1
|
Katrak VK, Patel NA, Ijardar SP. The Physicochemical Properties and Plausible Implication of Deep Eutectic Solvents in Analytical Techniques. Crit Rev Anal Chem 2025:1-24. [PMID: 40203288 DOI: 10.1080/10408347.2025.2486209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Volatile organic solvents and fluoride-containing ionic liquids (ILs) have few drawbacks like toxicity, non-biodegradability, and environmental issues. Even though ILs are considered as new safest solvent for their lower volatility. They pose toxicity and sustainability concerns. Deep eutectic solvents (DESs) have garnered significant attention as substitutes for these solvents, addressing their drawbacks and aligning with specific principles of green chemistry, such as reduced toxicity, biodegradability, and the use of renewable resources. This review thoroughly explains the emergence and inception of DESs through their development. It deals with the physicochemical properties like density, polarity, and viscosity. The factors dealing with variation in density and viscosity of DES have been discussed. The preparation and operation of DESs, encompassing their various variants such as hydrophobic and hydrophilic types are examined to provide a comprehensive grasp of their chemical properties. Beyond basic characteristics, the article delves into a few specific DES applications to demonstrate their flexibility. DESs show promising multifarious utility, ranging from acting as extractant to critical roles in sorbent-based extractions, solvent-based extractions, and their role in various analytical techniques. The article covers the opportunities and difficulties associated with DESs, offering a prospective viewpoint on future advancements and difficulties. The review outlines different facets of DES research, emphasizing the level of knowledge at the moment and their potential influence in the emerging subject of DESs.
Collapse
Affiliation(s)
- Vahishta K Katrak
- Department of Chemistry, Veer Narmad South Gujarat University, Surat, India
| | - Nensi A Patel
- Department of Chemistry, Veer Narmad South Gujarat University, Surat, India
| | - Sushma P Ijardar
- Department of Chemistry, Veer Narmad South Gujarat University, Surat, India
| |
Collapse
|
2
|
Alharthi FA, Aldubeikl HK, Alanazi HS, Al-Nafaei WS, Hasan I. Fluorometric Sensing and Detection of p-Nitroaniline by Mixed Metal (Zn, Ni) Tungstate Nanocomposite. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:362. [PMID: 36678116 PMCID: PMC9863953 DOI: 10.3390/nano13020362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Aromatic amines are important chemical intermediates that hold an irreplaceable significance for synthesizing many chemical products. However, they may react with substances excreted from human bodies to generate blood poisoning, skin eczema, and dermatitis disease and even induce cancer-causing high risks to human health and the environment. Metal tungstates have been proven to be highly efficient materials for developing various toxic gases or chemical detection sensor systems. However, the major factors of the sensors, such as sensitivity, selectivity, stability, response, and recovery times, still need to be optimized for practical technological applications. In this work, Ni-doped ZnWO4 mixed metal tungstate nanocomposite material was synthesized by the hydrothermal method and explored as a sensor for the fluorometric determination of p-nitroaniline (p-NA). Transmission electron microscopy (TEM) was used for the elucidation of the optimized particle diameter. Scanning electron microscopy (SEM) was employed to observe the surface morphological changes in the material during the solid-state reactions. The vibration modes of as-prepared samples were analyzed using Fourier-transform infrared spectroscopy (FTIR). The chemical bonding and oxidation states of individual elements involved in material synthesis were observed using X-ray photoelectron spectroscopy (XPS). The PL activities of the metal tungstate nanoparticles were investigated for the sensing of p-nitroaniline (p-NA). The obtained results demonstrated that ZnNiWO4 was more effective in sensing p-NA than the other precursors were by using the quenching effect. The material showed remarkably high sensitivity towards p-NA in a concentration range of 25-1000 μM, and the limit of detection (LOD) value was found to be 1.93 × 10-8 M for ZnWO4, 2.17 × 10-8 M for NiWO4, and 2.98 × 10-8 M for ZnNiWO4, respectively.
Collapse
|
3
|
Ragu S, Kim B, Chen SM, Ishfaque A, Kang KM. N-substituted CQDs impregnated by Fe 3O 4 heterostructure: Bifunctional catalyst for electro-catalytic and photo-catalytic detection of an environmental hazardous organic pollutant. CHEMOSPHERE 2023; 311:137168. [PMID: 36368536 DOI: 10.1016/j.chemosphere.2022.137168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/17/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
ortho-Nitroaniline (o-NA) compounds are deemed to be a strongly toxic pollutant in nature and potentially carcinogenic; however, they are frequently utilized to synthesize dyes, pesticides, medicines, fungicides, pigments, and other organic chemicals. Their detection in an aqueous medium is fundamentally required to avoid the potential hazardous being created by these compounds. In this study, a novel sensor based on an Iron oxide (Fe3O4) containing highly dispersed nitrogen-doped carbon quantum dots (N-CQDs@Fe3O4 NFs) was demonstrated for the electrochemical detection of o-NA using differential pulse voltammetry (DPV) and cyclic voltammetry (CV) techniques. N-CQDs@Fe3O4 NFs were synthesized by hydrothermal method and studied by various analytical and spectroscopy techniques, which collectively reveal that the as-prepared composite has superior physical and chemical properties. The DPV study indicated that the o-NA sensor had a good limit of detection, linear range, and sensitivity in the range of 1.2 nm, 0.03-386.84 μM, and 36.5575 μA μM-1 cm-2, respectively, along with the sensor showed superior sensitivity when compared to the previously reported modified electrodes. Further, N-CQD/Fe3O4 NFs worked as heterogeneous catalysts for the photocatalytic reduction of o-NA to o-phenylenediamine (o-PD) in an aqueous medium. The reaction was examined under UV-Visible spectroscopy, and the complete photocatalytic reduction was observed for the N-CQD/Fe3O4 NFs in about 6 min with 96% as compared to other control samples; thus, authenticating the superiority of the synthesized composite in rendering the real-time applications.
Collapse
Affiliation(s)
- Sasikumar Ragu
- School of Mechatronics Engineering, Korea University of Technology and Education, Cheonan, Chungnam, 31253, Republic of Korea
| | - Byungki Kim
- School of Mechatronics Engineering, Korea University of Technology and Education, Cheonan, Chungnam, 31253, Republic of Korea; Future Convergence Engineering, Korea University of Technology and Education, Cheonan, Chungnam, 31253, Republic of Korea.
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, College of Engineering, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.
| | - Asif Ishfaque
- School of Mechatronics Engineering, Korea University of Technology and Education, Cheonan, Chungnam, 31253, Republic of Korea; Department of Mechanical, Mechatronics and Manufacturing Engineering, University of Engineering and Technology, Lahore, Faisalabad Campus, Faisalabad 38000, Pakistan
| | - Kwang-Mo Kang
- Future Convergence Engineering, Korea University of Technology and Education, Cheonan, Chungnam, 31253, Republic of Korea
| |
Collapse
|
4
|
Chanda A, Mandal S. Naphthalene-tagged highly stable and reusable luminescent metal-organic probes for selective and fast detection of 4-nitroaniline in water. NEW J CHEM 2022. [DOI: 10.1039/d2nj00251e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper we report the synthesis, characterization, properties and application of four new Zn(II) and Cd(II) based luminescent metal-organic probes, {[Zn(mbhna)(bpea)]}n (1), {[Cd(mbhna)(bpea)]}n (2), {[Zn(mbhna)(bpba)].CH3OH.H2O}n (3) and {[Cd(mbhna)(bpba)]}n (4),...
Collapse
|
5
|
Mehravar A, Feizbakhsh A, Sarafi AHM, Konoz E, Faraji H. Deep eutectic solvent-based headspace single-drop microextraction of polycyclic aromatic hydrocarbons in aqueous samples. J Chromatogr A 2020; 1632:461618. [PMID: 33080534 DOI: 10.1016/j.chroma.2020.461618] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 01/01/2023]
Abstract
An improved deep eutectic solvent (DES)-based headspace single-drop microextraction procedure has been developed as a green procedure for gas chromatography-mass spectrometric analysis of polycyclic aromatic hydrocarbons (PAHs) in aqueous samples. The stability of the micro-drop was significantly improved using a DES as an extraction phase and a bell-shaped tube as a supporter. These strategies helped to perform the extraction process in higher temperatures and stirring rates. Finally, the back-extraction of the analytes into a proper solvent that is compatible with the chromatography system was applied. The efficacy of the independent variables on the extraction efficiency was evaluated via chemometric methods in two steps. The best result was obtained with choline chloride-oxalic acid at the molar ratio of 1:2, a stirring speed of 2000 rpm for 10 min as well as a sample temperature of 50 °C and with ionic strength prepared by using a 10% (w/v) NaCl. The method indicated a good linearity for the analytes (R2≥0.9989). Under optimal conditions, the analytical signal was linear in the range of 0.01-50 μg L-1. Limit of detection (LOD) and limit of quantification (LOQ) were evaluated at the concentration levels of 0.003-0.012 and 0.009-0.049 μg L-1, respectively. Intraday and interday precision for all targeted compounds was less than 7.2% and 11.3%, respectively. Consequently, the proposed procedure was efficiently applied to extract and analyze the 16 target compounds in real aqueous samples representing satisfactory recoveries (94.40-105.98%).
Collapse
Affiliation(s)
- Amir Mehravar
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Feizbakhsh
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| | | | - Elaheh Konoz
- Department of Chemistry, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Hakim Faraji
- Department of Chemistry, Varamin-Pishva Branch, Islamic Azad University, Varamin 338177489, Iran.
| |
Collapse
|
6
|
Magnetic dispersive solid-phase microextraction for determination of two organophosphorus pesticides in cucumber and orange samples. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01991-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
7
|
Cucurbit[6]uril modified CdTe quantum dots fluorescent probe and its selective analysis of p-nitroaniline in environmental samples. Talanta 2019; 199:667-673. [DOI: 10.1016/j.talanta.2019.02.084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 02/16/2019] [Accepted: 02/24/2019] [Indexed: 01/22/2023]
|
8
|
Abstract
Saliva, as the first body fluid encountering with the exogenous materials, has good correlation with blood and plays an important role in bioanalysis. However, saliva has not been studied as much as the other biological fluids mainly due to restricted access to its large volumes. In recent years, there is a growing interest for saliva analysis owing to the emergence of miniaturized sample preparation methods. The purpose of this paper is to review all microextraction methods and their principles of operation. In the following, we examine the methods used to analyze saliva up to now and discuss the potential of the other microextraction methods for saliva analysis to encourage research groups for more focus on this important subject area.
Collapse
|
9
|
Chakraborty G, Das P, Mandal SK. Strategic Construction of Highly Stable Metal-Organic Frameworks Combining Both Semi-Rigid Tetrapodal and Rigid Ditopic Linkers: Selective and Ultrafast Sensing of 4-Nitroaniline in Water. ACS APPLIED MATERIALS & INTERFACES 2018; 10:42406-42416. [PMID: 30407780 DOI: 10.1021/acsami.8b15894] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this work, we have designed two new 3D metal-organic frameworks (MOFs), {Zn4(TPOM)(1,4-NDC)4} n (1) and {Ni2(TPOM)(1,4-NDC)2(H2O)2} n (2), utilizing both semi-rigid tetrapodal neutral linker, tetrakis(4-pyridyloxymethylene)methane (TPOM) and rigid ditopic anionic linker, 1,4-naphthalene dicarboxylic acid (H2(1,4-NDC)). On the basis of the single-crystal X-ray diffraction, 1 has a 3D structure with star-shaped pores arising from four-fold symmetry due to the presence of a paddle-wheel core [Zn2(O2CC12H6)4(C6H4N)2] as a subunit, whereas 2 consists of a zig-zag 3D framework with strong hydrogen bonding between the coordinated water molecules and coordinated carboxylate groups. Their thermogravimetric analysis indicates an extraordinary thermal stability: 1 up to 400 °C and 2 up to 350 °C. In addition to elemental microanalysis and spectroscopic characterization (UV-vis and infra-red spectroscopy), the bulk phase purity of 1 and 2 as well as hydrolytic stability of 1 are established by powder X-ray diffraction. Exploiting the luminescence nature of 1, both solvent-dependent fluorescence properties and sensing of various amines in aqueous medium are demonstrated. It exhibits good sensing ability toward 4-nitroaniline (4-NA) and 2,6-dichloro-4-nitroaniline (2,6-DCNA; a broad spectrum pesticide belonging to toxicity class III) with the lowest detection limit of 88 ppb and 0.28 ppm, respectively. The mechanism of action has been established through Stern-Volmer plots, time-resolved fluorescence studies, spectral overlap, and density functional theory calculations. The recyclability and stability of 1 after sensing experiments also reveal no change in its crystallinity. Furthermore, selectivity test and time-dependent detection for 4-NA have been successfully demonstrated. For practical applications, naked eye detection of 4-NA using test paper strips is also displayed.
Collapse
Affiliation(s)
- Gouri Chakraborty
- Department of Chemical Sciences , Indian Institute of Science Education and Research Mohali , Sector 81, Manauli PO , S.A.S. Nagar, Mohali , Punjab 140306 , India
| | - Prasenjit Das
- Department of Chemical Sciences , Indian Institute of Science Education and Research Mohali , Sector 81, Manauli PO , S.A.S. Nagar, Mohali , Punjab 140306 , India
| | - Sanjay K Mandal
- Department of Chemical Sciences , Indian Institute of Science Education and Research Mohali , Sector 81, Manauli PO , S.A.S. Nagar, Mohali , Punjab 140306 , India
| |
Collapse
|
10
|
Havlikova M, Cabala R, Pacakova V, Bursova M, Bosakova Z. Critical evaluation of microextraction pretreatment techniques - Part 1: Single drop and sorbent-based techniques. J Sep Sci 2018; 42:273-284. [DOI: 10.1002/jssc.201800902] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/02/2018] [Accepted: 10/02/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Martina Havlikova
- Faculty of Science; Department of Analytical Chemistry; Charles University; Prague 2 Czech Republic
| | - Radomir Cabala
- Faculty of Science; Department of Analytical Chemistry; Charles University; Prague 2 Czech Republic
- Toxicology Department; Institute of Forensic Medicine and Toxicology; General University Hospital in Prague and 1st Faculty of Medicine of Charles University; Prague 2 Czech Republic
| | - Vera Pacakova
- Faculty of Science; Department of Analytical Chemistry; Charles University; Prague 2 Czech Republic
| | - Miroslava Bursova
- Faculty of Science; Department of Analytical Chemistry; Charles University; Prague 2 Czech Republic
- Toxicology Department; Institute of Forensic Medicine and Toxicology; General University Hospital in Prague and 1st Faculty of Medicine of Charles University; Prague 2 Czech Republic
| | - Zuzana Bosakova
- Faculty of Science; Department of Analytical Chemistry; Charles University; Prague 2 Czech Republic
| |
Collapse
|
11
|
Mofazzeli F, Asaadi Shirvan H, Mohammadi F. Extraction and determination of tricyclic antidepressants in real samples using air‐dispersed liquid–liquid microextraction prior to gas chromatography and flame ionization detection. J Sep Sci 2018; 41:4340-4347. [DOI: 10.1002/jssc.201800359] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Farideh Mofazzeli
- Department of ChemistryQuchan BranchIslamic Azad University Quchan Iran
| | | | - Fatemeh Mohammadi
- Department of ChemistryQuchan BranchIslamic Azad University Quchan Iran
| |
Collapse
|
12
|
Gu Y, Wang Y, Zhang H. Study on the interactions between toxic nitroanilines and lysozyme by spectroscopic approaches and molecular modeling. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 202:260-268. [PMID: 29793147 DOI: 10.1016/j.saa.2018.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/06/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
Being exogenous environmental pollutants, nitroanilines (NAs) are highly toxic and have mutagenic and carcinogenic activity. Being lack of studies on interactions between NAs and lysozyme at molecular level, the binding interactions of lysozyme with o-nitroaniline (oNA), m-nitroaniline (mNA) and p-nitroaniline (pNA) were investigated by means of steady-state fluorescence, synchronous fluorescence, UV-vis absorption spectroscopy, as well as molecular modeling. The experimental results revealed that the fluorescence of lysozyme is quenched by oNA and mNA through a static quenching, while the fluorescence quenching triggered by pNA is a combined dynamic and static quenching. The number of binding sites (n) and the binding constant (Kb) corresponding thermodynamic parameters ΔH⊖, ΔS⊖, ΔG⊖ at different temperatures were calculated. The reactions between NAs and lysozyme were spontaneous and entropy driven and the binding of NAs to lysozyme induced conformation changes of lysozyme. The difference of the position of -NO2 group affected the binding and the binding constants Kb decreased in the following pattern: Kb (pNA) >Kb (mNA) >Kb (oNA). Molecular docking studies were performed to reveal the most favorable binding sites of NAs on lysozyme. Our recently results could offer mechanistic insights into the nature of the binding interactions between NAs and lysozyme and provide information about the toxicity risk of NAs to human health.
Collapse
Affiliation(s)
- Yunlan Gu
- College of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China.
| | - Yanqing Wang
- College of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China
| | - Hongmei Zhang
- College of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China
| |
Collapse
|
13
|
An insight into the determination of trace levels of benzodiazepines in biometric systems: Use of crab shell powder as an environmentally friendly biosorbent. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1092:58-64. [DOI: 10.1016/j.jchromb.2018.05.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 12/15/2022]
|
14
|
Laghrib F, Boumya W, Lahrich S, Farahi A, El Haimouti A, El Mhammedi M. Electrochemical evaluation of catalytic effect of silver in reducing 4-nitroaniline: Analytical application. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.11.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Jalilian N, Ebrahimzadeh H, Asgharinezhad AA. Dispersive micro-solid phase extraction of aromatic amines based on an efficient sorbent made from poly(1,8-diaminonaphtalen) and magnetic multiwalled carbon nanotubes composite. J Chromatogr A 2017; 1499:38-47. [DOI: 10.1016/j.chroma.2017.03.087] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 03/24/2017] [Accepted: 03/31/2017] [Indexed: 11/27/2022]
|
16
|
Gao ML, Cao XM, Zhang YY, Qi MH, Wang SM, Liu L, Han ZB. A bifunctional luminescent europium–organic framework for highly selective sensing of nitrobenzene and 4-aminophenol. RSC Adv 2017. [DOI: 10.1039/c7ra08885j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
A bifunctional luminescent Eu-MOF can be applied as a highly selective and sensitive bifunctional luminescence sensor to detect NB and 4-AP through an energy competition mechanism with low detection limits of 5–70 ppm and 5–110 ppm, respectively.
Collapse
Affiliation(s)
- Ming-Liang Gao
- College of Chemistry
- Liaoning University
- Shenyang 110036
- P. R. China
| | - Xiao-Man Cao
- College of Chemistry
- Liaoning University
- Shenyang 110036
- P. R. China
| | - Yu-Yang Zhang
- College of Chemistry
- Liaoning University
- Shenyang 110036
- P. R. China
| | - Mei-Hong Qi
- College of Chemistry
- Liaoning University
- Shenyang 110036
- P. R. China
| | - Shi-Ming Wang
- College of Light Industry
- Liaoning University
- Shenyang 110036
- People's Republic of China
| | - Lin Liu
- College of Chemistry
- Liaoning University
- Shenyang 110036
- P. R. China
| | - Zheng-Bo Han
- College of Chemistry
- Liaoning University
- Shenyang 110036
- P. R. China
| |
Collapse
|
17
|
Zaruba S, Vishnikin AB, Škrlíková J, Andruch V. Using an Optical Probe as the Microdrop Holder in Headspace Single Drop Microextraction: Determination of Sulfite in Food Samples. Anal Chem 2016; 88:10296-10300. [DOI: 10.1021/acs.analchem.6b03129] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Serhii Zaruba
- Department
of Analytical Chemistry, Faculty of Chemistry, Oles Honchar Dnipropetrovsk National University, UA-49010, Dnipro, Ukraine
| | - Andriy B. Vishnikin
- Department
of Analytical Chemistry, Faculty of Chemistry, Oles Honchar Dnipropetrovsk National University, UA-49010, Dnipro, Ukraine
| | - Jana Škrlíková
- Department
of Analytical Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, SK-04154 Košice, Slovak Republic
| | - Vasil Andruch
- Department
of Analytical Chemistry, Faculty of Science, Pavol Jozef Šafárik University in Košice, SK-04154 Košice, Slovak Republic
| |
Collapse
|
18
|
Zheng Q, Chen H. Development and Applications of Liquid Sample Desorption Electrospray Ionization Mass Spectrometry. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2016; 9:411-448. [PMID: 27145689 DOI: 10.1146/annurev-anchem-071015-041620] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Desorption electrospray ionization mass spectrometry (DESI-MS) is a recent advance in the field of analytical chemistry. This review surveys the development of liquid sample DESI-MS (LS-DESI-MS), a variant form of DESI-MS that focuses on fast analysis of liquid samples, and its novel analy-tical applications in bioanalysis, proteomics, and reaction kinetics. Due to the capability of directly ionizing liquid samples, liquid sample DESI (LS-DESI) has been successfully used to couple MS with various analytical techniques, such as microfluidics, microextraction, electrochemistry, and chromatography. This review also covers these hyphenated techniques. In addition, several closely related ionization methods, including transmission mode DESI, thermally assisted DESI, and continuous flow-extractive DESI, are briefly discussed. The capabilities of LS-DESI extend and/or complement the utilities of traditional DESI and electrospray ionization and will find extensive and valuable analytical application in the future.
Collapse
Affiliation(s)
- Qiuling Zheng
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, and Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701;
| | - Hao Chen
- Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, and Edison Biotechnology Institute, Ohio University, Athens, Ohio 45701;
| |
Collapse
|
19
|
Asgharinezhad AA, Ebrahimzadeh H. Supramolecular nanosolvent-based hollow fiber liquid phase microextraction as a novel method for simultaneous preconcentration of acidic, basic and amphiprotic pollutants. RSC Adv 2016. [DOI: 10.1039/c5ra23488c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, for the first time, coextraction of acidic, basic and amphiprotic pollutants was performed using supramolecular nano solvent-based hollow fiber liquid phase microextraction.
Collapse
|
20
|
Kazemi MS. Determination of tramadol hydrochloride in water samples by directly suspended droplet three-phase liquid phase microextraction with tetrathiocyanato cobalt(II) as the complexing agent using UV-spectroscopy. JOURNAL OF ANALYTICAL CHEMISTRY 2015. [DOI: 10.1134/s1061934815110064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Asgharinezhad AA, Ebrahimzadeh H. Coextraction of acidic, basic and amphiprotic pollutants using multiwalled carbon nanotubes/magnetite nanoparticles@polypyrrole composite. J Chromatogr A 2015; 1412:1-11. [PMID: 26278357 DOI: 10.1016/j.chroma.2015.07.087] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/13/2015] [Accepted: 07/22/2015] [Indexed: 01/09/2023]
Abstract
The simultaneous extraction of acidic, basic and amphiprotic pollutants from various samples is a considerable and disputable concept in sample preparation strategies. In this study, for the first time, coextraction of acidic, basic and amphiprotic pollutants (polar and apolar) with multiwalled carbon nanotubes/Fe3O4@polypyrrole (MWCNTs/Fe3O4@PPy) composite based dispersive micro-solid phase extraction followed by high performance liquid chromatography-photo diode array detection was introduced. Firstly, the extraction efficiency of various magnetic nanosorbents including Fe3O4, MWCNTs/Fe3O4, graphene oxide/Fe3O4 (GO/Fe3O4), Fe3O4@PPy, MWCNTs/Fe3O4@PPy and GO/Fe3O4@PPy were compared. The results revealed that MWCNTs/Fe3O4@PPy nanocomposite has higher extraction efficiency for five selected model analytes (4-nitrophenol, 3-nitroaniline, 2,4-dichloroaniline, 3,4-dichloroaniline and 1-amino-2-naphthol). Box-Behnken design methodology combined with desirability function approach was applied to find out the optimal experimental conditions. The opted conditions were: pH of the sample, 8.2; sorbent amount, 12 mg; sorption time, 5.5 min; salt concentration, 14% w/w; type and volume of the eluent, 120 μL acetonitrile; elution time; 2 min. Under the optimum conditions detection limits and linear dynamic ranges were achieved in the range of 0.1-0.25 μg L(-1) and 0.5-600 μg L(-1), respectively. The percent of extraction recovery and relative standard deviations (n=5) were in the range of 45.6-82.2 and 4.0-8.5, respectively. Ultimately, the applicability of this method was successfully confirmed by analyzing rain, snow and river water samples and satisfactory results were obtained.
Collapse
|
22
|
Jahan S, Xie H, Zhong R, Yan J, Xiao H, Fan L, Cao C. A highly efficient three-phase single drop microextraction technique for sample preconcentration. Analyst 2015; 140:3193-200. [DOI: 10.1039/c4an02324b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly efficient three-phase single drop microextraction method is presented by using an organic–aqueous compound droplet and a microdevice.
Collapse
Affiliation(s)
- Sharmin Jahan
- Laboratory of Analytical Biochemistry and Bio-separation
- State Key Laboratory of Microbial Metabolism
- School of Life Science and Biotechnology
- Shanghai Jiao Tong University
- Shanghai
| | - Haiyang Xie
- Laboratory of Analytical Biochemistry and Bio-separation
- State Key Laboratory of Microbial Metabolism
- School of Life Science and Biotechnology
- Shanghai Jiao Tong University
- Shanghai
| | - Ran Zhong
- Laboratory of Analytical Biochemistry and Bio-separation
- State Key Laboratory of Microbial Metabolism
- School of Life Science and Biotechnology
- Shanghai Jiao Tong University
- Shanghai
| | - Jian Yan
- Institute of Refrigeration and Cryogenics
- School of Mechanical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Hua Xiao
- Laboratory of Analytical Biochemistry and Bio-separation
- State Key Laboratory of Microbial Metabolism
- School of Life Science and Biotechnology
- Shanghai Jiao Tong University
- Shanghai
| | - Liuyin Fan
- Laboratory of Analytical Biochemistry and Bio-separation
- State Key Laboratory of Microbial Metabolism
- School of Life Science and Biotechnology
- Shanghai Jiao Tong University
- Shanghai
| | - Chengxi Cao
- Laboratory of Analytical Biochemistry and Bio-separation
- State Key Laboratory of Microbial Metabolism
- School of Life Science and Biotechnology
- Shanghai Jiao Tong University
- Shanghai
| |
Collapse
|
23
|
Wang H, Jiang H, Song N, Liu X, Jia Q. Application of cloud point methodology to the determination of nitroanilines in natural water. KOREAN J CHEM ENG 2014. [DOI: 10.1007/s11814-014-0182-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Ebrahimzadeh H, Mollazadeh N, Asgharinezhad AA, Shekari N, Mirbabaei F. Multivariate optimization of surfactant-assisted directly suspended droplet microextraction combined with GC for the preconcentration and determination of tramadol in biological samples. J Sep Sci 2013; 36:3783-90. [PMID: 24115535 DOI: 10.1002/jssc.201300810] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/01/2013] [Accepted: 09/10/2013] [Indexed: 02/04/2023]
Abstract
In this work, a novel procedure based on surfactant-assisted directly suspended droplet microextraction for the determination of tramadol prior to GC with flame ionization detection is proposed. In this technique, a free microdroplet of solvent is transferred to the surface of an immiscible aqueous sample containing Triton X-100 and tramadol while being agitated by a stirring bar placed on the bottom of the sample vial. After the predetermined time, the microdroplet of solvent is withdrawn by a syringe and analyzed. The effective parameters such as the type of organic solvent, extraction time, microdroplet volume, salt content of the donor phase, stirring speed, the source phase pH, concentration of Triton X-100, and extraction temperature were optimized. For this purpose, a multivariate strategy was applied based on an experimental design in order to screen and optimize the significant factors. This method requires minimal sample preparation, analysis time, solvent consumption, and represents significant advantages over customary analytical methods. The linearity ranged from 10 to 2000 μg/L with RSDs (n = 5) of 7.3-10. Preconcentration factors and the LODs were 391-466 and 2.5-6.5 μg/L, respectively. Finally, this method was applied to the analysis of biological samples and satisfactory results were obtained.
Collapse
|
25
|
Lin X, Ni Y, Kokot S. Voltammetric analysis with the use of a novel electro-polymerised graphene-nafion film modified glassy carbon electrode: simultaneous analysis of noxious nitroaniline isomers. JOURNAL OF HAZARDOUS MATERIALS 2012; 243:232-41. [PMID: 23142057 DOI: 10.1016/j.jhazmat.2012.10.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 08/23/2012] [Accepted: 10/14/2012] [Indexed: 05/13/2023]
Abstract
A new modified electrode was constructed by the electro-polymerization of 7-[(2,4-dihydroxy-5-carboxybenzene)azo]-8-hydroxyquinoline-5-sulfonic acid (DHCBAQS) at a graphene-nafion modified glassy carbon electrode (GCE). The construction process was performed stepwise and at each step the electrochemical characteristics were investigated particularly with respect to the oxidation of the three noxious analytes, 2-nitroaniline (2-NA), 3-nitroaniline (3-NA), 4-nitroaniline (4-NA); the electrode treated with the fluorescence reagent DHCBAQS performed best. At this electrode, the differential pulse voltammetry peak currents of the three isomers increased linearly with their concentrations in the range of 0.05-0.60 μg mL(-1), respectively, and their corresponding limits of detection (LODs) were all about 0.022 μg mL(-1). Furthermore, satisfactory results were obtained when this electrode was applied for the simultaneous quantitative analysis of the nitroaniline isomer mixtures by Principal component regression (PCR) and Partial least squares (PLS) as calibration methods (relative prediction error (PRE(T)) - 9.04% and 9.23%) and average recoveries (101.0% and 101.7%), respectively. The above novel poly-DHCBAQS/graphene-nafion/GCE was successfully employed for the simultaneous analysis of the three noxious nitroaniline isomers in water and sewage samples.
Collapse
Affiliation(s)
- Xiaoyun Lin
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | | | | |
Collapse
|
26
|
Cobzac SC, Gocan S. CHROMATOGRAPHY: RECENT PROGRESS. J LIQ CHROMATOGR R T 2012. [DOI: 10.1080/10826076.2011.647193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Liu D, Min S. Rapid analysis of organochlorine and pyrethroid pesticides in tea samples by directly suspended droplet microextraction using a gas chromatography-electron capture detector. J Chromatogr A 2012; 1235:166-73. [PMID: 22440664 DOI: 10.1016/j.chroma.2012.02.070] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 02/24/2012] [Accepted: 02/28/2012] [Indexed: 11/16/2022]
Abstract
A simple and efficient directly suspended droplet microextraction (DSDME) has been developed to extract and pre-concentrate organochlorine and pyrethrin pesticides from tea samples prior to analysis by a gas chromatography-electron capture detector (GC-ECD). The optimal experimental conditions of DSDME were: 100 μL isooctane exposed for 15 min to 5 mL of the tea aqueous sample stirred at 1100 rpm. For most of the target analytes, the optimal pretreatment of DSDME processes led to no significant interference of tea matrices. The approach was applied to the determination of organochlorine and pyrethroid pesticides in tea samples, with a linearity range of 0.0005-2 μg/mL. The relative recoveries of all the pesticides ranged between 80.0% and 120.8% with relative standard deviations (RSDs) in the range of 0.8-19.9% (n=5). The limits of detections (LODs) ranged between 0.04 and 1 μg/L for all the target pesticides.
Collapse
Affiliation(s)
- Dan Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | | |
Collapse
|
28
|
Jain A, Verma KK. Recent advances in applications of single-drop microextraction: A review. Anal Chim Acta 2011; 706:37-65. [DOI: 10.1016/j.aca.2011.08.022] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 08/11/2011] [Accepted: 08/15/2011] [Indexed: 10/17/2022]
|
29
|
Cobzac SC, Gocan S. SAMPLE PREPARATION FOR HIGH PERFORMANCE LIQUID CHROMATOGRAPHY: RECENT PROGRESS. J LIQ CHROMATOGR R T 2011. [DOI: 10.1080/10826076.2011.588064] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Simona Codruta Cobzac
- a Department of Analytical Chemistry, Faculty of Chemistry and Chemical Engineering , Babes-Bolyai University , Cluj Napoca, Romania
| | - Simion Gocan
- a Department of Analytical Chemistry, Faculty of Chemistry and Chemical Engineering , Babes-Bolyai University , Cluj Napoca, Romania
| |
Collapse
|
30
|
Mahugo-Santana C, Sosa-Ferrera Z, Torres-Padrón ME, Santana-Rodríguez JJ. Application of new approaches to liquid-phase microextraction for the determination of emerging pollutants. Trends Analyt Chem 2011. [DOI: 10.1016/j.trac.2011.01.011] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Krylov VA, Krylov AV, Mosyagin PV, Matkivskaya YO. Liquid-phase microextraction preconcentration of impurities. JOURNAL OF ANALYTICAL CHEMISTRY 2011. [DOI: 10.1134/s1061934811040101] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Abstract
Bioanalysis usually requires a preparation procedure for sample cleanup or preconcentration. Conventional sample preparation techniques are often time consuming and labor intensive. Among recent progress in sample preparation, single drop microextraction (SDME) is one of the most efficient techniques providing both sample cleanup and preconcentration capabilities. In SDME, analytes are extracted from a sample solution into an acceptor drop and the drop is introduced to subsequent analysis. Since the volume of the acceptor drop is 1–10 µl or less, the consumption of solvents can be minimized and the preconcentration effect is enhanced. In this review, the basic principles of two-phase and three-phase SDME are described briefly and then recently developed modes of SDME, coupling with analytical instruments, and methods to enhance the drop stability are discussed. Recent applications of SDME to biological samples, including urine, blood and saliva, for the analysis of drugs, metal ions and biomarkers are reviewed.
Collapse
|
33
|
Gao W, Chen G, Chen T, Zhang X, Chen Y, Hu Z. Directly suspended droplet microextraction combined with single drop back-extraction as a new approach for sample preparation compatible with capillary electrophoresis. Talanta 2011; 83:1673-9. [DOI: 10.1016/j.talanta.2010.11.066] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/21/2010] [Accepted: 11/23/2010] [Indexed: 11/28/2022]
|
34
|
Xiao P, Bao C, Jia Q, Su R, Zhou W, Jia J. Determination of nitroanilines in hair dye using polymer monolith microextraction coupled with HPLC. J Sep Sci 2011; 34:675-80. [DOI: 10.1002/jssc.201000807] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 11/28/2010] [Accepted: 12/29/2010] [Indexed: 11/09/2022]
|
35
|
Ahmadi S. Application of GA-MLR method in QSPR modeling of stability constants of diverse 15-crown-5 complexes with sodium cation. J INCL PHENOM MACRO 2010. [DOI: 10.1007/s10847-010-9881-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Tong C, Guo Y, Liu W. Simultaneous determination of five nitroaniline and dinitroaniline isomers in wastewaters by solid-phase extraction and high-performance liquid chromatography with ultraviolet detection. CHEMOSPHERE 2010; 81:430-435. [PMID: 20663537 DOI: 10.1016/j.chemosphere.2010.06.066] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 06/28/2010] [Accepted: 06/29/2010] [Indexed: 05/29/2023]
Abstract
A high-performance liquid chromatography (HPLC)-ultraviolet detection method, combined with solid-phase extraction (SPE), was developed for the determination of five nitroaniline and dinitroaniline isomers including 2-nitroaniline, 3-nitroaniline, 4-nitroaniline, 2,4-dinitroaniline and 2,6-dinitroaniline in wastewater samples. Extraction of the five isomers was carried out with a hydrophile-lipophile balance cartridge, the Oasis HLB. The cartridge was washed by a mixed aqueous solution containing 10% (v/v) acetonitrile and 10% (v/v) ethyl acetate before the five isomers were eluted by a mixture of methanol and acetic acid. Separation of the five isomers was achieved by using an Agilent TC-C(18) column at 30°C, and using a mixture of acetonitrile/water 30/70 (v/v) as mobile phase under an isocratic condition at a flow rate of 1.0 mL/min. The analytes were detected by a UV detector at a wavelength of 225 nm. Recoveries of the five isomers in the spiked sewage sample were between 84.6% and 94.0% with a relative standard deviation of less than 4.7%. The limits of quantification (LOQ) determined in a spiked sewage sample of 500 mL were 2.0 x 10(-9)M for 2-nitroaniline, 3-nitroaniline and 2,6-dinitroaniline, and 4.5 x 10(-9)M for 4-nitroaniline and 2,4-dinitroaniline. The proposed method was applied to determine the five isomers in real samples of acidic wastewater and printing and dyeing wastewater.
Collapse
Affiliation(s)
- Changlun Tong
- MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| | | | | |
Collapse
|
37
|
Jeannot MA, Przyjazny A, Kokosa JM. Single drop microextraction--development, applications and future trends. J Chromatogr A 2009; 1217:2326-36. [PMID: 19932482 DOI: 10.1016/j.chroma.2009.10.089] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 10/28/2009] [Accepted: 10/29/2009] [Indexed: 11/29/2022]
Abstract
Single drop microextraction (SDME) has emerged over the last 10-15 years as one of the simplest and most easily implemented forms of micro-scale sample cleanup and preconcentration. In the most common arrangement, an ordinary chromatography syringe is used to suspend microliter quantities of extracting solvent either directly immersed in the sample, or in the headspace above the sample. The same syringe is then used to introduce the solvent and extracted analytes into the chromatography system for identification and/or quantitation. This review article summarizes the historical development and various modes of the technique, some theoretical and practical aspects, recent trends and selected applications.
Collapse
Affiliation(s)
- Michael A Jeannot
- Department of Chemistry, St. Cloud State University, 366 Wick Science Building, 720 4th Ave. S., St. Cloud, MN 56301-4498, USA.
| | | | | |
Collapse
|