1
|
Keulen D, Neijenhuis T, Lazopoulou A, Disela R, Geldhof G, Le Bussy O, Klijn ME, Ottens M. From protein structure to an optimized chromatographic capture step using multiscale modeling. Biotechnol Prog 2025; 41:e3505. [PMID: 39344097 PMCID: PMC11831419 DOI: 10.1002/btpr.3505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/21/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024]
Abstract
Optimizing a biopharmaceutical chromatographic purification process is currently the greatest challenge during process development. A lack of process understanding calls for extensive experimental efforts in pursuit of an optimal process. In silico techniques, such as mechanistic or data driven modeling, enhance the understanding, allowing more cost-effective and time efficient process optimization. This work presents a modeling strategy integrating quantitative structure property relationship (QSPR) models and chromatographic mechanistic models (MM) to optimize a cation exchange (CEX) capture step, limiting experiments. In QSPR, structural characteristics obtained from the protein structure are used to describe physicochemical behavior. This QSPR information can be applied in MM to predict the chromatogram and optimize the entire process. To validate this approach, retention profiles of six proteins were determined experimentally from mixtures, at different pH (3.5, 4.3, 5.0, and 7.0). Four proteins at different pH's were used to train QSPR models predicting the retention volumes and characteristic charge, subsequently the equilibrium constant was determined. For an unseen protein knowing only the protein structure, the retention peak difference between the modeled and experimental peaks was 0.2% relative to the gradient length (60 column volume). Next, the CEX capture step was optimized, demonstrating a consistent result in both the experimental and QSPR-based methods. The impact of model parameter confidence on the final optimization revealed two viable process conditions, one of which is similar to the optimization achieved using experimentally obtained parameters. The multiscale modeling approach reduces the required experimental effort by identification of initial process conditions, which can be optimized.
Collapse
Affiliation(s)
- Daphne Keulen
- Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
| | - Tim Neijenhuis
- Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
| | | | - Roxana Disela
- Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
| | - Geoffroy Geldhof
- GSK, Technical Research & Development – Microbial Drug SubstanceRixensartBelgium
| | - Olivier Le Bussy
- GSK, Technical Research & Development – Microbial Drug SubstanceRixensartBelgium
| | - Marieke E. Klijn
- Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
| | - Marcel Ottens
- Department of BiotechnologyDelft University of TechnologyDelftThe Netherlands
| |
Collapse
|
2
|
Wang X, Ji F, Jia L. Chimeric AQP4-based immunosorbent for highly-specific removal of AQP4-IgG from blood. J Chromatogr A 2024; 1717:464701. [PMID: 38310704 DOI: 10.1016/j.chroma.2024.464701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
Anti-aquaporin-4 autoantibodies (AQP4-IgG) are implicated in the pathogenesis of neuromyelitis optica spectrum disorders (NMOSD), and their removal from the blood circulation is considered to be an effective method for acute treatment. An ideal extracorporeal AQP4-IgG removal system should have high specificity, which means that it can selectively remove AQP4-IgG without affecting normal immunoglobulins. However, the conventional tryptophan immobilized column lacks sufficient specificity and cannot achieve this goal. In this study, we successfully prepared a fusion protein chimeric AQP4, which consists of the complete antigenic epitopes of human AQP4 and the constant region of scaffold protein DARPin. Chimeric AQP4 was expressed and purified from Escherichia coli, and then immobilized on agarose gel as a ligand for selective capture of AQP4-IgG immunosorbent. The prepared immunosorbent had a theoretical maximum adsorption capacity of 20.48 mg/g gel estimated by Langmuir isotherm. In vitro plasma perfusion tests demonstrated that the chimeric AQP4 coupled adsorbent had remarkable adsorption performance, and could eliminate more than 85 % of AQP4-IgG under the gel-to-plasma ratio of 1:50. Moreover, it exhibited high specificity because other human plasma proteins were not adsorbed in the dynamic adsorption experiment. These results suggest that the chimeric AQP4 coupled immunosorbent can provide a new approach for specific immunoadsorption (IA) treatment of NMOSD.
Collapse
Affiliation(s)
- Xiaofei Wang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116023, China; Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Fangling Ji
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116023, China; Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116023, China.
| | - Lingyun Jia
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116023, China; Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning 116023, China.
| |
Collapse
|
3
|
Silva TC, Eppink M, Ottens M. Digital twin in high throughput chromatographic process development for monoclonal antibodies. J Chromatogr A 2024; 1717:464672. [PMID: 38350166 DOI: 10.1016/j.chroma.2024.464672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/14/2024] [Accepted: 01/21/2024] [Indexed: 02/15/2024]
Abstract
The monoclonal antibody (mAb) industry is becoming increasingly digitalized. Digital twins are becoming increasingly important to test or validate processes before manufacturing. High-Throughput Process Development (HTPD) has been progressively used as a tool for process development and innovation. The combination of High-Throughput Screening with fast computational methods allows to study processes in-silico in a fast and efficient manner. This paper presents a hybrid approach for HTPD where equal importance is given to experimental, computational and decision-making stages. Equilibrium adsorption isotherms of 13 protein A and 16 Cation-Exchange resins were determined with pure mAb. The influence of other components in the clarified cell culture supernatant (harvest) has been under-investigated. This work contributes with a methodology for the study of equilibrium adsorption of mAb in harvest to different protein A resins and compares the adsorption behavior with the pure sample experiments. Column chromatography was modelled using a Lumped Kinetic Model, with an overall mass transfer coefficient parameter (kov). The screening results showed that the harvest solution had virtually no influence on the adsorption behavior of mAb to the different protein A resins tested. kov was found to have a linear correlation with the sample feed concentration, which is in line with mass transfer theory. The hybrid approach for HTPD presented highlights the roles of the computational, experimental, and decision-making stages in process development, and how it can be implemented to develop a chromatographic process. The proposed white-box digital twin helps to accelerate chromatographic process development.
Collapse
Affiliation(s)
- Tiago Castanheira Silva
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, Delft, 2629 HZ, the Netherlands
| | - Michel Eppink
- Downstream Processing, Byondis B.V., Microweg 22, 6503 GB, Nijmegen, the Netherlands; Bioprocessing Engineering, Wageningen University, Droevendaalse steeg 1, 6708 PB, Wageningen, the Netherlands
| | - Marcel Ottens
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, Delft, 2629 HZ, the Netherlands.
| |
Collapse
|
4
|
Qi C, Chen L. Progress of ligand-modified agarose microspheres for protein isolation and purification. Mikrochim Acta 2024; 191:149. [PMID: 38376601 DOI: 10.1007/s00604-024-06224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/20/2024] [Indexed: 02/21/2024]
Abstract
Proteins are the material basis of life and the primary carriers of life activities, containing various impurities that must be removed before use. To keep pace with the increasing complexity of protein samples, it is essential to constantly work on developing new purification technologies for downstream processes. While traditional downstream purification methods rely heavily on protein A affinity chromatography, there is still a lot of interest in finding safer and more cost-effective alternatives to protein A. Many non-affinity ligands and technologies have also been developed in biological purification recently. Here, the current status of biotechnology and the progress of protein separation technology from 2018 to 2023 are reviewed from the aspects of new preparation methods and new composite materials of commonly used separation media. The research status of new ligands with different mechanisms of action was reviewed, including the expanded application of affinity ligands, the development prospect of biotechnology such as polymer grafting, continuous column technology, and its new applications.
Collapse
Affiliation(s)
- Chongdi Qi
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Lei Chen
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.
| |
Collapse
|
5
|
Gao S, Rojas-Vega F, Rocha-Martin J, Guisán JM. Oriented immobilization of antibodies through different surface regions containing amino groups: Selective immobilization through the bottom of the Fc region. Int J Biol Macromol 2021; 177:19-28. [PMID: 33607135 DOI: 10.1016/j.ijbiomac.2021.02.103] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/29/2021] [Accepted: 02/14/2021] [Indexed: 10/22/2022]
Abstract
Amino groups on the antibody surface (amino terminus and Lys) are very interesting conjugation targets due to their substantial quantities and selectivity toward various reactive groups. Oriented immobilization of antibodies via amino moieties on the Fc region instead of the antigen-binding fragment (Fab) is highly appreciated to conserve antigen-binding capacity. In this paper, targeting amino moieties on distinct regions, three antibody immobilization strategies were compared with the recognition ability of corresponding adsorbents. Our results demonstrate that oriented immobilization of antibodies onto heterofunctional chelate-epoxy support selectively involving Lys residues placed at the bottom of the Fc region, thus preserved the highest antigen recognition capacity (over 75% functionality). For homofunctional aldehyde support, immobilization at pH 10 demonstrates 50% remaining functionality due to the random orientation of tethered antibodies; while only 10% functionality remained when N-terminus were specifically conjugated at pH 8.5. With the rationalization of moieties density onto heterofunctional support, 2-fold recognition capacity was exhibited over randomly immobilization for antigens with higher size (β-galactosidase, 425 kDa vs. horseradish peroxidase, 40 kDa). Meanwhile, at least 97% of antigens with a varied concentration in diluted human serum were efficiently captured by the optimized chelate-epoxy support. Therefore, our antibody immobilization protocol proved the potential to be utilized as a promising candidate to capture voluminous antigens (large proteins and cells) in real samples.
Collapse
Affiliation(s)
- Shipeng Gao
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | - Francisco Rojas-Vega
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | - Javier Rocha-Martin
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain.
| | - José M Guisán
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
6
|
Chen C, Zhao D, Su Z, Luo J, Ma G, Zhang S, Li X. Effect of pore structure on protein adsorption mechanism on ion exchange media: A preliminary study using low field nuclear magnetic resonance. J Chromatogr A 2021; 1639:461904. [PMID: 33486445 DOI: 10.1016/j.chroma.2021.461904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 11/29/2022]
Abstract
The adsorption process of bovine serum albumin (BSA), ovalbumin (OVA) and human immunoglobulin G (IgG) on agarose ion-exchange media Q Sepharose FF and two dextran-grafted agarose media including Q Sepharose XL and Capto Q were studied using low field nuclear magnetic resonance (NMR). The T2 relaxation time was found directly proportional to the pore size and diminished after protein adsorbed, therefore, a theoretical model describing the relationship between protein binding amount and T2 relaxation signals was established. The model parameters, a, which reflects the contact area between the adsorbed protein and media surface, and the δ, which defined as the ratio of the protein volume to the pore volume after adsorption, were found to describe the pore occupation states of proteins in media with different pore structures very well. For small proteins, such as BSA and OVA, monolayer adsorption occurred on Q Sepharose FF, which has no dextran chains. Therefore, the adsorbed protein only occupied 49.05% of the pore volume for BSA and 25.51% for OVA, and contact area of each protein on the media were also low, suggesting mostly monolayer adsorption occurred. In the contrast, their adsorption to Q Sepharose XL and Capto Q with dextran chains tended to form multilayer adsorption, thus higher contact area was obtained and the pore volumes were almost 100% occupied. For large protein, such as IgG, the adsorption to all these three media was similar and about 30% of the pore volume were occupied, probably due to the similar restriction for IgG to entering the media pore. Results of this study will help to elucidate the relationship between protein adsorption and pore size variation, which present the significance of low field NMR in understanding protein adsorption mechanism.
Collapse
Affiliation(s)
- Chao Chen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Dawei Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Zhiguo Su
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jian Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Xiunan Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
7
|
Yu L, Sun Y. Recent advances in protein chromatography with polymer-grafted media. J Chromatogr A 2021; 1638:461865. [PMID: 33453656 DOI: 10.1016/j.chroma.2020.461865] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 01/19/2023]
Abstract
The strategy of using polymer-grafted media is effective to create protein chromatography of high capacity and uptake rate, giving rise to an excellent performance in high-throughput protein separation due to its high dynamic binding capacity. Taking the scientific development and technological innovation of protein chromatography as the objective, this review is devoted to an overview of polymer-grafted media reported in the last five years, including their fabrication routes, protein adsorption and chromatography, mechanisms behind the adsorption behaviors, limitations of polymer-grafted media and chromatographic operation strategies. Particular emphasis is placed on the elaboration and discussion on the behaviors of ion-exchange chromatography (IEC) with polymer-grafted media because IEC is the most suitable chromatographic mode for this kind of media. Recent advances in both the theoretical and experimental investigations on polymer-grafted media are discussed by focusing on their implications to the rational design of novel chromatographic media and mobile phase conditions for the development of high-performance protein chromatography. It is concluded that polymer-grafted media are suitable for development of IEC and mixed-mode chromatography with charged and low hydrophobic ligands, but not for hydrophobic interaction chromatography with high hydrophobic ligands and affinity chromatography with ligands that have single binding site on the protein.
Collapse
Affiliation(s)
- Linling Yu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|