1
|
Liu Y, He N, Lu Y, Li W, He X, Li Z, Chen Z. A benzenesulfonic acid-modified organic polymer monolithic column with reversed-phase/hydrophilic bifunctional selectivity for capillary electrochromatography. J Pharm Anal 2023; 13:209-215. [PMID: 36908858 PMCID: PMC9999294 DOI: 10.1016/j.jpha.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 01/24/2023] Open
Abstract
Here, a styrene-based polymer monolithic column poly(VBS-co-TAT-co-AHM) with reversed-phase/hydrophilic interaction liquid chromatography (RPLC/HILIC) bifunctional separation mode was successfully prepared for capillary electrochromatography by the in situ polymerization of sodium p-styrene sulfonate (VBS) with cross-linkers 3-(acryloyloxy)-2-hydroxypropyl methacrylate (AHM) and 1,3,5-triacryloylhexahydro-1,3,5-triazine (TAT). The preparation conditions of the monolith were optimized. The morphology and formation of the poly(VBS-co-TAT-co-AHM) monolith were confirmed by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). The separation performances of the monolith were evaluated systematically. It should be noted that the incorporation of VBS functional monomer can provide π-π interactions, hydrophilic interactions, and ion-exchange interactions. Hence, the prepared poly(VBS-co-TAT-co-AHM) monolith can achieve efficient separation of thiourea compounds, benzene series, phenol compounds, aniline compounds and sulfonamides in RPLC or HILIC separation mode. The largest theoretical plate number for N,N'-dimethylthiourea reached 1.7 × 105 plates/m. In addition, the poly(VBS-co-TAT-co-AHM) monolithic column showed excellent reproducibility and stability. This novel monolithic column has great application value and potential in capillary electrochromatography (CEC).
Collapse
Affiliation(s)
- Yikun Liu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan, 430071, China
| | - Ning He
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan, 430071, China
| | - Yingfang Lu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, China
| | - Weiqiang Li
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, China
| | - Xin He
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhentao Li
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan, 430071, China
| | - Zilin Chen
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan, 430071, China
| |
Collapse
|
2
|
Liang Y, Zhang L, Zhang Y. Chromatographic separation of peptides and proteins for characterization of proteomes. Chem Commun (Camb) 2023; 59:270-281. [PMID: 36504223 DOI: 10.1039/d2cc05568f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Characterization of proteomes aims to comprehensively characterize proteins in cells or tissues via two main strategies: (1) bottom-up strategy based on the separation and identification of enzymatic peptides; (2) top-down strategy based on the separation and identification of intact proteins. However, it is challenged by the high complexity of proteomes. Consequently, the improvements in peptide and protein separation technologies for simplifying the sample should be critical. In this feature article, separation columns for peptide and protein separation were introduced, and peptide separation technologies for bottom-up proteomic analysis as well as protein separation technologies for top-down proteomic analysis were summarized. The achievement, recent development, limitation and future trends are discussed. Besides, the outlook on challenges and future directions of chromatographic separation in the field of proteomics was also presented.
Collapse
Affiliation(s)
- Yu Liang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Lihua Zhang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Yukui Zhang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
3
|
Wang C, Liang Y, Zhao B, Liang Z, Zhang L, Zhang Y. Ethane-Bridged Hybrid Monolithic Column with Large Mesopores for Boosting Top-Down Proteomic Analysis. Anal Chem 2022; 94:6172-6179. [PMID: 35412811 DOI: 10.1021/acs.analchem.1c05234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Top-down proteomics is challenged by the high complexity of biological samples. The coelution of intact proteins results in overlapped mass spectra, and hence, an increased peak capacity for protein separation is needed. Herein, ethane-bridged hybrid monoliths with well-defined large mesopores were successfully prepared based on the sol-gel condensation of 1,2-bis(trimethoxysilyl)ethane and tetramethoxysilane, followed by two-step base etching of the Si-O-Si domain while maintaining the Si-C-C-Si domain in the structure. Relatively homogeneous macropores of 1.1 μm and large mesopores of 24 nm were obtained, permitting fast mass transfer of large molecules and efficient diffusion without obstruction. The use of less hydrophobic C1 ligand further sharpened the peak shape and improved peak capacity. A 120 cm-long capillary column was used for top-down proteomic analysis of E. coli lysates under low backpressure with 16 MPa. High peak capacity of 646 was achieved within 240 min gradient. With MS/MS analysis, 959 proteoforms corresponding to 263 proteins could be unambiguously identified from E. coli lysates in a single run. Furthermore, to illustrate the separation performance for large proteoforms, such monoliths were applied to top-down analysis of the SEC fraction of E. coli lysates with Mw ranging from 30 to 70 kDa. With highly effective separation, 347 large proteoforms with Mw higher than 30 kDa were detected in the single 75 min run. These results showed great potential for top-down proteomic analysis in complex samples.
Collapse
Affiliation(s)
- Chao Wang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Liang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Baofeng Zhao
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhen Liang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Lihua Zhang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yukui Zhang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
4
|
Liang Y, Zhang L, Zhang Y. Well-Defined Materials for High-Performance Chromatographic Separation. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:451-473. [PMID: 30939031 DOI: 10.1146/annurev-anchem-061318-114854] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Chromatographic separation has been widely applied in various fields, such as chemical engineering, precision medicine, energy, and biology. Because chromatographic separation is based on differential partitioning between the mobile phase and stationary phase and affected by band dispersion and mass transfer resistance from these two phases, the materials used as the stationary phase play a decisive role in separation performance. In this review, we discuss the design of separation materials to achieve the separation with high efficiency and high resolution and highlight the well-defined materials with uniform pore structure and unique properties. The achievements, recent developments, challenges, and future trends of such materials are discussed. Furthermore, the surface functionalization of separation ma-terials for further improvement of separation performance is reviewed. Finally, future research directions and the challenges of chromatographic separation are presented.
Collapse
Affiliation(s)
- Yu Liang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
| | - Lihua Zhang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
| | - Yukui Zhang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;
| |
Collapse
|
5
|
Bults P, Spanov B, Olaleye O, van de Merbel NC, Bischoff R. Intact protein bioanalysis by liquid chromatography – High-resolution mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1110-1111:155-167. [DOI: 10.1016/j.jchromb.2019.01.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/20/2019] [Accepted: 01/31/2019] [Indexed: 02/07/2023]
|
6
|
Žuvela P, Skoczylas M, Jay Liu J, Ba Czek T, Kaliszan R, Wong MW, Buszewski B, Héberger K. Column Characterization and Selection Systems in Reversed-Phase High-Performance Liquid Chromatography. Chem Rev 2019; 119:3674-3729. [PMID: 30604951 DOI: 10.1021/acs.chemrev.8b00246] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reversed-phase high-performance liquid chromatography (RP-HPLC) is the most popular chromatographic mode, accounting for more than 90% of all separations. HPLC itself owes its immense popularity to it being relatively simple and inexpensive, with the equipment being reliable and easy to operate. Due to extensive automation, it can be run virtually unattended with multiple samples at various separation conditions, even by relatively low-skilled personnel. Currently, there are >600 RP-HPLC columns available to end users for purchase, some of which exhibit very large differences in selectivity and production quality. Often, two similar RP-HPLC columns are not equally suitable for the requisite separation, and to date, there is no universal RP-HPLC column covering a variety of analytes. This forces analytical laboratories to keep a multitude of diverse columns. Therefore, column selection is a crucial segment of RP-HPLC method development, especially since sample complexity is constantly increasing. Rationally choosing an appropriate column is complicated. In addition to the differences in the primary intermolecular interactions with analytes of the dispersive (London) type, individual columns can also exhibit a unique character owing to specific polar, hydrogen bond, and electron pair donor-acceptor interactions. They can also vary depending on the type of packing, amount and type of residual silanols, "end-capping", bonding density of ligands, and pore size, among others. Consequently, the chromatographic performance of RP-HPLC systems is often considerably altered depending on the selected column. Although a wide spectrum of knowledge is available on this important subject, there is still a lack of a comprehensive review for an objective comparison and/or selection of chromatographic columns. We aim for this review to be a comprehensive, authoritative, critical, and easily readable monograph of the most relevant publications regarding column selection and characterization in RP-HPLC covering the past four decades. Future perspectives, which involve the integration of state-of-the-art molecular simulations (molecular dynamics or Monte Carlo) with minimal experiments, aimed at nearly "experiment-free" column selection methodology, are proposed.
Collapse
Affiliation(s)
- Petar Žuvela
- Department of Chemistry , National University of Singapore , Singapore 117543 , Singapore
| | - Magdalena Skoczylas
- Department of Environmental Chemistry and Bioanalytics, Center for Modern Interdisciplinary Technologies , Nicolaus Copernicus University , Wileńska 4 , 87-100 Toruń , Poland
| | - J Jay Liu
- Department of Chemical Engineering , Pukyong National University , 365 Sinseon-ro , Nam-gu, 48-513 Busan , Korea
| | | | | | - Ming Wah Wong
- Department of Chemistry , National University of Singapore , Singapore 117543 , Singapore
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Center for Modern Interdisciplinary Technologies , Nicolaus Copernicus University , Wileńska 4 , 87-100 Toruń , Poland
| | | |
Collapse
|
7
|
Mao Z, Hu C, Li Z, Chen Z. A reversed-phase/hydrophilic bifunctional interaction mixed-mode monolithic column with biphenyl and quaternary ammonium stationary phases for capillary electrochromatography. Analyst 2019; 144:4386-4394. [DOI: 10.1039/c9an00428a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel RPLC/HILIC mixed-mode monolithic column with biphenyl and quaternary ammonium stationary phases is synthesized for capillary electrochromatography.
Collapse
Affiliation(s)
- Zhenkun Mao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery
- Ministry of Education
- and Wuhan University School of Pharmaceutical Sciences
- Wuhan 430071
- China
| | - Changjun Hu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery
- Ministry of Education
- and Wuhan University School of Pharmaceutical Sciences
- Wuhan 430071
- China
| | - Zhentao Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery
- Ministry of Education
- and Wuhan University School of Pharmaceutical Sciences
- Wuhan 430071
- China
| | - Zilin Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery
- Ministry of Education
- and Wuhan University School of Pharmaceutical Sciences
- Wuhan 430071
- China
| |
Collapse
|
8
|
Lynch KB, Ren J, Beckner MA, He C, Liu S. Monolith columns for liquid chromatographic separations of intact proteins: A review of recent advances and applications. Anal Chim Acta 2018; 1046:48-68. [PMID: 30482303 DOI: 10.1016/j.aca.2018.09.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 01/20/2023]
Abstract
In this article we survey 256 references (with an emphasis on the papers published in the past decade) on monolithic columns for intact protein separation. Protein enrichment and purification are included in the broadly defined separation. After a brief introduction, we describe the types of monolithic columns and modes of chromatographic separations employed for protein separations. While the majority of the work is still in the research and development phase, papers have been published toward utilizing monolithic columns for practical applications. We survey these papers as well in this review. Characteristics of selected methods along with their pros and cons will also be discussed.
Collapse
Affiliation(s)
- Kyle B Lynch
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, United States
| | - Jiangtao Ren
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, United States
| | - Matthew A Beckner
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, United States
| | - Chiyang He
- School of Chemistry and Chemical Engineering, Wuhan Textile University, 1 Textile Road, Wuhan, 430073, PR China
| | - Shaorong Liu
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, United States.
| |
Collapse
|
9
|
Andjelković U, Tufegdžić S, Popović M. Use of monolithic supports for high-throughput protein and peptide separation in proteomics. Electrophoresis 2017; 38:2851-2869. [DOI: 10.1002/elps.201700260] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/02/2017] [Accepted: 09/03/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Uroš Andjelković
- Department of Chemistry-Institute of Chemistry; Technology and Metallurgy; University of Belgrade; Belgrade Serbia
- Department of Biotechnology; University of Rijeka; Rijeka Croatia
| | - Srdjan Tufegdžić
- Department of Chemistry-Institute of Chemistry; Technology and Metallurgy; University of Belgrade; Belgrade Serbia
| | - Milica Popović
- Faculty of Chemistry; University of Belgrade; Belgrade Serbia
| |
Collapse
|
10
|
Eeltink S, Wouters S, Dores-Sousa JL, Svec F. Advances in organic polymer-based monolithic column technology for high-resolution liquid chromatography-mass spectrometry profiling of antibodies, intact proteins, oligonucleotides, and peptides. J Chromatogr A 2017; 1498:8-21. [PMID: 28069168 DOI: 10.1016/j.chroma.2017.01.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/22/2016] [Accepted: 01/02/2017] [Indexed: 11/27/2022]
Abstract
This review focuses on the preparation of organic polymer-based monolithic stationary phases and their application in the separation of biomolecules, including antibodies, intact proteins and protein isoforms, oligonucleotides, and protein digests. Column and material properties, and the optimization of the macropore structure towards kinetic performance are also discussed. State-of-the-art liquid chromatography-mass spectrometry biomolecule separations are reviewed and practical aspects such as ion-pairing agent selection and carryover are presented. Finally, advances in comprehensive two-dimensional LC separations using monolithic columns, in particular ion-exchange×reversed-phase and reversed-phase×reversed-phase LC separations conducted at high and low pH, are shown.
Collapse
Affiliation(s)
- Sebastiaan Eeltink
- Vrije Universiteit Brussel, Department of Chemical Engineering, Pleinlaan 2, B-1050 Brussels, Belgium.
| | - Sam Wouters
- Vrije Universiteit Brussel, Department of Chemical Engineering, Pleinlaan 2, B-1050 Brussels, Belgium
| | - José Luís Dores-Sousa
- Vrije Universiteit Brussel, Department of Chemical Engineering, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Frantisek Svec
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
11
|
Zell M, Husser C, Staack RF, Jordan G, Richter WF, Schadt S, Pähler A. In Vivo Biotransformation of the Fusion Protein Tetranectin-Apolipoprotein A1 Analyzed by Ligand-Binding Mass Spectrometry Combined with Quantitation by ELISA. Anal Chem 2016; 88:11670-11677. [DOI: 10.1021/acs.analchem.6b03252] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Manfred Zell
- Roche
Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Christophe Husser
- Roche
Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Roland F. Staack
- Roche
Pharma Research and Early Development, Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Gregor Jordan
- Roche
Pharma Research and Early Development, Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg, Germany
| | - Wolfgang F. Richter
- Roche
Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Simone Schadt
- Roche
Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Axel Pähler
- Roche
Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|
12
|
Astefanei A, Dapic I, Camenzuli M. Different Stationary Phase Selectivities and Morphologies for Intact Protein Separations. Chromatographia 2016; 80:665-687. [PMID: 28529348 PMCID: PMC5413533 DOI: 10.1007/s10337-016-3168-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/17/2016] [Accepted: 09/06/2016] [Indexed: 12/18/2022]
Abstract
The central dogma of biology proposed that one gene encodes for one protein. We now know that this does not reflect reality. The human body has approximately 20,000 protein-encoding genes; each of these genes can encode more than one protein. Proteins expressed from a single gene can vary in terms of their post-translational modifications, which often regulate their function within the body. Understanding the proteins within our bodies is a key step in understanding the cause, and perhaps the solution, to disease. This is one of the application areas of proteomics, which is defined as the study of all proteins expressed within an organism at a given point in time. The human proteome is incredibly complex. The complexity of biological samples requires a combination of technologies to achieve high resolution and high sensitivity analysis. Despite the significant advances in mass spectrometry, separation techniques are still essential in this field. Liquid chromatography is an indispensable tool by which low-abundant proteins in complex samples can be enriched and separated. However, advances in chromatography are not as readily adapted in proteomics compared to advances in mass spectrometry. Biologists in this field still favour reversed-phase chromatography with fully porous particles. The purpose of this review is to highlight alternative selectivities and stationary phase morphologies that show potential for application in top-down proteomics; the study of intact proteins.
Collapse
Affiliation(s)
- A. Astefanei
- Centre for Analytical Science in Amsterdam (CASA), Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - I. Dapic
- Centre for Analytical Science in Amsterdam (CASA), Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - M. Camenzuli
- Centre for Analytical Science in Amsterdam (CASA), Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
13
|
Yao W, Fan Z, Zhang S. Poly(N-vinylcarbazole-co-divinylbenzene) monolith microextraction coupled to liquid chromatography–high resolution Orbitrap mass spectrometry to analyse benzodiazepines in beer and urine. J Chromatogr A 2016; 1465:55-62. [DOI: 10.1016/j.chroma.2016.08.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/26/2016] [Accepted: 08/29/2016] [Indexed: 11/30/2022]
|
14
|
Low-Temperature Mobile Phase for Peptide Trapping at Elevated Separation Temperature Prior to Nano RP-HPLC-MS/MS. SEPARATIONS 2016. [DOI: 10.3390/chromatography3010006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
15
|
Fekete S, Veuthey JL, Guillarme D. Comparison of the most recent chromatographic approaches applied for fast and high resolution separations: Theory and practice. J Chromatogr A 2015; 1408:1-14. [DOI: 10.1016/j.chroma.2015.07.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/30/2015] [Accepted: 07/03/2015] [Indexed: 10/23/2022]
|
16
|
Fekete S, Beck A, Veuthey JL, Guillarme D. Ion-exchange chromatography for the characterization of biopharmaceuticals. J Pharm Biomed Anal 2015; 113:43-55. [PMID: 25800161 DOI: 10.1016/j.jpba.2015.02.037] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/18/2015] [Accepted: 02/19/2015] [Indexed: 12/28/2022]
Abstract
Ion-exchange chromatography (IEX) is a historical technique widely used for the detailed characterization of therapeutic proteins and can be considered as a reference and powerful technique for the qualitative and quantitative evaluation of charge heterogeneity. The goal of this review is to provide an overview of theoretical and practical aspects of modern IEX applied for the characterization of therapeutic proteins including monoclonal antibodies (Mabs) and antibody drug conjugates (ADCs). The section on method development describes how to select a suitable stationary phase chemistry and dimensions, the mobile phase conditions (pH, nature and concentration of salt), as well as the temperature and flow rate, considering proteins isoelectric point (pI). In addition, both salt-gradient and pH-gradient approaches were critically reviewed and benefits as well as limitations of these two strategies were provided. Finally, several applications, mostly from pharmaceutical industries, illustrate the potential of IEX for the characterization of charge variants of various types of biopharmaceutical products.
Collapse
Affiliation(s)
- Szabolcs Fekete
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Boulevard d'Yvoy 20, 1211 Geneva 4, Switzerland.
| | - Alain Beck
- Center of Immunology Pierre Fabre, 5 Avenue Napoléon III, BP 60497, 74160 Saint-Julien-en-Genevois, France(1)
| | - Jean-Luc Veuthey
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Boulevard d'Yvoy 20, 1211 Geneva 4, Switzerland
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Boulevard d'Yvoy 20, 1211 Geneva 4, Switzerland
| |
Collapse
|
17
|
Mitulović G. New HPLC Techniques for Proteomics Analysis: A Short Overview of Latest Developments. J LIQ CHROMATOGR R T 2014. [DOI: 10.1080/10826076.2014.941266] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Goran Mitulović
- a Clinical Institute of Laboratory Medicine and Proteomics Core Facility , Medical University of Vienna , Wien , Austria
| |
Collapse
|
18
|
Separation of intact proteins by using polyhedral oligomeric silsesquioxane based hybrid monolithic capillary columns. J Chromatogr A 2013; 1317:138-47. [DOI: 10.1016/j.chroma.2013.09.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 09/02/2013] [Accepted: 09/02/2013] [Indexed: 12/22/2022]
|
19
|
Comments on the Implementation of a Simple Peak Capacity Optimization Procedure and Comparison of Poly(styrene–divinylbenzene) and RP-18 Silica Monolithic Capillary Columns of 5-cm for the Analysis of Protein Digests. Chromatographia 2013. [DOI: 10.1007/s10337-013-2550-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Rogeberg M, Vehus T, Grutle L, Greibrokk T, Wilson SR, Lundanes E. Separation optimization of long porous-layer open-tubular columns for nano-LC-MS of limited proteomic samples. J Sep Sci 2013; 36:2838-47. [DOI: 10.1002/jssc.201300499] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 05/31/2013] [Accepted: 05/31/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Magnus Rogeberg
- Department of Chemistry; University of Oslo; Blindern Oslo Norway
| | - Tore Vehus
- Department of Chemistry; University of Oslo; Blindern Oslo Norway
| | - Lene Grutle
- Department of Chemistry; University of Oslo; Blindern Oslo Norway
| | - Tyge Greibrokk
- Department of Chemistry; University of Oslo; Blindern Oslo Norway
| | | | - Elsa Lundanes
- Department of Chemistry; University of Oslo; Blindern Oslo Norway
| |
Collapse
|
21
|
Liu K, Aggarwal P, Lawson JS, Tolley HD, Lee ML. Organic monoliths for high-performance reversed-phase liquid chromatography. J Sep Sci 2013; 36:2767-81. [DOI: 10.1002/jssc.201300431] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 05/31/2013] [Accepted: 05/31/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Kun Liu
- Department of Chemistry and Biochemistry; Brigham Young University; Provo UT USA
| | - Pankaj Aggarwal
- Department of Chemistry and Biochemistry; Brigham Young University; Provo UT USA
| | - John S. Lawson
- Department of Statistics; Brigham Young University; Provo UT USA
| | - H. Dennis Tolley
- Department of Statistics; Brigham Young University; Provo UT USA
| | - Milton L. Lee
- Department of Chemistry and Biochemistry; Brigham Young University; Provo UT USA
| |
Collapse
|
22
|
Fekete S, Veuthey JL, Eeltink S, Guillarme D. Comparative study of recent wide-pore materials of different stationary phase morphology, applied for the reversed-phase analysis of recombinant monoclonal antibodies. Anal Bioanal Chem 2013; 405:3137-51. [DOI: 10.1007/s00216-013-6759-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 01/11/2013] [Accepted: 01/16/2013] [Indexed: 10/27/2022]
|
23
|
Rigobello-Masini M, Penteado JCP, Masini JC. Monolithic columns in plant proteomics and metabolomics. Anal Bioanal Chem 2012; 405:2107-22. [DOI: 10.1007/s00216-012-6574-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 11/02/2012] [Accepted: 11/13/2012] [Indexed: 12/16/2022]
|
24
|
Affiliation(s)
- Gert Desmet
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels,
Belgium
| | - Sebastiaan Eeltink
- Department of Chemical Engineering, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels,
Belgium
| |
Collapse
|
25
|
Fekete S, Rudaz S, Fekete J, Guillarme D. Analysis of recombinant monoclonal antibodies by RPLC: Toward a generic method development approach. J Pharm Biomed Anal 2012; 70:158-68. [DOI: 10.1016/j.jpba.2012.06.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 05/29/2012] [Accepted: 06/15/2012] [Indexed: 01/06/2023]
|
26
|
High-resolution separations of tryptic digest mixtures using core–shell particulate columns operated at 1200bar. J Chromatogr A 2012; 1264:57-62. [DOI: 10.1016/j.chroma.2012.09.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 09/17/2012] [Accepted: 09/19/2012] [Indexed: 11/17/2022]
|
27
|
Arrua RD, Talebi M, Causon TJ, Hilder EF. Review of recent advances in the preparation of organic polymer monoliths for liquid chromatography of large molecules. Anal Chim Acta 2012; 738:1-12. [DOI: 10.1016/j.aca.2012.05.052] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 05/23/2012] [Accepted: 05/28/2012] [Indexed: 12/17/2022]
|
28
|
Fekete S, Veuthey JL, Guillarme D. New trends in reversed-phase liquid chromatographic separations of therapeutic peptides and proteins: theory and applications. J Pharm Biomed Anal 2012; 69:9-27. [PMID: 22475515 DOI: 10.1016/j.jpba.2012.03.024] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 03/12/2012] [Accepted: 03/13/2012] [Indexed: 12/22/2022]
Abstract
In the pharmaceutical field, there is considerable interest in the use of peptides and proteins for therapeutic purposes. There are various ways to characterize such complex samples, but during the last few years, a significant number of technological developments have been brought to the field of RPLC and RPLC-MS. Thus, the present review focuses first on the basics of RPLC for peptides and proteins, including the inherent problems, some possible solutions and some directions for developing a new RPLC method that is dedicated to biomolecules. Then the latest advances in RPLC, such as wide-pore core-shell particles, fully porous sub-2 μm particles, organic monoliths, porous layer open tubular columns and elevated temperature, are described and critically discussed in terms of both kinetic efficiency and selectivity. Numerous applications with real samples are presented that confirm the relevance of these different strategies. Finally, one of the key advantages of RPLC for peptides and proteins over other historical approaches is its inherent compatibility with MS using both MALDI and ESI sources.
Collapse
Affiliation(s)
- Szabolcs Fekete
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Bd d'Yvoy 20, 1211 Geneva 4, Switzerland.
| | | | | |
Collapse
|
29
|
Arrua RD, Causon TJ, Hilder EF. Recent developments and future possibilities for polymer monoliths in separation science. Analyst 2012; 137:5179-89. [DOI: 10.1039/c2an35804b] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Roth MJ, Plymire DA, Chang AN, Kim J, Maresh EM, Larson SE, Patrie SM. Sensitive and Reproducible Intact Mass Analysis of Complex Protein Mixtures with Superficially Porous Capillary Reversed-Phase Liquid Chromatography Mass Spectrometry. Anal Chem 2011; 83:9586-92. [DOI: 10.1021/ac202339x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Michael J. Roth
- UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9185, United States
| | - Daniel A. Plymire
- UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9185, United States
| | - Audrey N. Chang
- UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9185, United States
| | - Jaekuk Kim
- UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9185, United States
| | - Erica M. Maresh
- UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9185, United States
| | - Shane E. Larson
- UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9185, United States
| | - Steven M. Patrie
- UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9185, United States
| |
Collapse
|
31
|
High-resolution separations of protein isoforms with liquid chromatography time-of-flight mass spectrometry using polymer monolithic capillary columns. J Chromatogr A 2011; 1218:5504-11. [DOI: 10.1016/j.chroma.2011.06.049] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 05/16/2011] [Accepted: 06/10/2011] [Indexed: 11/22/2022]
|
32
|
Rozenbrand J, van Bennekom WP. Silica-based and organic monolithic capillary columns for LC: recent trends in proteomics. J Sep Sci 2011; 34:1934-44. [PMID: 21710526 DOI: 10.1002/jssc.201100294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/03/2011] [Accepted: 05/03/2011] [Indexed: 11/10/2022]
Abstract
The use of monolithic liquid chromatography (LC) columns for proteomics, covering the scientific literature from 2004 to the beginning of 2011, is reviewed. Attention is paid to recent developments in column technology and materials, focusing on silica-based and organic (polystyrene and methacrylate) monolithic capillary columns for proteomics. The applicability of these columns is illustrated by examples of the analysis of (complex) protein digests and proteins conveniently summarized in tables. Furthermore, characteristics of column materials are compared and future trends and prospects are presented.
Collapse
Affiliation(s)
- Johan Rozenbrand
- Biomolecular Analysis, Faculty of Science, Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| | | |
Collapse
|
33
|
Capriotti AL, Cavaliere C, Foglia P, Samperi R, Laganà A. Intact protein separation by chromatographic and/or electrophoretic techniques for top-down proteomics. J Chromatogr A 2011; 1218:8760-76. [PMID: 21689823 DOI: 10.1016/j.chroma.2011.05.094] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 04/13/2011] [Accepted: 05/28/2011] [Indexed: 12/26/2022]
Abstract
Mass spectrometry used in combination with a wide variety of separation methods is the principal methodology for proteomics. In bottom-up approach, proteins are cleaved with a specific proteolytic enzyme, followed by peptide separation and MS identification. In top-down approach intact proteins are introduced into the mass spectrometer. The ions generated by electrospray ionization are then subjected to gas-phase separation, fragmentation, fragment separation, and automated interpretation of mass spectrometric and chromatographic data yielding both the molecular weight of the intact protein and the protein fragmentation pattern. This approach requires high accuracy mass measurement analysers capable of separating the multi-charged isotopic cluster of proteins, such as hybrid ion trap-Fourier transform instruments (LTQ-FTICR, LTQ-Orbitrap). Front-end separation technologies tailored for proteins are of primary importance to implement top-down proteomics. This review intends to provide the state of art of protein chromatographic and electrophoretic separation methods suitable for MS coupling, and to illustrate both monodimensional and multidimensional approaches used for LC-MS top-down proteomics. In addition, some recent progresses in protein chromatography that may provide an alternative to those currently employed are also discussed.
Collapse
Affiliation(s)
- Anna Laura Capriotti
- Department of Chemistry, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | | | | | | | | |
Collapse
|
34
|
Intact protein analysis in the biopharmaceutical field. J Pharm Biomed Anal 2011; 55:810-22. [DOI: 10.1016/j.jpba.2011.01.031] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 01/18/2011] [Accepted: 01/21/2011] [Indexed: 01/09/2023]
|
35
|
Causon TJ, Broeckhoven K, Hilder EF, Shellie RA, Desmet G, Eeltink S. Kinetic performance optimisation for liquid chromatography: Principles and practice. J Sep Sci 2011; 34:877-87. [DOI: 10.1002/jssc.201000904] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 01/11/2011] [Accepted: 01/12/2011] [Indexed: 11/06/2022]
|