1
|
Hamza MN, Tariqul Islam M, Lavadiya S, ud Din I, Sanches B, Koziel S, Iffat Naqvi S, Farmani A, Islam MS. Ultra-compact quintuple-band terahertz metamaterial biosensor for enhanced blood cancer diagnostics. PLoS One 2025; 20:e0313874. [PMID: 39787168 PMCID: PMC11717305 DOI: 10.1371/journal.pone.0313874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/03/2024] [Indexed: 01/12/2025] Open
Abstract
Cancer and its diverse variations pose one of the most significant threats to human health and well-being. One of the most aggressive forms is blood cancer, originating from bone marrow cells and disrupting the production of normal blood cells. The incidence of blood cancer is steadily increasing, driven by both genetic and environmental factors. Therefore, early detection is crucial as it enhances treatment outcomes and improves success rates. However, accurate diagnosis is challenging due to the inherent similarities between normal and cancerous cells. Although various techniques are available for blood cancer identification, high-frequency imaging techniques have recently shown promise, particularly for real-time monitoring. Notably, terahertz (THz) frequencies offer unique advantages for biomedical applications. This research proposes an innovative terahertz metamaterial-based biosensor for high-efficacy blood cancer detection. The proposed structure is ultra-compact and operates across five bands within the range of 0.6 to 1.2 THz. It is constructed using a polyethylene terephthalate (PET) dielectric layer and two aluminum (Al) layers, with the top layer serving as a base for the THz-range resonator. Careful design, architectural arrangement, and optimization of the geometry parameters allow for achieving nearly perfect absorption rates (>95%) across all operating bands. The properties of the proposed sensor are extensively evaluated through full-wave electromagnetic (EM) analysis, which includes assessing the refractive index and the distribution of the electric field at individual working frequencies. The suitability for blood cancer diagnosis has been validated by integrating the sensor into a microwave imaging (MWI) system and conducting comprehensive simulation studies. These studies underscore the device's capability to detect abnormalities, particularly in distinguishing between healthy and cancerous cells. Benchmarking against state-of-the-art biosensors in recent literature indicates that the proposed sensor is highly competitive in terms of major performance indicators while maintaining a compact size.
Collapse
Affiliation(s)
- Musa N. Hamza
- Department of Physics, College of Science, University of Raparin, Sulaymaniyah, Iraq
| | - Mohammad Tariqul Islam
- Faculty of Engineering and Built Environment, Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Sunil Lavadiya
- Department of Information and Communication Technology, Marwadi University, Rajkot, Gujarat, India
| | - Iftikhar ud Din
- Telecommunication Engineering Department, University of Engineering and Technology, Mardan, Pakistan
| | - Bruno Sanches
- Department of Electronic Systems Engineering, Escola Politécnica da Universidade de São Paulo, São Paulo, Brazil
| | - Slawomir Koziel
- Engineering Optimization & Modeling Center, Reykjavik University, Reykjavik, Iceland
- Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk, Poland
| | - Syeda Iffat Naqvi
- Department of Telecommunication Engineering, University of Engineering & Technology Taxila, Taxila, Pakistan
| | - Ali Farmani
- Department of Electronics Engineering, Lorestan University, Khorramabad, Iran
| | - Md. Shabiul Islam
- Faculty of Engineering (FOE), Multimedia University (MMU), Cyberjaya, Selangor, Malaysia
| |
Collapse
|
2
|
Kang Y, Wang Y, Feng Y, Huang G, Qi F, Li H, Jiang K. Determination of trace chelating carboxylic acids in rice by green extraction combined with liquid chromatography-mass spectrometry analysis and its application in the evaluation of old and new rice. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9738. [PMID: 38572671 DOI: 10.1002/rcm.9738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/02/2024] [Accepted: 03/03/2024] [Indexed: 04/05/2024]
Abstract
RATIONALE Accurate identification of old rice samples from new ones benefits their market circulation and consumers. However, the current detection methods are still not satisfactory because of their insufficient accuracy or (and) time-consuming process. METHODS Chelating carboxylic acids (CCAs) were selectively extracted from rice, by stirring with chelating resin and a dilute Na2CO3 solution. The green analytical chemistry guidelines for sample preparation were investigated by using the green chemistry calculator AGREE prep. The extractant was determined by liquid chromatography-mass spectrometry (LC/MS), and statistical analysis of the analytical data was carried out to evaluate the significance of the difference by ChiPlot. RESULTS The limit of quantitation for the CCAs is in the range of 1 to 50 ng/mL, with a reasonable reproducibility. The CCAs in 23 rice samples were determined within a wide concentration range from 0.03 to 1174 μg/g. Intriguingly, the content of citric acid, malonic acid, α-ketoglutaric acid and cis-aconite acid in new rice was each found to be distinctively higher than that in old rice by several times. Even mixtures of old and new rice were found to show much difference in the concentration of citric acid and malic acid. CONCLUSION A green analytical method has been developed for the simultaneous determination of CCAs by LC/MS analysis, and the identification of old rice samples from new ones was easily carried out according to their CCA content for the first time. The results indicated that the described method has powerful potential for the accurate identification of old rice samples from new ones.
Collapse
Affiliation(s)
- Yuting Kang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, China
| | - Yan Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, China
| | - Yufei Feng
- Zhejiang Wuwangnong Seeds Shareholding Co. Ltd, Hangzhou, China
| | - Guoliang Huang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, China
| | - Fang Qi
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, China
| | - Huiru Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, China
| | - Kezhi Jiang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
3
|
Huang XF, Xue Y, Yong L, Wang TT, Luo P, Qing LS. Chemical derivatization strategies for enhancing the HPLC analytical performance of natural active triterpenoids. J Pharm Anal 2024; 14:295-307. [PMID: 38618252 PMCID: PMC11010456 DOI: 10.1016/j.jpha.2023.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 04/16/2024] Open
Abstract
Triterpenoids widely exist in nature, displaying a variety of pharmacological activities. Determining triterpenoids in different matrices, especially in biological samples holds great significance. High-performance liquid chromatography (HPLC) has become the predominant method for triterpenoids analysis due to its exceptional analytical performance. However, due to the structural similarities among botanical samples, achieving effective separation of each triterpenoid proves challenging, necessitating significant improvements in analytical methods. Additionally, triterpenoids are characterized by a lack of ultraviolet (UV) absorption groups and chromophores, along with low ionization efficiency in mass spectrometry. Consequently, routine HPLC analysis suffers from poor sensitivity. Chemical derivatization emerges as an indispensable technique in HPLC analysis to enhance its performance. Considering the structural characteristics of triterpenoids, various derivatization reagents such as acid chlorides, rhodamines, isocyanates, sulfonic esters, and amines have been employed for the derivatization analysis of triterpenoids. This review comprehensively summarized the research progress made in derivatization strategies for HPLC detection of triterpenoids. Moreover, the limitations and challenges encountered in previous studies are discussed, and future research directions are proposed to develop more effective derivatization methods.
Collapse
Affiliation(s)
- Xiao-Feng Huang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Xue
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- Sichuan Center for Disease Control and Prevention, Chengdu, 610041, China
| | - Li Yong
- Sichuan Center for Disease Control and Prevention, Chengdu, 610041, China
| | - Tian-Tian Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- State Key Laboratory for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macao, China
| | - Pei Luo
- State Key Laboratory for Quality Research in Chinese Medicines, Macau University of Science and Technology, Macao, China
| | - Lin-Sen Qing
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| |
Collapse
|
4
|
Gao S, Zhou X, Yue M, Zhu S, Liu Q, Zhao XE. Advances and perspectives in chemical isotope labeling-based mass spectrometry methods for metabolome and exposome analysis. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
5
|
Zhang H, Zhang Y, Li J, Fan C, Gu J, Jin Y, Tong Y. UHPLC Q-Orbitrap Mass Spectrometry-Based Molecular Networking for Identification of Chemical Constituents in the Multi-Herb Formula Runyan Mixture. ACS OMEGA 2023; 8:6515-6522. [PMID: 36844515 PMCID: PMC9947948 DOI: 10.1021/acsomega.2c06885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Traditional Chinese medicine (TCM) in-hospital preparations are approved for use only in the hospital where they are prepared. They are widely used in China because of their efficacy and affordable price. However, few researchers focused on their quality controls and treatment mechanisms, for which a key consideration is the elucidation of their chemical composition. Runyan mixture (RY) is a typical in-hospital TCM preparation comprising a formula of eight herbal drugs used for adjuvant therapy of upper respiratory tract infections. The chemical constituents of formulated RY have not yet been elucidated. In the present work, RY was analyzed by a ultrahigh-performance liquid chromatography system equipped with high-resolution orbitrap mass spectrometry (MS). The acquired MS data were processed by MZmine and a feature-based molecular networking was constructed to identify the metabolites of RY. 165 compounds including 41 flavonoid O-glycosides, 11 flavonoid C-glycosides, 18 quinic acids, 54 coumaric acids, 11 iridoids, and 30 others were identified. This study demonstrates an efficient method to identify compounds in complex herbal drug mixtures using high-resolution MS and molecular networking tools which will support future research into quality controls and treatment mechanisms of in-hospital TCM preparations.
Collapse
Affiliation(s)
- Huihui Zhang
- Traditional
Chinese Medicine Pharmacy, Affiliated Dongyang
Hospital of Wenzhou Medical University, Jinhua 322100, China
| | - Yingzhi Zhang
- Institute
of Natural Medicine and Health Products, School of Pharmaceutical
Sciences, Taizhou University, Zhejiang 318000, PR China
| | - Jiahao Li
- Institute
of Natural Medicine and Health Products, School of Pharmaceutical
Sciences, Taizhou University, Zhejiang 318000, PR China
| | - Chuanjiang Fan
- Institute
of Natural Medicine and Health Products, School of Pharmaceutical
Sciences, Taizhou University, Zhejiang 318000, PR China
| | - Junjie Gu
- Institute
of Natural Medicine and Health Products, School of Pharmaceutical
Sciences, Taizhou University, Zhejiang 318000, PR China
| | - Yinzhi Jin
- Traditional
Chinese Medicine Pharmacy, Affiliated Dongyang
Hospital of Wenzhou Medical University, Jinhua 322100, China
| | - Yingpeng Tong
- Institute
of Natural Medicine and Health Products, School of Pharmaceutical
Sciences, Taizhou University, Zhejiang 318000, PR China
| |
Collapse
|
6
|
Evolving deep convolutional neutral network by hybrid sine-cosine and extreme learning machine for real-time COVID19 diagnosis from X-ray images. Soft comput 2023; 27:3307-3326. [PMID: 33994846 PMCID: PMC8107782 DOI: 10.1007/s00500-021-05839-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2021] [Indexed: 11/05/2022]
Abstract
The COVID19 pandemic globally and significantly has affected the life and health of many communities. The early detection of infected patients is effective in fighting COVID19. Using radiology (X-Ray) images is, perhaps, the fastest way to diagnose the patients. Thereby, deep Convolutional Neural Networks (CNNs) can be considered as applicable tools to diagnose COVID19 positive cases. Due to the complicated architecture of a deep CNN, its real-time training and testing become a challenging problem. This paper proposes using the Extreme Learning Machine (ELM) instead of the last fully connected layer to address this deficiency. However, the parameters' stochastic tuning of ELM's supervised section causes the final model unreliability. Therefore, to cope with this problem and maintain network reliability, the sine-cosine algorithm was utilized to tune the ELM's parameters. The designed network is then benchmarked on the COVID-Xray-5k dataset, and the results are verified by a comparative study with canonical deep CNN, ELM optimized by cuckoo search, ELM optimized by genetic algorithm, and ELM optimized by whale optimization algorithm. The proposed approach outperforms comparative benchmarks with a final accuracy of 98.83% on the COVID-Xray-5k dataset, leading to a relative error reduction of 2.33% compared to a canonical deep CNN. Even more critical, the designed network's training time is only 0.9421 ms and the overall detection test time for 3100 images is 2.721 s.
Collapse
|
7
|
Innovative Application of Metabolomics on Bioactive Ingredients of Foods. Foods 2022; 11:foods11192974. [PMID: 36230049 PMCID: PMC9562173 DOI: 10.3390/foods11192974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Metabolomics, as a new omics technology, has been widely accepted by researchers and has shown great potential in the field of nutrition and health in recent years. This review briefly introduces the process of metabolomics analysis, including sample preparation and extraction, derivatization, separation and detection, and data processing. This paper focuses on the application of metabolomics in food-derived bioactive ingredients. For example, metabolomics techniques are used to analyze metabolites in food to find bioactive substances or new metabolites in food materials. Moreover, bioactive substances have been tested in vitro and in vivo, as well as in humans, to investigate the changes of metabolites and the underlying metabolic pathways, among which metabolomics is used to find potential biomarkers and targets. Metabolomics provides a new approach for the prevention and regulation of chronic diseases and the study of the underlying mechanisms. It also provides strong support for the development of functional food or drugs. Although metabolomics has some limitations such as low sensitivity, poor repeatability, and limited detection range, it is developing rapidly in general, and also in the field of nutrition and health. At the end of this paper, we put forward our own insights on the development prospects of metabolomics in the application of bioactive ingredients in food.
Collapse
|
8
|
Yang F, Zou Y, Li C, Li J, Zang Y, Peng X, Wang J, Liu EH, Tong S, Chu C. Discovery of potential hypoglycemic metabolites in Cassiae Semen by coupling UHPLC-QTOF-MS/MS combined plant metabolomics and spectrum-effect relationship analyses. Food Funct 2022; 13:10291-10304. [PMID: 36125104 DOI: 10.1039/d2fo00562j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cassiae Semen (CS) is consumed as fried tea or medicinal food in Asian areas. Its two commercial forms, namely raw and fried CS, exert different clinical applications, in which fried CS is commonly applied as a functional tea for losing weight. To prevent confusion in the use of the two forms of CS, a comprehensive strategy by combining plant metabolomics and spectrum-effect relationship analyses was developed for the fast and efficient discrimination of raw and fried CS, and further for the discovery of the potential hypoglycemic metabolites of CS to control its quality. First, the plant metabolic profiling of raw and processed samples was performed by UHPLC-QTOF-MS/MS. A total of 1111 differential metabolites were found to well distinguish the raw and fried CS after analyzing by MPP software. Subsequently, α-glucosidase inhibition of raw and fried CS was investigated. As a result, fried CS demonstrated much stronger α-glucosidase inhibition activity than the raw sample. By analyzing the spectrum-effect relationship with GRA, BCA, and PLSR, 14 potential hypoglycemic-related compounds were discovered. As anticipated, they were also found as the differential metabolites of the raw and fried samples with a potential hypoglycemic effect, which might be beneficial for the quality control of CS tea. Additionally, molecular docking analysis was conducted to reveal the underlying inhibition mechanisms of the four most critical constituents, including physcion, chrysoobtusin, aurantio-obtusin, and obtusifolin. This study provides a powerful tool for the discrimination of processed samples and fast screening of the active constituents in complex natural products on a high-throughput basis.
Collapse
Affiliation(s)
- Fei Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Yanfang Zou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Chenyue Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Jiaxu Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Yaping Zang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Xin Peng
- Ningbo Research Institute of Traditional Chinese Medicine, Ningbo, 315100, P. R. China
| | - Juan Wang
- Zhejiang Pharmaceutical College, Ningbo, 315100, P. R. China
| | - E-Hu Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Shengqiang Tong
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | - Chu Chu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| |
Collapse
|
9
|
Zhao N, Liu Z, Xing J, Zheng Z, Song F, Liu S. A novel strategy for high-specificity, high-sensitivity, and high-throughput study for gut microbiome metabolism of aromatic carboxylic acids. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Wang D, Chen X, Feng J, Sun M. Recent advances of ordered mesoporous silica materials for solid-phase extraction. J Chromatogr A 2022; 1675:463157. [PMID: 35623192 DOI: 10.1016/j.chroma.2022.463157] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 01/01/2023]
Abstract
This review mainly focuses on the development and application of ordered mesoporous silica materials for solid-phase extraction in recent years. It overviews not only bare mesoporous silica but also the functionalized mesoporous silica with organic groups, molecularly imprinted polymers, and magnetic materials. These mesoporous silica materials were used as the extraction adsorbents in cartridge solid-phase extraction, dispersive solid-phase extraction, magnetic solid-phase extraction, micro-solid-phase extraction and matrix solid phase dispersion. Coupled with atomic emission spectrometry, chromatography or other detection methods, these techniques efficiently extracted and sensitively determined various targets, such as metal ions, perfluorocarboxylic acids, pesticides, drugs, endocrine disruptors, phenols, flavanones, polycyclic aromatic hydrocarbons, parabens and so on. Based on unique advantages of mesoporous silica materials, the developed analytical method successfully analyzed different matrix samples, like environmental water samples, soil samples, food samples, biological samples and cosmetics. In addition, the prospects of these materials in solid-phase extraction are presented, which can offer an outlook for the further development and applications.
Collapse
Affiliation(s)
- Dan Wang
- School of Narcotics Control and Public Order Studies, School of Forensic Science, Criminal Investigation Police University of China, Shenyang 110854 P. R. China
| | - Xueguo Chen
- School of Narcotics Control and Public Order Studies, School of Forensic Science, Criminal Investigation Police University of China, Shenyang 110854 P. R. China
| | - Juanjuan Feng
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Min Sun
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
| |
Collapse
|
11
|
High throughput and very specific screening of anabolic-androgenic steroid adulterants in healthy foods based on stable isotope labelling and flow injection analysis-tandem mass spectrometry with simultaneous monitoring proton adduct ions and chloride adduct ions. J Chromatogr A 2022; 1667:462891. [DOI: 10.1016/j.chroma.2022.462891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 11/21/2022]
|
12
|
Sun M, Li C, Feng J, Sun H, Sun M, Feng Y, Ji X, Han S, Feng J. Development of aerogels in solid-phase extraction and microextraction. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116497] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Jiang Q, Feng J, Sun M. Carbon fibers modified with carbon nanoparticles by a facile and fast flame preparation for in-tube solid-phase microextraction. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
14
|
Karbakhshzadeh A, Derakhshande M, Farhami N, Hosseinian A, Ebrahimiasl S, Ebadi A. Study the Adsorption of Letrozole Drug on the Silicon Doped Graphdiyne Monolayer: a DFT Investigation. SILICON 2022; 14. [PMCID: PMC8109220 DOI: 10.1007/s12633-021-01143-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In the current study, by employing first-principles computations, the adsorption behavior of letrozole (LET) was investigated on the pristine graphdiyne nanosheet (GDY) as well as Si-doped graphdiyne (SiGDY). According to the adsorption energy, charge transfer value, and the change in the bang gap energy, the tendency of the pristine GDY towards LET is insignificant. However, the interaction of LET with SiGDY was strong and the adsorption energy was approximately − 19.20 kcal/mol. In addition, the associated electrical conductivity with SiGDY increased by approximately 23.53 % following the adsorption of LET. The results show that SiGDY can be employed as an electronic sensor to detect LET. Furthermore, LET is detected by SiGDY in the water phase based on the magnitude of solvation energy. Finally, a considerable charge-transfer between LET and SiGDY is a precondition for the adsorption of the LET molecule with proper binding energies, which delivers the Si atoms with a significant positive charge.
Collapse
Affiliation(s)
| | - Maryam Derakhshande
- Department of Chemistry, Faculty of Chemical Engineering, Islamic Azad University, Mahshahr Branch, Mahshahr, Iran
| | - Nabieh Farhami
- Department of Chemistry, Faculty of Chemical Engineering, Islamic Azad University, Mahshahr Branch, Mahshahr, Iran
| | - Akram Hosseinian
- School of Engineering Science, College of Engineering, University of Tehran, P. O. Box 11365-4563, Tehran, Iran
| | - Saeideh Ebrahimiasl
- Department of Chemistry, Ahar Branch, Islamic Azad University, Ahar, Iran
- Industrial Nanotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Abdolghaffar Ebadi
- Department of Agriculture, Jouybar Branch, Islamic Azad University, Jouybar, Iran
| |
Collapse
|
15
|
Cui S, Mao X, Zhang H, Zeng H, Lin Z, Zhang X, Qi P. Magnetic Solid-Phase Extraction Based on Magnetic Sulfonated Reduced Graphene Oxide for HPLC-MS/MS Analysis of Illegal Basic Dyes in Foods. Molecules 2021; 26:molecules26247427. [PMID: 34946507 PMCID: PMC8708935 DOI: 10.3390/molecules26247427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 12/01/2022] Open
Abstract
In this study, a magnetic solid-phase extraction (MSPE) method coupled with High-Performance Liquid Chromatography Mass Spectrometry (HPLC–MS/MS) for the determination of illegal basic dyes in food samples was developed and validated. This method was based on Magnetic sulfonated reduced graphene oxide (M-S-RGO), which was sensitive and selective to analytes with structure of multiaromatic rings and negatively charged ions. Several factors affecting MSPE efficiency such as pH and adsorption time were optimized. Under the optimum conditions, the calibration curves exhibited good linearity, ranging from 5 to 60 µg/g with correlation coefficients >0.9950. The limits of detection of 16 basic dyes were in the range of 0.01–0.2 µg/L. The recoveries ranged from 70% to 110% with RSD% < 10%. The results indicate that M-S-RGO is an efficient and selective adsorbent for the extraction and cleanup of basic dyes. Due to the MSPE procedures, matrix effect and interference were eliminated in the analysis of HPLC–MS/MS without the matrix-matched standards. Thus, validation data showed that the proposed MSPE–HPLC–MS/MS method was rapid, efficient, selective, and sensitive for the determination of illegal basic dyes in foods.
Collapse
Affiliation(s)
- Shibo Cui
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (S.C.); (H.Z.)
| | - Xinwu Mao
- Guang Zhou Institute for Food Inspection, Guangzhou 511410, China; (X.M.); (H.Z.); (Z.L.)
| | - Haijing Zhang
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (S.C.); (H.Z.)
| | - Haowei Zeng
- Guang Zhou Institute for Food Inspection, Guangzhou 511410, China; (X.M.); (H.Z.); (Z.L.)
| | - Zihao Lin
- Guang Zhou Institute for Food Inspection, Guangzhou 511410, China; (X.M.); (H.Z.); (Z.L.)
| | - Xuewu Zhang
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (S.C.); (H.Z.)
- Guangzhou Institute of modern Industrial Technology, Guangzhou 511458, China
- Correspondence: (X.Z.); (P.Q.); Tel.: +86-20-87113848 (X.Z.); +86-20-85825659 (P.Q.)
| | - Ping Qi
- Guang Zhou Institute for Food Inspection, Guangzhou 511410, China; (X.M.); (H.Z.); (Z.L.)
- Correspondence: (X.Z.); (P.Q.); Tel.: +86-20-87113848 (X.Z.); +86-20-85825659 (P.Q.)
| |
Collapse
|
16
|
Fu J, Zhang H, Liu S, Wu J, Zhang Y, Gao Y, Song F, Qin Y, Hu X, Liu Z. An integrated strategy using LC-MS/MS combined with in vivo microdialysis for the simultaneous determination of lignans of Schisandra chinensis (Turcz.) Baill. Fructus and endogenous neurotransmitters: application in pharmacokinetic and pharmacodynamic studies. Food Funct 2021; 12:8932-8945. [PMID: 34606559 DOI: 10.1039/d1fo01682b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Schisandra chinensis (Turcz.) Baill Fructus (SCF) is the ripe fruit of Schisandra chinensis (Turcz.) Baill, and is often used as a neuroprotective drink. Modern pharmacological studies have shown that lignans are the main bioactive components responsible for neuroprotection and have potential in the treatment of Alzheimer's disease (AD). However, the mechanism of action of SCF in the treatment of AD from the pharmacokinetics-pharmacodynamics (PK-PD) perspective remains not well established. The purpose of this study is to investigate and compare the pharmacokinetic differences of lignans in normal and AD rats, as well as to investigate their effects on neurotransmitters and their role in the treatment of AD. To achieve this goal, an integrated strategy using LC-MS/MS combined with in vivo microdialysis for the simultaneous determination of lignans of SCF and endogenous neurotransmitters has been developed and validated. The results show that the pharmacokinetic behaviors of ten lignans in the AD group were significantly different from those in the normal group. The AD group had better absorption and slower elimination than the normal group. In addition, the pharmacodynamic results of the Morris water maze (MWM) test, biochemical tests, histopathological examination, as well as immunohistochemistry analysis showed that lignans could improve the learning and memory of AD rats. The oral administration of SCF could restore the levels of the neurotransmitter parameters; seven neurotransmitters showed clockwise or counterclockwise changes with the four lignans in the hippocampal region. Taken together, the PK and PD studies based on in vivo microdialysis sampling might offer novel insights into the mechanisms of action of SCF against AD.
Collapse
Affiliation(s)
- Jun Fu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China. .,National Center of Mass Spectrometry in Changchun & Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Hongxu Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China. .,National Center of Mass Spectrometry in Changchun & Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Shu Liu
- National Center of Mass Spectrometry in Changchun & Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Jiajie Wu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China. .,National Center of Mass Spectrometry in Changchun & Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yuying Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China. .,National Center of Mass Spectrometry in Changchun & Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yang Gao
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China. .,National Center of Mass Spectrometry in Changchun & Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Fengrui Song
- National Center of Mass Spectrometry in Changchun & Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yuhua Qin
- Hainan Tropical Marine University, Sanya, 572022, China
| | - Xiuli Hu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Zhongying Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
17
|
Mou X, Sun G, Shi Y, Zhang L, Li R, Yu S, Liu S. Value of ddPCR in the Preoperative Diagnosis of Solitary Pulmonary Nodules Based on the Observation of Virtual Reality Images of Smart Medical Treatment. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:9920617. [PMID: 34422251 PMCID: PMC8376425 DOI: 10.1155/2021/9920617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/04/2021] [Accepted: 06/20/2021] [Indexed: 01/01/2023]
Abstract
At present, lung cancer ranks the first cause of tumor death in the world, and malignant tumors in the SPN detected by imaging account for 5-40%, most of which are peripheral lung cancer. The recovery of the solitary nodules in the lung after treatment has also been paid attention to. In order to explore the correlation of solitary pulmonary nodule (SPN) with microvessel density (MVD), vascular parameters, and vascular ratio under virtual reality images of smart medical treatment and evaluate the differentiation of SPN by ddPCR under virtual reality image observation diagnosis value, this article collects relevant information by investigating patients, investigating relevant literature, interviewing professionals, and constructing a case template, using a comprehensive quantitative and qualitative analysis method to create a damage assessment matrix. Experimental results prove that there are significant differences in the microvascular architecture within the SPN in the benign, inflammatory, and malignant groups. The correlation between ddPCR and vascular parameters (especially the ratio of luminal vessels) under the virtual reality image observation of smart medical treatment is better than other detection methods, and its accuracy is about 10% higher. Based on the observation of smart medical virtual reality images, ddPCR can be used as an index for noninvasive evaluation of tumor angiogenesis, which is helpful for the differential diagnosis of SPN.
Collapse
Affiliation(s)
- Xuri Mou
- Department of Chest Surgery, Yantaishan Hospital, Yantai 264000, Shandong, China
| | - Guiying Sun
- Department of Chest Surgery, Yantaishan Hospital, Yantai 264000, Shandong, China
| | - Yubo Shi
- Department of Chest Surgery, Yantaishan Hospital, Yantai 264000, Shandong, China
| | - Liangdong Zhang
- Department of Chest Surgery, Yantaishan Hospital, Yantai 264000, Shandong, China
| | - Runjie Li
- Department of Chest Surgery, Yantaishan Hospital, Yantai 264000, Shandong, China
| | - Shuling Yu
- Department of Chest Surgery, Yantaishan Hospital, Yantai 264000, Shandong, China
| | - Shuliang Liu
- Department of Chest Surgery, Yantaishan Hospital, Yantai 264000, Shandong, China
| |
Collapse
|
18
|
Clinical Study of Virtual Reality Augmented Technology Combined with Contrast-Enhanced Ultrasound in the Assessment of Thyroid Cancer. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:8042755. [PMID: 34394897 PMCID: PMC8363438 DOI: 10.1155/2021/8042755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 12/05/2022]
Abstract
Thyroid cancer has become the most common malignant tumor in the endocrine system, and its global incidence has been showing an upward trend. The diagnosis methods of thyroid cancer include ultrasound, fine-needle aspiration cytology, and neck CT, but the single ultrasound feature cannot simultaneously take into account the sensitivity and specificity of more than 85% when diagnosing thyroid cancer. The development of virtual technology can significantly improve the diagnosis of the thyroid gland. Based on this, this article proposes a clinical study of virtual reality technology combined with contrast-enhanced ultrasound in the assessment of thyroid cancer. This article uses a variety of methods, such as literature method, mathematical statistics, and experimental research, in-depth study of the theoretical cornerstones of virtual reality augmented technology, the application status of ultrasound contrast technology, and so on. And a fuzzy mean clustering algorithm was proposed to identify ultrasound images. Then, a clinical experiment of virtual reality augmented technology combined with contrast-enhanced ultrasound was designed to evaluate thyroid cancer, which included comparison of contrast-enhanced ultrasound signs, analysis of enhancement results, multifactor logistic analysis, and diagnostic efficacy analysis of ultrasound signs. The combined application of virtual reality augmented technology and contrast-enhanced ultrasound in the study of thyroid cancer has a sensitivity and specificity exceeding 85% as the diagnosis boundary changes, and the accuracy of the combined diagnosis is relatively high.
Collapse
|
19
|
Wei Y, Liu P. Analysis of the nature of interaction between AlN nanocage and ibuprofen using quantum chemical study. Struct Chem 2021. [DOI: 10.1007/s11224-021-01750-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
20
|
Cheng X, Lu E, Fan M, Pi Z, Zheng Z, Liu S, Song F, Liu Z. A comprehensive strategy to clarify the pharmacodynamic constituents and mechanism of Wu-tou decoction based on the constituents migrating to blood and their in vivo process under pathological state. JOURNAL OF ETHNOPHARMACOLOGY 2021; 275:114172. [PMID: 33932514 DOI: 10.1016/j.jep.2021.114172] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a traditional Chinese medicine (TCM) formula, Wu-tou decoction has been used for treating rheumatoid arthritis (RA) for more than a thousand years. Identifying pharmacodynamic constituents (PCs) of WTD and exploring their in vivo process are very meaningful for promoting the modernization of TCM. However, the pathological state might change this process. AIM OF THE STUDY Hence, it is necessary and significant to compare the process in vivo of drugs both in normal and disease state and clarify their action mechanism. MATERIALS AND METHODS Taking Wu-tou decoction (WTD) as the research object, a comprehensive strategy based on liquid chromatography coupled with mass spectrometry (LC-MS) was developed to identify PCs, clarify and compare their absorption and distribution in normal and model rats, and then explore the potential mechanism of TCM. Firstly, the PCs in WTD were identified. Then, the pharmacokinetics (PK) and tissue distribution of these ingredients were studied. Finally, the constituents with the difference between normal and model rats were selected for target network pharmacological analysis to clarify the mechanism. RESULTS A total of 27 PCs of WTD were identified. The absorption and distribution of 20 PCs were successfully analyzed. In the disease state, the absorption and distribution of all these components were improved to have better treatment effects. The results of target network pharmacological analysis indicated that PTGS1, PTGS2, ABCB1, SLC6A4, CHRM2, ESR1, ESR2, CDK2, TNF and IL-6 are 10 key targets for WTD against RA. The regulatory effects of WTD on the expression of PTGS2 and TNF were further verified. Pathway enrichment analysis showed that the key mechanism of WTD against RA is to reduce inflammation and regulate the immune response. CONCLUSION These results indicated that this strategy could better understand the in vivo process and mechanism of WTD under the pathological state. Furthermore, this strategy is also appropriate for other TCM.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antirheumatic Agents/administration & dosage
- Antirheumatic Agents/chemistry
- Antirheumatic Agents/pharmacokinetics
- Antirheumatic Agents/pharmacology
- Arthritis, Experimental/chemically induced
- Arthritis, Experimental/drug therapy
- Chromatography, High Pressure Liquid
- Cyclooxygenase 2/metabolism
- Disease Models, Animal
- Drugs, Chinese Herbal/administration & dosage
- Drugs, Chinese Herbal/chemistry
- Drugs, Chinese Herbal/pharmacokinetics
- Drugs, Chinese Herbal/pharmacology
- Glycyrrhizic Acid/blood
- Glycyrrhizic Acid/chemistry
- Inflammation/metabolism
- Lipopolysaccharides/toxicity
- Male
- Mass Spectrometry
- Medicine, Chinese Traditional
- Metabolic Networks and Pathways/drug effects
- Mice
- RAW 264.7 Cells
- Rats, Sprague-Dawley
- Tissue Distribution
- Tumor Necrosis Factor-alpha/metabolism
- Rats
Collapse
Affiliation(s)
- Xiaoxu Cheng
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, China
| | - Enyu Lu
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, China
| | - Meiling Fan
- Key Laboratory of Medicinal Materials, Jilin Academy of Chinese Medicine Sciences, 130021, Changchun, China
| | - Zifeng Pi
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China; Changchun Sunnytech Co.,Ltd., 130061, Changchun, China.
| | - Zhong Zheng
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Shu Liu
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China
| | - Fengrui Song
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, China
| | - Zhiqiang Liu
- State Key Laboratory of Electroanalytical Chemistry, National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022, Changchun, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, 230026, Hefei, China.
| |
Collapse
|
21
|
Sun M, Han S, Maloko Loussala H, Feng J, Li C, Ji X, Feng J, Sun H. Graphene oxide-functionalized mesoporous silica for online in-tube solid-phase microextraction of polycyclic aromatic hydrocarbons from honey and detection by high performance liquid chromatography-diode array detector. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
An overview of graphene-based nanoadsorbent materials for environmental contaminants detection. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116255] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
23
|
Sun X, Wang R, Li L, Wang X, Ji W. Online extraction based on ionic covalent organic framework for sensitive determination of trace per- and polyfluorinated alkyl substances in seafoods by UHPLC-MS/MS. Food Chem 2021; 362:130214. [PMID: 34082293 DOI: 10.1016/j.foodchem.2021.130214] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/23/2021] [Accepted: 05/24/2021] [Indexed: 01/12/2023]
Abstract
The ionic covalent organic framework (TPB-BFBIm-iCOF) was facilely synthetized by the size-controllable confinement method and chosen as the online solid phase extraction (SPE) adsorbent. This adsorbent showed fast adsorption equilibrium (5 min) and high adsorption capacity (87.7-140.8 mg g-1) for the per- and polyfluorinated alkyl substances (PFASs). The TPB-BFBIm-iCOF microsphere revealed the satisfactory enrichment performance for PFASs by means of the electrostatic interaction, hydrophobic effect and ordered channel structure. After extraction, the loaded TPB-BFBIm-iCOF-online SPE column was eluted and applied to the ultrahigh performance liquid chromatography tandem mass spectrometry analysis. Under the optimum conditions, the method displayed satisfactory linearity (R2 ≥ 0.9910) and low limits of detection (≤0.0017 ng g-1) for five seafoods. The relative recoveries of PFASs were 85.3%-109.4% with the relative standard deviation ≤ 9.9%. The method exhibited potential value in monitoring the toxicokinetics and environmental behaviors of PFASs.
Collapse
Affiliation(s)
- Xiaowei Sun
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Rongyu Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Lili Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Wenhua Ji
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| |
Collapse
|
24
|
Sun H, Feng J, Han S, Ji X, Li C, Feng J, Sun M. Recent advances in micro- and nanomaterial-based adsorbents for pipette-tip solid-phase extraction. Mikrochim Acta 2021; 188:189. [PMID: 33991231 DOI: 10.1007/s00604-021-04806-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/21/2021] [Indexed: 11/30/2022]
Abstract
There are a lot of review papers of sample pretreatment, but the comprehensive review on pipette-tip solid-phase extraction (PT-SPE) is lacking. This review (133 references) is mainly devoted to the development of different types of micro- and nanosorbent-based PT-SPE, including silica materials, carbon materials, organic polymers, molecularly imprinted polymers, and metal-organic frameworks. Each section mainly introduces and discusses the preparation methods, advantages and limitations of adsorbents, and their applications to environmental, biological, and food samples. This review also demonstrates the advantages of PT-SPE like convenience, speed, less organic solvent, and low cost. Finally, the future application and development trend of PT-SPE are prospected.
Collapse
Affiliation(s)
- Haili Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Juanjuan Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Sen Han
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Xiangping Ji
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Chunying Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Jiaqing Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Min Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
| |
Collapse
|
25
|
Poor Heravi MR, Torkpour I, Vessally E, Amini I. Adsorption of syn−propanethial S−oxide on the Zn 12O 12 cluster: insights from ab-initio modelling. J Sulphur Chem 2021. [DOI: 10.1080/17415993.2021.1881097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Ipak Torkpour
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | - Esmail Vessally
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | - Issa Amini
- Department of Chemistry, Payame Noor University, Tehran, Iran
| |
Collapse
|
26
|
Hassanpour A, Zamanfar M, Ebrahimiasl S, Ebadi A, Liu P. Dopamine Drug Adsorption on the Aluminum Nitride Single-Wall Nanotube: Ab initio Study. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-021-05678-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
Liu J, Zhang J, Wang W, Hou H. Effects of microwave treatment on the stability and antioxidant capacity of a functional wheat bran. Food Sci Nutr 2021; 9:2713-2721. [PMID: 34026084 PMCID: PMC8116850 DOI: 10.1002/fsn3.2230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 11/11/2022] Open
Abstract
A functional wheat bran (FWB) was obtained from wheat grains that were rich in wheat aleurone. The effects of the microwave (MW) power (2.5, 5.0, 7.5, and 10.0 kW) and treatment time (15, 30, 60, 90, and 120 s) on the moisture and free fatty acid (FFA) content, lipase activity, and antioxidant activity of the FWB were investigated. The purpose of this study is to stabilize the FWB against lipid oxidation and rancidity and as much as possible to retain its antioxidant activities. MW treatment significantly decreased the FFA content, moisture content, and lipase activity of the FWB. Moreover, MW treatment significantly increased the total phenolic content (TPC) and antioxidant activity of the FWB without drastically altering its color. MW treatment at 7.5 kW and 120 s was found to be optimal for stabilizing the FWB and increasing its antioxidant activity. The stabilized FWB was proven to be far more stable than the control FWB during storage. Thus, MW treatment is an effective stabilization method for the storage and utilization of FWB. Additional research is needed for the exact mechanism of the decrease of FFA content and increase of antioxidant activity of FWB induced by MW treatment.
Collapse
Affiliation(s)
- Jing Liu
- Engineering and Technology Center for Grain Processing of Shandong ProvinceCollege of Food Science and EngineeringShandong Agricultural UniversityTai'anChina
| | - Jinli Zhang
- Engineering and Technology Center for Grain Processing of Shandong ProvinceCollege of Food Science and EngineeringShandong Agricultural UniversityTai'anChina
| | - Wentao Wang
- Engineering and Technology Center for Grain Processing of Shandong ProvinceCollege of Food Science and EngineeringShandong Agricultural UniversityTai'anChina
| | - Hanxue Hou
- Engineering and Technology Center for Grain Processing of Shandong ProvinceCollege of Food Science and EngineeringShandong Agricultural UniversityTai'anChina
| |
Collapse
|
28
|
Zhou H, He Y, Zheng Z, Xing J, Liu Z, Pi Z, Liu S. Pharmacokinetics and tissue distribution study of 18 bioactive components in healthy and chronic heart failure rats after oral administration of Qi-Shen-Ke-Li formula using ultra-high-performance liquid chromatography/triple quadrupole mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9060. [PMID: 33527517 DOI: 10.1002/rcm.9060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
RATIONALE Qi-Shen-Ke-Li (QSKL) is a traditional Chinese formula used in clinical practice to treat chronic heart failure (CHF) in humans. To rationalize the use of this formula in clinical practice, the pharmacokinetics and tissue distribution in rats after oral administration of QSKL were investigated using ultra-high-performance liquid chromatography/triple quadrupole mass spectrometry (UHPLC/TQ-MS). METHODS The CHF model was induced by intraperitoneal injection of isoprenaline (ISO; also known as isoproterenol) and evaluated by HE staining and brain natriuretic peptide (BNP) measurement. The UHPLC/TQ-MS method was then applied to determine the concentrations of 18 bioactive components in rat plasma and tissues of heathy and CHF rats after oral administration of QSKL. This was followed by investigating the pharmacokinetics and tissue distribution profiles of these bioactive compounds in the heathy and CHF rats. RESULTS The pharmacokinetics results showed that the duration time of two compounds was prolonged, the absorption rate of four compounds was accelerated, and the bioavailability of four compounds was increased in the CHF rats compared with the healthy rats. Meanwhile, the tissue distribution results showed that the QSKL formula could be distributed rapidly and widely in different rat tissues. The bioavailability of eight compounds in the liver was enhanced in CHF rats. This suggested that the drug/toxic effects should be considered in clinical practice, as drug-drug interactions might occur in liver metabolism during the drug combination. CONCLUSIONS The pharmacokinetic profiles and tissue distribution of 18 bioactive compounds in QSKL are altered by the CHF status. This study provides insight for better clinical applications of this formula in the future and lays the foundation for the development of a new drug for chronic heart failure based on the QSKL formula.
Collapse
Affiliation(s)
- Hui Zhou
- Key Laboratory of Biotechnology and Bioresources Utilization-Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian, 116600, China
| | - Yang He
- School of Pharmacy and Food Science, Zhuhai College of Jilin University, Zhuhai, 519041, China
| | - Zhong Zheng
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Junpeng Xing
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Zhiqiang Liu
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Zifeng Pi
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Shu Liu
- National Center of Mass Spectrometry in Changchun & Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
29
|
Hou S, Song X, Li L, Wang R, Wang X, Ji W. Boronic Acid-Functionalized Scholl-Coupling Mesoporous Polymers for Online Solid-Phase Extraction of Brassinosteroids from Plant-Derived Foodstuffs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4883-4893. [PMID: 33847497 DOI: 10.1021/acs.jafc.1c00211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Brassinosteroids (BRs) are natural, nontoxic, non-hazardous, biosafe, and eco-friendly plant hormones, possessing diverse pharmacological activities. However, little is known about the type and content of BRs in frequently consumed plant-derived foodstuffs because of their low abundance and high abundance of interference. In this study, a selective, accurate, and sensitive method based on the online solid-phase extraction using the boronic acid-functionalized Scholl-coupling microporous polymer was developed for the analysis of BRs in plant-derived foodstuffs. Under optimum conditions, an excellent linearity (R2 ≥ 0.9970) and lower limits of detection (0.010-0.070 pg mL-1) were obtained. The high relative recoveries were in the range of 90.33-109.34% with relative standard deviations less than 9.73%. The method was successfully used for the determination of BRs in fifteen plant-derived foodstuffs. The present work offers a valuable tool for exploring BRs from the plant-derived foodstuffs and can provide useful information for developing functional foods.
Collapse
Affiliation(s)
- Shenghuai Hou
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xin Song
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Lili Li
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Rongyu Wang
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xiao Wang
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Wenhua Ji
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| |
Collapse
|
30
|
Acetaminophen drug detection by a promising sensor of aluminum nitride nanocage: DFT approach. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02770-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
31
|
Gao J, Ma C, Kumar A. Au-decorated semiconducting AlN nanosheet as an electronic sensor for theophylline drug. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.1888947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Jinhong Gao
- School of Chemistry and Materials, Weinan Normal University, Weinan, Shaanxi, People’s Republic of China
| | - Cunhua Ma
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining, Qinghai, People’s Republic of China
| | - Ajit Kumar
- Department of Chemistry, University of Delhi, Delhi, India
| |
Collapse
|
32
|
Hassanpour A, Nezhad PDK, Hosseinian A, Ebadi A, Ahmadi S, Ebrahimiasl S. Characterization of IR spectroscopy, APT charge, ESP maps, and AIM analysis of C
20
and its C
20‐n
Al
n
heterofullerene analogous (
n
= 1–5) using DFT. J PHYS ORG CHEM 2021. [DOI: 10.1002/poc.4198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Akbar Hassanpour
- Department of Chemistry, Marand Branch Islamic Azad University Marand Iran
| | | | - Akram Hosseinian
- School of Engineering Science, College of Engineering University of Tehran Tehran Iran
| | - Abdolghaffar Ebadi
- Department of Agriculture, Jouybar Branch Islamic Azad University Jouybar Iran
| | - Sheida Ahmadi
- Department of Chemistry Payame Noor University Tehran Iran
| | - Saeideh Ebrahimiasl
- Department of Chemistry, Ahar Branch Islamic Azad University Ahar Iran
- Industrial Nanotechnology Research Center, Tabriz Branch Islamic Azad University Tabriz Iran
| |
Collapse
|
33
|
Feng J, Feng J, Ji X, Li C, Han S, Sun H, Sun M. Recent advances of covalent organic frameworks for solid-phase microextraction. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116208] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
34
|
Wan T, Chen Z. Covalent organic nanospheres modified magnetic nanoparticles for extraction of blood lipid regulators in water samples. J Sep Sci 2021; 44:2301-2309. [PMID: 33783965 DOI: 10.1002/jssc.202001283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 01/04/2023]
Abstract
Covalent organic nanospheres are new kind of nanospherical polymer with large specific surface area, uniform morphology, and excellent chemical and thermal stability. This material can be fabricated by a facile and rapid room temperature solution-phase strategy. In this work, magnetic nanoparticles were attached to the surface of covalent organic nanospheres, and the obtained composites were used for the extraction of blood lipid regulators such as clofibrate and fenofibrate. These composites were characterized with Fourier-transformed infrared spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. Several parameters that might affect the extraction efficiency including acetonitrile content, pH value, extraction time, and sample volume were investigated. Under optimum conditions, the proposed analytical method showed high extraction efficiency toward clofibrate and fenofibrate with enrichment factors between 60 and 83. This method exhibited outstanding analytical performance with wide linear range and excellent reproducibility and had low limits of detection in the range of 0.02-0.03 ng/mL. This method was also applied to the detection of clofibrate and fenofibrate in lake water samples, and good recoveries in the range of 92.6-112.6% was obtained.
Collapse
Affiliation(s)
- Tianfeng Wan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, P. R. China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Zilin Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan, P. R. China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|
35
|
Senan AM, Yin B, Zhang Y, Nasiru MM, Lyu YM, Umair M, Bhat JA, Zhang S, Liu L. Efficient and selective catalytic hydroxylation of unsaturated plant oils: a novel method for producing anti-pathogens. BMC Chem 2021; 15:20. [PMID: 33781309 PMCID: PMC8008645 DOI: 10.1186/s13065-021-00748-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 03/17/2021] [Indexed: 12/31/2022] Open
Abstract
With the increasing demand for antimicrobial agents and the spread of antibiotic resistance in pathogens, the exploitation of plant oils to partly replace antibiotic emerges as an important source of fine chemicals, functional food utility and pharmaceutical industries. This work introduces a novel catalytic method of plant oils hydroxylation by Fe(III) citrate monohydrate (Fe3+-cit.)/Na2S2O8 catalyst. Methyl (9Z,12Z)-octadecadienoate (ML) was selected as an example of vegetable oils hydroxylation to its hydroxy-conjugated derivatives (CHML) in the presence of a new complex of Fe(II)-species. Methyl 9,12-di-hydroxyoctadecanoate 1, methyl-9-hydroxyoctadecanoate 2 and methyl (10E,12E)-octadecanoate 3 mixtures is produced under optimized condition with oxygen balloon. The specific hydroxylation activity was lower in the case of using Na2S2O8 alone as a catalyst. A chemical reaction has shown the main process converted of plantoils hydroxylation and (+ 16 Da) of OH- attached at the methyl linoleate (ML-OH). HPLC and MALDI-ToF-mass spectrometry were employed for determining the obtained products. It was found that adding oxidizing agents (Na2S2O8) to Fe3+ in the MeCN mixture with H2O would generate the new complex of Fe(II)-species, which improves the C-H activation. Hence, the present study demonstrated a new functional method for better usage of vegetable oils.Producing conjugated hydroxy-fatty acids/esters with better antipathogenic properties. CHML used in food industry, It has a potential pathway to food safety and packaging process with good advantages, fundamental to microbial resistance. Lastly, our findings showed that biological monitoring of CHML-minimum inhibitory concentration (MIC) inhibited growth of various gram-positive and gram-negative bacteria in vitro study. The produced CHML profiles were comparable to the corresponding to previousstudies and showed improved the inhibition efficiency over the respective kanamycin derivatives.![]()
Collapse
Affiliation(s)
- Ahmed M Senan
- Glycomics and Glycan Bioengineering Research Center School of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China. .,Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| | - Binru Yin
- Glycomics and Glycan Bioengineering Research Center School of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yaoyao Zhang
- Glycomics and Glycan Bioengineering Research Center School of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Mustapha M Nasiru
- Glycomics and Glycan Bioengineering Research Center School of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yong-Mei Lyu
- Glycomics and Glycan Bioengineering Research Center School of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Muhammad Umair
- Glycomics and Glycan Bioengineering Research Center School of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Javaid A Bhat
- Glycomics and Glycan Bioengineering Research Center School of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Sicheng Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center School of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China. .,Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
36
|
Hassanpour A, Poor Heravi MR, Kheirollahi Nezhad PD, Hosseinian A, Ahmadi S. A computational perspective of novel
N
‐heterocyclic silylenes using density functional theory. J PHYS ORG CHEM 2021. [DOI: 10.1002/poc.4197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Akbar Hassanpour
- Department of Chemistry Marand Branch, Islamic Azad University Marand Iran
| | | | | | - Akram Hosseinian
- School of Engineering Science, College of Engineering University of Tehran Tehran Iran
| | - Sheida Ahmadi
- Department of Chemistry Payame Noor University Tehran Iran
| |
Collapse
|
37
|
Affiliation(s)
| | | | - Mosstafa Kazemi
- Young Researchers and Elite Club, Ilam Branch, Islamic Azad University, Ilam, Iran
| |
Collapse
|
38
|
Ebadnezhad H, Afshar Mogaddam MR, Farajzadeh MA, Mohebbi A, Nemati M, Torbati M. Combining a liquid-liquid extraction with successive air assisted liquid-liquid microextraction for the analysis of phytosterols present in animal based butter and oil samples. J Chromatogr A 2021; 1642:462025. [PMID: 33721815 DOI: 10.1016/j.chroma.2021.462025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/21/2021] [Accepted: 02/24/2021] [Indexed: 12/20/2022]
Abstract
In this study, an elevated temperature liquid-liquid extraction combined method with successive air-assisted liquid-liquid microextraction has been proposed for the extraction of four phytosterols in cow milk butter and animal oil samples prior to gas chromatography-flame ionization detector. The method is started by combining a few grams of the melted butter or oil samples with ethanol. The mixture is vortexed and placed into a water-bath adjusted at 50 ⁰C. After a few minutes, the mixture is allowed to cool at room temperature. In this step, the butter or oil is become stiff and ethanol is collected on top of the sample. The separated ethanol phase is collected and mixed with deionized water to obtain a homogenous solution. After that, a few microliters of ethyl methyl ammonium chloride: pivalic acid deep eutectic solvent is added into the solution and the mixture was pulled into a glass test tube and pushed back to the tube for five times. After centrifugation, whole of the collected phase at the bottom of tube was withdrawn and transferred into a microtube and contacted with sodium hydroxide solution. The mixture is withdrawn and released to the tube 2 times to remove the extracted fatty acids. The validation data verified that high enrichment factors (385-450) and extraction recoveries (77-90%), low limits of quantification (2.6-5.2 ng g-1) and detection (0.73-1.5 ng g-1), and satisfactory relative standard deviations (≤ 9.3%) can be obtained with this method. At last, the developed method was successfully used for the analysis of phytosterols in various butter and oil samples marketed in Tabriz, Iran.
Collapse
Affiliation(s)
- Hassan Ebadnezhad
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Engineering Faculty, Near East University, 99138 Nicosia, North Cyprus, Mersin 10, Turkey
| | - Ali Mohebbi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mahboob Nemati
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadali Torbati
- Department of Food Science and Technology, Faculty of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
39
|
Sun M, Feng J, Ji X, Li C, Han S, Sun M, Feng Y, Feng J, Sun H. Polyaniline/titanium dioxide nanorods functionalized carbon fibers for in-tube solid-phase microextraction of phthalate esters prior to high performance liquid chromatography-diode array detection. J Chromatogr A 2021; 1642:462003. [PMID: 33652369 DOI: 10.1016/j.chroma.2021.462003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 10/22/2022]
Abstract
To improve extraction performance of carbon fibers (CFs) towards phthalate esters (PAEs), titanium dioxide (TiO2) nanorods array was in-situ grown on the surface of CFs, then polyaniline (PANI) was used to modify it. PANI/TiO2 nanorods-CFs were placed into a polyetheretherketone tube for solid-phase microextraction (SPME). Combining the tube to high performance liquid chromatography (HPLC), it was evaluated and displayed good extraction performance for several PAEs. Compared with bare CFs, TiO2 nanorods and PANI, PANI/TiO2 nanorods presented best performance, attributed to the unique advantages between high surface area of TiO2 nanorods and multiple adsorption interactions (like π-π stacking, hydrogen bond) of PANI. After the optimization of the important factors (sampling volume, sampling rate, sample pH, concentrations of organic solvent and salt in sample, and desorption time), the online in-tube SPME-HPLC method was established. It provided low limits of detection (0.01-0.05 μg L-1) and wide linear ranges (0.03-30, 0.10-30, 0.17-30 μg L-1) with correlation coefficients larger than 0.9991. The relative standard deviations (n=6) between intra-day and inter-day tests were in the ranges of 3.5-10.3% and 4.7-13.9%, respectively. The method was successfully used to determine seven PAEs in real water samples. Besides of satisfactory durability, the material also exhibited superior extraction performance than some materials.
Collapse
Affiliation(s)
- Min Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Juanjuan Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| | - Xiangping Ji
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Chunying Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Sen Han
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Mingxia Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Yang Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Jiaqing Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Haili Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| |
Collapse
|
40
|
Feng J, Feng J, Han S, Ji X, Li C, Sun M. Triazine-based covalent porous organic polymer for the online in-tube solid-phase microextraction of polycyclic aromatic hydrocarbons prior to high-performance liquid chromatography-diode array detection. J Chromatogr A 2021; 1641:462004. [PMID: 33640808 DOI: 10.1016/j.chroma.2021.462004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 12/31/2022]
Abstract
A triazine-based covalent organic porous polymer (COP) was synthesized from the monomers 1,3,5-triphenylbenzene and tricyanogen chloride via the Friedel-Crafts reaction and characterized in detail using Brunauer-Emmett-Teller analysis, X-ray photoelectron spectroscopy, elemental analysis, and scanning electron microscopy, which confirmed that the COP had a rough surface and suitable extraction site. It was then employed in in-tube solid-phase microextraction combined with a high-performance liquid chromatography-diode array detector. The COP adsorbent was evaluated with different types of analyte, including estrogens, polycyclic aromatic hydrocarbons (PAHs), and plasticizers. The COP produced its best performance with PAHs. In order to obtain the highest extraction efficiency for PAHs, the main influential factors were optimized. Furthermore, a sensitive analytical method was established with the limits of detection of 0.004-0.010 µg L-1, high enrichment factor of 1110-2763, and wide linear ranges (0.013-20.0 µg L-1, 0.016-20.0 µg L-1 and 0.033-20.0 µg L-1). The relative standard deviation in intra-day and inter-day tests was also controlled to be within 0.3-3.1%. The proposed method was employed in the online detection of trace PAHs in real water samples, with satisfactory results obtained.
Collapse
Affiliation(s)
- Jiaqing Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Juanjuan Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Sen Han
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Xiangping Ji
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Chunying Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Min Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| |
Collapse
|
41
|
Affiliation(s)
- Rong He
- School of Pharmaceutical Sciences, Hunan Vocational College of Technology, Changsha, Hunan, China
| | - Jincai Zhou
- School of Pharmaceutical Sciences, Hunan Vocational College of Technology, Changsha, Hunan, China
| | - Wenqi Mao
- College of Humanities and music, Hunan Vocational College of Technology, Changsha, Hunan, China
| |
Collapse
|
42
|
Ebadnezhad H, Afshar Mogaddam MR, Mohebbi A, Farajzadeh MA, Nemati M, Torbati M. Combination of temperature‐assisted ternary phase homogenous liquid–liquid extraction with deep eutectic solvent–based dispersive liquid–liquid microextraction for the extraction of phytosterols from cow milk and cream samples. J Sep Sci 2021; 44:1482-1489. [DOI: 10.1002/jssc.202001012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/10/2020] [Accepted: 12/30/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Hassan Ebadnezhad
- Department of Food Science and Technology Faculty of Nutrition Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center Tabriz University of Medical Sciences Tabriz Iran
- Pharmaceutical Analysis Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Ali Mohebbi
- Department of Analytical Chemistry Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry Faculty of Chemistry University of Tabriz Tabriz Iran
- Engineering Faculty Near East University North Cyprus Turkey
| | - Mahboob Nemati
- Food and Drug Safety Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammadali Torbati
- Department of Food Science and Technology Faculty of Nutrition Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
43
|
Derivatization-based sample-multiplexing for enhancing throughput in liquid chromatography/tandem mass spectrometry quantification of metabolites: an overview. J Chromatogr A 2020; 1634:461679. [DOI: 10.1016/j.chroma.2020.461679] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/02/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022]
|
44
|
Aso S, Ogawa S, Nishimoto-Kusunose S, Satoh M, Ishige T, Nomura F, Higashi T. Derivatization-based quadruplex LC/ESI-MS/MS method for high throughput quantification of serum dehydroepiandrosterone sulfate. Biomed Chromatogr 2020; 35:e5027. [PMID: 33179271 DOI: 10.1002/bmc.5027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/30/2020] [Accepted: 11/08/2020] [Indexed: 01/22/2023]
Abstract
The quantification of the circulating dehydroepiandrosterone sulfate (DHEAS) might be of diagnostic help for several diseases. For the DHEAS quantification, LC/ESI-MS/MS has the advantage of a high specificity compared with immunoassay, whereas LC/ESI-MS/MS has room to improve the analysis throughput. One of the promising solutions to enhance the analysis throughput is sample-multiplexing in the same injection, which can reduce the total LC/ESI-MS/MS run time. In this study, a quadruplex LC/ESI-MS/MS method was developed to quantify DHEAS in four different serum samples in a single run. After the four samples were separately deproteinized and derivatized with one of four Girard reagents (Girard reagent T, P and their isotopologs), the resulting samples were mixed, then injected into the LC/ESI-MS/MS. The applicability and advantage of the developed method were evaluated based on the analysis of nine batches of serum samples from healthy subjects (total 36 samples). The limit of quantitation was 0.050 μg/ml, which was sensitive enough for clinical laboratory use. The method was precise (intra- and inter-assay RSDs ≤ 3.6%), accurate (94.4-108.1%) and robust for the matrix effects. The analysis time was also shortened by about 60% for 36 samples by the introduced method compared with the conventional method.
Collapse
Affiliation(s)
- Saki Aso
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda-shi, Chiba, Japan
| | - Shoujiro Ogawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda-shi, Chiba, Japan.,Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama-shi, Hiroshima, Japan
| | | | - Mamoru Satoh
- Division of Clinical Mass Spectrometry, Chiba University Hospital, Chiba-shi, Chiba, Japan
| | - Takayuki Ishige
- Division of Laboratory Medicine, Chiba University Hospital, Chiba-shi, Chiba, Japan
| | - Fumio Nomura
- Division of Clinical Genetics, Chiba University Hospital, Chiba-shi, Chiba, Japan
| | - Tatsuya Higashi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda-shi, Chiba, Japan
| |
Collapse
|
45
|
David V, Moldoveanu SC, Galaon T. Derivatization procedures and their analytical performances for HPLC determination in bioanalysis. Biomed Chromatogr 2020; 35:e5008. [PMID: 33084080 DOI: 10.1002/bmc.5008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Derivatization, or chemical structure modification, is often used in bioanalysis performed by liquid chromatography technique in order to enhance detectability or to improve the chromatographic performance for the target analytes. The derivatization process is discussed according to the analytical procedure used to achieve the reaction between the reagent and the target compounds (containing hydroxyl, thiol, amino, carbonyl and carboxyl as the main functional groups involved in derivatization). Important procedures for derivatization used in bioanalysis are in situ or based on extraction processes (liquid-liquid, solid-phase and related techniques) applied to the biomatrix. In the review, chiral, isotope-labeling, hydrophobicity-tailored and post-column derivatizations are also included, based on representative publications in the literature during the last two decades. Examples of derivatization reagents and brief reaction conditions are included, together with some bioanalytical applications and performances (chromatographic conditions, detection limit, stability and sample biomatrix).
Collapse
Affiliation(s)
- Victor David
- Faculty of Chemistry, Department of Analytical Chemistry, University of Bucharest, Bucharest, Romania
| | | | - Toma Galaon
- National Research and Development Institute for Industrial Ecology - ECOIND, Bucharest-6, Romania
| |
Collapse
|
46
|
Cui T, Zhu X, Wu L, Tan X. Ultrasonic assisted dispersive liquid-liquid microextraction combined with flame atomic absorption spectrometry for determination of trace gallium in vanadium titanium magnetite. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
47
|
Chen SE, Zhu S, Hu J, Sun J, Zheng Z, Zhao XE, Liu H. 8-Plex stable isotope labeling absolute quantitation strategy combined with dual-targeted recognizing function material for simultaneous separation and determination of glucosylsphingosine and galactosylsphingosine in human plasma. Anal Chim Acta 2020; 1124:40-51. [DOI: 10.1016/j.aca.2020.05.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 02/01/2023]
|
48
|
Derivatization-based magnetic dummy molecularly imprinted polymers integrated with 4-plex stable isotope labeling derivatization strategy for specific and rapid determination of L-hydroxyproline in human serum. Anal Chim Acta 2020; 1127:57-68. [DOI: 10.1016/j.aca.2020.06.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 12/17/2022]
|
49
|
Quantitative aspects of the hydrolysis of ginseng saponins: Application in HPLC-MS analysis of herbal products. J Ginseng Res 2020; 45:246-253. [PMID: 33841005 PMCID: PMC8020340 DOI: 10.1016/j.jgr.2020.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 05/18/2020] [Accepted: 07/06/2020] [Indexed: 11/23/2022] Open
Abstract
Background Ginseng is one of the most valuable herbal supplements. It is challenging to perform quality control of ginseng products due to the diversity of bioactive saponins in their composition. Acid or alkaline hydrolysis is often used for the structural elucidation of these saponins and sugars in their side chains. Complete transformation of the original ginsenosides into their aglycones during the hydrolysis is one of the ways to determine a total saponin group content. The main hurdle of this approach is the formation of various by-products that was reported by many authors. Methods Separate HPLC assessment of the total protopanaxadiol, protopanaxatriol and ocotillol ginsenoside contents is a viable alternative to the determination of characteristic biomarkers of these saponin groups, such as ginsenoside Rf and pseudoginsenoside F11, which are commonly used for authentication of P. ginseng Meyer and P. quinquefolius L. samples respectively. Moreover, total ginsenoside content is an ideal aggregated parameter for standardization and quality control of ginseng-based medicines, because it can be directly applied for saponin dosage calculation. Results Different hydrolysis conditions were tested to develop accurate quantification method for the elucidation of total ginsenoside contents in herbal products. Linearity, limits of quantification, limits of detection, accuracy and precision were evaluated for the developed HPLC-MS method. Conclusion Alkaline hydrolysis results in fewer by-products than sugar elimination in acidic conditions. An equimolar response, as a key parameter for quantification, was established for several major ginsenosides. The developed approach has shown acceptable results in the analysis of several different herbal products.
Collapse
|
50
|
Lian X, Wang N, Ma L, Jiang H, Bai D, Xue H, Ma Q. Determination of aucubin by supramolecular solvent-based dispersive liquid-liquid microextraction and UPLC-MS/MS: Application to a pharmacokinetic study in rats with type 1 diabetes. J Pharm Biomed Anal 2020; 186:113301. [DOI: 10.1016/j.jpba.2020.113301] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/24/2020] [Accepted: 04/03/2020] [Indexed: 12/17/2022]
|