behavior and physiology generated by molecular clocks composed of autoregulatory transcription-translation feedback loops (TTFLs). Disruption of circadian rhythms leads to a spectrum of pathologies, including cancer by triggering or being involved in different hallmarks. Clock control of phenotypic plasticity involved in tumorigenesis operates in aberrant dedifferentiating to progenitor-like cell states, generation of cancer stem cells (CSCs) and epithelial-to-mesenchymal transition (EMT) events. Circadian rhythms might act as candidates for regulatory mechanisms of cellular senescent and functional determinants of senescence-associated secretory phenotype (SASP). Reciprocal control between clock and epigenetics sheds light on post-transcriptional regulation of circadian rhythms and opens avenues for novel anti-cancer strategies. Additionally, disrupting circadian rhythms influences microbiota communities that could be associated with altered homeostasis contributing to cancer development. Herein, we summarize recent advances in support of the nexus between disruptions of circadian rhythms and cancer hallmarks of new dimensions, thus providing novel perspectives on potentially effective treatment approaches for cancer management.
Collapse
Affiliation(s)
- Zhaokai Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ruiqi Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yudi Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ruizhi Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Shuang Chen
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yingying Lv
- Department of Pediatrics, The First Affliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Department of Pediatrics, The Third Affliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yifeng Chen
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Peng Luo
- The Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Anning Zuo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuhao Ba
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Shutong Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China; Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China.
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China; Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China; Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
22
|
Klingbeil EA, Schade R, Lee SH, Kirkland R, de La Serre CB. Manipulation of feeding patterns in high fat diet fed rats improves microbiota composition dynamics, inflammation and gut-brain signaling. Physiol Behav 2024; 285:114643. [PMID: 39059597 DOI: 10.1016/j.physbeh.2024.114643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/29/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Chronic consumption of high fat (HF) diets has been shown to increase meal size and meal frequency in rodents, resulting in overeating. Reducing meal frequency and establishing periods of fasting, independently of caloric intake, may improve obesity-associated metabolic disorders. Additionally, diet-driven changes in microbiota composition have been shown to play a critical role in the development and maintenance of metabolic disorders. In this study, we used a pair-feeding paradigm to reduce meal frequency and snacking episodes while maintaining overall intake and body weight in HF fed rats. We hypothesized that manipulation of feeding patterns would improve microbiota composition and metabolic outcomes. Male Wistar rats were placed in three groups consuming either a HF, low fat diet (LF, matched for sugar), or pair-fed HF diet for 7 weeks (n = 11-12/group). Pair-fed animals received the same amount of food consumed by the HF fed group once daily before dark onset (HF-PF). Rats underwent oral glucose tolerance and gut peptide cholecystokinin sensitivity tests. Bacterial DNA was extracted from the feces collected during both dark and light cycles and sequenced via Illumina MiSeq sequencing of the 16S V4 region. Our pair-feeding paradigm reduced meal numbers, especially small meals in the inactive phase, without changing total caloric intake. This shift in feeding patterns reduced relative abundances of obesity-associated bacteria and maintained circadian fluctuations in microbial abundances. These changes were associated with improved gastrointestinal (GI) function, reduced inflammation, and improved glucose tolerance and gut to brain signaling. We concluded from these data that targeting snacking may help improve metabolic outcomes, independently of energy content of the diet and hyperphagia.
Collapse
Affiliation(s)
- E A Klingbeil
- Department of Nutritional Sciences, The University of Texas at Austin, United States
| | - R Schade
- Department of Microbiology and Immunology, Stanford University School of Medicine, United States
| | - S H Lee
- Department of Food Sciences, Sun Moon University, South Korea
| | - R Kirkland
- Office of Research, University of Georgia, United States
| | - C B de La Serre
- Department of Nutritional Sciences, University of Georgia, United States; Department of Biomedical Sciences, Colorado State University, United States.
| |
Collapse
|
23
|
Oguri N, Miyoshi J, Nishinarita Y, Wada H, Nemoto N, Hibi N, Kawamura N, Miyoshi S, Lee STM, Matsuura M, Osaki T, Hisamatsu T. Akkermansia muciniphila in the small intestine improves liver fibrosis in a murine liver cirrhosis model. NPJ Biofilms Microbiomes 2024; 10:81. [PMID: 39285193 PMCID: PMC11405509 DOI: 10.1038/s41522-024-00564-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
Recent evidence indicates that liver cirrhosis (LC) is a reversible condition, but there is no established intervention against liver fibrosis. Although the gut microbiota is considered involved in the pathogenesis of LC, the underlying mechanisms remain unclear. Although the antibiotic, rifaximin (RFX), is effective for hepatic encephalopathy (HE) with LC, the impact of RFX on intestinal bacteria is unknown. We investigated the bacterial compositions along the GI tract under RFX treatment using a murine LC model. RFX improved liver fibrosis and hyperammonemia and altered the bacterial composition in the small intestine. The efficacy of RFX was associated with increases in specific bacterial genera, including Akkermansia. Administration of a commensal strain of Akkermansia muciniphila improved liver fibrosis and hyperammonemia with changing bacterial composition in the small intestine. This study proposed a new concept "small intestine-liver axis" in the pathophysiology of LC and oral A. muciniphila administration is a promising microbial intervention.
Collapse
Affiliation(s)
- Noriaki Oguri
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Jun Miyoshi
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan.
| | - Yuu Nishinarita
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Haruka Wada
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Nobuki Nemoto
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Noritaka Hibi
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Naohiro Kawamura
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Sawako Miyoshi
- Department of Preventive Medicine, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Sonny T M Lee
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Minoru Matsuura
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Takako Osaki
- Department of Infectious Diseases, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Tadakazu Hisamatsu
- Department of Gastroenterology and Hepatology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan.
| |
Collapse
|
24
|
Zheng M, Zhai Y, Yu Y, Shen J, Chu S, Focaccia E, Tian W, Wang S, Liu X, Yuan X, Wang Y, Li L, Feng B, Li Z, Guo X, Qiu J, Zhang C, Hou J, Sun Y, Yang X, Zuo X, Heikenwalder M, Li Y, Yuan D, Li S. TNF compromises intestinal bile-acid tolerance dictating colitis progression and limited infliximab response. Cell Metab 2024; 36:2086-2103.e9. [PMID: 38971153 DOI: 10.1016/j.cmet.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/28/2024] [Accepted: 06/07/2024] [Indexed: 07/08/2024]
Abstract
The intestine constantly encounters and adapts to the external environment shaped by diverse dietary nutrients. However, whether and how gut adaptability to dietary challenges is compromised in ulcerative colitis is incompletely understood. Here, we show that a transient high-fat diet exacerbates colitis owing to inflammation-compromised bile acid tolerance. Mechanistically, excessive tumor necrosis factor (TNF) produced at the onset of colitis interferes with bile-acid detoxification through the receptor-interacting serine/threonine-protein kinase 1/extracellular signal-regulated kinase pathway in intestinal epithelial cells, leading to bile acid overload in the endoplasmic reticulum and consequent apoptosis. In line with the synergy of bile acids and TNF in promoting gut epithelial damage, high intestinal bile acids correlate with poor infliximab response, and bile acid clearance improves infliximab efficacy in experimental colitis. This study identifies bile acids as an "opportunistic pathogenic factor" in the gut that would represent a promising target and stratification criterion for ulcerative colitis prevention/therapy.
Collapse
Affiliation(s)
- Mengqi Zheng
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Shandong Provincial Clinical Research Center for Digestive Diseases, Jinan, China
| | - Yunjiao Zhai
- Advanced Medical Research Institute, Shandong University, Jinan 250012, China
| | - Yanbo Yu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Shandong Provincial Clinical Research Center for Digestive Diseases, Jinan, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Jing Shen
- Advanced Medical Research Institute, Shandong University, Jinan 250012, China
| | - Shuzheng Chu
- Advanced Medical Research Institute, Shandong University, Jinan 250012, China
| | - Enrico Focaccia
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wenyu Tian
- Advanced Medical Research Institute, Shandong University, Jinan 250012, China
| | - Sui Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xuesong Liu
- Advanced Medical Research Institute, Shandong University, Jinan 250012, China
| | - Xi Yuan
- Advanced Medical Research Institute, Shandong University, Jinan 250012, China
| | - Yue Wang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Lixiang Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Shandong Provincial Clinical Research Center for Digestive Diseases, Jinan, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Bingcheng Feng
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Zhen Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Shandong Provincial Clinical Research Center for Digestive Diseases, Jinan, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xiaohuan Guo
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China
| | - Ju Qiu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Cuijuan Zhang
- Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan 250012, China; Department of Pathology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Jiajie Hou
- Cancer Centre, Faculty of Health Sciences University of Macau, Macau SAR, China; MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
| | - Yiyuan Sun
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xiaoyun Yang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Shandong Provincial Clinical Research Center for Digestive Diseases, Jinan, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xiuli Zuo
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Shandong Provincial Clinical Research Center for Digestive Diseases, Jinan, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany; The M3 Research Center, Medical faculty, University Tübingen, Ottfried-Müller Strasse 37, Tübingen, Germany.
| | - Yanqing Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Shandong Provincial Clinical Research Center for Digestive Diseases, Jinan, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Robot Engineering Laboratory for Precise Diagnosis and Therapy of GI Tumor, Qilu Hospital of Shandong University, Jinan 250012, China.
| | - Detian Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China.
| | - Shiyang Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan 250012, China; Shandong Provincial Clinical Research Center for Digestive Diseases, Jinan, China; Advanced Medical Research Institute, Shandong University, Jinan 250012, China; Key Laboratory for Experimental Teratology of Ministry of Education, Shandong University, Jinan 250012, China.
| |
Collapse
|
25
|
Pan Q, Lv T, Xu H, Fang H, Li M, Zhu J, Wang Y, Fan X, Xu P, Wang X, Wang Q, Matsumoto H, Wang M. Gut pathobiome mediates behavioral and developmental disorders in biotoxin-exposed amphibians. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100415. [PMID: 38577706 PMCID: PMC10992726 DOI: 10.1016/j.ese.2024.100415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 04/06/2024]
Abstract
Emerging evidence suggests a link between alterations in the gut microbiome and adverse health outcomes in the hosts exposed to environmental pollutants. Yet, the causal relationships and underlying mechanisms remain largely undefined. Here we show that exposure to biotoxins can affect gut pathobiome assembly in amphibians, which in turn triggers the toxicity of exogenous pollutants. We used Xenopus laevis as a model in this study. Tadpoles exposed to tropolone demonstrated notable developmental impairments and increased locomotor activity, with a reduction in total length by 4.37%-22.48% and an increase in swimming speed by 49.96%-84.83%. Fusobacterium and Cetobacterium are predominant taxa in the gut pathobiome of tropolone-exposed tadpoles. The tropolone-induced developmental and behavioral disorders in the host were mediated by assembly of the gut pathobiome, leading to transcriptome reprogramming. This study not only advances our understanding of the intricate interactions between environmental pollutants, the gut pathobiome, and host health but also emphasizes the potential of the gut pathobiome in mediating the toxicological effects of environmental contaminants.
Collapse
Affiliation(s)
- Qianqian Pan
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Tianxing Lv
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Haorong Xu
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Hongda Fang
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Meng Li
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jiaping Zhu
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yue Wang
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyan Fan
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ping Xu
- Institution of Tea Science, Zhejiang University, Hangzhou, 310058, China
| | - Xiuguo Wang
- The Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Qiangwei Wang
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Haruna Matsumoto
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Mengcen Wang
- Ministry of Agricultural and Rural Affairs Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Global Education Program for AgriScience Frontiers, Graduate School of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
26
|
Li T, Ji W, Dong H, Wu Y, Guo L, Chen L, Wang X. A Comprehensive Review on the Isolation, Bioactivities, and Structure-Activity Relationship of Hawthorn Pectin and Its Derived Oligosaccharides. Foods 2024; 13:2750. [PMID: 39272515 PMCID: PMC11394867 DOI: 10.3390/foods13172750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Hawthorn (Crataegus pinnatifida Bunge) has been highlighted as an excellent source of a variety of bioactive polymers, which has attracted increasing research interest. Pectin, as a kind of soluble dietary fiber in hawthorn, is mainly extracted by hot water extraction and ultrasonic or enzymatic hydrolysis and is then extensively used in food, pharmaceutical, and nutraceutical industries. Numerous studies have shown that hawthorn pectin and its derived oligosaccharides exhibit a wide range of biological activities, such as antioxidant activity, hypolipidemic and cholesterol-reducing effects, antimicrobial activity, and intestinal function modulatory activity. As discovered, the bioactivities of hawthorn pectin and its derived oligosaccharides were mainly contributed by structural features and chemical compositions and were highly associated with the extraction methods. Additionally, hawthorn pectin is a potential resource for the development of emulsifiers and gelling agents, food packaging films, novel foods, and traditional medicines. This review provides a comprehensive summary of current research for readers on the extraction techniques, functional characteristics, structure-activity relationship, and applications in order to provide ideas and references for the investigation and utilization of hawthorn pectin and its derived oligosaccharides. Further research and development efforts are imperative to fully explore and harness the potential of hawthorn pectin-derived oligosaccharides in the food and medicine fields.
Collapse
Affiliation(s)
- Tao Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Wenhua Ji
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Hongjing Dong
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Yingqun Wu
- Guizhou Ecological Food Creation Engineering Technology Center, Guizhou Medical University, Guizhou 550025, China
| | - Lanping Guo
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Lei Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| |
Collapse
|
27
|
Wang D, Zhou Y, Zhao J, Ren C, Yan W. Oral Yak Whey Protein Can Alleviate UV-Induced Skin Photoaging and Modulate Gut Microbiota Composition. Foods 2024; 13:2621. [PMID: 39200548 PMCID: PMC11354105 DOI: 10.3390/foods13162621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 09/02/2024] Open
Abstract
Excessive UV exposure can lead to skin roughness, wrinkles, pigmentation, and reduced elasticity, with severe cases potentially causing skin cancer. Nowadays, various anti-photoaging strategies have been developed to maintain skin health. Among them, dietary supplements with anti-photoaging properties are gaining increasing attention. Yak whey protein (YWP) possesses multiple benefits, including anti-inflammatory, antioxidant, and immune-boosting properties, effectively protecting the skin. This study used a mixed UVA and UVB light source to irradiate a nude mouse model, exploring the advantages of YWP in anti-photoaging and regulating gut microbiota. The results indicated that YWP alleviated UV-induced skin damage, wrinkles, dryness, and reduced elasticity by inhibiting oxidative stress, inflammatory factors (IL-1α, IL-6, and TNF-α), and matrix metalloproteinases (MMP-1, MMP-3, and MMP-12), thereby increasing the levels of elastin, type I collagen, and type III collagen in the extracellular matrix (ECM). Additionally, YWP significantly improved the abundance of Firmicutes and Bacteroidota in the gut microbiota of mice, promoting the growth of beneficial bacteria such as Lachnospiraceae_NK4A136_group, Ruminococcus_torques_group, and Clostridia_UCG_014, mitigating the dysbiosis caused by photoaging. These findings underscore the potential of YWP in anti-photoaging and gut microbiota improvement, highlighting it as a promising functional food for enhancing skin and gut health.
Collapse
Affiliation(s)
- Diandian Wang
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China; (D.W.); (Y.Z.)
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.Z.); (C.R.)
| | - Yaxi Zhou
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China; (D.W.); (Y.Z.)
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.Z.); (C.R.)
| | - Jian Zhao
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.Z.); (C.R.)
| | - Chao Ren
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.Z.); (C.R.)
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China; (D.W.); (Y.Z.)
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing 100023, China; (J.Z.); (C.R.)
| |
Collapse
|
28
|
Yan M, Su L, Wu K, Mei Y, Liu Z, Chen Y, Zeng W, Xiao Y, Zhang J, Cai G, Bai Y. USP7 promotes cardiometabolic disorders and mitochondrial homeostasis dysfunction in diabetic mice via stabilizing PGC1β. Pharmacol Res 2024; 205:107235. [PMID: 38815879 DOI: 10.1016/j.phrs.2024.107235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Diabetic cardiomyopathy (DCM) is a major complication of diabetes and is characterized by left ventricular dysfunction. Currently, there is a lack of effective treatments for DCM. Ubiquitin-specific protease 7 (USP7) plays a key role in various diseases. However, whether USP7 is involved in DCM has not been established. In this study, we demonstrated that USP7 was upregulated in diabetic mouse hearts and NMCMs co-treated with HG+PA or H9c2 cells treated with PA. Abnormalities in diabetic heart morphology and function were reversed by USP7 silencing through conditional gene knockout or chemical inhibition. Proteomic analysis coupled with biochemical validation confirmed that PCG1β was one of the direct protein substrates of USP7 and aggravated myocardial damage through coactivation of the PPARα signaling pathway. USP7 silencing restored the expression of fatty acid metabolism-related proteins and restored mitochondrial homeostasis by inhibiting mitochondrial fission and promoting fusion events. Similar effects were also observed in vitro. Our data demonstrated that USP7 promoted cardiometabolic metabolism disorders and mitochondrial homeostasis dysfunction via stabilizing PCG1β and suggested that silencing USP7 may be a therapeutic strategy for DCM.
Collapse
Affiliation(s)
- Meiling Yan
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Liyan Su
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China
| | - Kaile Wu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yu Mei
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhou Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yifan Chen
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenru Zeng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yang Xiao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jingfei Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guida Cai
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yunlong Bai
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China; Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Chronic Disease Research Institute, Heilongjiang Academy of Medical Sciences, Harbin, China.
| |
Collapse
|
29
|
Wang Q, Guo F, Zhang Q, Hu T, Jin Y, Yang Y, Ma Y. Organoids in gastrointestinal diseases: from bench to clinic. MedComm (Beijing) 2024; 5:e574. [PMID: 38948115 PMCID: PMC11214594 DOI: 10.1002/mco2.574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/15/2024] [Accepted: 04/26/2024] [Indexed: 07/02/2024] Open
Abstract
The etiology of gastrointestinal (GI) diseases is intricate and multifactorial, encompassing complex interactions between genetic predisposition and gut microbiota. The cell fate change, immune function regulation, and microenvironment composition in diseased tissues are governed by microorganisms and mutated genes either independently or through synergistic interactions. A comprehensive understanding of GI disease etiology is imperative for developing precise prevention and treatment strategies. However, the existing models used for studying the microenvironment in GI diseases-whether cancer cell lines or mouse models-exhibit significant limitations, which leads to the prosperity of organoids models. This review first describes the development history of organoids models, followed by a detailed demonstration of organoids application from bench to clinic. As for bench utilization, we present a layer-by-layer elucidation of organoid simulation on host-microbial interactions, as well as the application in molecular mechanism analysis. As for clinical adhibition, we provide a generalized interpretation of organoid application in GI disease simulation from inflammatory disorders to malignancy diseases, as well as in GI disease treatment including drug screening, immunotherapy, and microbial-targeting and screening treatment. This review draws a comprehensive and systematical depiction of organoids models, providing a novel insight into the utilization of organoids models from bench to clinic.
Collapse
Affiliation(s)
- Qinying Wang
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Fanying Guo
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Qinyuan Zhang
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - TingTing Hu
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - YuTao Jin
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yongzhi Yang
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yanlei Ma
- Department of Colorectal SurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
30
|
Guo X, Wang R, Chen R, Zhang Z, Wang J, Liu X. Gut microbiota and serum metabolite signatures along the colorectal adenoma-carcinoma sequence: Implications for early detection and intervention. Clin Chim Acta 2024; 560:119732. [PMID: 38772522 DOI: 10.1016/j.cca.2024.119732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/11/2024] [Accepted: 05/14/2024] [Indexed: 05/23/2024]
Abstract
AIM Our study focuses on the microbial and metabolomic profile changes during the adenoma stage, as adenomas can be considered potential precursors to colorectal cancer through the adenoma-carcinoma sequence. Identifying possible intervention targets at this stage may aid in preventing the progression of colorectal adenoma (CRA) to malignant lesions. Furthermore, we evaluate the efficacy of combined microbial and metabolite biomarkers in detecting CRA. METHODS Fecal metagenomic and serum metabolomic analyses were performed for the discovery of alterations of gut microbiome and metabolites in CRA patients (n = 26), Colorectal cancer (CRC) patients (n = 19), Familial Adenomatous Polyposis (FAP) patients (n = 10), and healthy controls (n = 20). Finally, analyzing the associations between gut microbes and metabolites was performed by a Receiver Operating Characteristic (ROC) curve. RESULTS Our analysis present that CRA patients differ significantly in gut microflora and serum metabolites compared with healthy controls, especially for Lachnospiraceae and Parasutterella. Its main metabolite, butyric acid, concentrations were raised in CRA patients compared with the healthy controls, indicating its role as a promoter of colorectal tumorigenesis. α-Linolenic acid and lysophosphatidylcholine represented the other healthy metabolite for CRA. Combining five microbial and five metabolite biomarkers, we differentiated CRA from CRC with an Area Under the Curve (AUC) of 0.85 out of this performance vastly superior to the specificity recorded by traditional markers CEA and CA199 in such differentiation of these conditions. CONCLUSIONS The study underlines significant microbial and metabolic alterations in CRA with a novel insight into screening and early intervention of its tumorigenesis.
Collapse
Affiliation(s)
- Xiaodong Guo
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, ShangHai 200437, China.
| | - Ruoyao Wang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, ShangHai 200437, China
| | - Rui Chen
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, ShangHai 200437, China
| | - Zhongxiao Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, No.1111, XianXia Road, Shanghai 200336, China.
| | - Jingxia Wang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, ShangHai 200437, China
| | - Xuan Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
31
|
Mao D, Li G, Li Y, Wang S, Zhang M, Ma M, Ren X. Study on the Impact of Dietary Patterns on Cardiovascular Metabolic Comorbidities among Adults. RESEARCH SQUARE 2024:rs.3.rs-4451883. [PMID: 38883798 PMCID: PMC11177970 DOI: 10.21203/rs.3.rs-4451883/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Background The prevalence of cardiovascular metabolic comorbidities (CMM) among adults is relatively high, imposing a heavy burden on individuals, families, and society. Dietary patterns play a significant role in the occurrence and development of CMM. This study aimed to identify the combined types of CMM in adult populations and investigate the impact of dietary patterns on CMM. Methods Participants in this study were from the sixth wave of the China Health and Nutrition Survey (CHNS). Dietary intake was assessed using a three-day 24-hour dietary recall method among 4,963 participants. Latent profile analysis was used to determine dietary pattern types. Two-step cluster analysis was performed to identify the combined types of CMM based on the participants' conditions of hyperuricemia, dyslipidemia, diabetes, renal dysfunction, hypertension, and stroke. Logistic regression analysis with robust standard errors was used to determine the impact of dietary patterns on CMM. Results Participants were clustered into three dietary patterns (Pattern 1 to 3) and five CMM types (Class I to V). Class I combined six diseases, with a low proportion of diabetes. Class II also combined six diseases but with a high proportion of diabetes. Class III combined four diseases, with a high proportion of hypertension. Class IV combined three diseases, with the highest proportions of hyperuricemia, diabetes, and renal dysfunction. Class V combined two diseases, with high proportions of dyslipidemia and renal dysfunction. Patients with Class III CMM had a significantly higher average age than the other four classes (P ≤ 0.05). Compared to those with isolated dyslipidemia, individuals with a low-grain, high-fruit, milk, and egg (LCHFM) dietary pattern had a higher risk of developing dyslipidemia combined with renal dysfunction (Class V CMM) with an odds ratio of 2.001 (95% CI 1.011-3.960, P≤ 0.05). Conclusion For individuals with isolated dyslipidemia, avoiding a low-grain, high-fruit, milk, and egg (LCHFM) dietary pattern may help reduce the risk of developing dyslipidemia combined with renal dysfunction (Class V CMM).
Collapse
Affiliation(s)
- Danhui Mao
- Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital
| | - Gongkui Li
- Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital
| | - Yajing Li
- Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital
| | | | | | | | - Xiaojun Ren
- Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital
| |
Collapse
|
32
|
McKay DM, Defaye M, Rajeev S, MacNaughton WK, Nasser Y, Sharkey KA. Neuroimmunophysiology of the gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol 2024; 326:G712-G725. [PMID: 38626403 PMCID: PMC11376980 DOI: 10.1152/ajpgi.00075.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/18/2024]
Abstract
Gut physiology is the epicenter of a web of internal communication systems (i.e., neural, immune, hormonal) mediated by cell-cell contacts, soluble factors, and external influences, such as the microbiome, diet, and the physical environment. Together these provide the signals that shape enteric homeostasis and, when they go awry, lead to disease. Faced with the seemingly paradoxical tasks of nutrient uptake (digestion) and retarding pathogen invasion (host defense), the gut integrates interactions between a variety of cells and signaling molecules to keep the host nourished and protected from pathogens. When the system fails, the outcome can be acute or chronic disease, often labeled as "idiopathic" in nature (e.g., irritable bowel syndrome, inflammatory bowel disease). Here we underscore the importance of a holistic approach to gut physiology, placing an emphasis on intercellular connectedness, using enteric neuroimmunophysiology as the paradigm. The goal of this opinion piece is to acknowledge the pace of change brought to our field via single-cell and -omic methodologies and other techniques such as cell lineage tracing, transgenic animal models, methods for culturing patient tissue, and advanced imaging. We identify gaps in the field and hope to inspire and challenge colleagues to take up the mantle and advance awareness of the subtleties, intricacies, and nuances of intestinal physiology in health and disease by defining communication pathways between gut resident cells, those recruited from the circulation, and "external" influences such as the central nervous system and the gut microbiota.
Collapse
Affiliation(s)
- Derek M McKay
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Manon Defaye
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sruthi Rajeev
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Wallace K MacNaughton
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Yasmin Nasser
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada
- Inflammation Research Network, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Keith A Sharkey
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
- Gastrointestinal Research Group, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
33
|
Gheorghe CE, Leigh SJ, Tofani GSS, Bastiaanssen TFS, Lyte JM, Gardellin E, Govindan A, Strain C, Martinez-Herrero S, Goodson MS, Kelley-Loughnane N, Cryan JF, Clarke G. The microbiota drives diurnal rhythms in tryptophan metabolism in the stressed gut. Cell Rep 2024; 43:114079. [PMID: 38613781 DOI: 10.1016/j.celrep.2024.114079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/09/2024] [Accepted: 03/22/2024] [Indexed: 04/15/2024] Open
Abstract
Chronic stress disrupts microbiota-gut-brain axis function and is associated with altered tryptophan metabolism, impaired gut barrier function, and disrupted diurnal rhythms. However, little is known about the effects of acute stress on the gut and how it is influenced by diurnal physiology. Here, we used germ-free and antibiotic-depleted mice to understand how microbiota-dependent oscillations in tryptophan metabolism would alter gut barrier function at baseline and in response to an acute stressor. Cecal metabolomics identified tryptophan metabolism as most responsive to a 15-min acute stressor, while shotgun metagenomics revealed that most bacterial species exhibiting rhythmicity metabolize tryptophan. Our findings highlight that the gastrointestinal response to acute stress is dependent on the time of day and the microbiome, with a signature of stress-induced functional alterations in the ileum and altered tryptophan metabolism in the colon.
Collapse
Affiliation(s)
- Cassandra E Gheorghe
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, T12 CY82 Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, T12 CY82 Cork, Ireland
| | - Sarah-Jane Leigh
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, T12 CY82 Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, T12 CY82 Cork, Ireland
| | - Gabriel S S Tofani
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, T12 CY82 Cork, Ireland
| | - Thomaz F S Bastiaanssen
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, T12 CY82 Cork, Ireland
| | - Joshua M Lyte
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, T12 CY82 Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, T12 CY82 Cork, Ireland
| | - Elisa Gardellin
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, T12 CY82 Cork, Ireland
| | - Ashokkumar Govindan
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland; Teagasc Moorepark Food Research Centre, Fermoy Co, P61 C996 Cork, Ireland
| | - Conall Strain
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland; Teagasc Moorepark Food Research Centre, Fermoy Co, P61 C996 Cork, Ireland
| | - Sonia Martinez-Herrero
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, T12 CY82 Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, T12 CY82 Cork, Ireland
| | - Michael S Goodson
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH 45324, USA
| | - Nancy Kelley-Loughnane
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH 45324, USA
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, T12 CY82 Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, T12 CY82 Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, T12 CY82 Cork, Ireland.
| |
Collapse
|
34
|
Harris JC, Trigg NA, Goshu B, Yokoyama Y, Dohnalová L, White EK, Harman A, Murga-Garrido SM, Ting-Chun Pan J, Bhanap P, Thaiss CA, Grice EA, Conine CC, Kambayashi T. The microbiota and T cells non-genetically modulate inherited phenotypes transgenerationally. Cell Rep 2024; 43:114029. [PMID: 38573852 PMCID: PMC11102039 DOI: 10.1016/j.celrep.2024.114029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/21/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024] Open
Abstract
The host-microbiota relationship has evolved to shape mammalian physiology, including immunity, metabolism, and development. Germ-free models are widely used to study microbial effects on host processes such as immunity. Here, we find that both germ-free and T cell-deficient mice exhibit a robust sebum secretion defect persisting across multiple generations despite microbial colonization and T cell repletion. These phenotypes are inherited by progeny conceived during in vitro fertilization using germ-free sperm and eggs, demonstrating that non-genetic information in the gametes is required for microbial-dependent phenotypic transmission. Accordingly, gene expression in early embryos derived from gametes from germ-free or T cell-deficient mice is strikingly and similarly altered. Our findings demonstrate that microbial- and immune-dependent regulation of non-genetic information in the gametes can transmit inherited phenotypes transgenerationally in mice. This mechanism could rapidly generate phenotypic diversity to enhance host adaptation to environmental perturbations.
Collapse
Affiliation(s)
- Jordan C Harris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Natalie A Trigg
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Departments of Genetics and Pediatrics - Penn Epigenetics Institute, Institute of Regenerative Medicine, and Center for Research on Reproduction and Women's Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Bruktawit Goshu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuichi Yokoyama
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lenka Dohnalová
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ellen K White
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adele Harman
- Transgenic Core, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sofía M Murga-Garrido
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jamie Ting-Chun Pan
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Preeti Bhanap
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christoph A Thaiss
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elizabeth A Grice
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Colin C Conine
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Departments of Genetics and Pediatrics - Penn Epigenetics Institute, Institute of Regenerative Medicine, and Center for Research on Reproduction and Women's Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
35
|
Forsyth CB, Shaikh M, Engen PA, Preuss F, Naqib A, Palmen BA, Green SJ, Zhang L, Bogin ZR, Lawrence K, Sharma D, Swanson GR, Bishehsari F, Voigt RM, Keshavarzian A. Evidence that the loss of colonic anti-microbial peptides may promote dysbiotic Gram-negative inflammaging-associated bacteria in aging mice. FRONTIERS IN AGING 2024; 5:1352299. [PMID: 38501032 PMCID: PMC10945560 DOI: 10.3389/fragi.2024.1352299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/02/2024] [Indexed: 03/20/2024]
Abstract
Introduction: Aging studies in humans and mice have played a key role in understanding the intestinal microbiome and an increased abundance of "inflammaging" Gram-negative (Gn) bacteria. The mechanisms underlying this inflammatory profile in the aging microbiome are unknown. We tested the hypothesis that an aging-related decrease in colonic crypt epithelial cell anti-microbial peptide (AMP) gene expression could promote colonic microbiome inflammatory Gn dysbiosis and inflammaging. Methods: As a model of aging, C57BL/6J mice fecal (colonic) microbiota (16S) and isolated colonic crypt epithelial cell gene expression (RNA-seq) were assessed at 2 months (mth) (human: 18 years old; yo), 15 mth (human: 50 yo), and 25 mth (human: 84 yo). Informatics examined aging-related microbial compositions, differential colonic crypt epithelial cell gene expressions, and correlations between colonic bacteria and colonic crypt epithelial cell gene expressions. Results: Fecal microbiota exhibited significantly increased relative abundances of pro-inflammatory Gn bacteria with aging. Colonic crypt epithelial cell gene expression analysis showed significant age-related downregulation of key AMP genes that repress the growth of Gn bacteria. The aging-related decrease in AMP gene expressions is significantly correlated with an increased abundance in Gn bacteria (dysbiosis), loss of colonic barrier gene expression, and senescence- and inflammation-related gene expression. Conclusion: This study supports the proposed model that aging-related loss of colonic crypt epithelial cell AMP gene expression promotes increased relative abundances of Gn inflammaging-associated bacteria and gene expression markers of colonic inflammaging. These data may support new targets for aging-related therapies based on intestinal genes and microbiomes.
Collapse
Affiliation(s)
- Christopher B. Forsyth
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, United States
| | - Maliha Shaikh
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Phillip A. Engen
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Fabian Preuss
- Department of Biological Sciences, University of Wisconsin Parkside, Kenosha, WI, United States
| | - Ankur Naqib
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, IL, United States
| | - Breanna A. Palmen
- Department of Biological Sciences, University of Wisconsin Parkside, Kenosha, WI, United States
| | - Stefan J. Green
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Genomics and Microbiome Core Facility, Rush University Medical Center, Chicago, IL, United States
| | - Lijuan Zhang
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Zlata R. Bogin
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Kristi Lawrence
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Deepak Sharma
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
| | - Garth R. Swanson
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, United States
| | - Faraz Bishehsari
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, United States
| | - Robin M. Voigt
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, United States
| | - Ali Keshavarzian
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, United States
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, United States
- Department of Physiology, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
36
|
Xiao J, Chen X, Guo W, Li Y, Liu J. Moderate intensity exercise may protect cardiac function by influencing spleen microbiome composition. iScience 2024; 27:108635. [PMID: 38292426 PMCID: PMC10826308 DOI: 10.1016/j.isci.2023.108635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/15/2023] [Accepted: 12/01/2023] [Indexed: 02/01/2024] Open
Abstract
The beneficial effects of physical exercise on human cardiorespiratory fitness might be through reduced systemic inflammation, but the mechanism remains a controversy. Recent studies have highlighted the importance of spleen microbiomes in immune regulation. Hence, we conducted a study using a high-fat diet and exercise mouse model to investigate the relationships among different exercise intensities, spleen microbiome composition, and cardiac function. The mice spleen contained a diverse array of microbiota. Different intensities of exercise resulted in varying compositions of the spleen microbiome, Treg cell levels, and mouse heart function. Additionally, the abundance of Lactobacillus johnsonii in the mouse spleen exhibited a positive correlation with Treg cell levels, suggesting that Lactobacillus johnsonii may contribute to the production of Treg cells, potentially explaining the protective role of moderate-intensity exercise on cardiac function. In conclusion, our findings provide evidence that moderate-intensity exercise may promote cardiac function protection by influencing the spleen microbiome composition.
Collapse
Affiliation(s)
- Jie Xiao
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan 430071, China
| | - Xing Chen
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan 430071, China
| | - Weina Guo
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yang Li
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan 430071, China
| | - Jinping Liu
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery, Wuhan 430071, China
- Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease, Wuhan 430071, China
| |
Collapse
|
37
|
Wang G, Ding X, Yang J, Ma L, Sun X, Zhu R, Lu R, Xiao Z, Xing Z, Liu J, Pan Z, Xu S, Sima Y. Effects of Habitual Dietary Change on the Gut Microbiota and Health of Silkworms. Int J Mol Sci 2024; 25:1722. [PMID: 38339000 PMCID: PMC10855636 DOI: 10.3390/ijms25031722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Diet plays a crucial role in shaping the gut microbiota and overall health of animals. Traditionally, silkworms are fed fresh mulberry leaves, and artificial diets do not support good health. The aim of this study was to explore the relationship between the dietary transition from artificial diets to mulberry leaves and the effects on the gut microbiota and physiological changes in silkworms as a model organism. With the transition from artificial diets to mulberry leaves, the diversity of the silkworm gut microbiota increased, and the proportion of Enterococcus and Weissella, the dominant gut bacterial species in silkworms reared on artificial diets, decreased, whereas the abundance of Achromobacter and Rhodococcus increased. Dietary transition at different times, including the third or fifth instar larval stages, resulted in significant differences in the growth and development, immune resistance, and silk production capacity of silkworms. These changes might have been associated with the rapid adaptation of the intestinal microbiota of silkworms to dietary transition. This study preliminarily established a dietary transition-gut microbial model in silkworms based on the conversion from artificial diets to mulberry leaves, thus providing an important reference for future studies on the mechanisms through which habitual dietary changes affect host physiology through the gut microbiome.
Collapse
Affiliation(s)
- Guang Wang
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China; (G.W.); (S.X.)
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Xueyan Ding
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China; (G.W.); (S.X.)
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Jiameng Yang
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China; (G.W.); (S.X.)
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Lu Ma
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China; (G.W.); (S.X.)
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Xiaoning Sun
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China; (G.W.); (S.X.)
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Ruihong Zhu
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China; (G.W.); (S.X.)
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Riming Lu
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China; (G.W.); (S.X.)
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Zhitian Xiao
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China; (G.W.); (S.X.)
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Zhiyi Xing
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China; (G.W.); (S.X.)
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Jingbin Liu
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China; (G.W.); (S.X.)
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Zhonghua Pan
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China; (G.W.); (S.X.)
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Shiqing Xu
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China; (G.W.); (S.X.)
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| | - Yanghu Sima
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China; (G.W.); (S.X.)
- Institute of Agricultural Biotechnology & Ecology (IABE), Soochow University, Suzhou 215123, China
| |
Collapse
|
38
|
Guo X, Wang J, Xu H, Wang Y, Cao Y, Wen Y, Li J, Liu Y, Wang K, Wang J, Zhong X, Sun C, Zhang Y, Xu J, Li C, Mu P, Xu L, Xie C. Obesity induced disruption on diurnal rhythm of insulin sensitivity via gut microbiome-bile acid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159419. [PMID: 37951383 DOI: 10.1016/j.bbalip.2023.159419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/22/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
The disruption of the diurnal rhythm has been recognized as a significant contributing factor to metabolic dysregulation. The important role of gut microbiota and bile acid metabolism has attracted extensive attention. However, the function of the gut microbiota-bile acid axis in regulating the diurnal rhythms of metabolic homeostasis remains largely unknown. Herein, we aimed to investigate the interplay between rhythmicity of host metabolism and gut microbiota-bile acid axis, as well as to assess the impact of obesity on them. We found that high fat diet feeding and Leptin gene deficiency (ob/ob) significantly disturbed the rhythmic patterns of insulin sensitivity and serum total cholesterol levels. The bile acid profiling unveiled a conspicuous diurnal rhythm oscillation of ursodeoxycholic acid (UDCA) in lean mice, concomitant with fluctuations in insulin sensitivity, whereas it was absent in obese mice. The aforementioned diurnal rhythm oscillations were largely desynchronized by gut microbiota depletion, suggesting the indispensable role of gut microbiota in diurnal regulation of insulin sensitivity and bile acid metabolism. Consistently, 16S rRNA sequencing revealed that UDCA-associated bacteria exhibited diurnal rhythm oscillations that paralleled the fluctuation in insulin sensitivity. Collectively, the current study provides compelling evidence regarding the association between diurnal rhythm of insulin sensitivity and gut microbiota-bile acid axis. Moreover, we have elucidated the deleterious effects of obesity on gut microbiome-bile acid metabolism in both the genetic obesity model and the diet-induced obesity model.
Collapse
Affiliation(s)
- Xiaozhen Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jiawen Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Hualing Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yangyang Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Yutang Cao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yingquan Wen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Pharmaceutical Science, Nanchang University, Nanchang, China
| | - Jiaqi Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yameng Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Kanglong Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jue Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xianchun Zhong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Chuying Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yongxin Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jingyi Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Cuina Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Pengxiang Mu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China.
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China; School of Pharmaceutical Science, Nanchang University, Nanchang, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
39
|
Jia X, Chen Q, Wu H, Liu H, Jing C, Gong A, Zhang Y. Exploring a novel therapeutic strategy: the interplay between gut microbiota and high-fat diet in the pathogenesis of metabolic disorders. Front Nutr 2023; 10:1291853. [PMID: 38192650 PMCID: PMC10773723 DOI: 10.3389/fnut.2023.1291853] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
In the past two decades, the rapid increase in the incidence of metabolic diseases, including obesity, diabetes, dyslipidemia, non-alcoholic fatty liver disease, hypertension, and hyperuricemia, has been attributed to high-fat diets (HFD) and decreased physical activity levels. Although the phenotypes and pathologies of these metabolic diseases vary, patients with these diseases exhibit disease-specific alterations in the composition and function of their gut microbiota. Studies in germ-free mice have shown that both HFD and gut microbiota can promote the development of metabolic diseases, and HFD can disrupt the balance of gut microbiota. Therefore, investigating the interaction between gut microbiota and HFD in the pathogenesis of metabolic diseases is crucial for identifying novel therapeutic strategies for these diseases. This review takes HFD as the starting point, providing a detailed analysis of the pivotal role of HFD in the development of metabolic disorders. It comprehensively elucidates the impact of HFD on the balance of intestinal microbiota, analyzes the mechanisms underlying gut microbiota dysbiosis leading to metabolic disruptions, and explores the associated genetic factors. Finally, the potential of targeting the gut microbiota as a means to address metabolic disturbances induced by HFD is discussed. In summary, this review offers theoretical support and proposes new research avenues for investigating the role of nutrition-related factors in the pathogenesis of metabolic disorders in the organism.
Collapse
Affiliation(s)
- Xiaokang Jia
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Qiliang Chen
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Huiwen Wu
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Hongbo Liu
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Chunying Jing
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Aimin Gong
- School of Traditional Chinese Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Yuanyuan Zhang
- The Affiliated TCM Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
40
|
Pang X, Chen L, Xu G. New Awareness of the Interplay Between the Gut Microbiota and Circadian Rhythms. Pol J Microbiol 2023; 72:355-363. [PMID: 38095865 PMCID: PMC10725168 DOI: 10.33073/pjm-2023-046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/27/2023] [Indexed: 12/17/2023] Open
Abstract
Circadian rhythms influence various aspects of the biology and physiology of the host, such as food intake and sleep/wake cycles. In recent years, an increasing amount of genetic and epidemiological data has shown that the light/dark cycle is the main cue that regulates circadian rhythms. Other factors, including sleep/wake cycles and food intake, have necessary effects on the composition and rhythms of the gut microbiota. Interestingly, the gut microbiota can affect the circadian rhythm of hosts in turn through contact-dependent and contact-independent mechanisms. Furthermore, the gut microbiota has been shown to regulate the sleep/wake cycles through gut-brain-microbiota interaction. In addition to diabetes, the gut microbiota can also intervene in the progression of neuro- degenerative diseases through the gut-brain-microbiota interaction, and also in other diseases such as hypertension and rheumatoid arthritis, where it is thought to have a spare therapeutic potential. Even though fecal microbiota transplantation has good potential for treating many diseases, the risk of spreading intestinal pathogens should not be ignored.
Collapse
Affiliation(s)
- Xiaoxiao Pang
- Department of Clinical Laboratory, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Long Chen
- Department of Clinical Laboratory, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| | - Guoxin Xu
- Department of Clinical Laboratory, The Affiliated Zhangjiagang Hospital of Soochow University, Suzhou, China
| |
Collapse
|
41
|
Wang K, Zhou M, Si H, Ma J. Gut microbiota-mediated IL-22 alleviates metabolic inflammation. Life Sci 2023; 334:122229. [PMID: 37922980 DOI: 10.1016/j.lfs.2023.122229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/06/2023]
Abstract
Low-grade chronic inflammation, also known as metabolic inflammation, promotes the development of metabolic diseases. Increasing evidence suggests that changes in gut microbes and metabolites disrupt the integrity of the gut barrier and exert significant effects on the metabolism of various tissues, including the liver and adipose tissue, thereby contributing to metabolic inflammation. We observed that IL-22 is a key signaling molecule that serves as a bridge between intestinal microbes and the host, effectively alleviating metabolic inflammation by modulating the host immunomodulatory network. Here, we focused on elucidating the underlying mechanisms by which the gut microbiota and their metabolites reduce inflammation via IL-22, highlighting the favorable impact of IL-22 on metabolic inflammation. Furthermore, we discuss the potential of IL-22 as a therapeutic target for the management of metabolic inflammation and related diseases.
Collapse
Affiliation(s)
- Kaijun Wang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China; Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Miao Zhou
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
| | - Jie Ma
- College of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China.
| |
Collapse
|
42
|
Fan L, Xia Y, Wang Y, Han D, Liu Y, Li J, Fu J, Wang L, Gan Z, Liu B, Fu J, Zhu C, Wu Z, Zhao J, Han H, Wu H, He Y, Tang Y, Zhang Q, Wang Y, Zhang F, Zong X, Yin J, Zhou X, Yang X, Wang J, Yin Y, Ren W. Gut microbiota bridges dietary nutrients and host immunity. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2466-2514. [PMID: 37286860 PMCID: PMC10247344 DOI: 10.1007/s11427-023-2346-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/05/2023] [Indexed: 06/09/2023]
Abstract
Dietary nutrients and the gut microbiota are increasingly recognized to cross-regulate and entrain each other, and thus affect host health and immune-mediated diseases. Here, we systematically review the current understanding linking dietary nutrients to gut microbiota-host immune interactions, emphasizing how this axis might influence host immunity in health and diseases. Of relevance, we highlight that the implications of gut microbiota-targeted dietary intervention could be harnessed in orchestrating a spectrum of immune-associated diseases.
Collapse
Affiliation(s)
- Lijuan Fan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yaoyao Xia
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Youxia Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Jiahuan Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Fu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Leli Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Zhending Gan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Bingnan Liu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jian Fu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Congrui Zhu
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenhua Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hui Han
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hao Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yiwen He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yulong Tang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Qingzhuo Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yibin Wang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Fan Zhang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China
| | - Xin Zong
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Xihong Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Xi'an, 712100, China.
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Wenkai Ren
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
43
|
Shao X, Liu L, Zhou Y, Zhong K, Gu J, Hu T, Yao Y, Zhou C, Chen W. High-fat diet promotes colitis-associated tumorigenesis by altering gut microbial butyrate metabolism. Int J Biol Sci 2023; 19:5004-5019. [PMID: 37781523 PMCID: PMC10539701 DOI: 10.7150/ijbs.86717] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/13/2023] [Indexed: 10/03/2023] Open
Abstract
Background: Dietary fat intake is associated with an increased risk of colitis associated cancer (CAC). A high-fat diet (HFD) leads to systemic low-grade inflammation. The colon is believed to be the first organ suffering from inflammation caused by the infiltration of pro-inflammatory macrophages, and promotes CAC progression. We explored the role of HFD in driving CAC by altering gut microbial butyrate metabolism. Methods: Changes in the gut microbiota caused by HFD were investigated via HFD treatment or fecal microbiota transplantation (FMT). The underlying mechanisms were further explored by analyzing the role of gut microbiota, microbial butyrate metabolism, and NLRP3 inflammasome in colon tissues in a CAC mouse model. Results: HFD accelerated CAC progression in mice, and it could be reversed by broad-spectrum antibiotics (ABX). 16S-rRNA sequencing revealed that HFD inhibited the abundance of butyrate-producing bacteria in the gut. The level of short-chain fatty acids (SCFAs), especially butyrate, in the gut of mice treated with HFD was significantly reduced. In addition, treatment with exogenous butyrate reversed the M1 polarization of proinflammatory macrophages, aggravation of intestinal inflammation, and accelerated tumor growth induced by HFD; the NLRP3/Caspase-1 pathway activated by HFD in the colon was also significantly inhibited. In vitro, macrophages were treated with lipopolysaccharide combined with butyrate to detect the M1 polarization level and NLRP3/Caspase-1 pathway expression, and the results were consistent with those of the in vivo experiments. Conclusion: HFD drives colitis-associated tumorigenesis by inducing gut microbial dysbiosis and inhibiting butyrate metabolism to skew macrophage polarization. Exogenous butyrate is a feasible new treatment strategy for CAC, and has good prospect for clinical application.
Collapse
Affiliation(s)
- Xinyu Shao
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, Jiangsu, China
| | - Luojie Liu
- Department of Gastroenterology, Changshu Hospital Affiliated to Soochow University, Suzhou 215000, Jiangsu, China
| | - Yuqing Zhou
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, Jiangsu, China
| | - Kaiqiang Zhong
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Jinrong Gu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Tong Hu
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, Jiangsu, China
| | - Yizhou Yao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Chunli Zhou
- Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, Jiangsu, China
| | - Weichang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| |
Collapse
|
44
|
Shin JH, Bozadjieva-Kramer N, Seeley RJ. Reg3γ: current understanding and future therapeutic opportunities in metabolic disease. Exp Mol Med 2023; 55:1672-1677. [PMID: 37524871 PMCID: PMC10474034 DOI: 10.1038/s12276-023-01054-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/01/2023] [Indexed: 08/02/2023] Open
Abstract
Regenerating family member gamma, Reg3γ (the mouse homolog of human REG3A), belonging to the antimicrobial peptides (AMPs), functions as a part of the host immune system to maintain spatial segregation between the gut bacteria and the host in the intestine via bactericidal activity. There is emerging evidence that gut manipulations such as bariatric surgery, dietary supplementation or drug treatment to produce metabolic benefits alter the gut microbiome. In addition to changes in a wide range of gut hormones, these gut manipulations also induce the expression of Reg3γ in the intestine. Studies over the past decades have revealed that Reg3γ not only plays a role in the gut lumen but can also contribute to host physiology through interaction with the gut microbiota. Herein, we discuss the current knowledge regarding the biology of Reg3γ, its role in various metabolic functions, and new opportunities for therapeutic strategies to treat metabolic disorders.
Collapse
Affiliation(s)
- Jae Hoon Shin
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
45
|
Ding L, Liu J, Zhou L, Zhang Q, Yu M, Xiao X. Maternal High-Fat Diet Results in Long-Term Sex-Specific Alterations to Metabolic and Gut Microbial Diurnal Oscillations in Adult Offspring. Mol Nutr Food Res 2023; 67:e2200753. [PMID: 37334884 DOI: 10.1002/mnfr.202200753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/09/2023] [Indexed: 06/21/2023]
Abstract
SCOPE Circadian rhythms profoundly impact metabolism and the gut microbiota. A maternal high-fat diet (HFD) exerts effects on the metabolic syndrome of adult offspring in a sex-specific manner, the underlying mechanisms, however, remain unclear. METHODS AND RESULTS Female mice are fed an HFD and raise their offspring on a standard chow diet until 24 weeks. The glucose tolerance, insulin sensitivity, and diurnal rhythms of serum metabolic profiles are assessed in male and female adult offspring. Simultaneously, 16S rRNA is applied to characterize gut microbiota diurnal rhythms. The study finds that maternal HFD tends to deteriorate glucose tolerance and impairs insulin sensitivity in male offspring, but not female offspring, which can be associated with the circadian alterations of serum metabolic profiles in male offspring. As expected, maternal HFD sex-specifically alters diurnal rhythms of the gut microbiota, which exhibits putative associations with metabolic profiles in males. CONCLUSIONS The present study identifies the critical role of gut microbiota diurnal rhythms in triggering sex-biased metabolic diurnal rhythms in response to maternal HFD, at least in part. As early life may be a critical window for preventing metabolic diseases, these findings provide the basis for developing chronobiology applications targeting the gut microbiota to combat early metabolic alterations, especially in males.
Collapse
Affiliation(s)
- Lu Ding
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jieying Liu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Liyuan Zhou
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, China
| | - Qian Zhang
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Miao Yu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
46
|
Puértolas-Balint F, Schroeder BO. Intestinal α-Defensins Play a Minor Role in Modulating the Small Intestinal Microbiota Composition as Compared to Diet. Microbiol Spectr 2023; 11:e0056723. [PMID: 37039638 PMCID: PMC10269482 DOI: 10.1128/spectrum.00567-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/16/2023] [Indexed: 04/12/2023] Open
Abstract
The intestinal microbiota is at the interface between the host and its environment and thus under constant exposure to host-derived and external modulators. While diet is considered to be an important external factor modulating microbiota composition, intestinal defensins, one of the major classes of antimicrobial peptides, have been described as key host effectors that shape the gut microbial community. However, since dietary compounds can affect defensin expression, thereby indirectly modulating the intestinal microbiota, their individual contribution to shaping gut microbiota composition remains to be defined. To disentangle the complex interaction among diet, defensins, and small-intestinal microbiota, we fed wild-type (WT) mice and mice lacking functionally active α-defensins (Mmp7-/- mice) either a control diet or a Western-style diet (WSD) that is rich in saturated fat and simple carbohydrates but low in dietary fiber. 16S rDNA sequencing and robust statistical analyses identified that bacterial composition was strongly affected by diet while defensins had only a minor impact. These findings were independent of sample location, with consistent results between the lumen and mucosa of the jejunum and ileum, in both mouse genotypes. However, distinct microbial taxa were also modulated by α-defensins, which was supported by differential antimicrobial activity of ileal protein extracts. As the combination of WSD and defensin deficiency exacerbated glucose metabolism, we conclude that defensins only have a fine-tuning role in shaping the small-intestinal bacterial composition and might instead be important in protecting the host against the development of diet-induced metabolic dysfunction. IMPORTANCE Alterations in the gut microbial community composition are associated with many diseases, and therefore identifying factors that shape the microbial community under homeostatic and diseased conditions may contribute to the development of strategies to correct a dysbiotic microbiota. Here, we demonstrate that a Western-style diet, as an extrinsic parameter, had a stronger impact on shaping the small intestinal bacterial composition than intestinal defensins, as an intrinsic parameter. While defensins have been previously shown to modulate bacterial composition in young mice, our study supplements these findings by showing that defensins may be less important in adult mice that harbor a mature microbial community. Nevertheless, we observed that defensins did affect the abundance of distinct bacterial taxa in adult mice and protected the host from aggravated diet-induced glucose impairments. Consequently, our study uncovers a new angle on the role of intestinal defensins in the development of metabolic diseases in adult mice.
Collapse
Affiliation(s)
- Fabiola Puértolas-Balint
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Center for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Bjoern O. Schroeder
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Center for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| |
Collapse
|
47
|
Yan M, Liu S, Zeng W, Guo Q, Mei Y, Shao X, Su L, Liu Z, Zhang Y, Wang L, Diao H, Rong X, Guo J. The Chinese herbal medicine Fufang Zhenzhu Tiaozhi ameliorates diabetic cardiomyopathy by regulating cardiac abnormal lipid metabolism and mitochondrial dynamics in diabetic mice. Biomed Pharmacother 2023; 164:114919. [PMID: 37302318 DOI: 10.1016/j.biopha.2023.114919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/03/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is an important complication leading to the death of patients with diabetes, but there is no effective strategy for clinical treatments. Fufang Zhenzhu Tiaozhi (FTZ) is a patent medicine that is a traditional Chinese medicine compound preparation with comprehensive effects for the prevention and treatment of glycolipid metabolic diseases under the guidance of "modulating liver, starting pivot and cleaning turbidity". FTZ was proposed by Professor Guo Jiao and is used for the clinical treatment of hyperlipidemia. This study was designed to explore the regulatory mechanisms of FTZ on heart lipid metabolism dysfunction and mitochondrial dynamics disorder in mice with DCM, and it provides a theoretical basis for the myocardial protective effect of FTZ in diabetes. In this study, we demonstrated that FTZ protected heart function in DCM mice and downregulated the overexpression of free fatty acids (FFAs) uptake-related proteins cluster of differentiation 36 (CD36), fatty acid binding protein 3 (FABP3) and carnitine palmitoyl transferase 1 (CPT1). Moreover, FTZ treatment showed a regulatory effect on mitochondrial dynamics by inhibiting mitochondrial fission and promoting mitochondrial fusion. We also identified in vitro that FTZ could restore lipid metabolism-related proteins, mitochondrial dynamics-related proteins and mitochondrial energy metabolism in PA-treated cardiomyocytes. Our study indicated that FTZ improves the cardiac function of diabetic mice by attenuating the increase in fasting blood glucose levels, inhibiting the decrease in body weight, alleviating disordered lipid metabolism, and restoring mitochondrial dynamics and myocardial apoptosis in diabetic mouse hearts.
Collapse
Affiliation(s)
- Meiling Yan
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Suping Liu
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Wenru Zeng
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Qiaoling Guo
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Yu Mei
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Xiaoqi Shao
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Liyan Su
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Zhou Liu
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Yue Zhang
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Lexun Wang
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Hongtao Diao
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Xianglu Rong
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China
| | - Jiao Guo
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangzhou, China; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou, China; Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China.
| |
Collapse
|
48
|
Wollmuth EM, Angert ER. Microbial circadian clocks: host-microbe interplay in diel cycles. BMC Microbiol 2023; 23:124. [PMID: 37161348 PMCID: PMC10173096 DOI: 10.1186/s12866-023-02839-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/28/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Circadian rhythms, observed across all domains of life, enable organisms to anticipate and prepare for diel changes in environmental conditions. In bacteria, a circadian clock mechanism has only been characterized in cyanobacteria to date. These clocks regulate cyclical patterns of gene expression and metabolism which contribute to the success of cyanobacteria in their natural environments. The potential impact of self-generated circadian rhythms in other bacterial and microbial populations has motivated extensive research to identify novel circadian clocks. MAIN TEXT Daily oscillations in microbial community composition and function have been observed in ocean ecosystems and in symbioses. These oscillations are influenced by abiotic factors such as light and the availability of nutrients. In the ocean ecosystems and in some marine symbioses, oscillations are largely controlled by light-dark cycles. In gut systems, the influx of nutrients after host feeding drastically alters the composition and function of the gut microbiota. Conversely, the gut microbiota can influence the host circadian rhythm by a variety of mechanisms including through interacting with the host immune system. The intricate and complex relationship between the microbiota and their host makes it challenging to disentangle host behaviors from bacterial circadian rhythms and clock mechanisms that might govern the daily oscillations observed in these microbial populations. CONCLUSIONS While the ability to anticipate the cyclical behaviors of their host would likely be enhanced by a self-sustained circadian rhythm, more evidence and further studies are needed to confirm whether host-associated heterotrophic bacteria possess such systems. In addition, the mechanisms by which heterotrophic bacteria might respond to diel cycles in environmental conditions has yet to be uncovered.
Collapse
Affiliation(s)
- Emily M Wollmuth
- Department of Microbiology, Cornell University, 123 Wing Drive, Ithaca, NY, 14853, USA
| | - Esther R Angert
- Department of Microbiology, Cornell University, 123 Wing Drive, Ithaca, NY, 14853, USA.
| |
Collapse
|
49
|
Harris JC, Trigg NA, Goshu B, Yokoyama Y, Dohnalová L, White EK, Harman A, Thaiss CA, Grice EA, Conine CC, Kambayashi T. The microbiota and immune system non-genetically affect offspring phenotypes transgenerationally. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535940. [PMID: 37066207 PMCID: PMC10104111 DOI: 10.1101/2023.04.06.535940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The host-microbiota relationship has evolved to shape mammalian processes, including immunity, metabolism, and development 1-3 . Host phenotypes change in direct response to microbial exposures by the individual. Here we show that the microbiota induces phenotypic change not only in the individual but also in their succeeding generations of progeny. We found that germ-free mice exhibit a robust sebum secretion defect and transcriptional changes in various organs, persisting across multiple generations despite microbial colonization and breeding with conventional mice. Host-microbe interactions could be involved in this process, since T cell-deficient mice, which display defective sebum secretion 4 , also transgenerationally transmit their phenotype to progeny. These phenotypes are inherited by progeny conceived during in vitro fertilization using germ-free sperm and eggs, demonstrating that epigenetic information in the gametes is required for phenotypic transmission. Accordingly, small non-coding RNAs that can regulate embryonic gene expression 5 were strikingly and similarly altered in gametes of germ-free and T cell-deficient mice. Thus, we have uncovered a novel mechanism whereby the microbiota and immune system induce phenotypic changes in successive generations of offspring. This epigenetic form of inheritance could be advantageous for host adaptation to environmental perturbation, where phenotypic diversity can be introduced more rapidly than by genetic mutation.
Collapse
|
50
|
Fecal Microbiota Composition as a Metagenomic Biomarker of Dietary Intake. Int J Mol Sci 2023; 24:ijms24054918. [PMID: 36902349 PMCID: PMC10003228 DOI: 10.3390/ijms24054918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Gut microbiota encompasses the set of microorganisms that colonize the gastrointestinal tract with mutual relationships that are key for host homeostasis. Increasing evidence supports cross intercommunication between the intestinal microbiome and the eubiosis-dysbiosis binomial, indicating a networking role of gut bacteria as potential metabolic health surrogate markers. The abundance and diversity of the fecal microbial community are already recognized to be associated with several disorders, such as obesity, cardiometabolic events, gastrointestinal alterations, and mental diseases, which suggests that intestinal microbes may be a valuable tool as causal or as consequence biomarkers. In this context, the fecal microbiota could also be used as an adequate and informative proxy of the nutritional composition of the food intake and about the adherence to dietary patterns, such as the Mediterranean or Western diets, by displaying specific fecal microbiome signatures. The aim of this review was to discuss the potential use of gut microbial composition as a putative biomarker of food intake and to screen the sensitivity value of fecal microbiota in the evaluation of dietary interventions as a reliable and precise alternative to subjective questionnaires.
Collapse
|