1
|
Zhang S, Gong F, Liu J, You S, Liu T, Yang J, Hu J. Effects of acteoside from Cistanche tubulosa on the plasma metabolome of cancer-related fatigue mice inoculated with colon cancer cells. Front Pharmacol 2025; 15:1370264. [PMID: 39872045 PMCID: PMC11769790 DOI: 10.3389/fphar.2024.1370264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 12/17/2024] [Indexed: 01/29/2025] Open
Abstract
Objective To elucidate the metabolic mechanisms by which acteoside (ACT) isolated from Cistanche tubulosa alleviates cancer-related fatigue (CRF) in a murine model of colon cancer with cachexia. Methods BALB/c mice inoculated with C26 colon cancer cells were treated with paclitaxel (PTX, 10 mg/kg) and ACT (100 mg/kg) alone or in combination for 21 days. Fatigue-associated behaviors, tumor inhibition rate, and skeletal muscle morphology assessed by hematoxylin-eosin (H&E) staining and electron microscopy were evaluated. Finally, liquid chromatography-mass spectrometry (LC/MS) was employed to investigate alterations in the plasma metabolic profile of tumor-bearing mice with CRF in response to ACT treatment, and the affinity between metabolite-associated proteins and ACT was verified by Surface plasmon resonance (SPR) assay. Results Our study demonstrated the presence of CRF in the colon cancer mouse model, with the severity of fatigue increasing alongside tumor growth. Administration of ACT ameliorated both tumor burden and PTX-induced muscle fatigue-like behavior. LC/MS analysis identified a panel of differentially regulated metabolites, including trans-aconitine, citric acid, 3-coumaric acid, ephedrine, thymine, cytosine, indole-3-acetic acid, and pantothenol-9. These metabolites were primarily enriched in pathways associated with valine biosynthesis, tyrosine metabolism, tryptophan metabolism, and biosynthesis of pyridine alkaloids. Furthermore, several key enzymes, including CYP3A4, CYP19A1, CYP2E1, TNF, BCL-2, RYR2, and ATP2A1, were identified as potential targets underlying the anti-CRF effects of ACT. Conclusion This study suggests that ACT derived from C. tubulosa harbors protective properties against cancer-related fatigue mediated by tumor cells.
Collapse
Affiliation(s)
- Shilei Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Central Laboratory, School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Fukai Gong
- Department of Pharmacy, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Jiali Liu
- Department of Pharmacognosy, School of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Shuping You
- Department of Basic Nursing, School of Nursing, Xinjiang Medical University, Urumqi, China
| | - Tao Liu
- Department of Toxicology, School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Jianhua Yang
- Department of Pharmacy, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Junping Hu
- Department of Pharmacognosy, School of Pharmacy, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
2
|
Liang H, Yuan S, Ma X, Song Q, Song Y, Tu P, Jiang Y. A quantitative chemomics strategy for the comprehensive comparison of Murraya paniculata and M. exotica using liquid chromatography coupled with mass spectrometry. J Chromatogr A 2024; 1718:464736. [PMID: 38364618 DOI: 10.1016/j.chroma.2024.464736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/03/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Murrayae Folium et Cacumen (MFC) is a traditional Chinese medicine (TCM) derived from two plant species, Murraya exotica L. and Murraya paniculata (L.) Jack, as recorded in the Chinese Pharmacopoeia. However, there is no research available on the comprehensive analysis and comparison of the chemical constituents of these two species. In the present study, an integrated LC-MS-based quantitative metabolome strategy was proposed to conduct a comprehensive and in-depth qualitative and quantitative analysis and comparison of the chemome of M. exotica and M. paniculata. Firstly, the universal chemical information of two plants was obtained by quadrupole-time-of-flight mass spectrometry (Q-TOF-MS) combined with hybrid triple quadrupole-linear ion trap mass spectrometry (Qtrap-MS). Subsequently, a UNIFI in house database, the proposed fragmentation patterns, and a quantitative structure chromatographic retention relationship (QSRR) model were integrated for the rapid, comprehensive, and accurate structural elucidation of the chemical constituents of these two species. Thirdly, a large-scale quantitation method was established using scheduled multiple reaction monitoring mode (sMRM) and 76 primary components were selected as quantitative markers for the method validation. The obtained dataset was then subjected for multivariate statistical analysis to comprehensive comparison of these two plants. As a result, a total of 209 and 212 compounds were identified from M. exotica and M. paniculata, respectively. Among them, 103 common constituents were disclosed in both plants. The multivariate statistical analysis and absolute quantitative analysis revealed noticeable differences in the contents of specific chemical constituents between these two plants. The higher quantity constituents in M. exotica are 7-methoxycoumarins, while polymethoxylated flavonoids are the major constituents in M. paniculata. The common compounds accounted for approximately 80 % of the quantitative components in both plants, which provides a theoretical basis for their common use as the official source of MFC. In sum, the established quantitative chemomics strategy supplies an effective means for comprehensive chemical comparison of multi-source TCMs.
Collapse
Affiliation(s)
- Haizhen Liang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Shuo Yuan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaoli Ma
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qingqing Song
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
3
|
Wei D, Sun J, Luo Z, Zhang G, Liu Y, Zhang H, Xie Z, Gu Z, Tao WA. Targeted Phosphoproteomics of Human Saliva Extracellular Vesicles via Multiple Reaction Monitoring Cubed (MRM 3). Anal Chem 2024; 96:1223-1231. [PMID: 38205554 DOI: 10.1021/acs.analchem.3c04464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Oral squamous cell carcinoma (OSCC) has become a global health problem due to its increasing incidence and high mortality rate. Early intervention through monitoring of the diagnostic biomarker levels during OSCC treatment is critical. Extracellular vesicles (EVs) are emerging surrogates in intercellular communication through transporting biomolecule cargo and have recently been identified as a potential source of biomarkers such as phosphoproteins for many diseases. Here, we developed a multiple reaction monitoring cubed (MRM3) method coupled with a novel sample preparation strategy, extracellular vesicles to phosphoproteins (EVTOP), to quantify phosphoproteins using a minimal amount of saliva (50 μL) samples from OSCC patients with high specificity and sensitivity. Our results established differential patterns in the phosphopeptide content of healthy, presurgery, and postsurgery OSCC patient groups. Notably, we discovered significantly increased salivary phosphorylated alpha-amylase (AMY) in the postsurgery group compared to the presurgery group. We hereby present the first targeted MS method with extremely high sensitivity for measuring endogenous phosphoproteins in human saliva EVs.
Collapse
Affiliation(s)
- Dong Wei
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - Jie Sun
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - Zhuojun Luo
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Guiyuan Zhang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - Yufeng Liu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - Hao Zhang
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - Zhuoying Xie
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing 210096, China
| | - W Andy Tao
- Department of Chemistry and Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
4
|
Liu J, Wang Y, Li Q, Liu T, Liu X, Zhang H, Fu Z, Dai Y, Yang H, Wang Y, Wang Y. Phenylethanoid glycosides derived from Cistanche deserticola promote neurological functions and the proliferation of neural stem cells for improving ischemic stroke. Biomed Pharmacother 2023; 167:115507. [PMID: 37722192 DOI: 10.1016/j.biopha.2023.115507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023] Open
Abstract
Phenylethanoid glycosides derived from Cistanche deserticola (PhGs) are plant-derived natural medicinal compounds that occur in many medicinal plants. This study aims to investigate whether PhGs treatment improves the stroke and its potential mechanisms. Adult male C57BL/6 J mice were administrated PhGs once daily for 7 days after MCAO surgery. The neurological score, and catwalk were evaluated on Day 1, 3 and 7 after ischemic stroke. Furthermore, triphenyl-2,3,5-tetrazoliumchloride (TTC) and hematoxylin-eosin (H&E) staining were used for evaluating the infarct volume and neuronal restoration. The effects of PhGs on NSCs proliferation were investigated in vitro and in vivo. Western blot was used to detect the proteins of Wnt/β-catenin signaling pathway. This study found that PhGs effectively improved the neurological functions in ischemic stroke mice. TTC and H&E staining demonstrated that PhGs not only reduced infarct volume, but also improved neuronal restoration. The immunohistochemistry and 5-Ethynyl-2-deoxyuridine (EdU) incorporation assays revealed that PhGs promoted the proliferation of neural stem cells (NSCs) in subventricular zone (SVZ). In addition, transcriptome analysis of NSCs showed that the Wnt/β-catenin signaling pathway was involved in the PhGs induced NSCs proliferation. Importantly, the related proteins in the Wnt/β-catenin signaling pathway were changed after PhGs treatment, including β-catenin, Wnt3a, GSK-3β, c-Myc. PhGs treatment improved the stroke through enhancing endogenous NSCs proliferation via activating Wnt/β-catenin signaling pathway. Due to its effect on the proliferation of NSCs, PhGs are a potential adjuvant therapeutic drug for post-stroke treatment.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
| | - Yanyan Wang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qinyuan Li
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
| | - Tao Liu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xu Liu
- Tianjin Xiqing District Hospital of Traditional Chinese Medicine, Tianjin, 300380, China
| | - Han Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component based Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhifei Fu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yifan Dai
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Haiyuan Yang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China.
| | - Yu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State Key Laboratory of Component based Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Ying Wang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
5
|
Zhang M, Wang Q, Li X, Zhao W, Hu K, Huang Q, Song Y, Shao R. Integrated strategy facilitates rapid in-depth chemome characterization of traditional Chinese medicine prescriptions: Shengbai oral liquid as a case. J Sep Sci 2023; 46:e2300350. [PMID: 37525339 DOI: 10.1002/jssc.202300350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/05/2023] [Accepted: 07/19/2023] [Indexed: 08/02/2023]
Abstract
Chemome characterization is the prerequisite for either therapeutic mechanism clarification or quality control of traditional Chinese medicine prescriptions (TCMPs). Liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) currently serves as the most popular analytical tool; however, chemome characterization is still challenged by MS/MS spectral acquisition and post-acquisition data processing. Here, an integrated strategy was proposed for in-depth chemome clarification of Shengbai oral liquid (SBOL). Gas phase ion fractionation with staggered mass ranges was demonstrated to be the superior acquisition method regarding MS2 spectrum coverage in this study, and narrower mass range further advanced coverage. To facilitate information extraction, all ingredient materials were measured in parallel to form an in-house library, where each MS1 -MS2 item generated a square mass-to-charge ratio (m/z) frame to capture the tagged identity and each chemical family produced a pentagon frame for mass defect features to accomplish chemical analogs-targeted quasi-molecular ion extraction. Square m/z frame imprinting captured 355 identities, while mass defect frames extracted 275 compounds. Attributing to comprehensive MS2 spectrum acquisition and efficient data processing, 355 components were captured and tentatively identified, resulting in a clarified chemical composition for SBOL. Therefore, the proposed strategy should be meaningful for the chemome characterization of TCMPs.
Collapse
Affiliation(s)
- Min Zhang
- Department of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Qian Wang
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyun Li
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenhui Zhao
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Kaiyong Hu
- Hubei Mengyang Pharmaceutical Co., Ltd., Jingmen, China
| | - Qian Huang
- Hubei Mengyang Pharmaceutical Co., Ltd., Jingmen, China
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Rong Shao
- Department of Pharmacy, Xinjiang Medical University, Urumqi, China
- School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, China
- Research Center of National Drug Policy and Ecosystem, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
6
|
Wu L, Xiang T, Chen C, Isah MB, Zhang X. Studies on Cistanches Herba: A Bibliometric Analysis. PLANTS (BASEL, SWITZERLAND) 2023; 12:1098. [PMID: 36903966 PMCID: PMC10005655 DOI: 10.3390/plants12051098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
As a famous tonic herb, Cistanches Herba is known for its broad medicinal functions, especially its hormone balancing, anti-aging, anti-dementia, anti-tumor, anti-oxidative, neuroprotective, and hepatoprotective effects. This study aims to provide a comprehensive bibliometric analysis of studies on Cistanche and to identify research hotspots and frontier topics on the genus. Based on the metrological analysis software CiteSpace, 443 Cistanche related papers were quantitatively reviewed. The results indicate that 330 institutions from 46 countries have publications in this field. China was the leading country in terms of research importance and number of publication (335 articles). In the past decades, studies on Cistanche have mainly focused on its rich active substances and pharmacological effects. Although the research trend shows that Cistanche has grown from an endangered species to an important industrial plant, its breeding and cultivation continue to be important areas for research. In the future, the application of Cistanche species as functional foods may be a new research trend. In addition, active collaborations among researchers, institutions, and countries are expected.
Collapse
Affiliation(s)
- Longjiang Wu
- Chinese-German Joint Laboratory for Natural Product Research, Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong 723001, China
| | - Tian Xiang
- Chinese-German Joint Laboratory for Natural Product Research, Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong 723001, China
| | - Chen Chen
- Chinese-German Joint Laboratory for Natural Product Research, Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong 723001, China
| | - Murtala Bindawa Isah
- Department of Biochemistry, Faculty of Natural and Applied Sciences, Umaru Musa Yar’adua University Katsina, P.M.B. 2218, Katsina 820102, Nigeria
- Biomedical Research and Training Centre, Yobe State University, P.M.B. 1144, Damaturu 600213, Nigeria
| | - Xiaoying Zhang
- Chinese-German Joint Laboratory for Natural Product Research, Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong 723001, China
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
7
|
Nie F, Feng C, Ahmad N, Tian M, Liu Q, Wang W, Lin Z, Li C, Zhao C. A new green alternative solvent for extracting echinacoside and acteoside from Cistanche deserticola based on ternary natural deep eutectic solvent. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Fan L, Peng Y, Chen X, Ma P, Li X. Integrated analysis of phytochemical composition, pharmacokinetics, and network pharmacology to probe distinctions between the stems of Cistanche deserticola and C. tubulosa based on antidepressant activity. Food Funct 2022; 13:8542-8557. [PMID: 35880684 DOI: 10.1039/d2fo01357f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cistanches Herba (CH), as a nutritional and functional supplement used in food and health care products for centuries, consists of the stems of Cistanche deserticola and C. tubulosa. Our previous studies confirmed that the stems of C. tubulosa exerted advantageous antidepressant effect. However, whether the difference in the phytochemical compositions between the stems of C. deserticola and C. tubulosa would lead to diverse bioavailability and accompanying antidepressant effects remain unclear, as well as their specific bioactive compounds and underlying mechanism. In this study, a series of comparative studies showed that the antidepressant activity of C. tubulosa extract (CTE) was stronger than that of the C. deserticola extract (CDE), which was accompanied with the discovery of 10 differential markers from 52 identified compounds between CTE and CDE, and different pharmacokinetic behaviors of 9 prototype and 4 metabolites belonging to the glycosides between the CTE-treated and CDE-treated group in normal and depressive rats were simultaneously found by a validated UPLC-QTRAP-MS/MS method. Subsequently, network pharmacology prediction, in vitro and in vivo experiment verification from these differential markers further revealed that 7 compounds were confirmed to contribute to the antidepressant action of CH by inhibiting neuronal apoptosis mediated by mitochondrial function and activation of the AKT/GSK3β signaling pathway, synchronously indicating most of those, with higher bioavailability in vivo after CTE administration, that were responsible for the stronger antidepressant effect of CTE over CDE. Hence, the integrated analysis of phytochemical composition, pharmacokinetics, and network pharmacology provide new insights into the applications of CH from different botanical origins against depression.
Collapse
Affiliation(s)
- Li Fan
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| | - Ying Peng
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| | - Xiaonan Chen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| | - Ping Ma
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| | - Xiaobo Li
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
| |
Collapse
|
9
|
Xu H, Li X, Hao Y, Xu X, Zhang Y, Zhang J. Polyethyleneimine modified heterostructure porous polymer microspheres for efficient adsorption of acteoside. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Online pressurized liquid extraction enables directly chemical analysis of herbal medicines: A mini review. J Pharm Biomed Anal 2021; 205:114332. [PMID: 34455204 DOI: 10.1016/j.jpba.2021.114332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022]
Abstract
Extraction is responsible for transferring components from solid materials into solvent. Tedious extraction procedures are usually involved in liquid chromatography-based chemical analysis of herbal medicines (HMs), resulting in extensive consumptions of organic solvents, time, energy, and materials, as well as the significant chemical degradation risks for those labile compounds. Fortunately, an emerging online pressurized liquid extraction (OLE, also known as online liquid extraction) technique has been developed for the achievement of directly chemical analysis for solid matrices in recent years, and in a short period, this versatile technique has been widely applied for the chemical analysis of HMs. In the present mini-review, we aim to briefly summarize the principles, the instrumentation, along with the application progress of this robust and flexible extraction technique in the latest six years, and the emerging challenges and future prospects are discussed as well. Special attention is paid onto the hyphenation of the versatile OLE module with LC-MS instrument. The described information is expected to introduce a promising OLE approach and to provide the guidance for the achievement of directly chemical analysis of, but not limited to, HMs.
Collapse
|
11
|
Liu W, Cao L, Jia J, Li H, Li W, Li J, Song Y. Rapid chemome profiling of Artemisia capillaris Thunb. using direct infusion-mass spectrometry. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2021. [DOI: 10.1016/j.jtcms.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
12
|
Xu H, Li X, Hao Y, Zhao X, Cheng Y, Zhang J. Highly selective separation of acteoside from Cistanche tubulosa using an ionic liquid based aqueous two–phase system. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115982] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
13
|
Chen YH, Bi JH, Xie M, Zhang H, Shi ZQ, Guo H, Yin HB, Zhang JN, Xin GZ, Song HP. Classification-based strategies to simplify complex traditional Chinese medicine (TCM) researches through liquid chromatography-mass spectrometry in the last decade (2011-2020): Theory, technical route and difficulty. J Chromatogr A 2021; 1651:462307. [PMID: 34161837 DOI: 10.1016/j.chroma.2021.462307] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 02/08/2023]
Abstract
The difficulty of traditional Chinese medicine (TCM) researches lies in the complexity of components, metabolites, and bioactivities. For a long time, there has been a lack of connections among the three parts, which is not conducive to the systematic elucidation of TCM effectiveness. To overcome this problem, a classification-based methodology for simplifying TCM researches was refined from literature in the past 10 years (2011-2020). The theoretical basis of this methodology is set theory, and its core concept is classification. Its starting point is that "although TCM may contain hundreds of compounds, the vast majority of these compounds are structurally similar". The methodology is composed by research strategies for components, metabolites and bioactivities of TCM, which are the three main parts of the review. Technical route, key steps and difficulty are introduced in each part. Two perspectives are highlighted in this review: set theory is a theoretical basis for all strategies from a conceptual perspective, and liquid chromatography-mass spectrometry (LC-MS) is a common tool for all strategies from a technical perspective. The significance of these strategies is to simplify complex TCM researches, integrate isolated TCM researches, and build a bridge between traditional medicines and modern medicines. Potential research hotspots in the future, such as discovery of bioactive ingredients from TCM metabolites, are also discussed. The classification-based methodology is a summary of research experience in the past 10 years. We believe it will definitely provide support and reference for the following TCM researches.
Collapse
Affiliation(s)
- Yue-Hua Chen
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Jing-Hua Bi
- Shanxi Medical University, Taiyuan 030001, China
| | - Ming Xie
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Hui Zhang
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Zi-Qi Shi
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Hua Guo
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Hai-Bo Yin
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Jia-Nuo Zhang
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Gui-Zhong Xin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Hui-Peng Song
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
| |
Collapse
|
14
|
Yu Y, Yao C, Guo DA. Insight into chemical basis of traditional Chinese medicine based on the state-of-the-art techniques of liquid chromatography-mass spectrometry. Acta Pharm Sin B 2021; 11:1469-1492. [PMID: 34221863 PMCID: PMC8245813 DOI: 10.1016/j.apsb.2021.02.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/02/2021] [Accepted: 02/22/2021] [Indexed: 12/21/2022] Open
Abstract
Traditional Chinese medicine (TCM) has been an indispensable source of drugs for curing various human diseases. However, the inherent chemical diversity and complexity of TCM restricted the safety and efficacy of its usage. Over the past few decades, the combination of liquid chromatography with mass spectrometry has contributed greatly to the TCM qualitative analysis. And novel approaches have been continuously introduced to improve the analytical performance, including both the data acquisition methods to generate a large and informative dataset, and the data post-processing tools to extract the structure-related MS information. Furthermore, the fast-developing computer techniques and big data analytics have markedly enriched the data processing tools, bringing benefits of high efficiency and accuracy. To provide an up-to-date review of the latest techniques on the TCM qualitative analysis, multiple data-independent acquisition methods and data-dependent acquisition methods (precursor ion list, dynamic exclusion, mass tag, precursor ion scan, neutral loss scan, and multiple reaction monitoring) and post-processing techniques (mass defect filtering, diagnostic ion filtering, neutral loss filtering, mass spectral trees similarity filter, molecular networking, statistical analysis, database matching, etc.) were summarized and categorized. Applications of each technique and integrated analytical strategies were highlighted, discussion and future perspectives were proposed as well.
Collapse
Key Words
- BS, background subtraction
- CCS, collision cross section
- CE, collision energy
- CID, collision-induced dissociation
- DDA, data-dependent acquisition
- DE, dynamic exclusion
- DIA, data-independent acquisition
- DIF, diagnostic ion filtering
- DM, database matching
- Data acquisition
- Data post-processing
- EL, exclusion list
- EMS, enhanced mass spectrum
- EPI, enhanced product ion
- FS, full scan
- HCD, high-energy C-trap dissociation
- IDA, information dependent acquisition
- IM, ion mobility
- IPF, isotope pattern filtering
- ISCID, in-source collision-induced dissociation
- LC, liquid chromatography
- LTQ-Orbitrap, linear ion-trap/orbitrap
- Liquid chromatography−mass spectrometry
- MDF, mass defect filtering
- MIM, multiple ion monitoring
- MN, molecular networking
- MRM, multiple reaction monitoring
- MS, mass spectrometry
- MTSF, mass spectral trees similarity filter
- NL, neutral loss
- NLF, neutral loss filtering
- NLS, neutral loss scan
- NRF, nitrogen rule filtering
- PCA, principal component analysis
- PIL, precursor ion list
- PIS, precursor ion scan
- PLS-DA, partial least square-discriminant analysis
- Q-TRAP, hybrid triple quadrupole-linear ion trap
- QSRR, quantitative structure retention relationship
- QqQ, triple quadrupole
- Qualitative analysis
- RT, retention time
- SA, statistical analysis
- TCM, traditional Chinese medicine
- Traditional Chinese medicine
- UHPLC, ultra-high performance liquid chromatography
- cMRM, conventional multiple reaction monitoring
- sMRM, scheduled multiple reaction monitoring
Collapse
Affiliation(s)
- Yang Yu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changliang Yao
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - De-an Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Lei H, Wang X, Zhang Y, Cheng T, Mi R, Xu X, Zu X, Zhang W. Herba Cistanche (Rou Cong Rong): A Review of Its Phytochemistry and Pharmacology. Chem Pharm Bull (Tokyo) 2021; 68:694-712. [PMID: 32741910 DOI: 10.1248/cpb.c20-00057] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Herba Cistanche, known as Rou Cong Rong in Chinese, is a very valuable Chinese herbal medicine that has been recorded in the Chinese Pharmacopoeia. Rou Cong Rong has been extensively used in clinical practice in traditional herbal formulations and has also been widely used as a health food supplement for a long time in Asian countries such as China and Japan. There are many bioactive compounds in Rou Cong Rong, the most important of which are phenylethanoid glycosides. This article summarizes the up-to-date information regarding the phytochemistry, pharmacology, processing, toxicity and safety of Rou Cong Rong to reveal its pharmacodynamic basis and potential therapeutic effects, which could be of great value for its use in future research.
Collapse
Affiliation(s)
- Huibo Lei
- Institute of Interdisciplinary Medical Sciences, Shanghai University of Traditional Chinese Medicine
| | - Xinyu Wang
- Institute of Interdisciplinary Medical Sciences, Shanghai University of Traditional Chinese Medicine
| | - Yuhao Zhang
- Institute of Interdisciplinary Medical Sciences, Shanghai University of Traditional Chinese Medicine
| | | | - Rui Mi
- School of Pharmacy, Anhui University of Chinese Medicine
| | - Xike Xu
- School of Pharmacy, Second Military Medical University
| | - Xianpeng Zu
- School of Pharmacy, Second Military Medical University
| | - Weidong Zhang
- Institute of Interdisciplinary Medical Sciences, Shanghai University of Traditional Chinese Medicine.,School of Pharmacy, Shanghai Jiao Tong University.,School of Pharmacy, Second Military Medical University
| |
Collapse
|
16
|
Song Y, Zeng K, Jiang Y, Tu P. Cistanches Herba, from an endangered species to a big brand of Chinese medicine. Med Res Rev 2021; 41:1539-1577. [PMID: 33521978 DOI: 10.1002/med.21768] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/11/2020] [Accepted: 11/27/2020] [Indexed: 12/18/2022]
Abstract
Cistanches Herba (CH, Chinese name: Roucongrong), is a very precious, tonic Chinese medicine. Cistanche deserticola and Cistanche tubulosa are the two commonly used species and authenticated in Chinese Pharmacopoeia. Due to the parasitic nature of Cistanche plants, the wild source was once endangered and listed in the Appendix II of Convention on International Trade in Endangered Species of Wild Fauna and Flora. However, after continuously struggling in the past decades, CH has grown up to a big brand of Chinese medicine featured with the cultivation area as 1.26 million mu, the annual output as 6000 tons, and the related industrial output value as more than 20 billion China Yuan, attributing to large-scale cultivation and in-depth phytochemical and pharmacological investigations. Noteworthily, great achievements have reached concerning the research and development of relevant products, such as modern drugs, traditional Chinese medicine prescriptions, and dietary supplements. The current review summarizes the research progresses concerning the distribution and cultivation, phytochemistry, pharmacology, metabolism and product development of CH in the past decades, and the emerging challenges and developing prospects are discussed as well.
Collapse
Affiliation(s)
- Yuelin Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.,Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Kewu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.,Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
17
|
Zhang K, Liu W, Song Q, Wan JB, Yu J, Gong X, Cao L, Si D, Tu P, Li J, Song Y. Integrated Strategy Drives Direct Infusion–Tandem Mass Spectrometry as an Eligible Tool for Shotgun Pseudo-Targeted Metabolomics of Medicinal Plants. Anal Chem 2021; 93:2541-2550. [DOI: 10.1021/acs.analchem.0c04602] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ke Zhang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, East Road of North 3rd Ring, Chaoyang District, Beijing 100029, China
| | - Wenjing Liu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, East Road of North 3rd Ring, Chaoyang District, Beijing 100029, China
| | - Qingqing Song
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, East Road of North 3rd Ring, Chaoyang District, Beijing 100029, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao 999078, China
| | - Juan Yu
- Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd., Zhangzhou 363000, China
| | - Xingcheng Gong
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, East Road of North 3rd Ring, Chaoyang District, Beijing 100029, China
| | - Libo Cao
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, East Road of North 3rd Ring, Chaoyang District, Beijing 100029, China
| | - Dandan Si
- SCIEX China, Jiuxianqiao Middle Road, Chaoyang District, Beijing 100015, China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, East Road of North 3rd Ring, Chaoyang District, Beijing 100029, China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, East Road of North 3rd Ring, Chaoyang District, Beijing 100029, China
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, East Road of North 3rd Ring, Chaoyang District, Beijing 100029, China
| |
Collapse
|
18
|
Yu S, Qin X, Li Z. Quality assessment of Shuxuening injection based on widely targeted metabolomics approach. J Pharm Biomed Anal 2020; 189:113398. [DOI: 10.1016/j.jpba.2020.113398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 01/08/2023]
|
19
|
Li L, Wang Y, Liu S. Application of pseudotargeted method combined with multivariate statistical analysis for the quality assessment of traditional Chinese medicine preparation, Sanhuang Tablet as a case. Anal Bioanal Chem 2020; 412:5863-5872. [DOI: 10.1007/s00216-020-02813-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/17/2020] [Accepted: 07/08/2020] [Indexed: 01/20/2023]
|
20
|
Liao X, Hong Y, Chen Z. Identification and quantification of the bioactive components in Osmanthus fragrans roots by HPLC-MS/MS. J Pharm Anal 2020; 11:299-307. [PMID: 34277118 PMCID: PMC8264379 DOI: 10.1016/j.jpha.2020.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 11/26/2022] Open
Abstract
The roots of O. fragrans are also a valuable resource in addition to its flowers and fruits. In this study, the HPLC-MS/MS method used for analyzing the chemical constituents in O. fragrans roots extract was developed, which showed high sensitivity for both qualitative and quantitative analyses. Thirty-two compounds were first discovered in O. fragrans roots, one compound of which was reported for the first time. The simultaneous determination method for acteoside, isoacteoside, oleuropein and phillyrin was validated to be sensitive and accurate. Then it was applied to determine the content of bioactive components in O. fragrans roots from different cultivars. The content of oleuropein and phillyrin in the twelve batches was relatively stable, while the content of acteoside and isoacteoside varied greatly. Moreover, the therapeutic material basis and mechanism of O. fragrans roots exerting its traditional pharmacodynamics were analyzed by network pharmacology. The results showed that O. fragrans roots might be effective for the treatment of inflammation, cardiovascular diseases, cancer, and rheumatoid arthritis, which is consistent with the traditional pharmacodynamics of O. fragrans roots. This work can provide an analytical method for the comprehensive development of O. fragrans roots. 36 compounds were identified and 32 components were firstly discovered in O. fragrans roots. Network pharmacology was used for analysis of therapeutic material basis. Simple, effective and sensitive HPLC-MS/MS was developed. Bioactive components in O. fragrans roots was elucidated by MS/MS.
Collapse
Affiliation(s)
- Xiaoyan Liao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education; Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals; School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Yuan Hong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education; Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals; School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Zilin Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education; Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals; School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing, 100080, China
| |
Collapse
|
21
|
Wang Q, Dong J, Lu W, He H, Sun X, Zhang K, Song Q, Jiang Y, Wang Y, Li C, Tu P. Phenylethanol glycosides from Cistanche tubulosa improved reproductive dysfunction by regulating testicular steroids through CYP450-3β-HSD pathway. JOURNAL OF ETHNOPHARMACOLOGY 2020; 251:112500. [PMID: 31881320 DOI: 10.1016/j.jep.2019.112500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 12/10/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cistanche tubulosa (Schenk) R. Wight has been used frequently in traditional folk medicine for treatment of male sexual dysfunction (MSD). Phenylethanol glycosides, the main components of C. tubulosa, possess a variety of pharmacological activities due to their multiple properties. However, the underlying mechanism by which phenylethanol glycosides from C. tubulosa (CPhGs) regulates testicular steroids has not been elucidated to date. AIM OF THE STUDY This study is to determine whether CPhGs promotes the reproductive functions of mice through CYP450-3β-HSD pathway of testosterone synthesis. MATERIALS AND METHODS The major compositions of C. tubulosa (CPhGs) were quantified by high performance liquid chromatography (HPLC). The model of reproductive injury in mice were induced by injection of hydrocortisone (HCT). Different doses of CPhGs (72, 145 and 289 mg/kg) and testosterone propionate (TP, positive control drug) were administrated intragastrically for 14 d. The reproductive functions (erectile incubation period, capture and ejaculation incubation period, number of captures and ejaculations) and organ weights (testicle, epididymis, seminal vesicle and penis) were then determined. The levels of luteinizing hormone and testosterone in serum were quantified by radioimmunoassay. The key enzymes in testosterone synthesis pathways such as steroidogenic acute regulatory protein (StAR), cytochrome P450 cholesterol side chain cleavage enzyme (P450scc/CYP11A1) and 3β-hydroxysteroid dehydrogenase (3β-HSD) in the testis were assessed by immunofluorescence (IF) staining or/and Western blot (WB) analysis. RESULTS The results illustrated that the low dose of CPhGs (72 mg/kg) had no significant protective effect against the reproductive injury caused by HCT, while the moderate dose of CPhGs (145 mg/kg) improved the damaged reproductive ability and the declined levels of luteinizing hormone and testosterone in the model mice (P < 0.001, P < 0.05, respectively). In particular, high dose of CPhGs (289 mg/kg) was most effective in improving HCT-induced changes in body weight (P < 0.01), reducing the incubation period of the erectile (P < 0.001), capture (P < 0.05) and ejaculation (P < 0.01), and increasing the number of captures and ejaculations (P < 0.01, P < 0.05, respectively). The weights of testcle, epididymis, seminal vesicle and penis (P < 0.001, P < 0.01, P < 0.01, P < 0.001, respectively) were improved by high dose of CPhGs. The levels of testosterone and its upstream luteinizing hormone were up-regulated by high dose of CPhGs (P < 0.001). Meanwhile, the expressions of the key steroidogenic enzymes including CYP11A1 and 3β-HSD were significantly up-regulated after CPhGs treatment (P < 0.001), demonstrated that CPhGs exerted the effect through enhancing testosterone biosynthesis via CYP450-3β-HSD pathway. CONCLUSIONS CPhGs could significantly protect against HCT-induced deleterious reproductive dysfunction and testis injury. The protective effects were exerted by up-regulating synthesis of testosterone via the CYP450-3β-HSD pathway in Leydig cells.
Collapse
Affiliation(s)
- Qixin Wang
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jianteng Dong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wenji Lu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Hao He
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaoqian Sun
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ke Zhang
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qingqing Song
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yong Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Chun Li
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|
22
|
Zhang XL, Zheng Y, Xia ML, Wu YN, Liu XJ, Xie SK, Wu YF, Wang M. Knowledge Domain and Emerging Trends in Vinegar Research: A Bibliometric Review of the Literature from WoSCC. Foods 2020; 9:E166. [PMID: 32050682 PMCID: PMC7074530 DOI: 10.3390/foods9020166] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/31/2020] [Accepted: 02/06/2020] [Indexed: 12/22/2022] Open
Abstract
Vinegar is one of the most widely used acidic condiments. In recent decades, rapid advances have been made in the area of vinegar research, and the intellectual structure pertaining to this domain has significantly evolved. Thus, it is important that scientists keep abreast of associated developments to ensure an appropriate understanding of this field. To facilitate this current study, a bibliometric analysis method was adopted to visualize the knowledge map of vinegar research based on literature data retrieved from the Web of Science Core Collection (WoSCC) database. In total, 883 original research and review articles from between 1998 and 2019 with 19,663 references were analyzed by CiteSpace. Both a macroscopical sketch and microscopical characterization of the whole knowledge domain were realized. According to the research contents, the main themes that underlie vinegar research can be divided into six categories, that is, microorganisms, substances, health functions, production technologies, adjuvant medicines, and vinegar residues. In addition to the latter analysis, emerging trends and future research foci were predicted. Finally, the evolutionary stage of vinegar research was discerned according to Shneider's four-stage theory. This review will help scientists to discern the dynamic evolution of vinegar research, as well as highlight areas for future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Min Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China; (X.-L.Z.); (Y.Z.); (M.-L.X.); (Y.-N.W.); (X.-J.L.); (S.-K.X.); (Y.-F.W.)
| |
Collapse
|
23
|
Profiling and isomer recognition of phenylethanoid glycosides from Magnolia officinalis based on diagnostic/holistic fragment ions analysis coupled with chemometrics. J Chromatogr A 2020; 1611:460583. [DOI: 10.1016/j.chroma.2019.460583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 09/18/2019] [Accepted: 09/30/2019] [Indexed: 01/08/2023]
|
24
|
Wang Y, Zhang L, Du Z, Pei J, Huang L. Chemical Diversity and Prediction of Potential Cultivation Areas of Cistanche Herbs. Sci Rep 2019; 9:19737. [PMID: 31875048 PMCID: PMC6930302 DOI: 10.1038/s41598-019-56379-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 12/09/2019] [Indexed: 01/03/2023] Open
Abstract
Owing to hostile growth environments and increasing related production, Cistanche plants have decreased in number. The aim of the present study was to evaluate the quality of and to predict potential suitable regions for two official species and two nonofficial species (C. salsa and C. sinensis) by high-performance liquid chromatography and the MaxEnt model. The results indicated that 2′-acetylacteoside was present only in C. deserticola. The compound can be used as a potential chemical marker to discriminate C. deserticola from the three other Cistanche plants. Anthocyanin A and carotenoid F were the common constituents of the two official species only and can thus be used as chemical markers to differentiate between official and nonofficial species. The prediction results of a potentially suitable distribution indicated that C. sinensis has much wider regions for potential distribution than the other species. Finally, the echinacoside content in C. deserticola was significantly different between the two suitable potential distributions, and the contents of samples from Inner Mongolia were significantly higher than those from Gansu Province. This is the first application of the combination of the contents of chemical components and the results of MaxEnt models for the quality assessment of herbal medicine. Our results may provide a reference for the sustainable utilization of endangered Cistanche species.
Collapse
Affiliation(s)
- Ye Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Key Research Laboratory of Traditional Chinese Medicine Resources Protection, Administration of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Beijing, 100193, China
| | - Li Zhang
- College of Science, Sichuan Agricultural University, Ya'an, 625000, China
| | - Zhixia Du
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Key Research Laboratory of Traditional Chinese Medicine Resources Protection, Administration of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Beijing, 100193, China.,College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jin Pei
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Linfang Huang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Key Research Laboratory of Traditional Chinese Medicine Resources Protection, Administration of Traditional Chinese Medicine, National Administration of Traditional Chinese Medicine, Beijing, 100193, China.
| |
Collapse
|
25
|
Xu H, Pei W, Li X, Zhang J. Highly Efficient Adsorption of Phenylethanoid Glycosides on Mesoporous Carbon. Front Chem 2019; 7:781. [PMID: 31799240 PMCID: PMC6868097 DOI: 10.3389/fchem.2019.00781] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 10/30/2019] [Indexed: 12/15/2022] Open
Abstract
PhGs are the major active compounds of Cistanche tubulosa, and it is extremely desirable for obtaining high purification of PhGs by adsorption from their extracts. To explore highly efficient adsorption of PhGs, a novel adsorption material for the efficient separation and purification of phenylethanoid glycosides (PhGs) from Cistanche tubulosa was explored. The three mesoporous carbons of ordered mesoporous carbon (CMK-3), disordered mesoporous carbon (DMC), and three-dimensional cubic mesoporous carbon (CMK-8) were compared for adsorption of PhGs. Meanwhile, adsorption isotherms, adsorption kinetics, and the optimization of adsorption conditions were investigated. The results indicated that CMK-3 showed the highest adsorption capacity of 358.09 ± 4.13 mg/g due to its high specific surface area, large pore volume and oxygen-containing functional groups. The experimental data can be accurately described using the Langmuir model and pseudo-second-order model. The intra-particle diffusion model suggested that the rate-limiting steps of adsorption were intra-particle diffusion.
Collapse
Affiliation(s)
- Helin Xu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, China
| | - Wenjing Pei
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, China
| | - Xueqin Li
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, China
| | - Jinli Zhang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, China.,Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
26
|
Serial hyphenation of dried spot, reversed phase liquid chromatography, hydrophilic interaction liquid chromatography, and tandem mass spectrometry towards direct chemical profiling of herbal medicine-derived liquid matrices, an application in Cistanche sinensis. J Pharm Biomed Anal 2019; 174:34-42. [DOI: 10.1016/j.jpba.2019.05.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/25/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023]
|
27
|
Wang XJ, Ren JL, Zhang AH, Sun H, Yan GL, Han Y, Liu L. Novel applications of mass spectrometry-based metabolomics in herbal medicines and its active ingredients: Current evidence. MASS SPECTROMETRY REVIEWS 2019; 38:380-402. [PMID: 30817039 DOI: 10.1002/mas.21589] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
Current evidence shows that herbal medicines could be beneficial for the treatment of various diseases. However, the complexities present in chemical compositions of herbal medicines are currently an obstacle for the progression of herbal medicines, which involve unclear bioactive compounds, mechanisms of action, undetermined targets for therapy, non-specific features for drug metabolism, etc. To overcome those issues, metabolomics can be a great to improve and understand herbal medicines from the small-molecule metabolism level. Metabolomics could solve scientific difficulties with herbal medicines from a metabolic perspective, and promote drug discovery and development. In recent years, mass spectrometry-based metabolomics was widely applied for the analysis of herbal constituents in vivo and in vitro. In this review, we highlight the value of mass spectrometry-based metabolomics and metabolism to address the complexity of herbal medicines in systems pharmacology, and to enhance their biomedical value in biomedicine, to shed light on the aid that mass spectrometry-based metabolomics can offer to the investigation of its active ingredients, especially, to link phytochemical analysis with the assessment of pharmacological effect and therapeutic potential. © 2019 Wiley Periodicals, Inc. Mass Spec Rev.
Collapse
Affiliation(s)
- Xi-Jun Wang
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plant, Nanning Guangxi, China
| | - Jun-Ling Ren
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ai-Hua Zhang
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Hui Sun
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Guang-Li Yan
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ying Han
- National Chinmedomics Research Center, Sino-America Chinmedomics Technology Collaboration Center, National TCM Key Laboratory of Serum Pharmacochemistry, Laboratory of Metabolomics, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| |
Collapse
|
28
|
Wang X, Chang X, Luo X, Su M, Xu R, Chen J, Ding Y, Shi Y. An Integrated Approach to Characterize Intestinal Metabolites of Four Phenylethanoid Glycosides and Intestinal Microbe-Mediated Antioxidant Activity Evaluation In Vitro Using UHPLC-Q-Exactive High-Resolution Mass Spectrometry and a 1,1-Diphenyl-2-picrylhydrazyl-Based Assay. Front Pharmacol 2019; 10:826. [PMID: 31402862 PMCID: PMC6669795 DOI: 10.3389/fphar.2019.00826] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 06/26/2019] [Indexed: 12/19/2022] Open
Abstract
Intestinal bacteria have a significant role in metabolism and the pharmacologic actions of traditional Chinese medicine active ingredients. Phenylethanoid glycosides (PhGs), as typical phenolic natural products, possess wide bioactivities, but low oral bioavailability. The aim of this work was to elucidate the metabolic mechanism underlying PhGs in the intestinal tract and screen for more active metabolites. In this study, a rapid and reliable method using an effective post-acquisition approach based on advanced ultra-high-performance liquid chromatography (UHPLC) coupled with hybrid Quadrupole-Orbitrap high resolution mass spectrometry (Q-Exactive-HRMS) provided full MS and HCD MS2 data. Thermo Scientific™ Compound Discoverer™ software with a Fragment Ion Search (FISh) function in one single workflow was developed to investigate the intestinal microbial metabolism of four typical PhGs. Furthermore, antioxidant activity evaluation of PhGs and their related metabolites was simultaneously carried out in combination with a 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay to understand how intestinal microbiota transformations modulate biological activity and explore structure–activity relationships (SARs). As a result, 26 metabolites of poliumoside, 42 metabolites of echinacoside, 42 metabolites of tubuloside, and 46 metabolites of 2′-acetylacteoside were identified. Degradation, reduction, hydroxylation, acetylation, hydration, methylation, and sulfate conjugation were the major metabolic pathways of PhGs. Furthermore, the degraded metabolites with better bioavailability had potent antioxidant activity that could be attributed to the phenolic hydroxyl groups. These findings may enhance our understanding of the metabolism, pharmacologic actions, and real active forms of PhGs.
Collapse
Affiliation(s)
- Xiaoming Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiaoyan Chang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiaomei Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Meifeng Su
- Beijing University of Chinese Medicine, Beijing, China
| | - Rong Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jun Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yi Ding
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Yue Shi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
29
|
Morikawa T, Xie H, Pan Y, Ninomiya K, Yuan D, Jia X, Yoshikawa M, Nakamura S, Matsuda H, Muraoka O. A Review of Biologically Active Natural Products from a Desert Plant Cistanche tubulosa. Chem Pharm Bull (Tokyo) 2019; 67:675-689. [PMID: 31257323 DOI: 10.1248/cpb.c19-00008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An Orobanchaceae plant Cistanche tubulosa (SCHENK) WIGHT (Kanka-nikujuyou in Japanese), which is one of the authorized plant resources as Cistanches Herba in both Japanese and Chinese Pharmacopoeias, is a perennial parasitic plant growing on roots of sand-fixing plants. The stems of C. tubulosa have traditionally been used for treatment of impotence, sterility, lumbago, and body weakness as well as a promoting agent of blood circulation. In recent years, Cistanches Herba has also been widely used as a health food supplement in Japan, China, and Southeast Asian countries. Here we review our recent studies on chemical constituents from the stems of C. tubulosa as well as their bioactivities such as vasorelaxtant, hepatoprotective, and glucose tolerance improving effects.
Collapse
Affiliation(s)
- Toshio Morikawa
- Pharmaceutical Research and Technology Institute, Kindai University.,Antiaging Center, Kindai University
| | - Haihui Xie
- Kyoto Pharmaceutical University.,South China Botanical Garden, Chinese Academy of Sciences
| | - Yingni Pan
- Pharmaceutical Research and Technology Institute, Kindai University.,School of Traditional Chinese Medicines, Shenyang Pharmaceutical University
| | - Kiyofumi Ninomiya
- Pharmaceutical Research and Technology Institute, Kindai University.,Antiaging Center, Kindai University
| | - Dan Yuan
- School of Traditional Chinese Medicines, Shenyang Pharmaceutical University
| | - Xiaoguang Jia
- Kyoto Pharmaceutical University.,Xinjiang Institute of Chinese Materia Medica and Ethnodrug
| | - Masayuki Yoshikawa
- Pharmaceutical Research and Technology Institute, Kindai University.,Kyoto Pharmaceutical University
| | | | | | - Osamu Muraoka
- Pharmaceutical Research and Technology Institute, Kindai University.,Antiaging Center, Kindai University
| |
Collapse
|
30
|
Li WL, Ding JX, Liu BM, Zhang DL, Song H, Sun XM, Liu GY, Wang JY, Ji YB. Phytochemical screening and estrogenic activity of total glycosides of Cistanche deserticola. OPEN CHEM 2019. [DOI: 10.1515/chem-2019-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractOver the decades, there have been continuous efforts to enhance the quality of human life. Postmenopausal syndrome is a serious concern for the wellbeing of a woman's health. Hormonal therapy is currently the mainstay of treatment for this condition. However, this therapy could lead to estrogen abuse, leading to adverse reactions and side effects. As a result, hormonal therapy has been unsuccessful in ameliorating postmenopausal syndrome. Cistanche deserticola is a classical tonic herb in traditional Chinese medicine. It exhibits significant estrogenic activity. The main active compounds of this herb are glycosides. In a previous experiment, three important factors contributing to the total glycoside yield, acteoside yield, and estrogenic activity were identified, namely, eluent concentration, pH, and eluent volume. In this experiment, an optimal purification process was determined using a central composite design-response surface methodology to obtain glycosides from this herb. An eluent (ethanol) concentration of 85% and volume of 25 BV at a pH of 11 was found to be optimal. Twenty-one active compounds were identified by a high-performance liquid chromatography/ quadrupole time-of-flight mass spectrometry assay. This study provides valuable insights for further in-depth research evaluating the estrogenic activities of total glycosides of Cistanche deserticola.
Collapse
Affiliation(s)
- Wen-Lan Li
- School of Pharmacy, Harbin University of Commerce, Harbin150076, China
| | - Jing-Xin Ding
- Research Center on Life Sciences and Environmental Sciences, Harbin University of Commerce, Harbin150076, China
| | - Bing-Mei Liu
- Engineering Research Center of Natural Anticancer Drugs, Ministry of Education, Harbin150076, China
| | - Da-Lei Zhang
- School of Pharmacy, Harbin University of Commerce, Harbin150076, China
| | - Hui Song
- Research Center on Life Sciences and Environmental Sciences, Harbin University of Commerce, Harbin150076, China
| | - Xiang-Ming Sun
- Heilongjiang Provincial Hospital, Nangang District, Harbin150076, China
| | - Gui-Yu Liu
- Heilongjiang Provincial Hospital, Nangang District, Harbin150076, China
| | - Jing-Ya Wang
- Heilongjiang Provincial Hospital, Nangang District, Harbin150076, China
| | - Yu-Bin Ji
- Research Center on Life Sciences and Environmental Sciences, Harbin University of Commerce, Harbin150076, China
| |
Collapse
|
31
|
Serially coupled reversed phase-hydrophilic interaction liquid chromatography–tailored multiple reaction monitoring, a fit-for-purpose tool for large-scale targeted metabolomics of medicinal bile. Anal Chim Acta 2018; 1037:119-129. [DOI: 10.1016/j.aca.2017.11.072] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 11/24/2017] [Accepted: 11/26/2017] [Indexed: 11/18/2022]
|
32
|
Li Y, Sun J, Huo H, Liu Y, Liu W, Zhang Q, Zhao Y, Song Y, Li J. Definitely simultaneous determination of three lignans in rat using ultra-high performance liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1100-1101:17-26. [DOI: 10.1016/j.jchromb.2018.09.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/17/2018] [Accepted: 09/23/2018] [Indexed: 01/11/2023]
|
33
|
Xu J, Li J, Zhang R, He J, Chen Y, Bi N, Song Y, Wang L, Zhan Q, Abliz Z. Development of a metabolic pathway-based pseudo-targeted metabolomics method using liquid chromatography coupled with mass spectrometry. Talanta 2018; 192:160-168. [PMID: 30348373 DOI: 10.1016/j.talanta.2018.09.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/06/2018] [Accepted: 09/08/2018] [Indexed: 12/14/2022]
Abstract
The pseudo-targeted metabolomics approach was developed recently which combined the advantages of untargeted and targeted analysis. However, the current pseudo-targeted analysis method has limitations due to the technical characteristics. In this study, a novel metabolic pathway-based pseudo-targeted approach was proposed for urine metabolomics analysis using an ultra-high-performance liquid chromatography (UPLC)-MS/MS system operated in the multiple reaction monitoring (MRM) mode. MRM ion pairs were acquired from urine samples through untargeted analysis using UPLC-HRMS, as well as by searching for metabolites in related pathways in relevant databases and from previous relevant research, including amino acids, fatty acids, nucleosides, carnitines, glycolysis metabolites, and steroids. This improved pseudo-targeted method exhibited good repeatability and precision, and no complicated peak alignment was required. As a proof of concept, the developed novel method was applied to the discovery of urine biomarkers for patients with esophageal squamous cell carcinoma (ESCC). The results showed that ESCC patients had altered acylcarnitines, amino acids, nucleosides, and steroid derivative levels et al. compared to those of healthy controls. The novelty of this study lies in the fact that it provides an approach for acquiring MRM ion pairs not only from untargeted MS analysis but also from targeted searching for metabolites in related metabolic pathways. By improving the detection limit of low-abundance metabolites, it enlarges the range for the discovery of potential biomarkers. Our work provides a foundation for achieving pseudo-targeted metabolomics analysis on the widely used LC-MS/MS MRM platform.
Collapse
Affiliation(s)
- Jing Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Jiangshuo Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Ruiping Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Jiuming He
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Yanhua Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Nan Bi
- Department of Radiation Oncology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, PR China
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, PR China
| | - Luhua Wang
- Department of Radiation Oncology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, PR China
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, PR China
| | - Zeper Abliz
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China; Centre for Bioimaging & Systems Biology, Minzu University of China, Beijing 100081, PR China.
| |
Collapse
|
34
|
Liu W, Song Q, Cao Y, Xie N, Li Z, Jiang Y, Zheng J, Tu P, Song Y, Li J. From 1H NMR-based non-targeted to LC-MS-based targeted metabolomics strategy for in-depth chemome comparisons among four Cistanche species. J Pharm Biomed Anal 2018; 162:16-27. [PMID: 30219595 DOI: 10.1016/j.jpba.2018.09.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/09/2018] [Accepted: 09/04/2018] [Indexed: 12/15/2022]
Abstract
The great orthogonality between 1H NMR spectroscopy and LC-MS implies that their deployments in series could offer an opportunity to gain the qualified molecular markers via comparative metabolomics, and an attempt was made here to propose an integrated strategy namely "from 1H NMR-based non-targeted to LC-MS-based targeted metabolomics". In-depth chemome comparisons of Cistanche plants, such as C. deserticola, C. salsa, C. tubulosa, and C. sinensis, that possess dramatic economic and ecological benefits for the arid regions in the northwest China attributing to their dramatic medicinal and edible values, were employed to verify the applicability. 1H NMR-based non-targeted matabolomics acted as the survey experiment to find those signals offering decisive contributions towards the species discrimination, and the signals were translated to a set of putative identities, eighteen ones in total, through matching with authentic compounds and referring to some accessible databases. Afterwards, an advanced LC-MS platform assembling reversed phase liquid chromatography, hydrophilic interaction liquid chromatography, and tailored multiple reaction monitoring, was introduced to simultaneously quantify those eighteen potential markers in a single analytical run, because those candidates exhibited great polarity span as well as wide content range. Significant species differences occurred amongst their chemome patterns. Echinacoside, acteoside, betaine, mannitol, 6-deoxycatalpol, sucrose, and 8-epi-loganic acid were disclosed as the markers enabling the discrimination of those four species. The findings offered an alternative tool to differentiate Cistanche plants. More importantly, the strategy namely "from 1H NMR-based non-targeted to LC-MS-based targeted metabolomics" facilitates the pursuit of molecular markers among analogue plants, and thereby provides a promising choice for in-depth chemome comparison.
Collapse
Affiliation(s)
- Wenjing Liu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qingqing Song
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yan Cao
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ning Xie
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co., Ltd., Ganzhou, 341000, Jiangxi, China
| | - Zhiyong Li
- State Key Laboratory of Innovative Natural Medicine and TCM Injections, Jiangxi Qingfeng Pharmaceutical Co., Ltd., Ganzhou, 341000, Jiangxi, China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Jian Zheng
- National Institutes for Food and Drug Control, Beijing, 100050, China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
35
|
Liu W, Song Q, Yan Y, Liu Y, Li P, Wang Y, Tu P, Song Y, Li J. Integrated approach for confidence-enhanced quantitative analysis of herbal medicines, Cistanche salsa as a case. J Chromatogr A 2018; 1561:56-66. [PMID: 29807707 DOI: 10.1016/j.chroma.2018.05.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/26/2018] [Accepted: 05/22/2018] [Indexed: 12/12/2022]
Abstract
Although far away from perfect, it is practical to assess the quality of a given herbal medicine (HM) through simultaneous determination of a panel of components. However, the confidences of the quantitative outcomes from LC-MS/MS platform risk several technical barriers, such as chemical degradation, polarity range, concentration span, and identity misrecognition. Herein, we made an attempt to circumvent these obstacles by integrating several fit-for-purpose techniques, including online extraction (OLE), serially coupled reversed phase LC-hydrophilic interaction liquid chromatography (RPLC-HILIC), tailored multiple reaction monitoring (MRM), and relative response vs. collision energy curve (RRCEC) matching. Confidence-enhanced quantitative analysis of Cistanche salsa (Csa), a well-known psammophytic species and tonic herbal medicine, was conducted as a proof-of-concept. OLE module was deployed to prohibit chemical degradation, in particular E/Z-configuration transformation for phenylethanoid glycosides. Satisfactory retention took place for each analyte regardless of polarity because of successive passing through RPLC and HILIC columns. Optimum parameters for the minor components, at the meanwhile of inferior ones for the abundant ingredients, ensured the locations of all contents in the linear ranges. The unequivocal assignment of the captured signals was achieved by matching retention times, ion transitions, and more importantly, RRCECs between authentic compounds and suspect peaks. Diverse validation assays demonstrated the newly developed method to be reliable. Particularly, the distribution of mannitol rather than galactitol was disclosed although these isomers showed identical retention time and ion transitions. The contents of 21 compounds-of-interest were definitively determined in Csa as well as two analogous species, and the quantitative patterns exerted great variations among not only different species but different Csa samples. Together, the fortification of OLE-RPLC-HILIC-tailored MRM with RRCEC matching could fully address the demands from confidence-enhanced quantitative analysis of HMs.
Collapse
Affiliation(s)
- Wenjing Liu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qingqing Song
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yu Yan
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Institute of Chinese Minority Traditional Medicine, Minzu University of China, Beijing 100081, China
| | - Yao Liu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa 999078, Macao
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa 999078, Macao
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
36
|
Prophylactic Neuroprotection of Total Glucosides of Paeoniae Radix Alba against Semen Strychni-Induced Neurotoxicity in Rats: Suppressing Oxidative Stress and Reducing the Absorption of Toxic Components. Nutrients 2018; 10:nu10040514. [PMID: 29677121 PMCID: PMC5946299 DOI: 10.3390/nu10040514] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/08/2018] [Accepted: 04/13/2018] [Indexed: 12/14/2022] Open
Abstract
Strychnos alkaloids (SAs) are the main toxic constituents in Semen Strychni, a traditional Chinese medicine, which is known for its fatal neurotoxicity. Hence, the present study was carried out to evaluate the neurotoxicity induced by SAs and the pre-protective effects of the total glucosides of Paeoniae Radix Alba (TGP). An SA brain damage model was firstly established. The neurotoxicity induced by SAs and the pre-protective effects of TGP were confirmed by physical and behavioral testing, biochemical assay, and histological examination. Then, a liquid chromatography-tandem mass spectrometry method was developed and validated to investigate the time-course change and distribution of strychnine and brucine (two main SAs) in the brain after oral SA administration with or without TGP pretreatment. Biochemical analysis results indicated that TGP could ameliorate the oxidative stress status caused by SAs. Time-course change and distribution studies demonstrated that strychnine and brucine were rapidly absorbed into the brain, peaked early at 0.5 h, and were mainly located in the hippocampus and cerebellum. TGP showed a pre-protective effect against neurotoxicity by reducing the absorption of toxic alkaloids into the brain. These findings could provide beneficial information in facilitating future studies of Semen Strychni neurotoxicity and developing herbal medicines to alleviate neurotoxicity in the clinic.
Collapse
|
37
|
Yilmaz MA, Ertas A, Yener I, Akdeniz M, Cakir O, Altun M, Demirtas I, Boga M, Temel H. A comprehensive LC-MS/MS method validation for the quantitative investigation of 37 fingerprint phytochemicals in Achillea species: A detailed examination of A. coarctata and A. monocephala. J Pharm Biomed Anal 2018; 154:413-424. [PMID: 29602084 DOI: 10.1016/j.jpba.2018.02.059] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/25/2018] [Accepted: 02/27/2018] [Indexed: 01/15/2023]
Abstract
The current study aims to optimize and validate a comprehensive LC-MS/MS method for the quantification of 37 phytochemicals (15 phenolic acids, 17 flavonoids, 3 non-phenolic organic acids, 1 phenolic aldehyde and 1 benzopyrene) in Achillea species. Though Achillea species were chosen as real life samples, the current method is applicable to a wide range of plant species. The developed method was fully validated in terms of linearity, accuracy (recovery), inter-day and intra-day precision (repeatability), limits of detection and quantification (LOD/LOQ) and relative standard uncertainty (U% at 95% confidence level (k = 2)). Reversed-phase ultrahigh performance liquid chromatography was optimized to achive optimum separation for 37 phytochemical compounds and to overcome the suppression effects. MS detection was performed using a triple quadrupole mass spectrometer and negative or positive ionization modes were optimized for each analyte. Multiple reaction monitoring (MRM) was used to quantify the analytes, related molecular ions and transition ions were optimized. Phytochemical screening of ethanol and methanol-chloroform extracts of root and aerial parts of A. coarctata and A. monocephala were performed by using the developed and validated LC-MS/MS method. Root and aerial parts of both species have considerable amounts of certain phenolic-nonphenolic acids (quinic, malic, fumaric, chlorogenic and vanillic acids) and flavonoids (rutin, hesperidin, isoquercitrin, apigetrin, luteolin, apigenin). Additionally, total phenolic and flavonoid amounts, antioxidant (DPPH free radical scavenging assay, ABTS radical cation decolorization assay, β-carotene lipid peroxidation test system and CUPRAC cupper reduction capacity methods), anticholinesterase, tyrosinase, urease inhibition and cytotoxic activities (on HeLa (Human Cervical Carcinoma Cell Line) of A. coarctata and A. monocephala were also investigated. It has been determined that the studied Achillea species, that are rich in total phenolic-flavonoid and chlorogenic acid contents, have high antioxidant and cytotoxic potential at the same time. According to the results of LC-MS/MS, antioxidant and cytotoxic activity studies, after detailed chemical investigation and toxicity studies on these species, A. coarctata and A. monocephala may be promoted as promising sources of natural agents and used for the development of nutraceuticals or functional food ingredients in future.
Collapse
Affiliation(s)
- Mustafa Abdullah Yilmaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Dicle University, Diyarbakir 21280, Turkey; Dicle University Science and Technology Research and Application Center, Diyarbakir 21280, Turkey.
| | - Abdulselam Ertas
- Department of Pharmacognosy, Faculty of Pharmacy, Dicle University, Diyarbakir 21280, Turkey
| | - Ismail Yener
- Department of Analytical Chemistry, Faculty of Pharmacy, Dicle University, Diyarbakir 21280, Turkey
| | - Mehmet Akdeniz
- The Council of Forensic Medicine, Ministry of Justice, Diyarbakir, 21100, Turkey
| | - Oguz Cakir
- Dicle University Science and Technology Research and Application Center, Diyarbakir 21280, Turkey
| | - Muhammed Altun
- Department of Chemistry, Faculty of Natural Sciences, Cankiri Karatekin University, Cankiri 18100, Turkey
| | - Ibrahim Demirtas
- Department of Chemistry, Faculty of Natural Sciences, Cankiri Karatekin University, Cankiri 18100, Turkey
| | - Mehmet Boga
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Dicle University, Diyarbakir 21280, Turkey
| | - Hamdi Temel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Dicle University, Diyarbakir 21280, Turkey
| |
Collapse
|
38
|
Comparison of the Chemical Profiles and Antioxidant Activities of Different Parts of Cultivated Cistanche deserticola Using Ultra Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry and a 1,1-Diphenyl-2-picrylhydrazyl-Based Assay. Molecules 2017; 22:molecules22112011. [PMID: 29156652 PMCID: PMC6150175 DOI: 10.3390/molecules22112011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/10/2017] [Accepted: 11/16/2017] [Indexed: 11/17/2022] Open
Abstract
In this study, a sensitive ultra-performance liquid chromatography-photodiode array coupled to quadruple time-of-flight mass (UPLC-PDA-Q/TOF-MS) method and a 1,1-diphenyl-2-picrylhydrazyl (DPPH)-based assay were used to determine the chemical constituents and screen the antioxidant activity profiles of the methanol extracts of different parts of cultivated Cistanche deserticola (C. deserticola). First, qualitative and quantitative chemical composition analyses of the different parts of cultivated C. deserticola were conducted. Obvious differences were observed between the chemical profiles and content distribution of phenylethanoid glycosides (PhGs) from the different cultivated C. deserticola parts. The average contents of the six PhGs parts varied from 4.91 to 72.56 mg/g DW (milligrams of extract per gram of plant dry weight) in the six different parts of Cistanche deserticola, displaying a significant decreasing trend from the bottom to the top of cultivated C. deserticola and the highest content in the stems. From the bottom to the top of the plant, the echinacoside and cistanoside A content decreased and the 2′-acetylacteoside content increased. Second, an offline DPPH assay revealed that the total scavenging activities of all parts within the range of 20–500 µg/mL increased in a concentration-dependent manner and that good antioxidant activities were found in all plant parts, particularly in the stems, which could be related to their higher PhG content. Additionally, a DPPH-UPLC-PDA method was successfully applied to rapidly screen the antioxidant profiles and antioxidant components of the different cultivated C. deserticola parts. According to the antioxidant profiles before and after the DPPH reaction, there were wide variations in the antioxidant activities of different cultivated C. deserticola parts. Moreover, the antioxidant profiles revealed the presence of major free radical scavengers identified as PhGs using UPLC-Q/TOF-MS. Finally, the established DPPH-UPLC-PDA method was reagent saving, rapid and feasible for correlating the chemical profile of traditional chinese medicines (TCMs) with their bioactivities without isolation and purification and may be used for multicomponent analysis of active substances in other foods and herbs. Therefore, to better harness C. deserticola resources, using this method to evaluate cultivated C. deserticola, a promising herb material with obvious antioxidant activity, is crucial.
Collapse
|
39
|
Li Y, Peng Y, Wang M, Tu P, Li X. Human Gastrointestinal Metabolism of the Cistanches Herba Water Extract in Vitro: Elucidation of the Metabolic Profile Based on Comprehensive Metabolite Identification in Gastric Juice, Intestinal Juice, Human Intestinal Bacteria, and Intestinal Microsomes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7447-7456. [PMID: 28771352 DOI: 10.1021/acs.jafc.7b02829] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cistanches Herba is taken orally as a health food supplement and medicinal plant in Asian countries. It consists of the stems of Cistanche deserticola (CD) and Cistanche tubulosa (CT). The gastrointestinal metabolism of the multiple components contained in Cistanches Herba is crucial for the discovery of bioactive constituents. This study aims to elucidate the comprehensive metabolic profile of the Cistanches Herba water extract by simulating human gastrointestinal metabolism in vitro independently and sequentially using four models: gastric juice, intestinal juice, human intestinal bacteria, and human intestinal microsomes. A total of 35 and 18 metabolites were characterized from CD and CT water extracts, respectively. These metabolites were formed through reduction, methylation, dimethylation, deglycosylation, decaffeoyl, derhamnose, dehydrogenation, and glucuronidation. The difference in metabolites of the Cistanches Herba water extract and single compounds and the difference in metabolites of CD and CT water extracts were caused by the oligosaccharides and polysaccharides in Cistanches Herba.
Collapse
Affiliation(s)
- Yang Li
- School of Pharmacy, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Ying Peng
- School of Pharmacy, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Mengyue Wang
- School of Pharmacy, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, China
| | - Xiaobo Li
- School of Pharmacy, Shanghai Jiao Tong University , Shanghai 200240, China
| |
Collapse
|
40
|
Yan Y, Song Q, Chen X, Li J, Li P, Wang Y, Liu T, Song Y, Tu P. Simultaneous determination of components with wide polarity and content ranges in Cistanche tubulosa using serially coupled reverse phase-hydrophilic interaction chromatography-tandem mass spectrometry. J Chromatogr A 2017; 1501:39-50. [DOI: 10.1016/j.chroma.2017.04.034] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/07/2017] [Accepted: 04/13/2017] [Indexed: 11/29/2022]
|
41
|
Shi X, Wu Y, Lv T, Wang Y, Fu Y, Sun M, Shi Q, Huo C, Wang Q, Gu Y. A chemometric-assisted LC–MS/MS method for the simultaneous determination of 17 limonoids from different parts of Xylocarpus granatum fruit. Anal Bioanal Chem 2017; 409:4669-4679. [PMID: 28536790 DOI: 10.1007/s00216-017-0413-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 05/12/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Xiaowei Shi
- School of Pharmaceutical Sciences, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei, 050017, China
| | - Yibing Wu
- School of Pharmaceutical Sciences, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei, 050017, China
| | - Tao Lv
- School of Pharmaceutical Sciences, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei, 050017, China
| | - Yufang Wang
- School of Pharmaceutical Sciences, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei, 050017, China
| | - Yan Fu
- School of Pharmaceutical Sciences, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei, 050017, China
| | - Mengmeng Sun
- The Second Hospital, Hebei Medical University, 215 West Heping Road, Shijiazhuang, Hebei, 050000, China
| | - Qingwen Shi
- School of Pharmaceutical Sciences, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei, 050017, China.
- Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, Hebei, 050017, China.
| | - Changhong Huo
- School of Pharmaceutical Sciences, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei, 050017, China.
| | - Qiao Wang
- School of Pharmaceutical Sciences, Hebei Medical University, 361 East Zhongshan Road, Shijiazhuang, Hebei, 050017, China
| | - Yucheng Gu
- Jealotts Hill International Research Centre, Syngenta, Bracknell, Berkshire, RG42 6EY, UK
| |
Collapse
|
42
|
A strategy for the evaluation of an analytical approach for selected pesticide residues in complex agricultural product matrices—A case study of leek. Food Chem 2017; 221:205-213. [DOI: 10.1016/j.foodchem.2016.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/28/2016] [Accepted: 10/01/2016] [Indexed: 11/17/2022]
|
43
|
Jinno D, Kanemitsu Y, Saitoh K, Nankumo S, Tsukamoto H, Matsumoto Y, Abe T, Tomioka Y. Rapid and selective simultaneous quantitative analysis of modified nucleosides using multi-column liquid chromatography-tandem mass spectrometry. J Anal Sci Technol 2017. [DOI: 10.1186/s40543-017-0110-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
44
|
Song Q, Liu W, Yan Y, Li P, Li J, Tu P, Wang Y, Song Y. Polarity-extended quantitative analysis of bear bile and its analogues using serially coupled reversed phase-hydrophilic interaction liquid chromatography-tailored multiple reaction monitoring. RSC Adv 2017. [DOI: 10.1039/c7ra10229a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Polarity-extended quantitative analysis of bear bile and its analogues was achieved using serially coupled reversed phase-hydrophilic interaction liquid chromatography-tailored multiple reaction monitoring.
Collapse
Affiliation(s)
- Qingqing Song
- Modern Research Center for Traditional Chinese Medicine
- School of Chinese Materia Medica
- Beijing University of Chinese Medicine
- Beijing 100029
- China
| | - Wenjing Liu
- Modern Research Center for Traditional Chinese Medicine
- School of Chinese Materia Medica
- Beijing University of Chinese Medicine
- Beijing 100029
- China
| | - Yu Yan
- Modern Research Center for Traditional Chinese Medicine
- School of Chinese Materia Medica
- Beijing University of Chinese Medicine
- Beijing 100029
- China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa 999078
- China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine
- School of Chinese Materia Medica
- Beijing University of Chinese Medicine
- Beijing 100029
- China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine
- School of Chinese Materia Medica
- Beijing University of Chinese Medicine
- Beijing 100029
- China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa 999078
- China
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine
- School of Chinese Materia Medica
- Beijing University of Chinese Medicine
- Beijing 100029
- China
| |
Collapse
|
45
|
An Integrated Strategy for Global Qualitative and Quantitative Profiling of Traditional Chinese Medicine Formulas: Baoyuan Decoction as a Case. Sci Rep 2016; 6:38379. [PMID: 27924825 PMCID: PMC5141425 DOI: 10.1038/srep38379] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 11/09/2016] [Indexed: 12/24/2022] Open
Abstract
Clarification of the chemical composition of traditional Chinese medicine formulas (TCMFs) is a challenge due to the variety of structures and the complexity of plant matrices. Herein, an integrated strategy was developed by hyphenating ultra-performance liquid chromatography (UPLC), quadrupole time-of-flight (Q-TOF), hybrid triple quadrupole-linear ion trap mass spectrometry (Qtrap-MS), and the novel post-acquisition data processing software UNIFI to achieve automatic, rapid, accurate, and comprehensive qualitative and quantitative analysis of the chemical components in TCMFs. As a proof-of-concept, the chemical profiling of Baoyuan decoction (BYD), which is an ancient TCMF that is clinically used for the treatment of coronary heart disease that consists of Ginseng Radix et Rhizoma, Astragali Radix, Glycyrrhizae Radix et Rhizoma Praeparata Cum Melle, and Cinnamomi Cortex, was performed. As many as 236 compounds were plausibly or unambiguously identified, and 175 compounds were quantified or relatively quantified by the scheduled multiple reaction monitoring (sMRM) method. The findings demonstrate that the strategy integrating the rapidity of UNIFI software, the efficiency of UPLC, the accuracy of Q-TOF-MS, and the sensitivity and quantitation ability of Qtrap-MS provides a method for the efficient and comprehensive chemome characterization and quality control of complex TCMFs.
Collapse
|
46
|
Song Y, Song Q, Liu Y, Li J, Wan JB, Wang Y, Jiang Y, Tu P. Integrated work-flow for quantitative metabolome profiling of plants, Peucedani Radix as a case. Anal Chim Acta 2016; 953:40-47. [PMID: 28010741 DOI: 10.1016/j.aca.2016.11.066] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/07/2016] [Accepted: 11/21/2016] [Indexed: 10/20/2022]
Abstract
Universal acquisition of reliable information regarding the qualitative and quantitative properties of complicated matrices is the premise for the success of metabolomics study. Liquid chromatography-mass spectrometry (LC-MS) is now serving as a workhorse for metabolomics; however, LC-MS-based non-targeted metabolomics is suffering from some shortcomings, even some cutting-edge techniques have been introduced. Aiming to tackle, to some extent, the drawbacks of the conventional approaches, such as redundant information, detector saturation, low sensitivity, and inconstant signal number among different runs, herein, a novel and flexible work-flow consisting of three progressive steps was proposed to profile in depth the quantitative metabolome of plants. The roots of Peucedanum praeruptorum Dunn (Peucedani Radix, PR) that are rich in various coumarin isomers, were employed as a case study to verify the applicability. First, offline two dimensional LC-MS was utilized for in-depth detection of metabolites in a pooled PR extract namely universal metabolome standard (UMS). Second, mass fragmentation rules, notably concerning angular-type pyranocoumarins that are the primary chemical homologues in PR, and available databases were integrated for signal assignment and structural annotation. Third, optimum collision energy (OCE) as well as ion transition for multiple monitoring reaction measurement was online optimized with a reference compound-free strategy for each annotated component and large-scale relative quantification of all annotated components was accomplished by plotting calibration curves via serially diluting UMS. It is worthwhile to highlight that the potential of OCE for isomer discrimination was described and the linearity ranges of those primary ingredients were extended by suppressing their responses. The integrated workflow is expected to be qualified as a promising pipeline to clarify the quantitative metabolome of plants because it could not only holistically provide qualitative information, but also straightforwardly generate accurate quantitative dataset.
Collapse
Affiliation(s)
- Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qingqing Song
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Yao Liu
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078, Macao
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078, Macao
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
47
|
Li Y, Peng Y, Wang M, Zhou G, Zhang Y, Li X. Rapid screening and identification of the differences between metabolites of Cistanche deserticola and C. tubulosa water extract in rats by UPLC-Q-TOF-MS combined pattern recognition analysis. J Pharm Biomed Anal 2016; 131:364-372. [PMID: 27639339 DOI: 10.1016/j.jpba.2016.09.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/07/2016] [Accepted: 09/13/2016] [Indexed: 10/21/2022]
Abstract
Cistanches Herba is a famous traditional Chinese medicine that has been in use for treating kidney deficiency, impotence, female infertility, morbid leucorrhea, profuse metrorrhagia, and senile constipation. With the exception of studies available for a few single active ingredients such as echinacoside, acteoside, and poliumoside, comprehensive and systematic studies on in vivo metabolism of Cistanches Herba are lacking despite its widespread clinical application. There is no comparative study yet on the metabolites resulting from the traditional usage of Cistanche deserticola and C. tubulosa water extract - two species that are recorded in Chinese Pharmacopoeia. This further restricts research on the therapeutic effect of Cistanches Herba to a great extent. In this study, a robust and unbiased UPLC-Q-TOF-MS combined pattern recognition analysis (orthogonal partial least squared discriminant analysis, OPLS-DA) was employed to rapidly screen prototype components and metabolites of C. deserticola and C. tubulosa water extract in rat urine, feces, and serum. A total of 71 metabolites from C. deserticola including 25 prototype components and 46 metabolites, and 45 metabolites from C. tubulosa including 18 prototype components and 27 metabolites were tentatively identified. Out of these, 10 metabolites were characterized for the first time in these two species. Results of this study indicate that phenylethanoid glycosides (PhGs) are mainly metabolized into degradation products in the gastrointestinal tract of rats. The chemical components cistanoside B, C, D, and E exist only in C. deserticola and release methylated hydroxytyrosol (HT) following metabolism. This factor contributes to the difference between metabolites of C. deserticola and C. tubulosa water extract in rats and is responsible for the differential therapeutic effect that these two species of Cistanches Herba have on the same diseases.
Collapse
Affiliation(s)
- Yang Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying Peng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mengyue Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guisheng Zhou
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yulong Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaobo Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
48
|
Song Y, Song Q, Li J, Zheng J, Li C, Zhang Y, Zhang L, Jiang Y, Tu P. An integrated platform for directly widely-targeted quantitative analysis of feces part II: An application for steroids, eicosanoids, and porphyrins profiling. J Chromatogr A 2016; 1460:74-83. [DOI: 10.1016/j.chroma.2016.07.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/05/2016] [Accepted: 07/05/2016] [Indexed: 12/20/2022]
|
49
|
Yao C, Yang W, Si W, Pan H, Qiu S, Wu J, Shi X, Feng R, Wu W, Guo D. A strategy for establishment of practical identification methods for Chinese patent medicine from systematic multi-component characterization to selective ion monitoring of chemical markers: Shuxiong tablet as a case study. RSC Adv 2016. [DOI: 10.1039/c6ra10883k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A SMC-SIM strategy for establishment of practical identification methods for Chinese patent medicine.
Collapse
|