1
|
Liu C, Otsuka K, Kawai T. Recent advances in microscale separation techniques for glycome analysis. J Sep Sci 2024; 47:e2400170. [PMID: 38863084 DOI: 10.1002/jssc.202400170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/12/2024] [Accepted: 05/24/2024] [Indexed: 06/13/2024]
Abstract
The glycomic analysis holds significant appeal due to the diverse roles that glycans and glycoconjugates play, acting as modulators and mediators in cellular interactions, cell/organism structure, drugs, energy sources, glyconanomaterials, and more. The glycomic analysis relies on liquid-phase separation technologies for molecular purification, separation, and identification. As a miniaturized form of liquid-phase separation technology, microscale separation technologies offer various advantages such as environmental friendliness, high resolution, sensitivity, fast speed, and integration capabilities. For glycan analysis, microscale separation technologies are continuously evolving to address the increasing challenges in their unique manners. This review discusses the fundamentals and applications of microscale separation technologies for glycomic analysis. It covers liquid-phase separation technologies operating at scales generally less than 100 µm, including capillary electrophoresis, nanoflow liquid chromatography, and microchip electrophoresis. We will provide a brief overview of glycomic analysis and describe new strategies in microscale separation and their applications in glycan analysis from 2014 to 2023.
Collapse
Affiliation(s)
- Chenchen Liu
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Koji Otsuka
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
- Research Administration Center, Osaka Metropolitan University, Osaka, Japan
| | - Takayuki Kawai
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
- RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| |
Collapse
|
2
|
Holland LA, Casto-Boggess LD. Gels in Microscale Electrophoresis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:161-179. [PMID: 37314879 DOI: 10.1146/annurev-anchem-091522-080207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Gel matrices are fundamental to electrophoresis analyses of biopolymers in microscale channels. Both capillary gel and microchannel gel electrophoresis systems have produced fundamental advances in the scientific community. These analytical techniques remain as foundational tools in bioanalytical chemistry and are indispensable in the field of biotherapeutics. This review summarizes the current state of gels in microscale channels and provides a brief description of electrophoretic transport in gels. In addition to the discussion of traditional polymers, several nontraditional gels are introduced. Advances in gel matrices highlighted include selective polymers modified to contain added functionality as well as thermally responsive gels formed through self-assembly. This review discusses cutting-edge applications to challenging areas of discovery in DNA, RNA, protein, and glycan analyses. Finally, emerging techniques that result in multifunctional assays for real-time biochemical processing in capillary and three-dimensional channels are identified.
Collapse
Affiliation(s)
- Lisa A Holland
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia, USA;
| | - Laura D Casto-Boggess
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia, USA;
| |
Collapse
|
3
|
Bwanali L, Holland LA. Capillary Nanogel Electrophoresis for the Determination of the β1-4 Galactosyltransferase Michaelis-Menten Constant and Real-Time Addition of Galactose Residues to N-Glycans and Glycoprotein. Anal Chem 2021; 93:11843-11851. [PMID: 34410102 PMCID: PMC8594173 DOI: 10.1021/acs.analchem.1c02576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A thermally reversible nanogel is used in capillary electrophoresis to create discrete regions for a galactosyltransferase reaction and separation. The β1-4 galactosyltransferase enzyme, donor, and co-factor were patterned in the capillary. The substrate was driven through these zones and converted to galactosylated products, which were separated and identified. Using this capillary electrophoresis method, the degree of glycosylation was discernible for a pentasaccharide and for biantennary N-glycans. With the ability to distinguish between reaction products for which either one or two galactose residues were transferred, the capillary nanogel electrophoresis system was used to determine the Michaelis-Menten value, KM. For the β1-4 galactosyltransferase, the KM value obtained for a pentasaccharide substrate was 1.23 ± 0.08 mM. Once KM was established, the enzyme/substrate ratio was evaluated to add a single galactose residue or to fully galactosylate a biantennary N-glycan. Additionally, capillary nanogel electrophoresis was adapted to transfer galactose residues to protein. The applicability of the method for real-time online modification of whole protein was demonstrated with the Herceptin glycoprotein. Complete retardation by Erythrina cristagalli lectin after enzymatic modification confirmed the addition of galactose residues to the Herceptin. This demonstrated the potential of the method to be used for online modification of other glycoproteins.
Collapse
Affiliation(s)
- Lloyd Bwanali
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Lisa A. Holland
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
4
|
Makrydaki E, Kotidis P, Polizzi KM, Kontoravdi C. Hitting the sweet spot with capillary electrophoresis: advances in N-glycomics and glycoproteomics. Curr Opin Biotechnol 2021; 71:182-190. [PMID: 34438131 DOI: 10.1016/j.copbio.2021.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/04/2021] [Accepted: 07/11/2021] [Indexed: 10/20/2022]
Abstract
N-glycosylation is of paramount importance for understanding the mechanisms of various human diseases and ensuring the safety and efficacy of biotherapeutics. Traditional glycan analysis techniques include LC-based separations and MALDI-TOF-MS identification. However, the current state-of-the-art methods lack throughput and structural information, include laborious sample preparation procedures and require large sample volumes. Capillary electrophoresis (CE) has long been used for the screening and reliable quantitation of glycans, but its applications have been limited. Because of its speed, sensitivity and complementarity with standard glycan analysis techniques, CE is currently emerging as one of the most versatile and adaptable methods for glycan analysis in both academia and industry. Herein, we review the latest advancements in CE-based applications to glycomics and glycoproteomics within both the biopharmaceutical and clinical sectors.
Collapse
Affiliation(s)
- Elli Makrydaki
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Pavlos Kotidis
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Karen M Polizzi
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Cleo Kontoravdi
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom.
| |
Collapse
|
5
|
Cajic S, Hennig R, Burock R, Rapp E. Capillary (Gel) Electrophoresis-Based Methods for Immunoglobulin (G) Glycosylation Analysis. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:137-172. [PMID: 34687009 DOI: 10.1007/978-3-030-76912-3_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The in-depth characterization of protein glycosylation has become indispensable in many research fields and in the biopharmaceutical industry. Especially knowledge about modulations in immunoglobulin G (IgG) N-glycosylation and their effect on immunity enabled a better understanding of human diseases and the development of new, more effective drugs for their treatment. This chapter provides a deeper insight into capillary (gel) electrophoresis-based (C(G)E) glycan analysis, addressing its impressive performance and possibilities, its great potential regarding real high-throughput for large cohort studies, as well as its challenges and limitations. We focus on the latest developments with respect to miniaturization and mass spectrometry coupling, as well as data analysis and interpretation. The use of exoglycosidase sequencing in combination with current C(G)E technology is discussed, highlighting possible difficulties and pitfalls. The application section describes the detailed characterization of N-glycosylation, utilizing multiplexed CGE with laser-induced fluorescence detection (xCGE-LIF). Besides a comprehensive overview on antibody glycosylation by comparing species-specific IgGs and human immunoglobulins A, D, E, G, and M, the chapter comprises a comparison of therapeutic monoclonal antibodies from different production cell lines, as well as a detailed characterization of Fab and Fc glycosylation. These examples illustrate the full potential of C(G)E, resolving the smallest differences in sugar composition and structure.
Collapse
Affiliation(s)
- Samanta Cajic
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - René Hennig
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
- glyXera GmbH, Magdeburg, Germany.
| | | | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- glyXera GmbH, Magdeburg, Germany
| |
Collapse
|
6
|
Bwanali L, Crihfield CL, Newton EO, Zeger VR, Gattu S, Holland LA. Quantification of the α2-6 Sialic Acid Linkage in Branched N-Glycan Structures with Capillary Nanogel Electrophoresis. Anal Chem 2020; 92:1518-1524. [PMID: 31829566 PMCID: PMC8631463 DOI: 10.1021/acs.analchem.9b04787] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Sialylation and sialic acid linkage in N-glycans are markers of disease but are analytically challenging to quantify. A capillary electrophoresis method is reported that integrates a unique combination of enzymes and lectins to modify sialylated N-glycans in real time in the capillary so that N-glycan structures containing α2-6-linked sialic acid are easily separated, detected, and quantified. In this study, N-glycans were sequentially cleaved by enzymes at the head of the separation capillary so that the presence of α2-6-linked sialic acids corresponded to a shift in the analyte migration time in a manner that enabled interpretation of the N-glycan structure. Following injection, only afucosylated N-glycan structures were passed through enzyme zones that contained α2-3 sialidase, followed by β1-3,4 galactosidase, which cleaved any terminal α2-3-linked sialic acid and underlying galactose yielding a terminal N-acetyl glucosamine. With this treatment complete, a third zone of α2-3,6,8 sialidase converted the remaining α2-6-linked sialic acid to terminal galactose. With these enzyme processing steps the α2-6-linked sialic acid residues on an N-glycan correlated directly to the number of terminal galactose residues that remained. The number of terminal galactose residues could be interpreted as a stepwise decrease in the migration time. Complex N-glycans from α-1-acid glycoprotein were analyzed using this approach, revealing that a limited number of α2-6-linked sialic acids were present with biantennary, triantennary, and tetraantennary N-glycans of α-1-acid glycoprotein generally containing 0 or 1 α2-6-linked sialic acid.
Collapse
Affiliation(s)
- Lloyd Bwanali
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Cassandra L. Crihfield
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Ebenezer O. Newton
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Victoria R. Zeger
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Srikanth Gattu
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Lisa A. Holland
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
7
|
Lu G, Holland LA. Profiling the N-Glycan Composition of IgG with Lectins and Capillary Nanogel Electrophoresis. Anal Chem 2018; 91:1375-1383. [PMID: 30525457 PMCID: PMC6335613 DOI: 10.1021/acs.analchem.8b03725] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
![]()
Glycosylated human
IgG contains fucosylated biantennary N-glycans with
different modifications including N-acetylglucosamine,
which bisects the mannose core. Although
only a limited number of IgG N-glycan structures
are possible, human IgG N-glycans are predominantly
biantennary and fucosylated and contain varying levels of α2–6-linked
sialic acid, galactose, and bisected N-acetylglucosamine.
Monitoring the relative abundance of bisecting N-acetylglucosamine
is relevant to physiological processes. A rapid, inexpensive, and
automated method is used to successfully profile N-linked IgG glycans
and is suitable to distinguish differences in bisection, galactosylation,
and sialylation in N-glycans derived from different
sources of human IgG. The separation is facilitated with self-assembled
nanogels that also contain a single stationary zone of lectin. When
the lectin specificity matches the N-glycan, the
peak disappears from the electropherogram, identifying the N-glycan structure. The nanogel electrophoresis generates
separation efficiencies of 500 000 plates and resolves the
positional isomers of monogalactosylated biantennary N-glycan and the monogalactosylated bisected N-glycan. Aleuria aurantia lectin, Erythrina cristagalli lectin (ECL), Sambucus nigra lectin, and Phaseolus vulgaris Erythroagglutinin (PHA-E) are used to
identify fucose, galactose, α2–6-linked sialic acid,
and bisected N-acetylglucosamine, respectively. Although
PHA-E lectin has a strong binding affinity for bisected N-glycans that also contain a terminal galactose on the α1–6-linked
mannose branch, this lectin has lower affinity for N-glycans containing terminal galactose and for agalactosylated bisected
biantennary N-glycans. The lower affinity to these
motifs is observed in the electropherograms as a change in peak width,
which when used in conjunction with the results from the ECL lectin
authenticates the composition of the agalactosylated bisected biantennary N-glycan. For runs performed at 17 °C, the precision
in migration time and peak area was less than or equal to 0.08 and
4% relative standard deviation, respectively. The method is compatible
with electrokinetic and hydrodynamic injections, with detection limits
of 70 and 300 pM, respectively.
Collapse
Affiliation(s)
- Grace Lu
- C. Eugene Bennett Department of Chemistry , West Virginia University , Morgantown , West Virginia 26506 , United States
| | - Lisa A Holland
- C. Eugene Bennett Department of Chemistry , West Virginia University , Morgantown , West Virginia 26506 , United States
| |
Collapse
|
8
|
Lu G, Crihfield CL, Gattu S, Veltri LM, Holland LA. Capillary Electrophoresis Separations of Glycans. Chem Rev 2018; 118:7867-7885. [PMID: 29528644 PMCID: PMC6135675 DOI: 10.1021/acs.chemrev.7b00669] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Indexed: 01/04/2023]
Abstract
Capillary electrophoresis has emerged as a powerful approach for carbohydrate analyses since 2014. The method provides high resolution capable of separating carbohydrates by charge-to-size ratio. Principle applications are heavily focused on N-glycans, which are highly relevant to biological therapeutics and biomarker research. Advances in techniques used for N-glycan structural identification include migration time indexing and exoglycosidase and lectin profiling, as well as mass spectrometry. Capillary electrophoresis methods have been developed that are capable of separating glycans with the same monosaccharide sequence but different positional isomers, as well as determining whether monosaccharides composing a glycan are alpha or beta linked. Significant applications of capillary electrophoresis to the analyses of N-glycans in biomarker discovery and biological therapeutics are emphasized with a brief discussion included on carbohydrate analyses of glycosaminoglycans and mono-, di-, and oligosaccharides relevant to food and plant products. Innovative, emerging techniques in the field are highlighted and the future direction of the technology is projected based on the significant contributions of capillary electrophoresis to glycoscience from 2014 to the present as discussed in this review.
Collapse
Affiliation(s)
- Grace Lu
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Cassandra L. Crihfield
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Srikanth Gattu
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Lindsay M. Veltri
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Lisa A. Holland
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
9
|
Gattu S, Crihfield CL, Lu G, Bwanali L, Veltri LM, Holland LA. Advances in enzyme substrate analysis with capillary electrophoresis. Methods 2018; 146:93-106. [PMID: 29499329 PMCID: PMC6098732 DOI: 10.1016/j.ymeth.2018.02.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/01/2018] [Accepted: 02/05/2018] [Indexed: 02/06/2023] Open
Abstract
Capillary electrophoresis provides a rapid, cost-effective platform for enzyme and substrate characterization. The high resolution achievable by capillary electrophoresis enables the analysis of substrates and products that are indistinguishable by spectroscopic techniques alone, while the small volume requirement enables analysis of enzymes or substrates in limited supply. Furthermore, the compatibility of capillary electrophoresis with various detectors makes it suitable for KM determinations ranging from nanomolar to millimolar concentrations. Capillary electrophoresis fundamentals are discussed with an emphasis on the separation mechanisms relevant to evaluate sets of substrate and product that are charged, neutral, and even chiral. The basic principles of Michaelis-Menten determinations are reviewed and the process of translating capillary electrophoresis electropherograms into a Michaelis-Menten curve is outlined. The conditions that must be optimized in order to couple off-line and on-line enzyme reactions with capillary electrophoresis separations, such as incubation time, buffer pH and ionic strength, and temperature, are examined to provide insight into how the techniques can be best utilized. The application of capillary electrophoresis to quantify enzyme inhibition, in the form of KI or IC50 is detailed. The concept and implementation of the immobilized enzyme reactor is described as a means to increase enzyme stability and reusability, as well as a powerful tool for screening enzyme substrates and inhibitors. Emerging techniques focused on applying capillary electrophoresis as a rapid assay to obtain structural identification or sequence information about a substrate and in-line digestions of peptides and proteins coupled to mass spectrometry analyses are highlighted.
Collapse
Affiliation(s)
- Srikanth Gattu
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States
| | - Cassandra L Crihfield
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States
| | - Grace Lu
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States
| | - Lloyd Bwanali
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States
| | - Lindsay M Veltri
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States
| | - Lisa A Holland
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States.
| |
Collapse
|