1
|
Tůma P. Progress in on-line, at-line, and in-line coupling of sample treatment with capillary and microchip electrophoresis over the past 10 years: A review. Anal Chim Acta 2023; 1261:341249. [PMID: 37147053 DOI: 10.1016/j.aca.2023.341249] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/07/2023]
Abstract
The review presents an evaluation of the development of on-line, at-line and in-line sample treatment coupled with capillary and microchip electrophoresis over the last 10 years. In the first part, it describes different types of flow-gating interfaces (FGI) such as cross-FGI, coaxial-FGI, sheet-flow-FGI, and air-assisted-FGI and their fabrication using molding into polydimethylsiloxane and commercially available fittings. The second part deals with the coupling of capillary and microchip electrophoresis with microdialysis, solid-phase, liquid-phase, and membrane based extraction techniques. It mainly focuses on modern techniques such as extraction across supported liquid membrane, electroextraction, single drop microextraction, head space microextraction, and microdialysis with high spatial and temporal resolution. Finally, the design of sequential electrophoretic analysers and fabrication of SPE microcartridges with monolithic and molecularly imprinted polymeric sorbents are discussed. Applications include the monitoring of metabolites, neurotransmitters, peptides and proteins in body fluids and tissues to study processes in living organisms, as well as the monitoring of nutrients, minerals and waste compounds in food, natural and wastewater.
Collapse
Affiliation(s)
- Petr Tůma
- Department of Hygiene, Third Faculty of Medicine, Charles University, Ruská 87, 100 00, Prague 10, Czech Republic.
| |
Collapse
|
2
|
Salim H, Pont L, Giménez E, Benavente F. On-line aptamer affinity solid-phase extraction direct mass spectrometry for the rapid analysis of α-synuclein in blood. Anal Chim Acta 2023; 1256:341149. [PMID: 37037631 DOI: 10.1016/j.aca.2023.341149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/20/2023] [Accepted: 03/26/2023] [Indexed: 03/28/2023]
Abstract
On-line aptamer affinity solid-phase extraction direct mass spectrometry (AA-SPE-MS) is presented for the rapid purification, preconcentration, and characterization of α-synuclein (α-syn), which is a protein biomarker related to Parkinson's disease. Valve-free AA-SPE-MS is easily implemented using the typical SPE microcartridges and instrumental set-up necessary for on-line aptamer affinity solid-phase extraction capillary electrophoresis-mass spectrometry (AA-SPE-CE-MS). The essential requirement is substituting the application of the separation voltage by a pressure of 100 mbar for mobilization of the eluted protein through the capillary towards the mass spectrometer. Under optimized conditions with recombinant α-syn, repeatability is good in terms of migration time and peak area (percent relative standard deviation (%RSD) values (n = 3) are 1.3 and 6.6% at 1 μg mL-1, respectively). The method is satisfactorily linear between 0.025 and 5 μg mL-1 (R2 > 0.986), and limit of detection (LOD) is 0.02 μg mL-1 (i.e. 1000, 500, and 10 times lower than by CE-MS, direct MS, and AA-SPE-CE-MS, respectively). The established AA-SPE-MS method is further compared with AA-SPE-CE-MS, including for the analysis of α-syn in blood. The comparison discloses the advantages and disadvantages of AA-SPE-MS for the rapid and sensitive targeted analysis of protein biomarkers in biological fluids.
Collapse
|
3
|
Wang A, Liu J, Yang J, Yang L. Aptamer affinity-based microextraction in-line coupled to capillary electrophoresis mass spectrometry using a porous layer/nanoparticle -modified open tubular column. Anal Chim Acta 2023; 1239:340750. [PMID: 36628776 DOI: 10.1016/j.aca.2022.340750] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/26/2022]
Abstract
An aptamer affinity based microextraction column is developed to be directly in-line coupled to capillary electrophoresis-mass spectrometry (CE-MS) for analyzing mycotoxins in food samples. Single-stranded DNA aptamers for selective recognition of aflatoxin B1 (AFB1) and ochratoxin A (OTA) targets are co-immobilized via covalent bonds on the surface of the inlet end of a capillary, which is pre-modified with three-dimensional porous layer and gold nanoparticles to enhance the specific surface area and loading capacity. The outlet of the capillary is designed as a porous tip to serve as the spray source for injection to the mass spectrometry. All the necessary processes for pretreatment and analysis of a sample are accomplished in one injection, including aptamer affinity-based microextraction, CE separation and MS detection of analytes. AFB1 and OTA are simultaneously determined in a wide linear range with sample consumption of only 1 μL and the limit-of-detection as low as 1 pg/mL. The microextraction column exhibits excellent repeatability and stability, which can be used over 45 runs within a month with CE separation efficiency and only MS intensity slightly decreased. Mycotoxins in three kinds of cereal based infant foods are accurately analyzed using the proposed method. The study provides a robust and universal approach that would have potential applications in a variety of analytical fields based on selective molecular recognition coupling to CE-MS analysis.
Collapse
Affiliation(s)
- Anping Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Jianing Liu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Jinlan Yang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Li Yang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
4
|
Vergara-Barberán M, Lerma-García MJ, Simó-Alfonso EF, García-Hernández M, Martín ME, García-Sacristán A, González VM, Herrero-Martínez JM. Selection and characterization of DNA aptamers for highly selective recognition of the major allergen of olive pollen Ole e 1. Anal Chim Acta 2022; 1192:339334. [PMID: 35057930 DOI: 10.1016/j.aca.2021.339334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 02/05/2023]
Abstract
In this study, single-stranded DNA aptamers with binding affinity to Ole e 1, the major allergen of olive pollen, were selected using systematic evolution of ligands by exponential enrichment (SELEX) method. Binding of the aptamers was firstly established by enzyme-linked oligonucleotide assay (ELONA) and aptaprecipitation assays. Additionally, aptamer-modified monolithic capillary chromatography was used in order to evaluate the recognition of this allergenic protein against other non-target proteins. The results indicated that AptOle1#6 was the aptamer that provided the highest affinity for Ole e 1. The selected aptamer showed good selective recognition of this protein, being not able to retain other non-target proteins (HSA, cyt c, and other pollen protein such as Ole e 9). The feasibility of the affinity monolithic column was demonstrated by selective recognition of Ole e 1 in an allergy skin test. The stability and reproducibility of this monolithic column was suitable, with relative standard deviations (RSDs) in retention times and peak area values of 7.8 and 9.3%, respectively (column-to-column reproducibility). This is the first study that describes the design of an efficient DNA aptamer for this relevant allergen.
Collapse
Affiliation(s)
- María Vergara-Barberán
- Department of Analytical Chemistry, University of Valencia, C. Doctor Moliner 50, E-46100, Burjassot, Valencia, Spain
| | - María Jesús Lerma-García
- Department of Analytical Chemistry, University of Valencia, C. Doctor Moliner 50, E-46100, Burjassot, Valencia, Spain
| | - Ernesto F Simó-Alfonso
- Department of Analytical Chemistry, University of Valencia, C. Doctor Moliner 50, E-46100, Burjassot, Valencia, Spain
| | - Marta García-Hernández
- Grupo de Aptámeros. Departamento de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal (IRYCIS), Carretera de Colmenar Viejo Km.9.100, CP-28034, Madrid, Spain
| | - M Elena Martín
- Grupo de Aptámeros. Departamento de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal (IRYCIS), Carretera de Colmenar Viejo Km.9.100, CP-28034, Madrid, Spain
| | | | - Víctor M González
- Grupo de Aptámeros. Departamento de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal (IRYCIS), Carretera de Colmenar Viejo Km.9.100, CP-28034, Madrid, Spain; Aptus Biotech SL, Av. Cardenal Herrera Oria 298, CP-28035, Madrid, Spain
| | - José Manuel Herrero-Martínez
- Department of Analytical Chemistry, University of Valencia, C. Doctor Moliner 50, E-46100, Burjassot, Valencia, Spain.
| |
Collapse
|
5
|
Lara FJ, García-Campaña AM. Improved Sensitivity to Determine Antibiotic Residues in Chicken Meat by In-Line Solid-Phase Extraction Coupled to Capillary Electrophoresis-Tandem Mass Spectrometry. Methods Mol Biol 2022; 2531:227-241. [PMID: 35941489 DOI: 10.1007/978-1-0716-2493-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Traditionally, capillary electrophoresis (CE) has been ruled out of many food safety applications, despite its inherent advantages, because its concentration sensitivity has been not high enough, mainly in relation to the monitoring of contaminants and residues, such as pesticides, veterinary medicines, environmental contaminants, toxins, etc. For this reason, researchers have proposed several strategies to overcome this limitation. So far, approaches based on chromatographic principles have been the most successful solutions. These approaches, known as in-line solid phase extraction, consist of the introduction of a small amount of stationary phase in the inlet section of the electrophoretic capillary (analyte concentrator, AC) to retain the analytes before separation takes place. In this chapter, this strategy is applied to CE coupled to tandem mass spectrometry (MS/MS) for the multiresidue detection of quinolone antibiotic residues in chicken meat. A previous sample treatment based on pressurized liquid extraction to obtain an optimum performance is also described.
Collapse
Affiliation(s)
- Francisco J Lara
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
| | - A M García-Campaña
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain.
| |
Collapse
|
6
|
Poddar S, Sharmeen S, Hage DS. Affinity monolith chromatography: A review of general principles and recent developments. Electrophoresis 2021; 42:2577-2598. [PMID: 34293192 PMCID: PMC9536602 DOI: 10.1002/elps.202100163] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/07/2021] [Accepted: 07/18/2021] [Indexed: 12/28/2022]
Abstract
Affinity monolith chromatography (AMC) is a liquid chromatographic technique that utilizes a monolithic support with a biological ligand or related binding agent to isolate, enrich, or detect a target analyte in a complex matrix. The target-specific interaction exhibited by the binding agents makes AMC attractive for the separation or detection of a wide range of compounds. This article will review the basic principles of AMC and recent developments in this field. The supports used in AMC will be discussed, including organic, inorganic, hybrid, carbohydrate, and cryogel monoliths. Schemes for attaching binding agents to these monoliths will be examined as well, such as covalent immobilization, biospecific adsorption, entrapment, molecular imprinting, and coordination methods. An overview will then be given of binding agents that have recently been used in AMC, along with their applications. These applications will include bioaffinity chromatography, immunoaffinity chromatography, immobilized metal-ion affinity chromatography, and dye-ligand or biomimetic affinity chromatography. The use of AMC in chiral separations and biointeraction studies will also be discussed.
Collapse
Affiliation(s)
- Saumen Poddar
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - Sadia Sharmeen
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, USA
| |
Collapse
|
7
|
Li X, Ma W, Ma Z, Zhang Q, Li H. The Occurrence and Contamination Level of Ochratoxin A in Plant and Animal-Derived Food Commodities. Molecules 2021; 26:6928. [PMID: 34834020 PMCID: PMC8623125 DOI: 10.3390/molecules26226928] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
Ochratoxin A (OTA) is a highly toxic mycotoxin and poses great threat to human health. Due to its serious toxicity and widespread contamination, great efforts have been made to evaluate its human exposure. This review focuses on the OTA occurrence and contamination level in nine plant and animal derived food commodities: cereal, wine, coffee, beer, cocoa, dried fruit, spice, meat, and milk. The occurrence and contamination level varied greatly in food commodities and were affected by many factors, including spices, geography, climate, and storage conditions. Therefore, risk monitoring must be routinely implemented to ensure minimal OTA intake and food safety.
Collapse
Affiliation(s)
- Xianjiang Li
- Food Safety Laboratory, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China; (Q.Z.); (H.L.)
| | - Wen Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China;
| | - Zhiyong Ma
- Beijing State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China;
| | - Qinghe Zhang
- Food Safety Laboratory, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China; (Q.Z.); (H.L.)
| | - Hongmei Li
- Food Safety Laboratory, Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, China; (Q.Z.); (H.L.)
| |
Collapse
|
8
|
Zhao T, Ding X, Lin C, Lin X, Xie Z. In situ photo-initiated polymerized oligonucleotide-functionalized hydrophilic capillary affinity monolith for highly selective in-tube microextraction of ochratoxin A mycotoxin. Mikrochim Acta 2021; 188:341. [PMID: 34523048 DOI: 10.1007/s00604-021-04997-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/23/2021] [Indexed: 11/24/2022]
Abstract
A photo-initiated polymerized oligonucleotide-grafted hydrophilic affinity monolithic column was synthesized in situ, and exploited for selective in-tube solid phase micro-extraction (IT-SPME) protocol towards the sensitive detection of ochratoxin A (OTA). Only 7 min was required for the rapid polymerization of aptamer-based affinity monolith, which was much less than the reaction time of most thermal polymerization (12-16 h) and sol-gel chemistry methods (up to 52 h). Characterizations such as polymerization recipes, structure morphology, FTIR spectrum, elemental mapping, mechanical stability, and specific recognition performance were evaluated. A significantly hydrophilic nature with a low contact angle of 15° was observed, and a mixed-mode mechanism including aptamer affinity recognition and hydrophilic interaction (HI) was employed. By coupling with HPLC-fluorescence detection, the highly specific online recognition performance was achieved with an extremely low nonspecific adsorption of the analogues. The calibration curve of OTA was obtained in the concentration range 0.05-50.00 ng·mL-1 with a limit of detection (LOD, S/N = 3) of 0.012 ng·mL-1. Applied to sample analysis, acceptable recovery yields of 95.1 ± 1.4% - 99.5 ± 2.2% (n = 3) were obtained in beer and red wine. The proposed method lighted a promising way to efficiently preparing a hydrophilic aptamer-affinity monolith for highly specific recognition of trace mycotoxin by IT-SPME coupled with HPLC. A hydrophilic oligonucleotide-based affinity capillary monolith was explored via in situ photopolymerization for overcoming low preparation efficiency and achieving high-performance online IT-SPME of OTA mycotoxin.
Collapse
Affiliation(s)
- Tingting Zhao
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Xinyue Ding
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Chenchen Lin
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, People's Republic of China
| | - Xucong Lin
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, People's Republic of China.
| | - Zenghong Xie
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, People's Republic of China
| |
Collapse
|
9
|
Hong T, Qiu L, Zhou S, Cai Z, Cui P, Zheng R, Wang J, Tan S, Jiang P. How does DNA 'meet' capillary-based microsystems? Analyst 2021; 146:48-63. [PMID: 33211035 DOI: 10.1039/d0an01336f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
DNA possesses various chemical and physical properties which make it important in biological analysis. The opportunity for DNA to 'meet' capillary-based microsystems is rapidly increasing owing to the expanding development of miniaturization. Novel capillary-based methods can provide favourable platforms for DNA-ligand interaction assay, DNA translocation study, DNA separation, DNA aptamer selection, DNA amplification assay, and DNA digestion. Meanwhile, DNA exhibits great potential in the fabrication of new capillary-based biosensors and enzymatic bioreactors. Moreover, DNA has received significant research interest in improving capillary electrophoresis (CE) performance. We focus on highlighting the advantages of combining DNA and capillary-based microsystems. The general trend presented in this review suggests that the 'meeting' has offered a stepping stone for the application of DNA and capillary-based microsystems in the field of analytical chemistry.
Collapse
Affiliation(s)
- Tingting Hong
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Akgönüllü S, Armutcu C, Denizli A. Molecularly imprinted polymer film based plasmonic sensors for detection of ochratoxin A in dried fig. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03699-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Li X, Ma W, Ma Z, Zhang Q, Li H. Recent progress in determination of ochratoxin a in foods by chromatographic and mass spectrometry methods. Crit Rev Food Sci Nutr 2021; 62:5444-5461. [PMID: 33583259 DOI: 10.1080/10408398.2021.1885340] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Ochratoxin A is a highly toxic mycotoxin and has posed great threat to human health. Due to its serious toxicity and wide contamination, great efforts have been made to develop reliable determination methods. In this review, analytical methods are comprehensively summarized in terms of sample preparation strategy and instrumental analysis. Detailed method is described according to the food commodities in the order of cereal, wine, coffee, beer, cocoa, dried fruit and spice. This review mainly focuses on the recent advances, especially reported in the last decade. At last, challenges and perspectives are also discussed to achieve better advancement and promote practical application in this field.
Collapse
Affiliation(s)
- Xianjiang Li
- Food Safety Laboratory, Division of Metrology in Chemistry, National Institute of Metrology, Beijing, China
| | - Wen Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhiyong Ma
- Beijing State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Qinghe Zhang
- Food Safety Laboratory, Division of Metrology in Chemistry, National Institute of Metrology, Beijing, China
| | - Hongmei Li
- Food Safety Laboratory, Division of Metrology in Chemistry, National Institute of Metrology, Beijing, China
| |
Collapse
|
12
|
Delaunay N, Combès A, Pichon V. Immunoaffinity Extraction and Alternative Approaches for the Analysis of Toxins in Environmental, Food or Biological Matrices. Toxins (Basel) 2020; 12:toxins12120795. [PMID: 33322240 PMCID: PMC7764248 DOI: 10.3390/toxins12120795] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
The evolution of instrumentation in terms of separation and detection allowed a real improvement of the sensitivity and analysis time. However, the analysis of ultra-traces of toxins in complex samples requires often a step of purification and even preconcentration before their chromatographic analysis. Therefore, immunoaffinity sorbents based on specific antibodies thus providing a molecular recognition mechanism appear as powerful tools for the selective extraction of a target molecule and its structural analogs to obtain more reliable and sensitive quantitative analysis in environmental, food or biological matrices. This review focuses on immunosorbents that have proven their efficiency in selectively extracting various types of toxins of various sizes (from small mycotoxins to large proteins) and physicochemical properties. Immunosorbents are now commercially available, and their use has been validated for numerous applications. The wide variety of samples to be analyzed, as well as extraction conditions and their impact on extraction yields, is discussed. In addition, their potential for purification and thus suppression of matrix effects, responsible for quantification problems especially in mass spectrometry, is presented. Due to their similar properties, molecularly imprinted polymers and aptamer-based sorbents that appear to be an interesting alternative to antibodies are also briefly addressed by comparing their potential with that of immunosorbents.
Collapse
Affiliation(s)
- Nathalie Delaunay
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), CBI ESPCI Paris, PSL University, CNRS, 75005 Paris, France; (N.D.); (A.C.)
| | - Audrey Combès
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), CBI ESPCI Paris, PSL University, CNRS, 75005 Paris, France; (N.D.); (A.C.)
| | - Valérie Pichon
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), CBI ESPCI Paris, PSL University, CNRS, 75005 Paris, France; (N.D.); (A.C.)
- Department of Chemistry, Sorbonne University, 75005 Paris, France
- Correspondence:
| |
Collapse
|
13
|
Rodriguez EL, Poddar S, Iftekhar S, Suh K, Woolfork AG, Ovbude S, Pekarek A, Walters M, Lott S, Hage DS. Affinity chromatography: A review of trends and developments over the past 50 years. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1157:122332. [PMID: 32871378 PMCID: PMC7584770 DOI: 10.1016/j.jchromb.2020.122332] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 12/16/2022]
Abstract
The field of affinity chromatography, which employs a biologically-related agent as the stationary phase, has seen significant growth since the modern era of this method began in 1968. This review examines the major developments and trends that have occurred in this technique over the past five decades. The basic principles and history of this area are first discussed. This is followed by an overview of the various supports, immobilization strategies, and types of binding agents that have been used in this field. The general types of applications and fields of use that have appeared for affinity chromatography are also considered. A survey of the literature is used to identify major trends in these topics and important areas of use for affinity chromatography in the separation, analysis, or characterization of chemicals and biochemicals.
Collapse
Affiliation(s)
| | - Saumen Poddar
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Sazia Iftekhar
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Kyungah Suh
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Ashley G Woolfork
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Susan Ovbude
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Allegra Pekarek
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Morgan Walters
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Shae Lott
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - David S Hage
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA.
| |
Collapse
|
14
|
Ma W, Wan S, Lin C, Lin X, Xie Z. Towards online specific recognition and sensitive analysis of bisphenol A by using AuNPs@aptamer hybrid-silica affinity monolithic column with LC-MS. Talanta 2020; 219:121275. [DOI: 10.1016/j.talanta.2020.121275] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 01/14/2023]
|
15
|
Online high-efficient specific detection of zearalenone in rice by using high-loading aptamer affinity hydrophilic monolithic column coupled with HPLC. Talanta 2020; 219:121309. [DOI: 10.1016/j.talanta.2020.121309] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 12/15/2022]
|
16
|
Colombo R, Papetti A. Pre-Concentration and Analysis of Mycotoxins in Food Samples by Capillary Electrophoresis. Molecules 2020; 25:molecules25153441. [PMID: 32751123 PMCID: PMC7436008 DOI: 10.3390/molecules25153441] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/31/2022] Open
Abstract
Mycotoxins are considered one of the most dangerous agricultural and food contaminants. They are toxic and the development of rapid and sensitive analytical methods to detect and quantify them is a very important issue in the context of food safety and animal/human health. The need to detect mycotoxins at trace levels and to simultaneously analyze many different mycotoxin types became mandatory to protect public health. In fact, European Commission regulations specified both their limits in foodstuffs and official sample preparation protocols in addition to analytical methods to verify their presence. Capillary Electrophoresis (CE) includes different separation modes, allowing many versatile applications in food analysis and safety. In the context of mycotoxins, recent advances to improve CE sensitivity, particularly pre-concentration techniques or miniaturized systems, deserve remarkable attention, as they provide an interesting approach in the analysis of such contaminants in complex food matrices. This review summarizes the applications of CE combined with different pre-concentration approaches, which have been proposed in the literature (mainly) in the last ten years. A section is also dedicated to recent microchip–CE devices since they represent the most promising CE mode for this application.
Collapse
Affiliation(s)
| | - Adele Papetti
- Correspondence: ; Tel.: +39-0382987863; Fax: +39-0382422975
| |
Collapse
|
17
|
Pont L, Marin G, Vergara-Barberán M, Gagliardi LG, Sanz-Nebot V, Herrero-Martínez JM, Benavente F. Polymeric monolithic microcartridges with gold nanoparticles for the analysis of protein biomarkers by on-line solid-phase extraction capillary electrophoresis-mass spectrometry. J Chromatogr A 2020; 1622:461097. [PMID: 32381302 DOI: 10.1016/j.chroma.2020.461097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 01/08/2023]
Abstract
In this study, polymeric monoliths with gold nanoparticles (AuNP@monolith) were investigated as microcartridges for the analysis of protein biomarkers by on-line solid-phase extraction capillary electrophoresis-mass spectrometry (SPE-CE-MS). "Plug-and-play" microcartridges (7 mm) were prepared from a glycidyl methacrylate (GMA)-based monolithic capillary column (5 cm x 250 µm i.d.), which was modified with ammonia and subsequently functionalized with gold nanoparticles (AuNPs). The performance of these novel microcartridges was evaluated with human transthyretin (TTR), which is a protein related to different types of familial amyloidotic polyneuropathies (FAP). Protein retention depended on the isoelectric point of the protein (TTR pI~5.4) and elution was achieved with a basic phosphate solution. Under the optimized conditions, limits of detection (LODs) for TTR by AuNP@monolith-SPE-CE-MS were 50 times lower than by CE-MS (5 vs 250 mg•L-1, with an ion trap (IT) mass spectrometer). The sensitivity enhancement was similar compared to SPE-CE-MS using immunoaffinity (IA) microcartridges with intact antibodies against TTR. Linearity, repeatability in migration times and peak areas, reusability, reproducibility and application to serum samples were also evaluated.
Collapse
Affiliation(s)
- Laura Pont
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA•UB), University of Barcelona, C/Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Gemma Marin
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA•UB), University of Barcelona, C/Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - María Vergara-Barberán
- Department of Analytical Chemistry, University of Valencia, C/Doctor Moliner 50, 46100 Burjassot, Spain
| | - Leonardo G Gagliardi
- Laboratorio de Investigación y Desarrollo de Métodos Analíticos, LIDMA, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CIC-PBA CONICET, C/ 47 esq. 115, B1900AJL La Plata, Argentina
| | - Victoria Sanz-Nebot
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA•UB), University of Barcelona, C/Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - José M Herrero-Martínez
- Department of Analytical Chemistry, University of Valencia, C/Doctor Moliner 50, 46100 Burjassot, Spain.
| | - Fernando Benavente
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA•UB), University of Barcelona, C/Martí i Franquès 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
18
|
Multiple Zones Modification of Open Off-Stoichiometry Thiol-Ene Microchannel by Aptamers: A Methodological Study & A Proof of Concept. CHEMOSENSORS 2020. [DOI: 10.3390/chemosensors8020024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Off-stoichiometry thiol-ene polymer (OSTE) is an emerging thermoset with interesting properties for the development of lab-on-a-chip (LOAC), such as easy microfabrication process, suitable surface chemistry for modification and UV-transparency. One of the challenges for LOAC development is the integration of all the analytical steps in one microchannel, and particularly, trace level analytes extraction/preconcentration steps. In this study, two strategies for the immobilization of efficient tools for this purpose, thiol-modified (C3-SH) aptamers, on OSTE polymer surfaces were developed and compared. The first approach relies on a direct UV-initiated click chemistry reaction to graft thiol-terminated aptamers on ene-terminated OSTE surfaces. The second strategy consists of the immobilization of thiol-terminated aptamers onto OSTE substrates covered by gold nanoparticles. The presence of an intermediate gold nanoparticle layer on OSTE has shown great interest in the efficient immobilization of aptamers, preserving their interaction with the target, and preventing non-specific adsorption. With this second innovative strategy, we proved, for the first time the concept of creating multiple functional zones for sample treatment in an open OSTE-microchannel thanks to the immobilization of aptamers in consecutive areas by the simple droplet deposition methodology. This methodological development allows further consideration of OSTE material for lab-on-a-chip designs, integrating multiple zones for sample pretreatment, based on molecular recognition by ligands, such as aptamers, in a specific zone of the microchannel and is adaptable to a large range of analytical applications for LOAC industrialization.
Collapse
|
19
|
Nevídalová H, Michalcová L, Glatz Z. Capillary electrophoresis-based immunoassay and aptamer assay: A review. Electrophoresis 2020; 41:414-433. [PMID: 31975407 DOI: 10.1002/elps.201900426] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/31/2022]
Abstract
Over the last two decades, the group of techniques called affinity probe CE has been widely used for the detection and the determination of several types of biomolecules with high sensitivity. These techniques combine the low sample consumption and high separation power of CE with the selectivity of the probe to the target molecule. The assays can be defined according to the type of probe used: CE immunoassays, with an antibody as the probe, or aptamer-based CE, with an aptamer as the probe. Immunoassays are generally divided into homogeneous and heterogeneous groups, and homogeneous variant can be further performed in competitive or noncompetitive formats. Interacting partners are free in solution at homogeneous assay, as opposed to heterogeneous analyses, where one of them is immobilized onto a solid support. Highly sensitive fluorescence, chemiluminescence or electrochemical detections were typically used in this type of study. The use of the aptamers as probes has several advantages over antibodies such as shorter generation time, higher thermal stability, lower price, and lower variability. The aptamer-based CE technique was in practice utilized for the determination of proteins in biological fluids and environmentally or clinically important small molecules. Both techniques were also transferred to microchip. This review is focused on theoretical principles of these techniques and a summary of their applications in research.
Collapse
Affiliation(s)
- Hana Nevídalová
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lenka Michalcová
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Zdeněk Glatz
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
20
|
Pero-Gascon R, Benavente F, Minic Z, Berezovski MV, Sanz-Nebot V. On-line Aptamer Affinity Solid-Phase Extraction Capillary Electrophoresis-Mass Spectrometry for the Analysis of Blood α-Synuclein. Anal Chem 2019; 92:1525-1533. [PMID: 31825201 DOI: 10.1021/acs.analchem.9b04802] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this paper, an on-line aptamer affinity solid-phase extraction capillary electrophoresis-mass spectrometry method is described for the purification, preconcentration, separation, and characterization of α-synuclein (α-syn) in blood at the intact protein level. A single-stranded DNA aptamer is used to bind with high affinity and selectivity α-syn, which is a major component of Lewy bodies, the typical aggregated protein deposits found in Parkinson's disease (PD). Under the conditions optimized with recombinant α-syn, repeatability (2.1 and 5.4% percent relative standard deviation for migration times and peak areas, respectively) and microcartridge lifetime (around 20 analyses/microcartridge) were good, the method was linear between 0.5 and 10 μg·mL-1, and limit of detection was 0.2 μg·mL-1 (100 times lower than by CE-MS, 20 μg·mL-1). The method was subsequently applied to the analysis of endogenous α-syn from red blood cells lysate of healthy controls and PD patients.
Collapse
Affiliation(s)
- Roger Pero-Gascon
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB) , University of Barcelona , Barcelona 08028 , Spain
| | - Fernando Benavente
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB) , University of Barcelona , Barcelona 08028 , Spain
| | - Zoran Minic
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , Ontario K1N 6N5 , Canada
| | - Maxim V Berezovski
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , Ontario K1N 6N5 , Canada
| | - Victoria Sanz-Nebot
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB) , University of Barcelona , Barcelona 08028 , Spain
| |
Collapse
|
21
|
Current trends in affinity-based monoliths in microextraction approaches: A review. Anal Chim Acta 2019; 1084:1-20. [DOI: 10.1016/j.aca.2019.07.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/15/2022]
|
22
|
Yu X, Lai S, Wang L, Chen Y, Lin X, Xie Z. Preparation of aptamer-bound polyamine affinity monolithic column via a facile triazine-bridged strategy and application to on-column specific discrimination of ochratoxin A. J Sep Sci 2019; 42:2272-2279. [PMID: 31038265 DOI: 10.1002/jssc.201900175] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/10/2019] [Accepted: 04/17/2019] [Indexed: 12/25/2022]
Abstract
Developing a high-performance modification protocol is critical for efficiently fabricating affinity monolith. Herein, by using 2,4,6-trichloro-1,3,5-triazine as the linker, a simple triazine-bridged approach was proposed for efficiently fabricating aptamer-grafted polyhedral oligomeric silsesquioxane-polyethyleneimine affinity monolith with high specificity toward ochratoxin A. Experimental parameters, column characteristics and specificity performances of the resultant affinity monolith were investigated in detail. Under the optimal conditions, 2,4,6-trichloro-1,3,5-triazine was rapidly grafted on the polyamine matrix, and effectively applied to the subsequent bridge linkage of aptamers. It was simple and effective, which resulted in a significant decrease of modification time, excellent properties including the high coverage density of aptamer up to 1799 pmol/μL and sensitive detection of ochratoxin A as low as 10 pg/mL in beer samples. This protocol provides a facile approach for fabricating aptamer-grafted polyamine affinity monoliths with highly selective discrimination performance.
Collapse
Affiliation(s)
- Xia Yu
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, P. R. China.,Zhejiang Fuxing Environment Development, Zhejiang, P. R. China
| | - Shuoke Lai
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, P. R. China
| | - Li Wang
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, P. R. China
| | - Yiqiong Chen
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, P. R. China
| | - Xucong Lin
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, P. R. China
| | - Zenghong Xie
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, P. R. China
| |
Collapse
|
23
|
A critical retrospective and prospective review of designs and materials in in-line solid-phase extraction capillary electrophoresis. Anal Chim Acta 2019; 1079:1-19. [PMID: 31387699 DOI: 10.1016/j.aca.2019.05.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/08/2019] [Accepted: 05/10/2019] [Indexed: 11/20/2022]
Abstract
Several strategies have been developed to decrease the concentration limits of detection (LODs) in capillary electrophoresis (CE). Nowadays, chromatographic-based preconcentration using a microcartridge integrated in the separation capillary for in-line solid-phase extraction capillary electrophoresis (SPE-CE) is one of the best alternatives for high throughput and reproducible sample clean-up and analyte preconcentration. This review covers different designs (geometrical configurations, with frits or fritless, capillary types, compatibility with commercial instrumentation, etc.) and materials (sorbents, supports, affinity ligands, etc.) applied for almost 30 years to prepare in-line SPE-CE microcartridges (i.e. analyte concentrators), with emphasis on the conventional unidirectional configuration in capillary format. Advantages, disadvantages and future perspectives are analyzed in detail to provide the reader a wide overview about the great potential of this technique to enhance sensitivity and address trace analysis.
Collapse
|
24
|
Chen Y, Zhu D, Ding X, Qi G, Lin X, Xie Z. Highly hydrophilic polyhedral oligomeric silsesquioxane (POSS)-containing aptamer-modified affinity hybrid monolith for efficient on-column discrimination with low nonspecific adsorption. Analyst 2019; 144:1555-1564. [DOI: 10.1039/c8an01890a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly hydrophilic aptamer-modified POSS-containing hybrid affinity monolith is presented for efficient on-column discrimination with low non-specific adsorption.
Collapse
Affiliation(s)
- Yiqiong Chen
- Institute of Food Safety and Environment Monitoring
- Fuzhou University
- Fuzhou
- China
| | - Dandan Zhu
- Institute of Food Safety and Environment Monitoring
- Fuzhou University
- Fuzhou
- China
| | - Xinyue Ding
- Institute of Food Safety and Environment Monitoring
- Fuzhou University
- Fuzhou
- China
| | - Guomin Qi
- Institute of Food Safety and Environment Monitoring
- Fuzhou University
- Fuzhou
- China
| | - Xucong Lin
- Institute of Food Safety and Environment Monitoring
- Fuzhou University
- Fuzhou
- China
| | - Zenghong Xie
- Institute of Food Safety and Environment Monitoring
- Fuzhou University
- Fuzhou
- China
| |
Collapse
|
25
|
Pero-Gascon R, Pont L, Sanz-Nebot V, Benavente F. On-Line Immunoaffinity Solid-Phase Extraction Capillary Electrophoresis-Mass Spectrometry for the Analysis of Serum Transthyretin. Methods Mol Biol 2019; 1972:57-76. [PMID: 30847784 DOI: 10.1007/978-1-4939-9213-3_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The analysis of low abundant proteins in biological fluids by capillary electrophoresis (CE) is particularly problematic due to the typically poor concentration limits of detection of microscale separation techniques. Another important issue is sample matrix complexity that requires an appropriate cleanup. Here, we describe an on-line immunoaffinity solid-phase extraction capillary electrophoresis-mass spectrometry (IA-SPE-CE-MS) method for the immunoextraction, preconcentration, separation, detection, and characterization of serum transthyretin (TTR). TTR is a protein biomarker related to diverse types of amyloidosis, such as familial amyloidotic polyneuropathy type I (FAP-I), which is the most common hereditary systemic amyloidosis.
Collapse
Affiliation(s)
- Roger Pero-Gascon
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona, Spain
| | - Laura Pont
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona, Spain
| | - Victoria Sanz-Nebot
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona, Spain.
| | - Fernando Benavente
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Barcelona, Spain
| |
Collapse
|
26
|
Chen C, Liu W, Hong T. Novel approaches for biomolecule immobilization in microscale systems. Analyst 2019; 144:3912-3924. [DOI: 10.1039/c9an00212j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This manuscript reviews novel approaches applied for biomolecule immobilization in microscale systems.
Collapse
Affiliation(s)
- Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha
- China
| | - Wenfang Liu
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha
- China
| | - Tingting Hong
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha
- China
| |
Collapse
|
27
|
Chi J, Chen M, Deng L, Lin X, Xie Z. A facile AuNPs@aptamer-modified mercaptosiloxane-based hybrid affinity monolith with an unusually high coverage density of aptamer for on-column selective extraction of ochratoxin A. Analyst 2018; 143:5210-5217. [PMID: 30270376 DOI: 10.1039/c8an01531g] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A convenient and high-performance AuNPs@aptamer-modified mercaptosiloxane-based hybrid affinity monolithic column with an unusually high coverage density of aptamers was facilely prepared and used for on-column selective recognition of ochratoxin A (OTA). Due to the high surface-to-volume ratio of AuNPs, the robust conjugation of Au-SH and large specific surface area of hybrid-silica monolith, high coverage density of 5'-SH-aptamers up to 3494 pmol μL-1 was achieved, which was 2.5-10 folds higher than that of other previously reported affinity monoliths modified with AuNPs@Apt. Using OTA as the model analyte, the highly selective recognition of OTA was carried out via online coupling with HPLC, and the cross-reactivity towards analogues, such as OTB and aflatoxin B1, was weak. High recovery yields of OTA were achieved at more than 92% (n = 3) even when OTB was added at a high concentration level up to 50 ng mL-1. For sample analysis, efficient discrimination of OTA was successfully obtained with a sensitive detection limit of 25 pg mL-1. The recoveries of OTA with different fortified levels were achieved at 88.6%-94.1% and 88.2%-94.3% for beer and wine samples, respectively. This protocol provides a facile approach for fabricating a desirable affinity monolith modified with abundant aptamers for highly selective and sensitive on-column extraction of target analyte OTA.
Collapse
Affiliation(s)
- Jinxin Chi
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou, 350108, China.
| | | | | | | | | |
Collapse
|
28
|
Zhang Q, Yang Y, Zhi Y, Wang X, Wu Y, Zheng Y. Aptamer-modified magnetic metal-organic framework MIL-101 for highly efficient and selective enrichment of ochratoxin A. J Sep Sci 2018; 42:716-724. [PMID: 30548208 DOI: 10.1002/jssc.201800840] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/03/2018] [Accepted: 11/16/2018] [Indexed: 12/17/2022]
Abstract
A facile and efficient strategy is developed to modify aptamers on the surface of the magnetic metal-organic framework MIL-101 for the rapid magnetic solid-phase extraction of ochratoxin A. To the best of our knowledge, this is the first attempt to create a robust aptamer-modified magnetic MIL-101 with covalent bonding for the magnetic separation and enrichment of ochratoxin A. The saturated adsorption of ochratoxin A by aptamer-modified magnetic MIL-101 was 7.9 times greater than that by magnetic metal-organic framework MIL-101 due to the former's high selective recognition as well as good stability. It could be used for extraction more than 12 times with no significant changes in the extraction efficiency. An aptamer-modified magnetic MIL-101-based method of magnetic solid-phase extraction combined with ultra high performance liquid chromatography with tandem mass spectrometry was developed for the determination of trace ochratoxin A with limit of detection of 0.067 ng/L. Ochratoxin A of 4.53-13.7 ng/kg was determined in corn and peanut samples. The recoveries were in the range 82.8-108% with a relative standard deviation (n = 5) of 4.5-6.5%. These results show that aptamer-modified magnetic MIL-101 exhibits selective and effective enrichment performance and have excellent potential for the analysis of ultra-trace targets from complex matrices.
Collapse
Affiliation(s)
- Qianchun Zhang
- Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, School of Biology and Chemistry, Xingyi Normal University for Nationalities, Xingyi, P. R. China
| | - Yanqun Yang
- Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, School of Biology and Chemistry, Xingyi Normal University for Nationalities, Xingyi, P. R. China
| | - Yongzhi Zhi
- Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, School of Biology and Chemistry, Xingyi Normal University for Nationalities, Xingyi, P. R. China
| | - Xingyi Wang
- Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, School of Biology and Chemistry, Xingyi Normal University for Nationalities, Xingyi, P. R. China
| | - Yun Wu
- Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, School of Biology and Chemistry, Xingyi Normal University for Nationalities, Xingyi, P. R. China
| | - Yuguo Zheng
- Key Laboratory of Chemical Synthesis and Environmental Pollution Control-Remediation Technology of Guizhou Province, School of Biology and Chemistry, Xingyi Normal University for Nationalities, Xingyi, P. R. China
| |
Collapse
|
29
|
Espina-Benitez MB, Marconi F, Randon J, Demesmay C, Dugas V. Evaluation of boronate affinity solid-phase extraction coupled in-line to capillary isoelectric focusing for the analysis of catecholamines in urine. Anal Chim Acta 2018; 1034:195-203. [DOI: 10.1016/j.aca.2018.06.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/11/2022]
|
30
|
Xiao MW, Bai XL, Liu YM, Yang L, Liao X. Simultaneous determination of trace Aflatoxin B 1 and Ochratoxin A by aptamer-based microchip capillary electrophoresis in food samples. J Chromatogr A 2018; 1569:222-228. [PMID: 30037541 DOI: 10.1016/j.chroma.2018.07.051] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/07/2018] [Accepted: 07/16/2018] [Indexed: 01/12/2023]
Abstract
An aptamer-based microchip capillary electrophoresis coupled with laser induced fluorescence (MCE-LIF) detection method for fast determination of Aflatoxin B1 (AFB1) and Ochratoxin A (OTA) was developed. Aptamers that are specific to these two mycotoxins were first hybridized with their aptamer complementary oligonucleotides. The double strand DNA that comes in contact with mycotoxin-containing environment would be unwound into separate aptamer-mycotoxin complex and aptamer complementary single strand. Different types of oligonucleotides can be separated in MCE and detected under the aid of fluorescent dye SYBR gold in LIF detection unit. Under the optimal conditions, on-chip aptamer-mycotoxin conjugates analysis was achieved within 3 min with extremely low LODs (0.026 ng/mL for AFB1 and 0.021 ng/mL for OTA). Specificity study indicated that other major mycotoxins would not cross-react with these two aptamers, demonstrating the good selectivity of the proposed method. Quantification of trace AFB1 and OTA in real food samples was carried out and satisfactory recoveries were obtained. It is demonstrated that this method is fast, facile and specific for Simultaneous determination of trace AFB1 and OTA from foodstuffs.
Collapse
Affiliation(s)
- Meng-Wei Xiao
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, Section 4, South Renmin Road, Chengdu, Sichuan, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Xiao-Lin Bai
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, Section 4, South Renmin Road, Chengdu, Sichuan, China.
| | - Yi-Ming Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, Section 4, South Renmin Road, Chengdu, Sichuan, China; Department of Chemistry and Biochemistry, Jackson State University, 1400 Lynch Street, Jackson, MS 39217, USA.
| | - Li Yang
- Maccura Biotechnology Co. Ltd, 2nd Anhe Road, Hi-Tech Industrial Development Zone, Chengdu, Sichuan, China.
| | - Xun Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, No.9, Section 4, South Renmin Road, Chengdu, Sichuan, China.
| |
Collapse
|
31
|
Zhang Y, Luo F, Zhang Y, Zhu L, Li Y, Zhao S, He P, Wang Q. A sensitive assay based on specific aptamer binding for the detection of Salmonella enterica serovar Typhimurium in milk samples by microchip capillary electrophoresis. J Chromatogr A 2017; 1534:188-194. [PMID: 29289340 DOI: 10.1016/j.chroma.2017.12.054] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 12/13/2017] [Accepted: 12/19/2017] [Indexed: 11/27/2022]
Abstract
The detection of Salmonella enterica serovar Typhimurium (S. Typhimurium) is very important for the prevention of food poisoning and other infectious diseases. Here we reported a simple and sensitive strategy to test S. Typhimurium by microchip capillary electrophoresis couple with laser-induced fluorescence (MCE-LIF) based on the specific reaction between the bacterium and corresponding aptamers. Based on the differences in charge to mass ratio between bacteria-aptamer complexes and free aptamers, a separation of the complexes and free aptamers could be obtained by MCE. The optimal parameters of the specific reaction including fluorescent dye concentration, Mg2+ concentration, incubation time, and pH of incubation solution were carefully investigated. Meanwhile, a non-specific DNA was exploited as a contrast for the detection of S. Typhimurium. Under the optimal conditions, a rapid separation of the bacteria-aptamer complex and free aptamers was achieved within 135 s with a limit of detection (S/N = 3) of 3.37 × 102 CFU mL-1. This method was applied for the detection of S. Typhimurium in fresh milk samples and a recovery rate of 95.8% was obtained. The experimental results indicated that the specific aptamers are of enough biostability and the established method could be used to analyze S. Typhimurium in foods.
Collapse
Affiliation(s)
- Yan Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Feifei Luo
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Yating Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Luqi Zhu
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Yi Li
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Shuangli Zhao
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Pingang He
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Qingjiang Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China.
| |
Collapse
|
32
|
Liu Y, Wang W, Jia M, Liu R, Liu Q, Xiao H, Li J, Xue Y, Wang Y, Yan C. Recent advances in microscale separation. Electrophoresis 2017; 39:8-33. [DOI: 10.1002/elps.201700271] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/03/2017] [Accepted: 08/04/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Yuanyuan Liu
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Weiwei Wang
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Mengqi Jia
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Rangdong Liu
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Qing Liu
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Han Xiao
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Jing Li
- Unimicro (shanghai) Technologies Co., Ltd.; Shanghai P. R. China
| | - Yun Xue
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Yan Wang
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| | - Chao Yan
- School of Pharmacy; Shanghai Jiao Tong University; Shanghai P. R. China
| |
Collapse
|
33
|
Development and application of a new in-line coupling of a miniaturized boronate affinity monolithic column with capillary zone electrophoresis for the selective enrichment and analysis of cis-diol-containing compounds. J Chromatogr A 2017; 1494:65-76. [DOI: 10.1016/j.chroma.2017.03.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 11/22/2022]
|
34
|
Porous monoliths for on-line sample preparation: A review. Anal Chim Acta 2017; 964:24-44. [DOI: 10.1016/j.aca.2017.02.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 11/23/2022]
|
35
|
Berthiller F, Brera C, Iha M, Krska R, Lattanzio V, MacDonald S, Malone R, Maragos C, Solfrizzo M, Stranska-Zachariasova M, Stroka J, Tittlemier S. Developments in mycotoxin analysis: an update for 2015-2016. WORLD MYCOTOXIN J 2017. [DOI: 10.3920/wmj2016.2138] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review summarises developments in the determination of mycotoxins over a period between mid-2015 and mid-2016. Analytical methods to determine aflatoxins, Alternaria toxins, ergot alkaloids, fumonisins, ochratoxins, patulin, trichothecenes and zearalenone are covered in individual sections. Advances in proper sampling strategies are discussed in a dedicated section, as are methods used to analyse botanicals and spices and newly developed liquid chromatography mass spectrometry based multi-mycotoxin methods. This critical review aims to briefly discuss the most important recent developments and trends in mycotoxin determination as well as to address limitations of presented methodologies.
Collapse
Affiliation(s)
- F. Berthiller
- Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - C. Brera
- Istituto Superiore di Sanità, Department of Veterinary Public Health and Food Safety – GMO and Mycotoxins Unit, Viale Regina Elena 299, 00161 Rome, Italy
| | - M.H. Iha
- Adolfo Lutz Institute of Ribeirão Preto, Nucleous of Chemistry and Bromatology Science, Rua Minas 866, Ribeirão Preto, SP 14085-410, Brazil
| | - R. Krska
- Christian Doppler Laboratory for Mycotoxin Metabolism and Center for Analytical Chemistry, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Str. 20, 3430 Tulln, Austria
| | - V.M.T. Lattanzio
- National Research Council, Institute of Sciences of Food Production, Via Amendola 122/o, 700126 Bari, Italy
| | - S. MacDonald
- Fera Science Ltd., Sand Hutton, York YO41 1LZ, United Kingdom
| | - R.J. Malone
- Trilogy Analytical Laboratory, 870 Vossbrink Dr, Washington, MO 63090, USA
| | - C. Maragos
- USDA-ARS-NCAUR, Mycotoxin Prevention and Applied Microbiology Research Unit, 1815 N. University St, Peoria, IL 61604, USA
| | - M. Solfrizzo
- National Research Council, Institute of Sciences of Food Production, Via Amendola 122/o, 700126 Bari, Italy
| | - M. Stranska-Zachariasova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague 6, Czech Republic
| | - J. Stroka
- European Commission, Joint Research Centre, Retieseweg, 2440 Geel, Belgium
| | - S.A. Tittlemier
- Canadian Grain Commission, Grain Research Laboratory, 1404-303 Main St, Winnipeg, MB R3C 3G8, Canada
| |
Collapse
|
36
|
Tascon M, Gagliardi LG, Benavente F. Parts-per-trillion detection of harmala alkaloids in Undaria pinnatifida algae by on-line solid phase extraction capillary electrophoresis mass spectrometry. Anal Chim Acta 2017; 954:60-67. [PMID: 28081815 DOI: 10.1016/j.aca.2016.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/02/2016] [Accepted: 12/09/2016] [Indexed: 01/09/2023]
Abstract
β-carboline alkaloids of the harmala group (HAlks)-a family of compounds with pharmacologic effects-can be found at trace levels (<25 μg kg-1 algae) in the edible invasive algae Undaria pinnatifida, known commonly as wakame. In this study, we present a simple and sensitive method to detect and quantify at low parts-per-trillion levels the six HAlks more frequently found in those plants. The method is based on on-line solid phase extraction capillary electrophoresis mass spectrometry using a C18 sorbent. First, the methodology was optimized and validated with standard solutions through the use of ultraviolet (UV) and mass spectrometry (MS) detection. Second, the optimized method for MS detection was applied to an analysis of the HAlks in U. pinnatifida extracts. The method achieved limits of detection between 2 and 77 pg mL-1 for standards, producing an analyte preconcentration of about 1000-times in comparison to CE-MS. Some matrix effects were observed for the complex wakame extracts, especially for the most polar HAlks (harmol and harmalol), which bear aromatic hydroxyl groups. Harmine, harmaline, and norharmane were not detected in the algal extracts, whereas harmane was found at 70 pg mL-1 (70 ng kg-1 dry algae). The results underscored that C18-SPE-CE-MS may be considered as a powerful method to detect trace levels of alkaloids and other bioactive small molecules in complex plant extracts.
Collapse
Affiliation(s)
- Marcos Tascon
- Laboratorio de Investigación y Desarrollo de Métodos Analíticos (LIDMA), División Química Analítica, CONICET, Universidad Nacional de La Plata, Argentina
| | - Leonardo G Gagliardi
- Laboratorio de Investigación y Desarrollo de Métodos Analíticos (LIDMA), División Química Analítica, CONICET, Universidad Nacional de La Plata, Argentina
| | - Fernando Benavente
- Departament d'Enginyeria Química i Química Analítica, Nutrition and Food Safety Research Institute (INSA-UB), Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
37
|
Breadmore MC, Wuethrich A, Li F, Phung SC, Kalsoom U, Cabot JM, Tehranirokh M, Shallan AI, Abdul Keyon AS, See HH, Dawod M, Quirino JP. Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2014–2016). Electrophoresis 2016; 38:33-59. [DOI: 10.1002/elps.201600331] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Michael C. Breadmore
- Australian Centre of Research on Separation Science, School of Physical Science University of Tasmania Hobart Tasmania Australia
- ARC Centre of Excellence for Electromaterials Science, School of Physical Science University of Tasmania Hobart Tasmania Australia
- ASTech, ARC Training Centre for Portable Analytical Separation Technologies, School of Physical Science University of Tasmania Hobart Tasmania Australia
| | - Alain Wuethrich
- Australian Centre of Research on Separation Science, School of Physical Science University of Tasmania Hobart Tasmania Australia
| | - Feng Li
- Australian Centre of Research on Separation Science, School of Physical Science University of Tasmania Hobart Tasmania Australia
| | - Sui Ching Phung
- Australian Centre of Research on Separation Science, School of Physical Science University of Tasmania Hobart Tasmania Australia
| | - Umme Kalsoom
- Australian Centre of Research on Separation Science, School of Physical Science University of Tasmania Hobart Tasmania Australia
| | - Joan M. Cabot
- Australian Centre of Research on Separation Science, School of Physical Science University of Tasmania Hobart Tasmania Australia
- ARC Centre of Excellence for Electromaterials Science, School of Physical Science University of Tasmania Hobart Tasmania Australia
| | - Masoomeh Tehranirokh
- ASTech, ARC Training Centre for Portable Analytical Separation Technologies, School of Physical Science University of Tasmania Hobart Tasmania Australia
| | - Aliaa I. Shallan
- Department of Analytical Chemistry, Faculty of Pharmacy Helwan University Cairo Egypt
| | - Aemi S. Abdul Keyon
- Department of Chemistry, Faculty of Science Universiti Teknologi Malaysia Johor Bahru Johor Malaysia
| | - Hong Heng See
- Department of Chemistry, Faculty of Science Universiti Teknologi Malaysia Johor Bahru Johor Malaysia
- Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and industrial Research Universiti Teknologi Malaysia Johor Bahru Johor Malaysia
| | - Mohamed Dawod
- Department of Chemistry University of Michigan Ann Arbor MI USA
| | - Joselito P. Quirino
- Australian Centre of Research on Separation Science, School of Physical Science University of Tasmania Hobart Tasmania Australia
| |
Collapse
|
38
|
Selective tools for the solid-phase extraction of Ochratoxin A from various complex samples: immunosorbents, oligosorbents, and molecularly imprinted polymers. Anal Bioanal Chem 2016; 408:6983-99. [PMID: 27585915 DOI: 10.1007/s00216-016-9886-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/21/2016] [Accepted: 08/16/2016] [Indexed: 12/27/2022]
Abstract
The evolution of instrumentation in terms of separation and detection has allowed a real improvement of the sensitivity and the analysis time. However, the analysis of ultra-traces of toxins such as ochratoxin A (OTA) from complex samples (foodstuffs, biological fluids…) still requires a step of purification and of preconcentration before chromatographic determination. In this context, extraction sorbents leading to a molecular recognition mechanism appear as powerful tools for the selective extraction of OTA and of its structural analogs in order to obtain more reliable and sensitive quantitative analyses of these compounds in complex media. Indeed, immunosorbents and oligosorbents that are based on the use of immobilized antibodies and of aptamers, respectively, and that are specific to OTA allow its selective clean-up from complex samples with high enrichment factors. Similar molecular recognition mechanisms can also be obtained by developing molecularly imprinted polymers, the synthesis of which leads to the formation of cavities that are specific to OTA, thus mimicking the recognition site of the biomolecules. Therefore, the principle, the advantages, the limits of these different types of extraction tools, and their complementary behaviors will be presented. The introduction of these selective tools in miniaturized devices will also be discussed.
Collapse
|
39
|
Hong T, Yang X, Xu Y, Ji Y. Recent advances in the preparation and application of monolithic capillary columns in separation science. Anal Chim Acta 2016; 931:1-24. [DOI: 10.1016/j.aca.2016.05.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 05/07/2016] [Accepted: 05/09/2016] [Indexed: 12/12/2022]
|
40
|
Guzman NA, Guzman DE. An emerging micro-scale immuno-analytical diagnostic tool to see the unseen. Holding promise for precision medicine and P4 medicine. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1021:14-29. [DOI: 10.1016/j.jchromb.2015.11.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/15/2015] [Accepted: 11/17/2015] [Indexed: 01/10/2023]
|
41
|
One-pot synthesis of a new high vinyl content hybrid silica monolith dedicated to nanoliquid chromatography. J Sep Sci 2016; 39:842-50. [DOI: 10.1002/jssc.201501076] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/26/2015] [Accepted: 12/14/2015] [Indexed: 11/07/2022]
|
42
|
Wu C, Liang Y, Yang K, Min Y, Liang Z, Zhang L, Zhang Y. Clickable Periodic Mesoporous Organosilica Monolith for Highly Efficient Capillary Chromatographic Separation. Anal Chem 2016; 88:1521-5. [DOI: 10.1021/acs.analchem.5b04641] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ci Wu
- Key
Lab of Separation Sciences for Analytical Chemistry, National Chromatographic
Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Liang
- Key
Lab of Separation Sciences for Analytical Chemistry, National Chromatographic
Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Kaiguang Yang
- Key
Lab of Separation Sciences for Analytical Chemistry, National Chromatographic
Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yi Min
- Key
Lab of Separation Sciences for Analytical Chemistry, National Chromatographic
Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Liang
- Key
Lab of Separation Sciences for Analytical Chemistry, National Chromatographic
Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lihua Zhang
- Key
Lab of Separation Sciences for Analytical Chemistry, National Chromatographic
Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yukui Zhang
- Key
Lab of Separation Sciences for Analytical Chemistry, National Chromatographic
Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
43
|
Zhao JC, Zhu QY, Zhao LY, Lian HZ, Chen HY. Preparation of an aptamer based organic–inorganic hybrid monolithic column with gold nanoparticles as an intermediary for the enrichment of proteins. Analyst 2016; 141:4961-7. [DOI: 10.1039/c6an00957c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gold nanoparticles are used as an intermediary in a sandwich structure for the preparation of an aptamer-based organic–inorganic hybrid affinity monolithic column.
Collapse
Affiliation(s)
- Jin-cheng Zhao
- State Key Laboratory of Analytical Chemistry for Life Science
- Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry & Chemical Engineering and Center of Materials Analysis
- Nanjing University
- Nanjing 210023
| | - Qing-yun Zhu
- State Key Laboratory of Analytical Chemistry for Life Science
- Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry & Chemical Engineering and Center of Materials Analysis
- Nanjing University
- Nanjing 210023
| | - Ling-yu Zhao
- State Key Laboratory of Analytical Chemistry for Life Science
- Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry & Chemical Engineering and Center of Materials Analysis
- Nanjing University
- Nanjing 210023
| | - Hong-zhen Lian
- State Key Laboratory of Analytical Chemistry for Life Science
- Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry & Chemical Engineering and Center of Materials Analysis
- Nanjing University
- Nanjing 210023
| | - Hong-yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science
- Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry & Chemical Engineering and Center of Materials Analysis
- Nanjing University
- Nanjing 210023
| |
Collapse
|
44
|
Bordoni AV, Lombardo MV, Wolosiuk A. Photochemical radical thiol–ene click-based methodologies for silica and transition metal oxides materials chemical modification: a mini-review. RSC Adv 2016. [DOI: 10.1039/c6ra10388j] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The photochemical radical thiol–ene addition reaction (PRTEA) is a highly powerful synthetic technique for surface modification.
Collapse
Affiliation(s)
- Andrea V. Bordoni
- Gerencia Química – Centro Atómico Constituyentes
- Comisión Nacional de Energía Atómica
- CONICET
- B1650KNA San Martín
- Argentina
| | - M. Verónica Lombardo
- Gerencia Química – Centro Atómico Constituyentes
- Comisión Nacional de Energía Atómica
- CONICET
- B1650KNA San Martín
- Argentina
| | - Alejandro Wolosiuk
- Gerencia Química – Centro Atómico Constituyentes
- Comisión Nacional de Energía Atómica
- CONICET
- B1650KNA San Martín
- Argentina
| |
Collapse
|
45
|
Ha TH. Recent Advances for the Detection of Ochratoxin A. Toxins (Basel) 2015; 7:5276-300. [PMID: 26690216 PMCID: PMC4690132 DOI: 10.3390/toxins7124882] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 12/15/2022] Open
Abstract
Ochratoxin A (OTA) is one of the mycotoxins secreted by Aspersillus and Penicillium that can easily colonize various grains like coffee, peanut, rice, and maize. Since OTA is a chemically stable compound that can endure the physicochemical conditions of modern food processing, additional research efforts have been devoted to develop sensitive and cost-effective surveillance solutions. Although traditional chromatographic and immunoassays appear to be mature enough to attain sensitivity up to the regulation levels, alternative detection schemes are still being enthusiastically pursued in an attempt to meet the requirements of rapid and cost-effective detections. Herein, this review presents recent progresses in OTA detections with minimal instrumental usage, which have been facilitated by the development of OTA aptamers and by the innovations in functional nanomaterials. In addition to the introduction of aptamer-based OTA detection techniques, OTA-specific detection principles are also presented, which exclusively take advantage of the unique chemical structure and related physicochemical characteristics.
Collapse
Affiliation(s)
- Tai Hwan Ha
- BioNanotechnology Research Centre, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea.
- Nanobiotechnology (Major), Korea University of Science & Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea.
| |
Collapse
|
46
|
Ramautar R, Somsen GW, de Jong GJ. Developments in coupled solid-phase extraction-capillary electrophoresis 2013-2015. Electrophoresis 2015; 37:35-44. [DOI: 10.1002/elps.201500401] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/05/2015] [Accepted: 10/05/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Rawi Ramautar
- Leiden Academic Center for Drug Research; Leiden University; Leiden The Netherlands
| | - Govert W. Somsen
- AIMMS Division of BioAnalytical Chemistry; VU University Amsterdam; Amsterdam The Netherlands
| | | |
Collapse
|
47
|
El-Debs R, Cadoux F, Bois L, Bonhommé A, Randon J, Dugas V, Demesmay C. Synthesis and Surface Reactivity of Vinylized Macroporous Silica Monoliths: One-Pot Hybrid versus Postsynthesis Grafting Strategies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:11649-11658. [PMID: 26451684 DOI: 10.1021/acs.langmuir.5b02681] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Different synthesis routes have been implemented to prepare macroporous monoliths with vinyl pendant groups and micrometric skeletons and through-pore sizes. A standard process combining the synthesis of a widely used (methyltrimethoxysilane/tetramethoxysilane) (MTMS/TMOS) hybrid silica monolith and the postsilanization with vinyltrimethoxysilane (VTMS) was used as reference material (Vgr-MTMS). An alternative "one-pot" procedure was used to obtain vinylized hybrid monoliths. Two VTMS/TMOS hybrid based monoliths were successfully prepared starting from 20% (w) and 80% (w/w) of VTMS, respectively, called 20-VTMS and 80-VTMS. Monoliths were characterized by SEM, nitrogen-adsorption isotherm, and (29)Si MAS NMR spectroscopy. One-pot synthesis allowed to obtain higher vinyl contents (15.9 and 61.5 mol % of Si atoms bonded to vinyl groups respectively for 20-VTMS and 80-VTMS) than for the postgrafted one (7.1%). Accessibility of vinyl groups was determined by the extent of bromination reactions followed by FTIR-ATR spectroscopy. Bromination with reaction yields were higher than 80% for all materials (80%, 85%, and 100% for 80-VTMS, 20-VTMS, and Vgr-MTMS respectively), with no diffusion issues The chemical reactivity of the pendant vinyl groups was investigated through radical-mediated thiol-ene reaction and radical-initiated bisulfite addition. Reaction yields for the two VTMS hybrid monoliths were quite lower (4-6%) than those obtained (about 50%) for the Vgr-MTMS monolith. The difference in reactivity was attributed to the steric hindrance of the vinyl moieties at the surface of hybrid materials. However, the lower reactivity of vinyl groups is compensated by their considerably higher surface density. Thus, hybrid monoliths are advantageous over their grafted counterparts, due to their higher hydrolytic stability and to the greater simplicity of the one-pot process. A chromatographic application exemplifies their interest and performances in separation science.
Collapse
Affiliation(s)
- Racha El-Debs
- Université Claude Bernard Lyon I, Institut des Sciences Analytiques, Université de Lyon , UMR CNRS 5280, 5, rue de la DOUA, 69100 Villeurbanne, France
| | - Franck Cadoux
- Université Claude Bernard Lyon I, Institut des Sciences Analytiques, Université de Lyon , UMR CNRS 5280, 5, rue de la DOUA, 69100 Villeurbanne, France
| | - Laurence Bois
- Université Claude Bernard Lyon I, Laboratoire des Multimatériaux et Interfaces, Université de Lyon , UMR CNRS 5615, 2, Avenue Grignard, 69622 Villeurbanne, cedex, France
| | - Anne Bonhommé
- Université Claude Bernard Lyon I, Institut des Sciences Analytiques, Université de Lyon , UMR CNRS 5280, 5, rue de la DOUA, 69100 Villeurbanne, France
| | - Jérôme Randon
- Université Claude Bernard Lyon I, Institut des Sciences Analytiques, Université de Lyon , UMR CNRS 5280, 5, rue de la DOUA, 69100 Villeurbanne, France
| | - Vincent Dugas
- Université Claude Bernard Lyon I, Institut des Sciences Analytiques, Université de Lyon , UMR CNRS 5280, 5, rue de la DOUA, 69100 Villeurbanne, France
| | - Claire Demesmay
- Université Claude Bernard Lyon I, Institut des Sciences Analytiques, Université de Lyon , UMR CNRS 5280, 5, rue de la DOUA, 69100 Villeurbanne, France
| |
Collapse
|