1
|
Sang M, Pan N, Wu J, Chen X, Cai S, Fang H, Xiao M, Jiang X, Liu Z. Reversed-Phase Medium-Pressure Liquid Chromatography Purification of Omega-3 Fatty Acid Ethyl Esters Using AQ-C18. Mar Drugs 2024; 22:285. [PMID: 38921596 PMCID: PMC11205217 DOI: 10.3390/md22060285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Omega-3 fatty acids are in high demand due to their efficacy in treating hypertriglyceridemia and preventing cardiovascular diseases. However, the growth of the industry is hampered by low purity and insufficient productivity. This study aims to develop an efficient RP-MPLC purification method for omega-3 fatty acid ethyl esters with high purity and capacity. The results indicate that the AQ-C18 featuring polar end-capped silanol groups outperformed C18 and others in retention time and impurity separation. By injecting pure fish oil esters with a volume equivalent to a 1.25% bed volume on an AQ-C18 MPLC column using a binary isocratic methanol-water (90:10, v:v) mobile phase at 30 mL/min, optimal omega-3 fatty acid ethyl esters were obtained, with the notable purity of 90.34% and a recovery rate of 74.30%. The total content of EPA and DHA produced increased from 67.91% to 85.27%, meeting the acceptance criteria of no less than 84% set by the 2020 edition of the Pharmacopoeia of the People's Republic of China. In contrast, RP-MPLC significantly enhanced the production efficiency per unit output compared to RP-HPLC. This study demonstrates a pioneering approach to producing omega-3 fatty acid ethyl esters with high purity and of greater quantity using AQ-C18 RP-MPLC, showing this method's significant potential for use in industrial-scale manufacturing.
Collapse
Affiliation(s)
- Mingxin Sang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; (M.S.); (M.X.)
- Fisheries Research Institute of Fujian, Xiamen 361013, China; (X.C.); (S.C.); (H.F.)
| | - Nan Pan
- Fisheries Research Institute of Fujian, Xiamen 361013, China; (X.C.); (S.C.); (H.F.)
| | - Jingna Wu
- Xiamen Key Laboratory of Marine Medicinal Natural Products Resources, Fujian Universities and Colleges Engineering Research Center of Marine Biopharmaceutical Resources, Xiamen Medical College, Xiamen 361023, China;
| | - Xiaoting Chen
- Fisheries Research Institute of Fujian, Xiamen 361013, China; (X.C.); (S.C.); (H.F.)
| | - Shuilin Cai
- Fisheries Research Institute of Fujian, Xiamen 361013, China; (X.C.); (S.C.); (H.F.)
| | - Huan Fang
- Fisheries Research Institute of Fujian, Xiamen 361013, China; (X.C.); (S.C.); (H.F.)
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Meitian Xiao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; (M.S.); (M.X.)
| | - Xiaoming Jiang
- Quanzhou Institute of Marine Bioresources Industry, Quanzhou 362000, China;
| | - Zhiyu Liu
- Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian Province, National Research and Development Center for Marine Fish Processing (Xiamen), Xiamen 361013, China
| |
Collapse
|
2
|
Tryon-Tasson N, Ryoo D, Eor P, Anderson JL. Silver-mediated separations: A comprehensive review on advancements of argentation chromatography, facilitated transport membranes, and solid-phase extraction techniques and their applications. J Chromatogr A 2023; 1705:464133. [PMID: 37329654 DOI: 10.1016/j.chroma.2023.464133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/19/2023]
Abstract
The use of silver(I) ions in chemical separations, also known as argentation separations, is a powerful approach for the selective separation and analysis of many natural and synthetic organic compounds. In this review, a comprehensive discussion of the most common argentation separation techniques, including argentation-liquid chromatography (Ag-LC), argentation-gas chromatography (Ag-GC), argentation-facilitated transport membranes (Ag-FTMs), and argentation-solid phase extraction (Ag-SPE) is provided. For each of these techniques, notable advancements, optimized separations, and innovative applications are discussed. The review begins with an explanation of the fundamental chemistry underlying argentation separations, mainly the reversible π-complexation between silver(I) ions and carbon-carbon double bonds. Within Ag-LC, the use of silver(I) ions in thin-layer chromatography, high-performance liquid chromatography, as well as preparative LC are explored. This discussion focuses on how silver(I) ions are employed in the stationary and mobile phase to separate unsaturated compounds. For Ag-GC and Ag-FTMs, different silver compounds and supporting media are discussed, often with relation to olefin-paraffin separations. Ag-SPE has been widely employed for the selective extraction of unsaturated compounds from complex matrices in sample preparation. This comprehensive review of Ag-LC, Ag-GC, Ag-FTMs, and Ag-SPE techniques emphasizes the immense potential of argentation separations in separations science and serves as a valuable resource for researchers seeking to learn, optimize, and utilize argentation separations.
Collapse
Affiliation(s)
- Nicholas Tryon-Tasson
- Ames National Laboratory-USDOE, Ames, IA 50011, USA; Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| | - Donghyun Ryoo
- Ames National Laboratory-USDOE, Ames, IA 50011, USA; Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| | - Philip Eor
- Ames National Laboratory-USDOE, Ames, IA 50011, USA; Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| | - Jared L Anderson
- Ames National Laboratory-USDOE, Ames, IA 50011, USA; Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
| |
Collapse
|
3
|
Rohman A, Irnawati, Windarsih A, Riswanto FDO, Indrayanto G, Fadzillah NA, Riyanto S, Bakar NKA. Application of Chromatographic and Spectroscopic-Based Methods for Analysis of Omega-3 (ω-3 FAs) and Omega-6 (ω-6 FAs) Fatty Acids in Marine Natural Products. Molecules 2023; 28:5524. [PMID: 37513396 PMCID: PMC10383577 DOI: 10.3390/molecules28145524] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Omega-3 fatty acids v(ω-3 FAs) such as EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid) and omega-6 fatty acids (ω-6 FAs) such as linoleic acid and arachidonic acid are important fatty acids responsible for positive effects on human health. The main sources of ω-3 FAs and ω-6 FAs are marine-based products, especially fish oils. Some food, supplements, and pharmaceutical products would include fish oils as a source of ω-3 FAs and ω-6 FAs; therefore, the quality assurance of these products is highly required. Some analytical methods mainly based on spectroscopic and chromatographic techniques have been reported. Molecular spectroscopy such as Infrared and Raman parallel to chemometrics has been successfully applied for quantitative analysis of individual and total ω-3 FAs and ω-6 FAs. This spectroscopic technique is typically applied as the alternative method to official methods applying chromatographic methods. Due to the capability to provide the separation of ω-3 FAs and ω-6 FAs from other components in the products, gas and liquid chromatography along with sophisticated detectors such as mass spectrometers are ideal analytical methods offering sensitive and specific results that are suitable for routine quality control.
Collapse
Affiliation(s)
- Abdul Rohman
- Halal Center, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Irnawati
- Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Study Program of Pharmacy, Faculty of Pharmacy, Halu Oleo University, Kendari 93232, Indonesia
| | - Anjar Windarsih
- Research Center for Food Technology and Processing (PRTPP), National Research and Innovation Agency (BRIN), Yogyakarta 55861, Indonesia
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | | | | | - Nurrulhidayah A Fadzillah
- International Institute for Halal Research and Training, International Islamic University Malaysia, Kuala Lumpur 53100, Malaysia
| | - Sugeng Riyanto
- Study Program of Pharmacy, Faculty of Health Sciences and Pharmacy, Universitas Gunadarma, Jakarta 16451, Indonesia
| | - Nor Kartini Abu Bakar
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
4
|
Yi M, You Y, Zhang Y, Wu G, Karrar E, Zhang L, Zhang H, Jin Q, Wang X. Highly Valuable Fish Oil: Formation Process, Enrichment, Subsequent Utilization, and Storage of Eicosapentaenoic Acid Ethyl Esters. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020672. [PMID: 36677730 PMCID: PMC9865908 DOI: 10.3390/molecules28020672] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/26/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023]
Abstract
In recent years, as the demand for precision nutrition is continuously increasing, scientific studies have shown that high-purity eicosapentaenoic acid ethyl ester (EPA-EE) functions more efficiently than mixed omega-3 polyunsaturated fatty acid preparations in diseases such as hyperlipidemia, heart disease, major depression, and heart disease; therefore, the market demand for EPA-EE is growing by the day. In this paper, we attempt to review EPA-EE from a whole-manufacturing-chain perspective. First, the extraction, refining, and ethanolysis processes (fish oil and ethanol undergo transesterification) of EPA-EE are described, emphasizing the potential of green substitute technologies. Then, the method of EPA enrichment is thoroughly detailed, the pros and cons of different methods are compared, and current developments in monomer production techniques are addressed. Finally, a summary of current advanced strategies for dealing with the low oxidative stability and low bioavailability of EPA-EE is presented. In conclusion, understanding the entire production process of EPA-EE will enable us to govern each step from a macro perspective and accomplish the best use of EPA-EE in a more cost-effective and environmentally friendly way.
Collapse
Affiliation(s)
- Mengyuan Yi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yue You
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yiren Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Gangcheng Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
- Correspondence: (G.W.); (L.Z.); Tel.: +86-510-85876799 (G.W.); +86-510-85351730 (L.Z.)
| | - Emad Karrar
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Le Zhang
- Wuxi Children’s Hospital, Children’s Hospital Affiliated to Jiangnan University, Wuxi 214023, China
- Correspondence: (G.W.); (L.Z.); Tel.: +86-510-85876799 (G.W.); +86-510-85351730 (L.Z.)
| | - Hui Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Qingzhe Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Xingguo Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, International Joint Research Laboratory for Lipid Nutrition and Safety, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
5
|
Ahrari F, Yousefi M, Habibi Z, Mohammadi M. Application of undecanedicarboxylic acid to prepare cross-linked enzymes (CLEs) of Rhizomucor miehei lipase (RML); Selective enrichment of polyunsaturated fatty acids. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Otero P, Carpena M, Fraga-Corral M, Garcia-Oliveira P, Soria-Lopez A, Barba F, Xiao JB, Simal-Gandara J, Prieto M. Aquaculture and agriculture-by products as sustainable sources of omega-3 fatty acids in the food industry. EFOOD 2022. [DOI: 10.53365/efood.k/144603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The valorization of by-products is currently a matter of great concern to improve the sustainability of the food industry. High quality by-products derived from the food chain are omega-3 fatty acids, being fish the main source of docosahexaenoic acid and eicosapentaenoic acid. The search for economic and sustainable sources following the standards of circular economy had led to search for strategies that put in value new resources to obtain different omega-3 fatty acids, which could be further employed in the development of new industrial products without producing more wastes and economic losses. In this sense, seeds and vegetables, fruits and crustaceans by products can be an alternative. This review encompasses all these aspects on omega-3 fatty acids profile from marine and agri-food by-products together with their extraction and purification technologies are reported. These comprise conventional techniques like extraction with solvents, cold press, and wet pressing and, more recently proposed ones like, supercritical fluids fractionation and purification by chromatographic methods. The information collected indicates a trend to combine different conventional and emerging technologies to improve product yields and purity. This paper also addresses encapsulation strategies for their integration in novel foods to achieve maximum consumer acceptance and to ensure their effectiveness.
Collapse
|
7
|
Encinas Estrada GS, Castillo Calderón A. Kinetic study of a commercial lipase for hydrolysis of semi-refined oil of anchovy (Engraulis ringens) [Estudio cinético de una lipasa comercial para la hidrólisis de aceite semirrefinado de anchoa (Engraulis ringens)]. JOURNAL OF NANOTECHNOLOGY 2021. [DOI: 10.32829/nanoj.v5i1.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipases due to their ecological nature and catalytic versatility, are ideal for their application in the fish oil hydrolysis industry due to their selective property, which allows the preservation of polyunsaturated fatty acids (PUFAs) in the lipid structure. The objective of this research was to determine the activity and kinetic parameters of a commercial AY AMANO "30SD" lipase, as well as the temperature and time values to achieve an optimal degree of hydrolysis in semi-refined anchovy oil. The experiments were carried out in a jacketed minireactor with a working volume of 400 mL (oil-water-enzyme) with temperature control and pH 7.00, enzyme concentration 350 U/mL and stirring 160 rpm. A 3x3 factorial design and the response surface methodology were used. The results obtained from the study of the enzyme were: activity = 37 384.55 ± 395.07 U/g and kinetic parameters: Km = 7.98 g/L and Vmax. = 0.038887 g/Lxmin. Correspondingly, the following optimal parameters were obtained: Degree of hydrolysis 4.01%, temperature 46.86 °C and hydrolysis time 90 minutes, with a confidence level of 95% (p <0.05). Conclusions: The study allowed us to kinetically characterize the commercial lipase and determine the optimum degree of hydrolysis of the semi-refined anchovy oil.
Collapse
|
8
|
Mattarozzi M, Riboni N, Maffini M, Scarpella S, Bianchi F, Careri M. Reversed-phase and weak anion-exchange mixed-mode stationary phase for fast separation of medium-, long- and very long chain free fatty acids by ultra-high-performance liquid chromatography-high resolution mass spectrometry. J Chromatogr A 2021; 1648:462209. [PMID: 34000595 DOI: 10.1016/j.chroma.2021.462209] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/21/2021] [Accepted: 04/25/2021] [Indexed: 12/16/2022]
Abstract
Two commercial stationary phases allowing both reversed phase mechanism and anion-exchange with different selectivity, i.e. CSH C18 and Atlantis PREMIER BEH C18 AX, were tested for the separation of a complex mixture of 21 fatty acids (FAs) encompassing saturated medium-, long- and very long chain FAs, unsaturated long and very long chain FAs, cis/trans isomers, and isomers of odd- and branched-chain FAs. For this purpose, the role of surface area of stationary phase and the effect of pH of the mobile phase on the retention of the analytes were investigated. Separation was performed by ultra-high-performance liquid chromatography coupled with high resolution mass spectrometry (UHPLC-HRMS). BEH C18 AX was shown to be more versatile and to offer superior retention of these analytes to CSH C18 owing to a higher surface area and anion-exchange capacity up to pH 8.5. The UHPLC system allows shortening analysis time, the chromatographic analysis being accomplished in about 5 min, affording a high throughput of samples without the need for derivatization or ion-pairing reagents compared to techniques based upon gas chromatography approaches or LC. Finally, the application of the BEH C18 AX column using UHPLC-HRMS was demonstrated for the separation and unambiguous identification of FAs of nutritional interest in a dietary supplement sample.
Collapse
Affiliation(s)
- Monica Mattarozzi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, Parma 43124, Italy
| | - Nicolò Riboni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, Parma 43124, Italy
| | - Monica Maffini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, Parma 43124, Italy
| | - Simona Scarpella
- Waters SPA, Viale T. Edison 110, 20099 Sesto San Giovanni, Milan, Italy
| | - Federica Bianchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, Parma 43124, Italy
| | - Maria Careri
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, Parma 43124, Italy.
| |
Collapse
|
9
|
Liao S, Dillon JT, Huang C, Santos E, Huang Y. Silver (I)-dimercaptotriazine functionalized silica: A highly selective liquid chromatography stationary phase targeting unsaturated molecules. J Chromatogr A 2021; 1645:462122. [PMID: 33853010 DOI: 10.1016/j.chroma.2021.462122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 11/26/2022]
Abstract
Silver(I)-mercaptopropyl (Ag-MP) functionalized silica gel has demonstrated its effectiveness in separating various unsaturated organic compounds including unsaturated fatty acid ethyl esters (FAEEs), triglycerols (TAGs) and long-chain alkyl ketones (alkenones). While Ag-MP stationary phase displays many advantages over the conventional silver ion-impregnated silica gel (e.g., stability, high recovery, etc.), potential drawbacks of Ag-MP include relatively low retentions for unsaturated molecules, which could limit chromatographic resolutions under certain circumstances. In this study, we evaluate a new silver-thiolate stationary phase: silver(I)-dimercaptotriazine (Ag-DMT) functionalized silica gel targeting the separation of unsaturated compounds. We show Ag-DMT affords substantially higher retention factors, peak resolutions and capacities for TAGs and FAEEs than Ag-MP does. Ag-DMT also yields higher purity eicosapentaenoic acid (EPA) from fish oil FAEE mixtures than Ag-MP. In addition, Ag-DMT resolves double bond positional and cis/trans-isomers of C18:1 fatty acid methyl esters (FAMEs) as well as unsaturated methyl/ethyl alkenones with different number of double bonds. Based on van't Hoff plots, enthalpy changes during the adsorption of unsaturated FAEEs onto Ag-DMT are ~2 times higher than those on Ag-MP. Such difference may be attributed to the stronger electron-withdrawing effect of the thiol group on DMT, which results in more positively charged silver ions hence greater interactions with unsaturated molecules. The stronger interaction between double bonds and Ag-DMT is further corroborated by density-functional theory (DFT) calculations. Ag-DMT shows its high stability for repeated uses in the separation of TAGs over 319 runs, with peak resolutions decreasing by < 3%. Collectively, our data demonstrate the exceptionally high efficiency of Ag-DMT column for separating unsaturated molecules.
Collapse
Affiliation(s)
- Sian Liao
- Department of Chemistry, Brown University, 324 Brook Street, Providence, Rhode Island 02912, USA
| | - James T Dillon
- Department of Chemistry, Brown University, 324 Brook Street, Providence, Rhode Island 02912, USA
| | - Cancan Huang
- Department of Chemistry, Brown University, 324 Brook Street, Providence, Rhode Island 02912, USA
| | - Ewerton Santos
- Department of Earth, Environmental and Planetary Sciences, Brown University, 324 Brook Street, Providence, Rhode Island 02912, USA
| | - Yongsong Huang
- Department of Earth, Environmental and Planetary Sciences, Brown University, 324 Brook Street, Providence, Rhode Island 02912, USA.
| |
Collapse
|
10
|
Wei B, Wang S. Separation of eicosapentaenoic acid and docosahexaenoic acid by three-zone simulated moving bed chromatography. J Chromatogr A 2020; 1625:461326. [PMID: 32709355 DOI: 10.1016/j.chroma.2020.461326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/25/2022]
Abstract
Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are essential fatty acids for human body, which are widely used in the field of healthy food and medicine. Meanwhile, there are some differences in their physiological functions, such as "scavenger for blood vessel" of EPA and "brain protector" of DHA. In order to make full use of EPA and DHA, it is necessary to prepare their high-purity component. In this paper, EPA and DHA were separated and purified by three-zone simulated moving bed (SMB) chromatography with C18 used as stationary phase and ethanol-water as mobile phase. For the single column experiment, a separation unit of SMB, the effects of the ratio of ethanol to water, pH value and temperature on the separation were investigated. The equilibrium dispersion (ED) model was used to obtain the adsorption parameters of EPA and DHA by inverse method and genetic algorithm, and the accuracy of the adsorption parameters was verified by fitting the overloaded elution curves under different conditions. Based on the acquired nonlinear adsorption isotherms the complete separation region was found according to triangle theory. The effects of sample concentration, flow ratios of adsorption zone and rectification zone, and column distribution mode of SMB on the separation were investigated. Under the optimized SMB conditions, the experimental result was that without regard to the other components, the chromatographic purity and recovery values of EPA and DHA exceeded 99% with the productivity of 4.15 g/L/h, and the solvent consumption of 1.11 L/g.
Collapse
Affiliation(s)
- Bofeng Wei
- School of Chemical Engineering, University of Science & Technology Liaoning, Anshan 114051, China
| | - Shaoyan Wang
- School of Chemical Engineering, University of Science & Technology Liaoning, Anshan 114051, China.
| |
Collapse
|
11
|
Gupta J, Gupta R. Nutraceutical Status and Scientific Strategies for Enhancing Production of Omega-3 Fatty Acids from Microalgae and their Role in Healthcare. Curr Pharm Biotechnol 2020; 21:1616-1631. [PMID: 32619166 DOI: 10.2174/1389201021666200703201014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/28/2020] [Accepted: 06/16/2020] [Indexed: 11/22/2022]
Abstract
Adherence to Omega-3 fatty acids (O3FAs) as Nutraceuticals for medicinal applications provides health improvement. The prevention and treatment of diseases with O3FAs hold promise in clinical therapy and significantly reduces the risk of chronic disorders. Polyunsaturated fatty acids (PUFA) O3FAs have beneficial effects in the treatment of cardiovascular disorders, diabetic disease, foetal development, Alzheimer's disease, retinal problem, growth and brain development of infants and antitumor effects. Association to current analysis promotes the application of algal biomass for production of O3FAs, mode of action, fate, weight management, immune functions, pharmaceutical and therapeutic applications serving potent sources in healthcare management. A search of the literature was conducted in the databases of WHO website, Sci.org, PubMed, academics and Google. The authors performed search strategies and current scenario of O3FAs in health associated disorders. Promising outcomes and future strategies towards O3FAs may play a pivotal role in Nutraceutical industries in the cure of human health in the future.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura-281406, Uttar Pradesh, India
| | - Reena Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura-281406, Uttar Pradesh, India
| |
Collapse
|
12
|
Synthesis and application of novel silver magnetic amino silicone adhesive particles for preparation of high purity α-linolenic acid from tree peony seed oil under applied magnetic field. J Chromatogr A 2020; 1610:460540. [DOI: 10.1016/j.chroma.2019.460540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/13/2019] [Accepted: 09/13/2019] [Indexed: 11/19/2022]
|
13
|
An efficient approach to eliminate steryl ethers and miscellaneous esters/ketones for gas chromatographic analysis of alkenones and alkenoates. J Chromatogr A 2019; 1596:175-182. [DOI: 10.1016/j.chroma.2019.02.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 11/19/2022]
|
14
|
Li H, Yang Z, Cao X, Han T, Pei H. Separation of high‐purity eicosapentaenoic acid and docosahexaenoic acid from fish oil by pH‐zone‐refining countercurrent chromatography. J Sep Sci 2019; 42:2569-2577. [DOI: 10.1002/jssc.201900378] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/11/2019] [Accepted: 05/20/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Haoze Li
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology & Business University (BTBU) Beijing P. R. China
| | - Zhen Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology & Business University (BTBU) Beijing P. R. China
| | - Xueli Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology & Business University (BTBU) Beijing P. R. China
| | - Tian Han
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology & Business University (BTBU) Beijing P. R. China
| | - Hairun Pei
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology & Business University (BTBU) Beijing P. R. China
| |
Collapse
|
15
|
Lu X, Zhu J, Qian X, Ji J. Separation of methyl linolenate and its analogues by functional mixture of imidazolium based ionic liquid-organic solvent-cuprous salt. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2018.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Separation and Enrichment of Omega 3, 6, and 9 Fatty Acids from the By-Products of Vietnamese Basa Fish Processing using Deep Eutectic Solvent. J CHEM-NY 2018. [DOI: 10.1155/2018/6276832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Omega 3, 6, and 9 fatty acids were separated and enriched successfully from the by-products of Vietnamese Basa fish processing by the deep eutectic solvent. The total amounts of omega fatty acids were about 57% in the raw material, and they were amounted to 91% after the first separation by DES. The optimal mass ratio is 20 g methyl ester with 200 g methanol and 15–20 g DES. Moreover, the ionic liquid-DES was successfully synthesized with the molar ratio of choline chloride/urea of 1 : 1 and 2 : 1. The characteristics of DES were determined and demonstrated by FTIR, TGA, DSC, 1H-NMR, and 13C-NMR analysis methods.
Collapse
|
17
|
Zheng Z, Dai Z, Cao Y. Isolation, Purification of DPAn-3 from the Seal Oil Ethyl Ester. EUR J LIPID SCI TECH 2018. [DOI: 10.1002/ejlt.201800225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhenxiao Zheng
- Institute of Seafood; Zhejiang Gongshang University; Hangzhou 310012 China
| | - Zhiyuan Dai
- Institute of Seafood; Zhejiang Gongshang University; Hangzhou 310012 China
- State Key Laboratory of Aquatic Products Processing of Zhejiang Province; Hangzhou 310012 China
| | - Yalun Cao
- Institute of Seafood; Zhejiang Gongshang University; Hangzhou 310012 China
| |
Collapse
|
18
|
Menta S, Ciogli A, Villani C, Gasparrini F, Pierini M. Recognition mechanism of aromatic derivatives resolved by argentation chromatography: The driving role played by substituent groups. Anal Chim Acta 2018; 1019:135-141. [DOI: 10.1016/j.aca.2018.02.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 11/28/2022]
|
19
|
Identification of optimum fatty acid extraction methods for two different microalgae Phaeodactylum tricornutum and Haematococcus pluvialis for food and biodiesel applications. Anal Bioanal Chem 2017; 409:4659-4667. [PMID: 28593370 DOI: 10.1007/s00216-017-0412-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/25/2017] [Accepted: 05/12/2017] [Indexed: 10/19/2022]
Abstract
Microalgae have the potential to synthesize and accumulate lipids which contain high value fatty acids intended for nutrition and biodiesel applications. Nevertheless, lipid extraction methods for microalgae cells are not well established and there is not a standard analytical methodology to extract fatty acids from lipid-producing microalgae. In this paper, current lipid extraction procedures employing organic solvents (chloroform/methanol, 2:1 and 1:2, v/v), sodium hypochlorite solution (NaClO), acid-catalysed hot-water extraction and the saponification process [2.5 M KOH/methanol (1:4, v/v)] have been evaluated with two species of microalgae with different types of cell walls. One is a marine diatom, Phaeodactylum tricornutum, and the other a freshwater green microalga, Haematococcus pluvialis. Lipids from all types of extracts were estimated gravimetrically and their fatty acids were quantified by a HPLC equipped with Q-TOF mass spectrometer. Results indicated significant differences both in lipids yield and fatty acids composition. The chloroform and methanol mixture was the most effective extraction solvent for the unsaturated fatty acids such as DPA (C22:05), DHA, (C22:06), EPA (C20:05) and ARA (C20:04). While acid treatments improved the saturated fatty acids (SFAs) yield, especially the short chain SFA, lauric acid (C12:0), whose amount was 64% higher in P. tricornutum and 156% higher in H. pluvialis compared to organic solvent extractions. Graphical abstract ᅟ.
Collapse
|
20
|
González-Fernández MJ, Ramos-Bueno RP, Rodríguez-García I, Guil-Guerrero JL. Purification process for MUFA- and PUFA-based monoacylglycerols from edible oils. Biochimie 2017; 139:107-114. [PMID: 28595901 DOI: 10.1016/j.biochi.2017.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/02/2017] [Indexed: 01/15/2023]
Abstract
Important health benefits have been attributed to monoacylglycerols (MAGs) due to their various physiological functions, owing to which they become candidates for use as functional foods in order to prevent the onset of certain diseases such as colon cancer. In this work, six edible oils, namely: olive, linseed, sunflower, evening primrose, DHASCO® and ARASCO® have been processed to obtain different MUFA- and PUFA- based MAGs. First, the oils were hydrolyzed by means of an enzymatic process using porcine pancreatic lipase and then the reaction products were fractionated by using a liquid chromatography column containing silica gel as stationary phase in order to purify the MAGs-enriched fraction. A second chromatography process was performed using silver nitrate coated silica gel as stationary phase, in order to obtain the different MUFA- and PUFA-based MAGs from the corresponding oils. Overall, MAGs based on oleic, linoleic, α-linolenic, γ-linolenic, arachidonic and docosahexaenoic acids have been isolated in high yields and purities (92.6, 97.4, 95.3, 90.9, 100 and 95.3% purity, respectively). Positional distribution was determined by means of 1H NMR, which revealed a mix of 1(3) and 2-MAGs in variable proportions in the different MAGs.
Collapse
Affiliation(s)
- M J González-Fernández
- Food Technology Division, Agrifood Campus of International Excellence, ceiA3, University of Almería, E-040120, Almería, Spain
| | - R P Ramos-Bueno
- Food Technology Division, Agrifood Campus of International Excellence, ceiA3, University of Almería, E-040120, Almería, Spain
| | - I Rodríguez-García
- Organic Chemistry Division, Agrifood Campus of International Excellence, ceiA3, University of Almería, E-040120, Almería, Spain
| | - J L Guil-Guerrero
- Food Technology Division, Agrifood Campus of International Excellence, ceiA3, University of Almería, E-040120, Almería, Spain.
| |
Collapse
|
21
|
Garba L, Shukuri Mo M, Nurbaya Os S, Noor Zalih R. Review on Fatty Acid Desaturases and their Roles in Temperature Acclimatisation. ACTA ACUST UNITED AC 2017. [DOI: 10.3923/jas.2017.282.295] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
22
|
Chen Q, Liu D, Wu C, Xu A, Xia W, Wang Z, Wen F, Yu D. Influence of a facile pretreatment process on lipid extraction from Nannochloropsis sp. through an enzymatic hydrolysis reaction. RSC Adv 2017. [DOI: 10.1039/c7ra11483d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A wall-breaking technology for algal cell composed of swelling by weak alkali and decomposition by enzyme was developed.
Collapse
Affiliation(s)
- Qingtai Chen
- State Key Laboratory of Heavy Oil Processing
- College of Chemical Engineering
- China University of Petroleum
- Qingdao
- China
| | - Dong Liu
- State Key Laboratory of Heavy Oil Processing
- College of Chemical Engineering
- China University of Petroleum
- Qingdao
- China
| | - Chongchong Wu
- Department of Chemical and Petroleum Engineering
- University of Calgary
- Calgary
- Canada
| | - Airong Xu
- School of Chemical Engineering and Pharmaceutics
- Henan University of Science and Technology
- Luoyang
- China
| | - Wei Xia
- State Key Laboratory of Heavy Oil Processing
- College of Chemical Engineering
- China University of Petroleum
- Qingdao
- China
| | - Zhaowen Wang
- Dongying Environmental Protection Bureau
- Dongying
- China
| | - Fushan Wen
- College of Science
- China University of Petroleum
- Qingdao
- China
| | - Daoyong Yu
- State Key Laboratory of Heavy Oil Processing
- College of Chemical Engineering
- China University of Petroleum
- Qingdao
- China
| |
Collapse
|
23
|
Yurchenko S, Sats A, Poikalainen V, Karus A. Method for determination of fatty acids in bovine colostrum using GC-FID. Food Chem 2016; 212:117-22. [DOI: 10.1016/j.foodchem.2016.05.103] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 04/28/2016] [Accepted: 05/16/2016] [Indexed: 11/17/2022]
|
24
|
Morales-Medina R, De León G, Munio M, Guadix A, Guadix E. Mass transfer modeling of sardine oil polyunsaturated fatty acid (PUFA) concentration by low temperature crystallization. J FOOD ENG 2016. [DOI: 10.1016/j.jfoodeng.2016.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Application of Silver Ion High-Performance Liquid Chromatography for Quantitative Analysis of Selected n-3 and n-6 PUFA in Oil Supplements. Lipids 2016; 51:413-21. [DOI: 10.1007/s11745-016-4133-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/16/2016] [Indexed: 11/25/2022]
|
26
|
|
27
|
Dillon JT, Longo WM, Zhang Y, Torozo R, Huang Y. Identification of double-bond positions in isomeric alkenones from a lacustrine haptophyte. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:112-118. [PMID: 26661977 DOI: 10.1002/rcm.7414] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 10/02/2015] [Accepted: 10/03/2015] [Indexed: 06/05/2023]
Abstract
RATIONALE Measurements of alkenone unsaturation ratios are widely used for paleotemperature reconstructions in ocean and lake environments. Previously, we reported the discovery of a series of tri-unsaturated alkenone positional isomers (Δ(14, 21, 28) ) from oligosaline and freshwater lakes in Greenland and Alaska. In this work we provide a detailed analysis of the structures and isotopic compositions (δ(13) C and δ(2) H) of the alkenones produced by the "Greenland haptophyte". METHODS Alkenones were extracted from sediments of Lake BrayaSø, Greenland. Alkenone double-bond positions were determined by GC/EI-MS analysis of alkenone dimethyl disulfide and cyclobutylimine derivatives. Alkenones were purified by semi-preparative HPLC using a silver(I) thiolate stationary phase. Carbon and hydrogen isotope analysis was performed by gas chromatography/isotope ratio mass spectrometry (GC/IRMS). RESULTS A series of novel tri-unsaturated alkenone positional isomers were identified among four alkenone homologues (i.e. C37 Me , C38 Me , C38 Et , and C39 Et ) with double-bond positions at Δ(14, 21, 28) . The hydrogen isotope compositions (δ(2) H, VSMOW) of the tri-unsaturated positional isomers from C37 Me and C38 Et were slightly depleted (~ -11 ‰) relative to the common tri-unsaturated alkenone. The carbon isotope composition (δ(13) C, VPDB) of the tri-unsaturated positional isomers from the C37 Me , C38 Me , C38 Et , and C39 Et alkenones were significantly enriched (~ +4 ‰) relative to the common alkenones (di-, tri-, and tetra-unsaturated). CONCLUSIONS The novel tri-unsaturated alkenone positional isomers produced by the Greenland haptophyte possess Δ(14, 21, 28) double-bond positions, instead of the common Δ(7, 14, 21) double-bond positions. The hydrogen isotope values suggest the novel tri-unsaturated positional isomers could be biosynthetic precursors to the tetra-unsaturated alkenones (Δ(7, 14, 21, 28) ). However, the significantly higher carbon isotope values of the tri-unsaturated positional isomers relative to the common di-, tri- and tetra-unsaturated alkenones suggest these positional isomers may have different/additional biosynthetic precursors.
Collapse
Affiliation(s)
- James T Dillon
- Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI, 02912, USA
| | - William M Longo
- Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI, 02912, USA
| | - Yifan Zhang
- Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI, 02912, USA
| | - Rafael Torozo
- Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI, 02912, USA
| | - Yongsong Huang
- Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI, 02912, USA
| |
Collapse
|
28
|
Parjikolaei BR, Bruhn A, Eybye KL, Larsen MM, Rasmussen MB, Christensen KV, Fretté XC. Valuable Biomolecules from Nine North Atlantic Red Macroalgae: Amino Acids, Fatty Acids, Carotenoids, Minerals and Metals. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/nr.2016.74016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|