1
|
Zheng Y, Wang M, Lv M, Huang Y, Wang B, Niu C, Chen D. A disposable and ready-to-use liquid-filled stick microextraction method for the efficient extraction and determination of triazole fungicide residues in tea beverages and herbal extracts. Talanta 2025; 294:128187. [PMID: 40286744 DOI: 10.1016/j.talanta.2025.128187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/08/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
This study presents a novel liquid-filled stick microextraction (LFSME) method for the efficient extraction of hydrophobic compounds from aqueous samples. The LFSME device, inspired by a single-use swab, consists of a hollow plastic stick pre-filled with a hydrophobic deep eutectic solvent (DES) and wrapped with polypropylene fabric at the end. Upon activation, the DES is released and absorbed by the polypropylene fabric, enabling direct immersion into the sample solution for efficient extraction. The extracted analytes are subsequently desorbed with acetonitrile and analyzed by liquid chromatography with ultraviolet detection. The method demonstrated excellent analytical performance, including high enrichment factors (34-90), good linearity (R2 > 0.99), and low limits of detection (LODs: 0.99-2.61 ng/mL) for the five target triazole pesticides. The disposable and portable nature of the LFSME device eliminates the need for complex sample handling, providing a cost-effective and user-friendly solution for routine monitoring of pesticide residues and other contaminants in complex matrices.
Collapse
Affiliation(s)
- Yuanyuan Zheng
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Manyi Wang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Mengyuan Lv
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yu Huang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Bingyu Wang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chenqi Niu
- China Tobacco Standardization Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.
| | - Di Chen
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
2
|
Teixeira NA, Amorim Batista LF, Schneider de Mira P, Scremin Miyazaki DM, Grassi MT, Zawadzki SF, Abate G. Modified vermiculite as a sorbent phase for stir-bar sorptive extraction. Anal Chim Acta 2025; 1347:343798. [PMID: 40024657 DOI: 10.1016/j.aca.2025.343798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/16/2025] [Accepted: 02/12/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND The presence of emerging contaminants (ECs) is a cause of great concern nowadays, and they are present at very low concentrations in surface waters, requiring a preconcentration process for their reliable quantification. The technique of Stir-Bar Sorptive Extraction (SBSE) is a valuable tool for achieving this purpose, and different sorbents have been developed to produce the bars. In this sense, we propose the use of the clay mineral vermiculite (Vt), modified with alkylammonium salts, aiming the determination of the ECs: bisphenol A, diclofenac, ibuprofen and triclosan in surface water samples. RESULTS The best conditions for sorption and desorption were: 50.0 mL of sample at pH 4.0, under stirring at 600 rpm (120 min), being the desorption carried out under sonication for 20 min using 500 μL of methanol, and the analytes were determined using LC-DAD. A linear range from 0.50 to 2.50 μg L-1 or from 0.50 to 5.00 μg L-1 and R2 higher than 0.9480 were observed, and attractive real enrichment factors between 116 and 177 times, affording a LOD between 0.11 and 0.33 μg L-1. The method was applied to determine the four ECs in samples of tap, river, and lake waters, presenting recovery results between 42.0 and 128.0 %, and RSD from 0.4 to 19.6 %. The bars prepared using Vt presented good chemical and mechanical resistance, even modified using the alkylammonium salts, permitting them to be employed at least 30 times, without memory effects. SIGNIFICANCE The modified Vt, afforded a simple, low-cost, and attractive alternative to work as a sorbent phase for SBSE technique, presenting very appropriate analytical parameters, even employing LC-DAD. Although the sorbent was applied to a limited number of contaminants, it is probable that other analytes could be successfully determined. It is important to notice that this is the first study reported, employing modified Vt for SBSE application.
Collapse
Affiliation(s)
- Natascha Amalio Teixeira
- Departamento de Química, Universidade Federal do Paraná, CP 19032, CEP 81531-980, Curitiba, PR, Brazil
| | | | - Princys Schneider de Mira
- Departamento de Química, Universidade Federal do Paraná, CP 19032, CEP 81531-980, Curitiba, PR, Brazil
| | | | - Marco Tadeu Grassi
- Departamento de Química, Universidade Federal do Paraná, CP 19032, CEP 81531-980, Curitiba, PR, Brazil
| | - Sônia Faria Zawadzki
- Departamento de Química, Universidade Federal do Paraná, CP 19032, CEP 81531-980, Curitiba, PR, Brazil
| | - Gilberto Abate
- Departamento de Química, Universidade Federal do Paraná, CP 19032, CEP 81531-980, Curitiba, PR, Brazil.
| |
Collapse
|
3
|
Affricano A, Serra S, Bernardo AD, Aigotti R, Floris F, Bello FD, Medana C. Stir Bar Sorptive Extraction (SBSE)-HPLC-Tandem MS-Based Method for Multi-Residue Determination of Pesticides in Drinking Water. Mass Spectrom (Tokyo) 2025; 14:A0172. [PMID: 40165938 PMCID: PMC11955823 DOI: 10.5702/massspectrometry.a0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 03/17/2025] [Indexed: 04/02/2025] Open
Abstract
Pesticide residues in water contamination represent a significant public and political issue due to their harmful effects on the environment, biodiversity, and human health, even at low concentrations. Pesticides are chemically heterogeneous, covering a wide range of LogK o/w values. Therefore, developing sensitive methods to detect a broad spectrum of hazardous chemicals in aqueous matrices is challenging. Gas and liquid chromatography/high-performance liquid chromatography-mass spectrometry (GC/HPLC-MS) are established tools but typically require pre-concentration steps. Stir bar sorptive extraction (SBSE) is a green, simple, automatable, and HPLC-compatible technique. This study presents a multi-residue method for determining 131 pesticides in mineral water using SBSE followed by HPLC-tandem MS. The selected pesticides, from various chemical classes, were evaluated in fortified ultra-pure and mineral water samples. The method demonstrated excellent sensitivity, with lower limits of quantification ranging from 20 to 50 ng/L for all analytes, enabling detection at trace levels. Selectivity was high (SEL% <20%), and reproducibility was confirmed with RSD% values below 20%. Intra- and interday precision tests revealed RSD% values from 0.23% to 19.81%. Trueness was validated with BIAS% below 20% at all concentrations. Uncertainty values were acceptable, with U% ranging from 1.44% to 49.24%. This SBSE-HPLC-tandem MS method is a robust, efficient, and reliable alternative to traditional approaches for routine monitoring of pesticide residues in drinking water, with quantification limits below regulatory requirements. It offers a suitable tool for public health applications, ensuring reliable pesticide detection in complex water matrices.
Collapse
Affiliation(s)
- Alex Affricano
- Department of Molecular Biotechnology and Health Sciences (MBC), University of Torino, Via Nizza 52, 10125 Torino, Italy
| | - Silvia Serra
- Department of Molecular Biotechnology and Health Sciences (MBC), University of Torino, Via Nizza 52, 10125 Torino, Italy
| | - Alice Di Bernardo
- Department of Molecular Biotechnology and Health Sciences (MBC), University of Torino, Via Nizza 52, 10125 Torino, Italy
| | - Riccardo Aigotti
- Department of Molecular Biotechnology and Health Sciences (MBC), University of Torino, Via Nizza 52, 10125 Torino, Italy
| | - Francesco Floris
- Department of Molecular Biotechnology and Health Sciences (MBC), University of Torino, Via Nizza 52, 10125 Torino, Italy
| | - Federica Dal Bello
- Department of Molecular Biotechnology and Health Sciences (MBC), University of Torino, Via Nizza 52, 10125 Torino, Italy
| | - Claudio Medana
- Department of Molecular Biotechnology and Health Sciences (MBC), University of Torino, Via Nizza 52, 10125 Torino, Italy
| |
Collapse
|
4
|
Rahimian N, Feizy J, Es'haghi Z. Nanoparticle Assisted Fabric Phase Sorptive Extraction for Azo Dye Determination in the Industrial Sewage. J Chromatogr Sci 2024; 62:995-1006. [PMID: 39105444 DOI: 10.1093/chromsci/bmae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 06/12/2024] [Indexed: 08/07/2024]
Abstract
Currently, one of the significant environmental problems is the presence of azo dye materials in water sources. In this study, for the first time, a fast and sensitive sample preparation approach using nanoparticle-assisted fabric phase sorptive extraction (NFPSE) followed by high-performance liquid chromatography was examined to remove some azo dyes such as methyl red and sunset yellow from aqueous solutions. Primarily, the significance of several parameters affecting NFPSE, such as fabric type, the kind of sorbent, the number of contacts with sol-gel and the time of contact, was investigated. In addition, experiments were performed to determine the effect of different adsorption parameters, such as sample volume, adsorption time, adsorbent value, desorption time, ionic strength and pH. It was found that the calibration curve was linear within two ranges of concentrations (0.05-0.1 and 0.5-15 ng/L for methyl red; 0.05-0.5 and 0.5-15 ng/L for sunset yellow) with correlation coefficients better than 0.9683. The limit of detection was 0.014 ng/L for methyl red and 0.015 ng/L for sunset yellow. Repeatability Relative Standard Deviation (RSD) with three replicated experiments was 1.5-10% for methyl red and 2.5-5.8% for sunset yellow. Relative recovery percentages of 88-96% for methyl red and 62-92% for sunset yellow were obtained in the samples. Moreover, the results have shown that acceptable accuracy, precision and linearity make the "fabric phase sorptive extraction" a proper method for the determination of dyes from industrial sewage samples.
Collapse
Affiliation(s)
- Nayereh Rahimian
- Department of Chemistry, Payame Noor University, Nakhl st, Lashkarak Highway, Tehran, 19569, Tehran 19395-4697, Iran
| | - Javad Feizy
- Department of Food Safety and Quality Control, Research Institute of Food Science and Technology (RIFST), Khorasan Science and Technology Park, CCRF+RV9, PO Box 91735-147, Mashhad, Iran
| | - Zarrin Es'haghi
- Department of Chemistry, Payame Noor University, Nakhl st, Lashkarak Highway, Tehran, 19569, Tehran 19395-4697, Iran
| |
Collapse
|
5
|
Mol Z, Walgraeve C, De Pril R, Van Langenhove H, Demeestere K. Trace analysis of taste and odour compounds in drinking water by stir bar sorptive extraction followed by thermal desorption - gas chromatography - mass spectrometry (SBSE-TD-GC-MS). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176878. [PMID: 39423895 DOI: 10.1016/j.scitotenv.2024.176878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/22/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
Because of negative tap water quality perception, people often prefer bottled water over tap water despite the higher energy consumption and production of plastic waste. Taste and odour (T&O) deviations in tap water are an important aspect of this issue and should be avoided. However, T&O compounds typically occur at low concentrations (≤ ng.L-1) and are numerous, originating from various sources, ranging from source water to kitchen taps. Consequently, unravelling T&O events is challenging and causing compounds may remain unknown. Therefore, a multi-compound method (SBSE-TD-GC-MS) was developed, optimised and validated for the simultaneous trace analysis of 45 T&O compounds in drinking water. It covers key compounds of different odour categories with a wide range of physical-chemical properties and originating from the different steps of production and distribution. The intra- and interday precision of the method was shown by relative standard deviations (RSD) lower than 15 % and 23 %, respectively, for 75 % of the measured concentrations. For most of the compounds (>75 %), the detection capability (CCβ) was below 1/3rd of their lowest reported odour threshold concentration (OTC), while for the other 6 compounds, the CCβ was within the reported OTC range. Additionally, the CCβs were comparable to or lower than those in literature. As a proof of concept, the method was used to investigate the occurrence and concentrations of T&O compounds before (surface water) and after drinking water production. The results show a clear removal of compounds related to microbial activity (e.g. geosmin, 2-methylisoborneol, 2,4,6-tribromoanisole) after treatment and an increase of compounds related to disinfection. Although rarely investigated, 3-methylbutanal showed concentrations similar to its OTC in treated drinking water, emphasizing the necessity of a broad ultra-trace analysis to ultimately prevent the occurrence of T&O compounds and guarantee tap water quality.
Collapse
Affiliation(s)
- Zoë Mol
- Research Group Environmental Organic Chemistry and Technology (EnVOC), Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, B-9052 Ghent, Belgium
| | - Christophe Walgraeve
- Research Group Environmental Organic Chemistry and Technology (EnVOC), Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, B-9052 Ghent, Belgium
| | - Rik De Pril
- Research Group Environmental Organic Chemistry and Technology (EnVOC), Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Herman Van Langenhove
- Research Group Environmental Organic Chemistry and Technology (EnVOC), Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Kristof Demeestere
- Research Group Environmental Organic Chemistry and Technology (EnVOC), Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium; Center for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, B-9052 Ghent, Belgium.
| |
Collapse
|
6
|
Chen Y, Zhang X, Ma J, Gong J, A W, Huang X, Li P, Xie Z, Li G, Liao Q. All-in-one strategy to construct bifunctional covalent triazine-based frameworks for simultaneous extraction of per- and polyfluoroalkyl substances and polychlorinated naphthalenes in foods. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133084. [PMID: 38039811 DOI: 10.1016/j.jhazmat.2023.133084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) and polychlorinated naphthalenes (PCNs) are of growing concern due to their toxic effects on the environment and human health. There is an urgent need for strategies to monitor and analyze the coexistence of PFASs and PCNs, especially in food samples at trace levels, to ensure food safety. Herein, a novel β-cyclodextrin (β-CD) derived fluoro-functionalized covalent triazine-based frameworks named CD-F-CTF was firstly synthesized. This innovative framework effectively combines the porous nature of the covalent organic framework and the host-guest recognition property of β-CD enabling the simultaneous extraction of PFASs and PCNs. Under the optimal conditions, a simple and rapid method was developed to analyze PFASs and PCNs by solid-phase extraction (SPE) based simultaneous extraction and stepwise elution (SESE) strategy for the first time. When coupled with liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) and gas chromatography-tandem mass spectrometry (GC-MS/MS), this method achieved impressive detection limits for PFASs (0.020 -0.023 ng/g) and PCNs (0.016 -0.075 ng/g). Furthermore, the excellent performance was validated in food samples with recoveries of 76.7-107 % (for PFASs) and 78.0-108 % (for PCNs). This work not only provides a simple and rapid technique for simultaneous monitoring of PFASs and PCNs in food and environmental samples, but also introduces a new idea for the designing novel adsorbents with multiple recognition sites.
Collapse
Affiliation(s)
- Yanlong Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Xingyuan Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Juanqiong Ma
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Jing Gong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Wenwei A
- Guangzhou Customs District Technology Center, Guangzhou, Guangdong Province 510623, China
| | - Xinyu Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Pei Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong Province 518106, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, Guangdong Province 510006, China.
| | - Qiongfeng Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510006, China.
| |
Collapse
|
7
|
Bocelli MD, Medina DAV, Lanças FM, Dos Santos-Neto ÁJ. Automated microextraction by packed sorbent of endocrine disruptors in wastewater using a high-throughput robotic platform followed by liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 2023; 415:6165-6176. [PMID: 37532864 DOI: 10.1007/s00216-023-04888-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023]
Abstract
An automated microextraction by packed sorbent followed by liquid chromatography-tandem mass spectrometry (MEPS-LC-MS/MS) method was developed for the determination of four endocrine disruptors-parabens, benzophenones, and synthetic phenolic antioxidants-in wastewater samples. The method utilizes a lab-made repackable MEPS device and a multi-syringe robotic platform that provides flexibility to test small quantities (2 mg) of multiple extraction phases and enables high-throughput capabilities for efficient method development. The overall performance of the MEPS procedure, including the investigation of influencing variables and the optimization of operational parameters for the robotic platform, was comprehensively studied through univariate and multivariate experiments. Under optimized conditions, the target analytes were effectively extracted from a small sample volume of 1.5 mL, with competitive detectability and analytical confidence. The limits of detection ranged from 0.15 to 0.30 ng L-1, and the intra-day and inter-day relative standard deviations were between 3 and 21%. The method's applicability was successfully demonstrated by determining methylparaben, propylparaben, butylated hydroxyanisole, and oxybenzone in wastewater samples collected from the São Carlos (SP, Brazil) river. Overall, the developed method proved to be a fast, sensitive, reliable, and environmentally friendly analytical tool for water quality monitoring.
Collapse
Affiliation(s)
- Marcio David Bocelli
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil
| | | | | | | |
Collapse
|
8
|
Habib A, Landa EN, Holbrook KL, Walker WS, Lee WY. Rapid, efficient, and green analytical technique for determination of fluorotelomer alcohol in water by stir bar sorptive extraction. CHEMOSPHERE 2023; 338:139439. [PMID: 37429381 DOI: 10.1016/j.chemosphere.2023.139439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023]
Abstract
Fluorotelomer alcohols (FTOHs) are one of the major classes of per- and polyfluoroalkyl substances (PFAS). Due to their potential toxicity, persistence, and ubiquitous presence in the environment, some common PFAS are voluntarily phased out; while FTOHs are used as alternatives to conventional PFAS. FTOHs are precursors of perfluorocarboxylic acids (PFCAs) and therefore they are commonly detected in water matrices, which eventually indicate PFAS contamination in drinking water supplies and thus a potential source of human exposure. Even though studies have been conducted nationwide to evaluate the degree of FTOHs in the water environment, robust monitoring is lacking because of the unavailability of simple and sustainable analytical extraction and detection methods. To fill the gap, we developed and validated a simple, rapid, minimal solvent use, no clean-up, and sensitive method for the determination of FTOHs in water by stir bar sorptive extraction (SBSE) coupled with thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). Three commonly detected FTOHs (6:2 FTOH, 8:2 FTOH, and 10:2 FTOH) were selected as the model compounds. Factors such as extraction time, stirring speed, solvent composition, salt addition, and pH were investigated to achieve optimal extraction efficiency. This "green chemistry" based extraction provided good sensitivity and precision with low method limits of detection ranging from 2.16 ng/L to 16.7 ng/L and with an extraction recovery ranging 55%-111%. The developed method were tested on tap water, brackish water, and wastewater influent and effluent. 6:2 FTOH and 8:2 FTOH were detected in two wastewater samples at 78.0 and 34.8 ng/L, respectively. This optimized SBSE-TD-GC-MS method will be a valuable alternative to investigate FTOHs in water matrices.
Collapse
Affiliation(s)
- Ahsan Habib
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX, USA.
| | - Elizabeth Noriega Landa
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX, USA.
| | - Kiana L Holbrook
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX, USA.
| | - W Shane Walker
- Civil Engineering, The University of Texas at El Paso, El Paso, TX, USA.
| | - Wen-Yee Lee
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX, USA.
| |
Collapse
|
9
|
Hernández F, Fabregat-Safont D, Campos-Mañas M, Quintana JB. Efficient Validation Strategies in Environmental Analytical Chemistry: A Focus on Organic Micropollutants in Water Samples. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:401-428. [PMID: 37068748 DOI: 10.1146/annurev-anchem-091222-112115] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This article critically reviews analytical method validation and quality control applied to the environmental chemistry field. The review focuses on the determination of organic micropollutants (OMPs), specifically emerging contaminants and pesticides, in the aquatic environment. The analytical technique considered is (gas and liquid) chromatography coupled to mass spectrometry (MS), including high-resolution MS for wide-scope screening purposes. An analysis of current research practices outlined in the literature has been performed, and key issues and analytical challenges are identified and critically discussed. It is worth emphasizing the lack of specific guidelines applied to environmental analytical chemistry and the minimal regulation of OMPs in waters, which greatly affect method development and performance, requirements for method validation, and the subsequent application to samples. Finally, a proposal is made for method validation and data reporting, which can be understood as starting points for further discussion with specialists in environmental analytical chemistry.
Collapse
Affiliation(s)
- Félix Hernández
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castellón, Spain;
| | - David Fabregat-Safont
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castellón, Spain;
- Applied Metabolomics Research Laboratory, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Marina Campos-Mañas
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, University Jaume I, Castellón, Spain;
| | - José Benito Quintana
- Department of Analytical Chemistry, Nutrition and Food Sciences, Institute of Research on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
10
|
Song XL, Lv H, Liao KC, Wang DD, Li GM, Wu YY, Chen QY, Chen Y. Application of magnetic carbon nanotube composite nanospheres in magnetic solid-phase extraction of trace perfluoroalkyl substances from environmental water samples. Talanta 2023; 253:123930. [PMID: 36113335 DOI: 10.1016/j.talanta.2022.123930] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 12/13/2022]
Abstract
The layer-by-layer assembly technique was used to synthesize novel multiwalled carbon nanotubes (MWCNTs) on magnetic carbon (Fe3O4@C) nanospheres, which were then used to extract six perfluoroalkyl substances (PFAS) in environmental real water samples using ultra high-performance liquid chromatography coupled to tandem mass spectrometry. The as-synthesized sorbent MWCNTs@Fe3O4@C was employed for magnetic solid-phase extraction (MSPE). The as-prepared MWCNTs@Fe3O4@C was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and vibrating sample magnetometer (VSM). The main extraction parameters were systematically optimized by Box-Behnken design. Under optimal conditions, excellent results were achieved. The synthesized sorbent showed wide linear ranges (0.1-1000 ng L-1), low detection limits (0.03-0.09 ng L-1) and good repeatability (3.80%-9.52%) for extracting and detecting six PFAS. The developed method was also applied to analyze six PFAS from environmental water samples. This study indicated that MWCNTs@Fe3O4@C composites are promising materials for the extraction and determination of PFAS from water samples.
Collapse
Affiliation(s)
- Xin-Li Song
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, 277160, China.
| | - Hui Lv
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, 277160, China
| | - Ke-Chao Liao
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, 277160, China
| | - Dong-Dong Wang
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, 277160, China
| | - Gui-Mei Li
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, 277160, China
| | - Yi-Yao Wu
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, 277160, China
| | - Qian-Yu Chen
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, 277160, China
| | - Yue Chen
- Department of Criminal Science and Technology, Shandong Police College, Jinan, 250014, China.
| |
Collapse
|
11
|
Recent advances in solid phase extraction methods for the determination of bisphenol A and its analogues in environmental matrices: an updated review. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Zou D, Li P, Yang C, Han D, Yan H. Rapid determination of perfluorinated compounds in pork samples using a molecularly imprinted phenolic resin adsorbent in dispersive solid phase extraction-liquid chromatography tandem mass spectrometry. Anal Chim Acta 2022; 1226:340271. [DOI: 10.1016/j.aca.2022.340271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 11/01/2022]
|
13
|
Wang Y, He M, Chen B, Cao H, Liang Y, Hu B. Porous organic framework as coating for stir bar sorptive extraction of carbamate pesticides from corn and potato samples. Food Chem 2022; 397:133785. [PMID: 35914459 DOI: 10.1016/j.foodchem.2022.133785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 01/12/2023]
Abstract
Three porous organic frameworks (POFs) were synthesized by the reaction between phloroglucinol and 1,4-phthalaldehyde, 4,4'-biphenyldialdehyde or tris-(4-formylphenyl) amine; the products are named as POF-a, POF-b and POF-c, respectively. They were used to prepare POFs coated stir bars respectively for the extraction of four carbamate pesticides (CMPs). POF-c coated stir bar exhibited better adsorption performance than POF-a/b coated stir bar and commercial stir bars, probably due to the stronger conjugated structure and hydrophobicity of POF-c, and resultant hydrophobic, π-π and hydrogen bonding interactions between them. The adsorption mechanism for target CMPs was verified by characterization techniques and molecular dynamics simulation. A method of POF-c coated stir bar sorptive extraction-high performance liquid chromatography-variable wavelength ultraviolet detector was developed for the analysis of four CMPs in corn and potato samples. Under the optimal conditions, LODs of the method were between 0.017 and 0.048 μg/L, and the linear range for four CMPs was 0.1/0.2-200 μg/L.
Collapse
Affiliation(s)
- Yuxin Wang
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Man He
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Beibei Chen
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Huiming Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Bin Hu
- Department of Chemistry, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
14
|
Kholofelo Selahle S, Mpupa A, Nosizo Nomngongo P. Liquid chromatographic determination of per- and polyfluoroalkyl substances in environmental river water samples. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
15
|
Bošković N, Bílková Z, Šudoma M, Bielská L, Škulcová L, Ribitsch D, Soja G, Vrana B, Hofman J. Effects of biochar on the fate of conazole fungicides in soils and their bioavailability to earthworms and plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:23323-23337. [PMID: 34807391 DOI: 10.1007/s11356-021-17191-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
The study showed novel findings about changes in the fate and bioavailability of conazole fungicides (CFs) after biochar (BC) addition to soil. Two contrasting soils (low- and high-sorbing of CF; L soils, H soils) were amended by three BCs (low-, moderate-, and high-sorbing of CF; L-BC, M-BC, H-BC) at 0.2% and 2% doses. Epoxiconazole (EPC) and tebuconazole (TBC) were then added to the soil-BC mixtures, and their degradation, bioaccumulation in earthworms (Eisenia andrei), and bioconcentration in lettuce (Lactuca sativa) were studied for three months. Also, stir bar sorptive extraction (SBSE) was performed to determine CF (bio)accessibility. The EPC and TBC degradation in the soil-BC mixtures followed usually the first-order decay kinetics. The BC addition prevalently decreased the pesticides degradation in the L soil mixtures but often increased it in the H soil mixtures. In general, EPC degraded less than TBC. BC type and dose roles in the pesticides degradation were unclear. The BC addition significantly reduced pesticide uptake to the earthworms in the L soil mixtures (by 37-96%) and in the H soil mixtures (by 6-89%) with 2% BC. The BC addition reduced pesticide uptake to the lettuce roots and leaves significantly-up to two orders of magnitude, and this reduction was strong in H soil mixtures at 2% of BC. The BC addition reduced the CF (bio)accessibility measured by SBSE in all L soil mixtures and some H soil mixtures with 2% BC. Although not significant, it also seems that the pesticide bioaccumulation, bioconcentration, and (bio)accessibility were decreasing according to the BC type (L-BC > M-BC > H-BC). The pesticide concentrations in the earthworms and lettuce correlated significantly to the SBSE results, which indicates this technique as a possible predictor of biotic uptake. Our results showed that the interactions were hard to predict in the complex soil-BC-pesticide system.
Collapse
Affiliation(s)
- Nikola Bošković
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Zuzana Bílková
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Marek Šudoma
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Lucie Bielská
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of Agronomy, Mendel University in Brno, Zemědělská 1/1665, 613 00, Brno, Czech Republic
| | - Lucia Škulcová
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Doris Ribitsch
- Institute for Environmental Biotechnology, Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences (BOKU), Konrad-Lorenz-Strasse 20, 3430, Tulln, Austria
| | - Gerhard Soja
- Environmental Resources & Technologies, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Strasse 24, 3430, Tulln, Austria
- Institute of Chemical and Energy Engineering, University of Natural Resources and Life Sciences (BOKU), Muthgasse 107, 1190, Vienna, Austria
| | - Branislav Vrana
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Jakub Hofman
- Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic.
| |
Collapse
|
16
|
Nadal JC, Catalá-Icardo M, Borrull F, Herrero-Martínez JM, Marcé RM, Fontanals N. Weak anion-exchange mixed-mode materials to selectively extract acidic compounds by stir bar sorptive extraction from environmental waters. J Chromatogr A 2021; 1663:462748. [PMID: 34965484 DOI: 10.1016/j.chroma.2021.462748] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/14/2022]
Abstract
In this study, the first example of a polytetrafluoroethylene (PTFE)-based magnet coated with weak anion exchange (WAX) monolith as novel support for stir bar sorptive extraction (SBSE) is presented. Firstly, the PTFE magnets were properly modified and vinylized in order to immobilize polymer monoliths onto its surface. Then, a glycidyl methacrylate monolith was prepared and modified with ethylenediamine (EDA) to create weak anion exchanger via ring opening reaction of epoxy groups. The prepared covalently immobilized EDA-modified monoliths onto PTFE magnet exhibited good stability and reusability. Application of resulting material as stir bar for SBSE was investigated for a series of acidic compounds that includes acesulfame, saccharin, diclofenac or ibuprofen, among others as target compounds. Firstly, the SBSE conditions were optimized to promote the WAX interactions with the target compounds achieving recoveries from 37 to 75% and enable the selective extraction of these compounds as it provided values of% matrix effect from 17 to -13% when they were determined by SBSE followed by liquid chromatography - tandem mass spectrometry. The analytical methodology, was then validated and applied for the determination of the target solutes in environmental water samples, which were found at concentration up to 2500 ng L-1 in river waters.
Collapse
Affiliation(s)
- Joan Carles Nadal
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Sescelades Campus, Marcel·lí Domingo 1, Tarragona 43007, Spain
| | - Mónica Catalá-Icardo
- Instituto de Investigación para la Gestión Integrada de Zonas Costeras, Campus de Gandia, Universitat Politècnica de València, C/ Paranimf 1, Grao de Gandia, Valencia 46730, Spain
| | - Francesc Borrull
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Sescelades Campus, Marcel·lí Domingo 1, Tarragona 43007, Spain
| | | | - Rosa Maria Marcé
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Sescelades Campus, Marcel·lí Domingo 1, Tarragona 43007, Spain.
| | - Núria Fontanals
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Sescelades Campus, Marcel·lí Domingo 1, Tarragona 43007, Spain
| |
Collapse
|
17
|
Ahmed SF, Mofijur M, Nuzhat S, Chowdhury AT, Rafa N, Uddin MA, Inayat A, Mahlia TMI, Ong HC, Chia WY, Show PL. Recent developments in physical, biological, chemical, and hybrid treatment techniques for removing emerging contaminants from wastewater. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125912. [PMID: 34492846 DOI: 10.1016/j.jhazmat.2021.125912] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 05/25/2023]
Abstract
Emerging contaminants (ECs) in wastewater have recently attracted the attention of researchers as they pose significant risks to human health and wildlife. This paper presents the state-of-art technologies used to remove ECs from wastewater through a comprehensive review. It also highlights the challenges faced by existing EC removal technologies in wastewater treatment plants and provides future research directions. Many treatment technologies like biological, chemical, and physical approaches have been advanced for removing various ECs. However, currently, no individual technology can effectively remove ECs, whereas hybrid systems have often been found to be more efficient. A hybrid technique of ozonation accompanied by activated carbon was found significantly effective in removing some ECs, particularly pharmaceuticals and pesticides. Despite the lack of extensive research, nanotechnology may be a promising approach as nanomaterial incorporated technologies have shown potential in removing different contaminants from wastewater. Nevertheless, most existing technologies are highly energy and resource-intensive as well as costly to maintain and operate. Besides, most proposed advanced treatment technologies are yet to be evaluated for large-scale practicality. Complemented with techno-economic feasibility studies of the treatment techniques, comprehensive research and development are therefore necessary to achieve a full and effective removal of ECs by wastewater treatment plants.
Collapse
Affiliation(s)
- S F Ahmed
- Science and Math Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - M Mofijur
- School of Information Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW 2007, Australia; Mechanical Engineering Department, Prince Mohammad Bin Fahd University, Al Khobar 31952, Saudi Arabia
| | - Samiha Nuzhat
- Environmental Sciences Program, Asian University for Women, Chattogram 4000, Bangladesh; Water and Life Bangladesh, Dhaka, Bangladesh
| | | | - Nazifa Rafa
- Environmental Sciences Program, Asian University for Women, Chattogram 4000, Bangladesh
| | - Md Alhaz Uddin
- Department of Civil Engineering, College of Engineering, Jouf University, Sakaka, Saudi Arabia
| | - Abrar Inayat
- Department of Sustainable and Renewable Energy Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; Biomass & Bioenergy Research Group, Center for Sustainable Energy and Power Systems Research, Research Institute of Sciences and Engineering, University of Sharjah, 27272 Sharjah, United Arab Emirates
| | - T M I Mahlia
- School of Information Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW 2007, Australia
| | - Hwai Chyuan Ong
- School of Information Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW 2007, Australia
| | - Wen Yi Chia
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
18
|
Selvi SV, Lincy V, Chen SM, Hong PD, Prasannan A. Highly soluble polythiophene-based strontium-doped NiO nanocomposite for effective electrochemical detection of catechol in contaminated water. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Wang J, Chen X, Sun X, Liu M, Wu X, Gong Y, Du J. Degradation pathway of triazole fungicides and synchronous removal of transformation products via photo-electrocatalytic oxidation tandem MoS 2 adsorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:16480-16491. [PMID: 33387321 PMCID: PMC7969552 DOI: 10.1007/s11356-020-12185-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
A simple and effective tandem process of photo-electrocatalytic oxidation (PECO)-MoS2 adsorption was developed for the synchronous removal of triazole fungicides (TFs) and toxicological transformation products (TPs). In order to accurately identify trace TPs and evaluate degradation pathway during water treatment, a sensitive analytical method was developed on the basis of the stir bar sorptive extraction (SBSE) pretreatment tandem LC-MS/MS technique. Firstly, the typical TFs (PRO, TET, and DIN, C0 = 1.0 mg/L) in actual water samples were treated under the optimal process (bias voltage 1.8 V, pH 4, irradiation intensity 50 mW/cm2, 0.05 g MoS2/100 mL, 350 rpm, adsorption of 5 min). The result indicated that the residues of PRO, TET, and DIN in secondary effluent were 0.0973, 0.0617, and 0.0012 mg/L, respectively, with the removal rates of 90.3%, 93.8%, and 99.9%, respectively, undergoing 30-min photo-electrocatalysis and 5-min adsorption. The alkaline medium was favorable for the adsorption of MoS2 to TFs. The assessment results of potential cancer risk indicated that the residues of TFs in secondary effluent were safe for drinking water consumption. Besides, the major TPs were identified via the SBSE-HRLC-MS/MS technique, and one possible transformation pathway of TFs was proposed. TFs mainly underwent dehydrochlorination, cyclization, hydroxylation, etc. to produce a series of nitrogenous heterocyclic compounds that possess higher polarity than parents, hinting that TPs might pose potential aquatic toxicity. However, TPs can be removed synchronously by this tandem technique. The current study can provide a theoretical basis for the harmless treatment of TFs in the water environment.
Collapse
Affiliation(s)
- Junwen Wang
- College of Chemistry and Environmental Science, Hebei University, Baoding City, 071002 Hebei Province China
| | - Xiaoxin Chen
- College of Chemistry and Environmental Science, Hebei University, Baoding City, 071002 Hebei Province China
- Key Laboratory of Mineral Resources and Eco-environment Monitoring, Hebei Province, Baoding, China
| | - Xiaoli Sun
- College of Chemistry and Environmental Science, Hebei University, Baoding City, 071002 Hebei Province China
| | - Miao Liu
- College of Chemistry and Environmental Science, Hebei University, Baoding City, 071002 Hebei Province China
| | - Xingqiang Wu
- College of Chemistry and Environmental Science, Hebei University, Baoding City, 071002 Hebei Province China
| | - Yichao Gong
- College of Chemistry and Environmental Science, Hebei University, Baoding City, 071002 Hebei Province China
| | - Jianfang Du
- Bioengineering Technology Innovation Center of Hebei Province, Baoding, China
| |
Collapse
|
20
|
Riboni N, Fornari F, Bianchi F, Careri M. A simple and efficient Solid-Phase Microextraction - Gas Chromatography - Mass Spectrometry method for the determination of fragrance materials at ultra-trace levels in water samples using multi-walled carbon nanotubes as innovative coating. Talanta 2021; 224:121891. [PMID: 33379099 DOI: 10.1016/j.talanta.2020.121891] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 11/26/2022]
Abstract
The occurrence of emerging contaminants is becoming of increasing importance to assess the impact of anthropogenic activities onto the environment. The present study reports for the first time the development and validation of an efficient method for the simultaneous determination of fragrance materials in water samples based on the use of a novel multiwalled carbon nanotubes (MWCNTs)-based solid-phase microextraction coating. Helical MWCNTs were selected as adsorbent material due to their outstanding extraction performance. The multicriteria method of desirability functions allowed the optimization of the experimental conditions in terms of extraction time and extraction temperature. Validation proved the reliability of the method for the determination of the analytes at ultra-trace levels, obtaining detection limits in the 0.2-13 ng/L range, good precision, with relative standard deviations lower than 20% and recovery rates in the 80 ± 12%-111 ± 11%. Superior enrichment factors compared to commercial fibers were also calculated. Finally, applicability to real sample analysis was demonstrated.
Collapse
Affiliation(s)
- N Riboni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124, Parma, Italy; Center for Energy and Environment (CIDEA), University of Parma, Parco Area Delle Scienze 42, 43124, Parma, Italy.
| | - F Fornari
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124, Parma, Italy
| | - F Bianchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124, Parma, Italy; Center for Energy and Environment (CIDEA), University of Parma, Parco Area Delle Scienze 42, 43124, Parma, Italy.
| | - M Careri
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124, Parma, Italy; Center for Energy and Environment (CIDEA), University of Parma, Parco Area Delle Scienze 42, 43124, Parma, Italy
| |
Collapse
|
21
|
Jiang HL, Xue F, Sun J, Lin JM, Zhang C, Wang X, Zhao RS. Ionic covalent organic frameworks for the magnetic solid-phase extraction of perfluorinated compounds in environmental water samples. Mikrochim Acta 2021; 188:47. [PMID: 33483792 DOI: 10.1007/s00604-021-04703-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/09/2021] [Indexed: 01/18/2023]
Abstract
A novel magnetic ionic covalent organic framework (Fe3O4@EB-iCOFs) was designed and synthesized. It was then characterized by X-ray diffraction, N2 adsorption-desorption analysis, and magnetic measurements, among others. The material shows the advantages of ionic property, large surface area, and magnetic responsiveness. It has potential of magnetic solid-phase extraction (MSPE) of perfluorinated compounds (PFCs). A method for the determination of PFCs based on MSPE-HPLC-MS/MS was established. The method has excellent linearity (r ≥ 0.995) in the working range 1-1000 ng L-1 , good repeatability (1.4-5.8%, n = 6), low limits of detection in the range 0.1-0.8 ng L-1 and satisfactory recoveries (between 73.9 and 108.3%).
Collapse
Affiliation(s)
- Hai-Long Jiang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Science), Jinan, 250014, People's Republic of China
| | - Fang Xue
- Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Science), Jinan, 250014, People's Republic of China.,School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Jing Sun
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Jin-Ming Lin
- Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Chong Zhang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Science), Jinan, 250014, People's Republic of China
| | - Xia Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Science), Jinan, 250014, People's Republic of China.
| | - Ru-Song Zhao
- Key Laboratory for Applied Technology of Sophisticated Analytical Instrument of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Science), Jinan, 250014, People's Republic of China
| |
Collapse
|
22
|
Teixeira NA, Miyazaki DMS, Grassi MT, Zawadzki SF, Abate G. Application of a new adhesive elastomeric coating and hydrophilic-lipophilic-balanced sorbent for modified stir-bar sorptive extraction. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5815-5822. [PMID: 33236730 DOI: 10.1039/d0ay01594f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A new polyurethane adhesive was evaluated to fix a hydrophilic-lipophilic-balanced sorbent and to produce modified stir-bars. It presented high mechanical and chemical resistance, indicating that it is an adequate adhesive. The homemade bars were employed to determine bisphenol A, diclofenac, ibuprofen and triclosan in aqueous medium. Satisfactory figures of merit were observed, with LOD between 0.06 and 0.30 ng mL-1 and enrichment factors between 133 and 195 times, using an extraction time of 2 h. The stir-bars were employed to determine the four analytes in water samples, presenting recovery results from 53 to 135% and RSD between 0.7 and 20%. In general, the results observed here indicated that the adhesive is an appropriate alternative material to fix HLB particles, and could probably be applied to other sorbents.
Collapse
Affiliation(s)
- Natascha A Teixeira
- Department of Chemistry, Federal University of Paraná, Centro Politécnico, CP 19061, CEP 81531-980, Curitiba, PR, Brazil.
| | | | | | | | | |
Collapse
|
23
|
Wang Y, He M, Chen B, Hu B. Hydroxyl-containing porous organic framework coated stir bar sorption extraction combined with high performance liquid chromatography-diode array detector for analysis of triazole fungicides in grape and cabbage samples. J Chromatogr A 2020; 1633:461628. [PMID: 33128975 DOI: 10.1016/j.chroma.2020.461628] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 01/13/2023]
Abstract
In this work, a hydroxyl-containing porous organic framework (HC-POF) was prepared by a simple solvothermal reaction with 1,4-phthalaldehyde and phloroglucinol as monomers. Sol-gel method was used to coat HC-POF on the glass stir bar. The prepared HC-POF coated stir bar shows better extraction performance for six triazole fungicides (TFs) compared to commercial polydimethylsiloxane and ethylene glycol-silicone coated stir bars. Fourier transform infrared Spectrometry and X-ray photoelectron Spectrometry were used to explore interactions between HC-POF coating and TFs. It is assumed that the coating mainly adsorbs TFs through π-π interactions, hydrogen bonding and hydrophobic interactions. Based on this fact, a new method of HC-POF coated stir bar sorptive extraction combined with high performance liquid chromatography-diode array detector was developed for the determination of six TFs in grape and cabbage samples. A series of extraction and desorption conditions were carefully optimized, including salt concentration, sample solution pH, stirring rate and desorption solvent. Under the optimized experimental conditions, the proposed method displayed limits of detection in the range of 0.022 -0.071 μg L-1, which is the lowest among the reported SBSE methods for target TFs analysis. The linear range for six TFs was 0.1/0.2-500 μg L-1 and the recoveries for the spiked grape and cabbage were 81.0-109% and 80.7-111%, respectively.
Collapse
Affiliation(s)
- Yuxin Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Man He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Beibei Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bin Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
24
|
Pena-Pereira F, Bendicho C, Pavlović DM, Martín-Esteban A, Díaz-Álvarez M, Pan Y, Cooper J, Yang Z, Safarik I, Pospiskova K, Segundo MA, Psillakis E. Miniaturized analytical methods for determination of environmental contaminants of emerging concern - A review. Anal Chim Acta 2020; 1158:238108. [PMID: 33863416 DOI: 10.1016/j.aca.2020.11.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 01/09/2023]
Abstract
The determination of contaminants of emerging concern (CECs) in environmental samples has become a challenging and critical issue. The present work focuses on miniaturized analytical strategies reported in the literature for the determination of CECs. The first part of the review provides brief overview of CECs whose monitoring in environmental samples is of particular significance, namely personal care products, pharmaceuticals, endocrine disruptors, UV-filters, newly registered pesticides, illicit drugs, disinfection by-products, surfactants, high technology rare earth elements, and engineered nanomaterials. Besides, an overview of downsized sample preparation approaches reported in the literature for the determination of CECs in environmental samples is provided. Particularly, analytical methodologies involving microextraction approaches used for the enrichment of CECs are discussed. Both solid phase- and liquid phase-based microextraction techniques are highlighted devoting special attention to recently reported approaches. Special emphasis is placed on newly developed materials used for extraction purposes in microextraction techniques. In addition, recent contributions involving miniaturized analytical flow techniques for the determination of CECs are discussed. Besides, the strengths, weaknesses, opportunities and threats of point of need and portable devices have been identified and critically compared with chromatographic methods coupled to mass chromatography. Finally, challenging aspects regarding miniaturized analytical methods for determination of CECs are critically discussed.
Collapse
Affiliation(s)
- Francisco Pena-Pereira
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Química Analítica e Alimentaria, Grupo QA2, Edificio CC Experimentais, Campus de Vigo, As Lagoas, Marcosende, 36310, Vigo, Spain.
| | - Carlos Bendicho
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Química Analítica e Alimentaria, Grupo QA2, Edificio CC Experimentais, Campus de Vigo, As Lagoas, Marcosende, 36310, Vigo, Spain.
| | - Dragana Mutavdžić Pavlović
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, Zagreb, 10000, Croatia
| | - Antonio Martín-Esteban
- Departamento de Medio Ambiente y Agronomía, INIA, Carretera de A Coruña Km 7.5, Madrid, E-28040, Spain
| | - Myriam Díaz-Álvarez
- Departamento de Medio Ambiente y Agronomía, INIA, Carretera de A Coruña Km 7.5, Madrid, E-28040, Spain
| | - Yuwei Pan
- Cranfield Water Science Institute, Cranfield University, Cranfield, MK43 0AL, United Kingdom; School of Engineering, University of Glasgow, G12 8LT, United Kingdom
| | - Jon Cooper
- School of Engineering, University of Glasgow, G12 8LT, United Kingdom
| | - Zhugen Yang
- Cranfield Water Science Institute, Cranfield University, Cranfield, MK43 0AL, United Kingdom
| | - Ivo Safarik
- Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05, Ceske Budejovice, Czech Republic; Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic; Department of Magnetism, Institute of Experimental Physics, SAS, Watsonova 47, 040 01, Kosice, Slovakia
| | - Kristyna Pospiskova
- Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sadkach 7, 370 05, Ceske Budejovice, Czech Republic; Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic
| | - Marcela A Segundo
- LAQV/REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, R Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Elefteria Psillakis
- Laboratory of Aquatic Chemistry, School of Environmental Engineering, Polytechnioupolis, Technical University of Crete, GR-73100, Chania, Crete, Greece
| |
Collapse
|
25
|
Development of a solventless stir bar sorptive extraction/thermal desorption large volume injection capillary gas chromatographic-mass spectrometric method for ultra-trace determination of pyrethroids pesticides in river and tap water samples. OPEN CHEM 2020. [DOI: 10.1515/chem-2020-0176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractStir bar sorptive extraction (SBSE) has been developed in 1999 to efficiently extract and preconcentrate volatile compounds, and many applications have been found after that. This technique conforms to the principles of green chemistry. Here, we used an autosampler with an online thermal desorption unit connected to CGC-MS to analyze pesticides. This study describes the development of a highly sensitive extraction method based on SBSE for simultaneous determination of ultra-trace amounts of four pesticides λ-cyhalothrin, α-cypermethrin, tefluthrin, and dimefluthrin in environmental water samples. This method was compared to the standard liquid–liquid extraction. In this study, a totally solventless SBSE was applied to river and tap water samples for the extraction and preconcentration of four pesticides. PDMS-coated SBSEs of 10 mm × 1 mm thickness were used for this purpose, and SBSEs were directly placed into a large-volume injector of a CGC-MS for thermal desorption of the analytes. In all extractions, deltamethrin was used as an internal standard. This method showed linearity in the range of 1.0–200.0 ng L−1 for cyhalothrin, tefluthrin, and dimefluthrin and 10.0–800 ng L−1 for cypermethrin. Preconcentration factors of 179, 7, 162, and 166 were obtained with very low limits of detection of 0.32, 3.41, 0.36m and 0.69 ng L−1 for cyhalothrin, cypermethrin, tefluthrinm and dimefluthrin, respectively. These detection limits are thousands of times lower than that of the standard method of liquid–liquid extraction. Reproducibility of the method, based on the relative standard deviation, was better than 7.5% and recoveries for spiked tap and river water samples was within the range of 87.83–114.45%. The application of PDMS-coated SBSE coupled with CGC-MS equipped with a large volume injector thermal desorption unit can be used for ultra-trace analysis of environmental water samples. Solventless SBSE offers several advantages over conventional traditional liquid–liquid extraction such as being very fast and economical and provides better extraction without requiring any solvents; so it can be considered as a green method for the analysis of pesticides.
Collapse
|
26
|
Ji W, Guo YS, Xie HM, Wang X, Jiang X, Guo DS. Rapid microwave synthesis of dioxin-linked covalent organic framework for efficient micro-extraction of perfluorinated alkyl substances from water. JOURNAL OF HAZARDOUS MATERIALS 2020; 397:122793. [PMID: 32361142 DOI: 10.1016/j.jhazmat.2020.122793] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/08/2020] [Accepted: 04/19/2020] [Indexed: 05/23/2023]
Abstract
To synthesize covalent organic framework (COF) via irreversible reactions is more challenging than by reversible ones. In this work, microwave-assisted synthesis is used to facilitate the nucleophilic substitution of 2,3,5,6-tetrafluoro-4-pyridinecarbonitrile with 2,3,6,7,10,11-hexahydroxy triphenylene. The dioxin-linked COF, named TH-COF, was efficiently synthesized with extraordinarily large surface area of 1254 m2 g-1. With its high crystallinity, excellent thermal and chemical stabilities, TH-COF is used as the coating for the solid-phase micro-extraction (SPME) of perfluorinated alkyl substances (PFASs). The adsorptive mechanism was evaluated with adsorption isotherm and kinetic adsorption. Adsorption energies are calculated based on the density functional theory. Following SPME with TH-COF-coated fibers, PFASs were eluted using 1 mL of 0.6% trifluoroacetic acid/methanol and analyzed through the ultra-performance liquid chromatography equipped with triple quadrupole mass spectrometer (UPLC-MS/MS). When applied to spiked real water samples, this method demonstrates good linearity (0.01-1000 ng L-1) with R2 ≥ 0.9945. The TH-COF-SPME-UPLC-MS/MS technique provides low limits of detection (0.0020-0.0045 ng L-1), excellent precision (≤ 7.9%), and good fiber-to-fiber reproducibility (≤ 7.1%). The TH-COF-coated fibers can be reused at least 20 times without the loss of extraction performance. In addition, the relative recoveries from spiked real water samples are 89.5%-105%.
Collapse
Affiliation(s)
- Wenhua Ji
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, China
| | - Yu-Shuang Guo
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, China
| | - Hui-Min Xie
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
| | - Xin Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, China
| | - Dian-Shun Guo
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
27
|
Jafari Z, Hadjmohammadi MR. A banana peel/silicon glue coated stir bar for extraction of aspirin, diclofenac, ibuprofen and mefenamic acid followed by high performance liquid chromatography-UV detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4429-4437. [PMID: 32853301 DOI: 10.1039/d0ay01332c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the current study, a green, cost-effective, and bio-degradable additive was used for the preparation of a highly efficient sorbent based on silicon glue. Here, a banana peel was pretreated and mixed with silicon glue. It was proved that the prepared banana peel-silicon glue bar is a reliable sorbent for stir bar sorptive extraction of nonsteroidal anti-inflammatory drugs (NSAIDs) including aspirin, diclofenac, ibuprofen and mefenamic acid in human urine and plasma. Compared to the lab-made sorbents, the prepared sorbent showed high extraction performance, high stability, and satisfactory reproducibility and involved easy preparation. In order to optimize the effective factors, different parameters such as (stirring rate, pH, extraction time, desorption time and elution solvent volume) were optimized using response surface methodology (RSM) through applying Central-Composite Design (CCD). Under the optimum conditions, the linear dynamic ranges of the target analytes were investigated in the range of 0.2-200 μg L-1 with r2 higher than 0.9929. Limits of detection (LODs) and limits of quantification (LOQs) of analytes were in the ranges of 0.04-0.5 and 0.15-1.65, respectively. The reproducibility of the method was also investigated by calculating the relative standard deviation. The RSD was measured to be lower than 4.9%. Bar-to-bar reproducibility at a 100 μg L-1 concentration level was also evaluated to be lower than 5.3% (n = 3). Also, each prepared film can be used up to 64 times without any reduction in extraction performance. Finally, the method was successfully applied for the determination of selected drugs in different biological fluids including urine and plasma samples. The calculated relative recovery in real sample analysis was higher than 90%.
Collapse
Affiliation(s)
- Zahra Jafari
- Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, NirooHavayiiboulevard, 47416-95447 Babolsar, Iran.
| | | |
Collapse
|
28
|
Specific recognition of cationic paraquat in environmental water and vegetable samples by molecularly imprinted stir-bar sorptive extraction based on monohydroxylcucurbit[7]uril-paraquat inclusion complex. Mikrochim Acta 2020; 187:578. [PMID: 32975594 DOI: 10.1007/s00604-020-04491-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/17/2020] [Indexed: 10/23/2022]
Abstract
Molecularly imprinted stir-bar coatings were created based on a hydroxylcucurbit[7]uril-paraquat inclusion complex. The inclusion complex that contained paraquat (PQ) as a template and monohydroxylcucurbit[7]uril ((OH)Q[7]) as a monomer was preassembled mainly through cavity inclusion interaction of (OH)Q[7] to form a one-dimensional self-assembly structure. The inclusion complex was anchored chemically on the surface of a glass stir bar with hydroxy-terminated poly(dimethylsiloxane) by the sol-gel technique to obtain a molecularly imprinted polymer-coated stir bar (MIP-SB). The molecularly imprinted coating showed specific adsorption for cationic PQ in aqueous media. Other quaternary amine compounds with a similar structure that coexisted in the solution, such as ethyl-viologen, diquat, and difenzoquat, were almost not extracted by the prepared MIP-SB. The sorptive capacity of the MIP-SB for PQ was nearly four times that of the non-imprinted stir bar (NIP-SB). The recognition mechanism indicated that the selectivity and extraction capacity resulted mainly from the imprinted cavity in the polymer that was formed by a one-dimensional assembly structure consisting of the (OH)Q[7]-PQ inclusion complex. The imprinted cavity was complementary to the PQ in shape, size, and functionality. A method to determine PQ in environmental water and vegetable samples was developed by combining MIP-SB sorptive extraction with HPLC-UV. The linear range was from 100 to 10,000 ng L-1 with a 8.2 ng L-1 detection limit for water samples and 0.02-0.85 mg kg-1 with a 0.005 mg kg-1 detection limit for vegetable samples. The limit of detection for both samples was lower than the EU-established maximum residual levels and that of other previously reported methods. The average recoveries were 70.0-96.1% with a relative standard deviation ≤ 7.6%, which showed the successful application in real sample analysis. Molecularly imprinted stir-bar coatings were created based on a hydroxylcucurbit[7]uril-paraquat (PQ) inclusion complex, which showed a specific recognition toward cationic PQ. A method to determine PQ in environmental water and vegetable samples was established by combining MIP-SB sorptive extraction with HPLC-UV.
Collapse
|
29
|
An Y, Row KH. Evaluation of Menthol-Based Hydrophobic Deep Eutectic Solvents for the Extraction of Bisphenol A from Environment Water. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1811716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yena An
- Department of Chemistry and Chemical Engineering, Inha University, Incheon, Republic of Korea
| | - Kyung Ho Row
- Department of Chemistry and Chemical Engineering, Inha University, Incheon, Republic of Korea
| |
Collapse
|
30
|
Mirzaee MT, Seidi S, Razeghi Y, Manouchehri M, Shanehsaz M. In-tube stir bar sorptive extraction based on 3-aminopropyl triethoxysilane surface-modified Ce-doped ZnAl layered double hydroxide thin film for determination of nonsteroidal anti-inflammatory drugs in saliva samples. Mikrochim Acta 2020; 187:528. [PMID: 32860534 DOI: 10.1007/s00604-020-04489-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/17/2020] [Indexed: 10/23/2022]
Abstract
A thin-film based on 3-aminopropyl triethoxysilane surface-modified Ce-doped zinc-aluminum layered double hydroxide was synthesized on the inner surface of an aluminum tube. It has been applied to in-tube stir bar sorptive extraction of nonsteroidal anti-inflammatory drugs in saliva samples followed by high-performance liquid chromatography. The sorbent was characterized by scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, and elemental mapping. The extraction parameters including sample pH (4.2), extraction time (10 min), stirring speed (800 rpm), type of eluent (acidified tetrahydrofuran), eluent volume (100 μL), and desorption time (6 min) were thoroughly optimized. Under the optimum conditions, limits of detection were found to be less than 5.0 ng mL-1. Calibration plots were linear within the range 10-1000 ng mL-1 (R2 > 0.9982). Absolute recoveries were calculated in the range 63.5 to 72.4%. The repeatability (intra- and inter-day precision) and reproducibility (tube-to-tube precision) at concentrations of 50, 250, and 500 ng mL-1 were less than 7.6% and 9.4%, respectively. The method accuracy based on the relative error was calculated at these concentrations and ranged from - 4.9 to - 9.3% for intra-day relative error (%) and - 6.8 to - 11% for inter-day relative error (%). Finally, the method applicability was examined for the determination of nonsteroidal anti-inflammatory drugs in saliva samples, and good relative recoveries were obtained within the range 86.5 to 95.2%. As a result, the introduced method can be applied as a suitable alternative to measuring nonsteroidal anti-inflammatory drugs in biological fluids. Graphical abstract A surface-modified Ce-doped ZnAl LDH thin film was synthesized on the inner surface of an Al tube and applied for in-tube stir bar sorptive extraction of NSAIDs in saliva.
Collapse
Affiliation(s)
- Mahsa Torabi Mirzaee
- Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran
| | - Shahram Seidi
- Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran.
| | - Yasaman Razeghi
- Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran
| | - Mahshid Manouchehri
- Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran
| | - Maryam Shanehsaz
- Analytical Chemistry Research Laboratory, Mobin Shimi Azma Company, Tehran, Iran
| |
Collapse
|
31
|
Xie H, Wei Y, Li J, Wang S, Li H, Zhao Y, Zhao M, Chen X. In-situ exfoliation of graphitic carbon nitride with metal-organic framework via a sonication-assisted approach for dispersive solid-phase extraction of perfluorinated compounds in drinking water samples. J Chromatogr A 2020; 1625:461337. [PMID: 32709361 DOI: 10.1016/j.chroma.2020.461337] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Hanyi Xie
- School of Pharmaceutical sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250014, PR China; Shandong Analysis and Test Centre, Jinan, Shandong, 250014, PR China
| | - Yanze Wei
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, PR China
| | - Jingkun Li
- School of Pharmaceutical sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250014, PR China
| | - Shanshan Wang
- School of Pharmaceutical sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250014, PR China; Shandong Bluetown Analysis and Test Co., Ltd, Bluetown International Standard Service, Jinan, Shandong, 250102, PR China
| | - Huijuan Li
- School of Pharmaceutical sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250014, PR China; Shandong Analysis and Test Centre, Jinan, Shandong, 250014, PR China
| | - Yanfang Zhao
- School of Pharmaceutical sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250014, PR China; Shandong Analysis and Test Centre, Jinan, Shandong, 250014, PR China
| | - Mei Zhao
- School of Pharmaceutical sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250014, PR China; Shandong Analysis and Test Centre, Jinan, Shandong, 250014, PR China
| | - Xiangfeng Chen
- School of Pharmaceutical sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250014, PR China; Shandong Analysis and Test Centre, Jinan, Shandong, 250014, PR China.
| |
Collapse
|
32
|
Nadal JC, Borrull F, Furton KG, Kabir A, Fontanals N, Marcé RM. Selective monitoring of acidic and basic compounds in environmental water by capsule phase microextraction using sol-gel mixed-mode sorbents followed by liquid chromatography-mass spectrometry in tandem. J Chromatogr A 2020; 1625:461295. [DOI: 10.1016/j.chroma.2020.461295] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 01/08/2023]
|
33
|
Kharbouche L, Gil García MD, Lozano A, Hamaizi H, Martínez Galera M. Determination of personal care products in water using UHPLC–MS after solid phase extraction with mesoporous silica‐based MCM‐41 functionalized with cyanopropyl groups. J Sep Sci 2020; 43:2142-2153. [DOI: 10.1002/jssc.201901148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Leila Kharbouche
- Department of Chemistry and Physics, Area of Analytical ChemistryUniversity of Almería Almería Spain
- Département de Chimie, Laboratoire de synthèse organique appliquéeUniversité Oran1 Oran Algeria
| | - María Dolores Gil García
- Department of Chemistry and Physics, Area of Analytical ChemistryUniversity of Almería Almería Spain
- Campus de Excelencia Internacional Agroalimentario CeiA3 Almería Spain
| | - Ana Lozano
- Department of Chemistry and Physics, Area of Analytical ChemistryUniversity of Almería Almería Spain
- Campus de Excelencia Internacional Agroalimentario CeiA3 Almería Spain
| | - Hadj Hamaizi
- Département de Chimie, Laboratoire de synthèse organique appliquéeUniversité Oran1 Oran Algeria
| | - María Martínez Galera
- Department of Chemistry and Physics, Area of Analytical ChemistryUniversity of Almería Almería Spain
- Campus de Excelencia Internacional Agroalimentario CeiA3 Almería Spain
| |
Collapse
|
34
|
Mokhtari M, Hamaizi H, Gil García M, Martínez Galera M. Synthesis and characterization of a sulfonic species-based mesoporous sorbent for the pre-concentration of nine personal care products in wastewater and swimming pool water. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Extracting endocrine disrupting compounds from infant formula using supercritical carbon dioxide. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2019.104554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Sukree W, Sooksawat D, Kanatharana P, Thavarungkul P, Thammakhet-Buranachai C. A miniature stainless steel net dumbbell-shaped stir-bar for the extraction of phthalate esters in instant noodle and rice soup samples. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2019; 55:60-68. [PMID: 31971076 DOI: 10.1080/03601234.2019.1659053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This work reports the development of a very-simple-to-construct stir-bar extraction device so called "a dumbbell-shaped stainless steel stir-bar." The extraction device was assembled from a rolled up stainless steel net filled with an XAD-2 sorbent and a metal rod to allow the use of a magnetic stirrer during extraction. The dumbbell-shaped stainless steel stir-bar was used to extract diethyl phthalate (DEP), dibutyl phthalate (DBP), and di(2-ethylhexyl) phthalate (DEHP) before analysis by a gas chromatograph equipped with an electron capture detector (GD-ECD). Under the optimal conditions, the developed method provided a good linearity from 10.0 to 1,000.0 ng mL-1 for all three compounds. Limits of detection and limits of quantification were 9.37 ± 0.29 ng mL-1 and 31.22 ± 0.95 ng mL-1 for DEP, 5.73 ± 0.31 ng mL-1 and 19.1 ± 1.0 ng mL-1 for DBP and 3.30 ± 0.06 ng mL-1 and 11.0 ± 0.19 ng mL-1 for DEHP, respectively. Good recoveries in the range of 81.89 ± 0.17 to 109.5 ± 2.0% were achieved when the method was used to extract phthalate esters in five instant noodle and two rice soup samples.
Collapse
Affiliation(s)
- Warakorn Sukree
- Higher Education Research Promotion and National Research University Project of Thailand, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Center of Excellence for Innovation in Chemistry and Center of Excellence for Trace Analysis and Biosensor, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Dhassida Sooksawat
- Higher Education Research Promotion and National Research University Project of Thailand, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Center of Excellence for Innovation in Chemistry and Center of Excellence for Trace Analysis and Biosensor, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Proespichaya Kanatharana
- Higher Education Research Promotion and National Research University Project of Thailand, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Center of Excellence for Innovation in Chemistry and Center of Excellence for Trace Analysis and Biosensor, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Panote Thavarungkul
- Higher Education Research Promotion and National Research University Project of Thailand, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Center of Excellence for Innovation in Chemistry and Center of Excellence for Trace Analysis and Biosensor, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Chongdee Thammakhet-Buranachai
- Higher Education Research Promotion and National Research University Project of Thailand, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Center of Excellence for Innovation in Chemistry and Center of Excellence for Trace Analysis and Biosensor, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
37
|
Zhao ZY, Qin L, Huang XH, Zhang YY, Du M, Xu XB, Zhou DY, Zhu BW. Coated direct inlet probe coupled with atmospheric-pressure chemical ionization and high-resolution mass spectrometry for fast quantitation of target analytes. J Chromatogr A 2019; 1596:20-29. [PMID: 30885403 DOI: 10.1016/j.chroma.2019.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 12/22/2022]
Abstract
The coated direct inlet probe (CDIP) is a new laboratory-made low-cost technology developed from a direct inlet probe (DIP), which has the advantage of quick enrichment/cleanup of an analyte from liquid samples. A capillary probe is coated with hydroxy-terminated polydimethylsiloxane (OH-PDMS), divinylbenzene (DVB), and β-cyclodextrin (β-CD) by a sol-gel method. This probe can be directly coupled with a commercialized atmospheric-pressure chemical ionization (APCI) ion source and high-resolution mass spectrometry, which are widely applicable, reliable, and durable. The ability to perform quantitative analyses with the use of a stable-isotope-labeled internal standard (SIL-IS) was tested by using different concentrations of acenaphthylene (ACY), acenaphthene (ACP), fluorene (FLR), fluoranthene (FLT), phenanthrene (PHE), and benzo[a]pyrene (B[a]P). Calibration curves with a coefficient of determination of R2 ≥ 0.9982 for different polycyclic aromatic hydrocarbons (PAHs) were obtained. A limit of detection (LOD) of 0.008-0.04 ng mL-1 for PAHs was determined. The entire workflow is solvent-free and can be completed in less than 5 min, which demonstrates the advantages of this technique for quantitative analysis.
Collapse
Affiliation(s)
- Zi-Yuan Zhao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Lei Qin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China.
| | - Xu-Hui Huang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yu-Ying Zhang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Ming Du
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Xian-Bing Xu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Da-Yong Zhou
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Bei-Wei Zhu
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
38
|
David F, Ochiai N, Sandra P. Two decades of stir bar sorptive extraction: A retrospective and future outlook. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.12.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
39
|
Barbosa MO, Ribeiro AR, Ratola N, Hain E, Homem V, Pereira MFR, Blaney L, Silva AMT. Spatial and seasonal occurrence of micropollutants in four Portuguese rivers and a case study for fluorescence excitation-emission matrices. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:1128-1140. [PMID: 30743826 DOI: 10.1016/j.scitotenv.2018.06.355] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/11/2018] [Accepted: 06/28/2018] [Indexed: 05/27/2023]
Abstract
The European Union (EU) has recommended the monitoring of specific priority substances (PSs, Directive 2013/39) and some contaminants of emerging concern (CECs, Decision 2015/495) in surface waterbodies. The present study provides spatial distributions and temporal variations of a wide range of multi-class PSs and CECs in four stressed rivers in Portugal (Ave, Leça, Antuã, and Cértima). Thirteen micropollutants were found in all four rivers, including the priority pesticide isoproturon (up to 92 ng L-1), various pharmaceuticals (up to 396 ng L-1), and the UV-filter 2-ethyl-hexyl-4-methoxycinnamate (EHMC, up to 562 ng L-1) identified in Decision 2015/495. The industrial priority compound perfluorooctanesulfonic acid (PFOS) was found in three rivers (Antuã, Cértima, and Leça) below the method quantification limit, together with four pharmaceuticals not included in these EU guidelines. The already banned priority pesticide atrazine was detected in Ave, Antuã, and Leça (up to 41 ng L-1) and simazine in Cértima and Leça (up to 26 ng L-1). Acetamiprid and imidacloprid (included in Decision 2015/495) were only detected during the dry season in the Ave. Leça river was selected as a waterbody case study for assessment of fluorescence excitation-emission matrices (EEMs). These results matched the spatial distribution trend of micropollutants along the river, with stronger fluorescence response and higher concentrations being found downstream of industrial areas and urban wastewater treatment plants (WWTPs). Moreover, the fluorescence signature of surface water collected downstream of an urban WWTP aligned very well with that obtained for the respective WWTP effluent. Thus, actions are needed to preserve a good environmental status of these stressed European waterbodies.
Collapse
Affiliation(s)
- Marta O Barbosa
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Ana R Ribeiro
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal.
| | - Nuno Ratola
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
| | - Ethan Hain
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Vera Homem
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto, Portugal
| | - M Fernando R Pereira
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Lee Blaney
- University of Maryland Baltimore County, Department of Chemical, Biochemical, and Environmental Engineering, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | - Adrián M T Silva
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| |
Collapse
|
40
|
Chisvert A, Benedé JL, Salvador A. Current trends on the determination of organic UV filters in environmental water samples based on microextraction techniques – A review. Anal Chim Acta 2018; 1034:22-38. [DOI: 10.1016/j.aca.2018.05.059] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/21/2018] [Accepted: 05/22/2018] [Indexed: 01/06/2023]
|
41
|
García-Córcoles MT, Rodríguez-Gómez R, de Alarcón-Gómez B, Çipa M, Martín-Pozo L, Kauffmann JM, Zafra-Gómez A. Chromatographic Methods for the Determination of Emerging Contaminants in Natural Water and Wastewater Samples: A Review. Crit Rev Anal Chem 2018; 49:160-186. [DOI: 10.1080/10408347.2018.1496010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- M. T. García-Córcoles
- Department of Analytical Chemistry, Research Group of Analytical Chemistry and Life Sciences, University of Granada, Granada, Spain
| | - R. Rodríguez-Gómez
- Department of Analytical Chemistry, Research Group of Analytical Chemistry and Life Sciences, University of Granada, Granada, Spain
- Laboratory of Instrumental Analysis and Bioelectrochemistry, Faculty of Pharmacy, Université libre de Bruxelles, Brussels, Belgium
| | - B. de Alarcón-Gómez
- Department of Analytical Chemistry, Research Group of Analytical Chemistry and Life Sciences, University of Granada, Granada, Spain
| | - M. Çipa
- Department of Chemistry, University of Tirana, Tirana, Albania
| | | | - J.-M. Kauffmann
- Laboratory of Instrumental Analysis and Bioelectrochemistry, Faculty of Pharmacy, Université libre de Bruxelles, Brussels, Belgium
| | - A. Zafra-Gómez
- Department of Analytical Chemistry, Research Group of Analytical Chemistry and Life Sciences, University of Granada, Granada, Spain
| |
Collapse
|
42
|
Li C, Jin F, Snyder SA. Recent advancements and future trends in analysis of nonylphenol ethoxylates and their degradation product nonylphenol in food and environment. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.07.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
43
|
Yao X, Zhou Z, He M, Chen B, Liang Y, Hu B. One-pot polymerization of monolith coated stir bar for high efficient sorptive extraction of perfluoroalkyl acids from environmental water samples followed by high performance liquid chromatography-electrospray tandem mass spectrometry detection. J Chromatogr A 2018; 1553:7-15. [DOI: 10.1016/j.chroma.2018.04.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/28/2018] [Accepted: 04/05/2018] [Indexed: 10/17/2022]
|
44
|
Nsubuga H, Basheer C, Haider MB, Bakdash R. Sol-gel based biogenic silica composite as green nanosorbent for chemometric optimization of micro-solid-phase extraction of beta blockers. J Chromatogr A 2018; 1554:16-27. [DOI: 10.1016/j.chroma.2018.04.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/03/2018] [Accepted: 04/18/2018] [Indexed: 10/17/2022]
|
45
|
Ren JY, Wang XL, Li XL, Wang ML, Zhao RS, Lin JM. Magnetic covalent triazine-based frameworks as magnetic solid-phase extraction adsorbents for sensitive determination of perfluorinated compounds in environmental water samples. Anal Bioanal Chem 2018; 410:1657-1665. [DOI: 10.1007/s00216-017-0845-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/05/2017] [Accepted: 12/19/2017] [Indexed: 11/24/2022]
|
46
|
Zhang L, Luo Y, Zhao Y, Guan B, Zhang L, Yu B, Zhang W. Silver nanoparticle-incorporated ultralong hydroxyapatite nanowires with internal reference as SERS substrate for trace environmental pollutant detection. NEW J CHEM 2018. [DOI: 10.1039/c8nj03743d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Silver nanoparticle-incorporated HAPNWs as SERS substrates exhibit unique characteristics including stability, convenience and simple and environmentally friendly preparation.
Collapse
Affiliation(s)
- Lei Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- Department of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Yongquan Luo
- Shanghai Key Laboratory of Functional Materials Chemistry
- Department of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Yameng Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry
- Department of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Boxin Guan
- Shanghai Key Laboratory of Functional Materials Chemistry
- Department of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Lingyi Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- Department of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Bohao Yu
- Shanghai Key Laboratory of Functional Materials Chemistry
- Department of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| | - Weibing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- Department of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- P. R. China
| |
Collapse
|
47
|
Analytical method for the evaluation of the outdoor air contamination by emerging pollutants using tree leaves as bioindicators. Anal Bioanal Chem 2017; 410:417-428. [DOI: 10.1007/s00216-017-0733-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/11/2017] [Accepted: 10/27/2017] [Indexed: 10/18/2022]
|
48
|
Affiliation(s)
- Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina , Columbia, South Carolina 29205, United States
| | | |
Collapse
|
49
|
de Toffoli AL, Maciel EVS, Fumes BH, Lanças FM. The role of graphene-based sorbents in modern sample preparation techniques. J Sep Sci 2017; 41:288-302. [DOI: 10.1002/jssc.201700870] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Ana Lúcia de Toffoli
- Institute of Chemistry of São Carlos; University of São Paulo,; São Carlos SP Brazil
| | | | - Bruno Henrique Fumes
- Institute of Chemistry of São Carlos; University of São Paulo,; São Carlos SP Brazil
| | - Fernando Mauro Lanças
- Institute of Chemistry of São Carlos; University of São Paulo,; São Carlos SP Brazil
| |
Collapse
|
50
|
Reyes-Garcés N, Gionfriddo E, Gómez-Ríos GA, Alam MN, Boyacı E, Bojko B, Singh V, Grandy J, Pawliszyn J. Advances in Solid Phase Microextraction and Perspective on Future Directions. Anal Chem 2017; 90:302-360. [DOI: 10.1021/acs.analchem.7b04502] [Citation(s) in RCA: 402] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | | | - Md. Nazmul Alam
- Department of Chemistry, University of Waterloo, Ontario, Canada N2L 3G1
| | - Ezel Boyacı
- Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey
| | - Barbara Bojko
- Department of Pharmacodynamics and Molecular Pharmacology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-067 Bydgoszcz, Poland
| | - Varoon Singh
- Department of Chemistry, University of Waterloo, Ontario, Canada N2L 3G1
| | - Jonathan Grandy
- Department of Chemistry, University of Waterloo, Ontario, Canada N2L 3G1
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|