1
|
Pulido-Camarillo E, Sahaza JH, de Souza Pitangui N, Mendes-Giannini MJS, Fusco-Almeida AM, Pérez-Torres A, Taylor ML. Unusual Differences in the Pulmonary Histopathology of Mice after Intranasal Infection with Mycelial Propagules of Histoplasma capsulatum Strains Classified as LAm A2 and NAm 2 Phylogenetic Species. J Fungi (Basel) 2023; 9:974. [PMID: 37888230 PMCID: PMC10607723 DOI: 10.3390/jof9100974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
The ascomycete Histoplasma capsulatum is the causative agent of systemic respiratory mycosis histoplasmosis, which sometimes develops acute disseminated or chronic clinical forms, with the latter usually associated with granuloma formation. The present report shows differential histopathological changes in the pulmonary inflammatory response of mice infected intranasally with the mycelial morphotype of H. capsulatum strains with distinct genotypes, EH-46 and G-217B, classified as LAm A2 and NAm 2 phylogenetic species, respectively. Infected male BALB/c mice were sacrificed at different postinfection times, and their serial lung sections were stained with periodic acid-Schiff and analyzed via microscopy. In mice infected with the LAm A2 strain, the results showed progressive changes in the inflammatory infiltrate of the lung parenchyma during the first hours and days postinfection as well as granulomas with macrophages containing intracellular yeast cells, which prevailed at 14 and 21 days postinfection. Bronchiolar-associated lymphoid tissue was induced in mice infected with both strains, primarily in mice infected with the NAm 2 strain. Several lung sections from mice infected with the LAm A2 strain showed PAS-positive yeast cells aggregated in a perinuclear crown-like arrangement in macrophages from 3 h to 21 days postinfection. These findings highlight differences in the host pulmonary inflammatory response associated with distinct H. capsulatum species.
Collapse
Affiliation(s)
- Evelyn Pulido-Camarillo
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 3000, Circuito Escolar s/n, Ciudad Universitaria, Ciudad de México 04510, Mexico;
| | - Jorge H. Sahaza
- Unidad de Micología, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico;
| | - Nayla de Souza Pitangui
- Departamento de Biología Celular e Molecular, Faculdade de Medicina, Universidade de São Paulo, Ribeirão Preto 14049-900, São Paulo, Brazil;
| | - Maria José S. Mendes-Giannini
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, São Paulo, Brazil; (M.J.S.M.-G.); (A.M.F.-A.)
| | - Ana M. Fusco-Almeida
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista (UNESP), Araraquara 14800-903, São Paulo, Brazil; (M.J.S.M.-G.); (A.M.F.-A.)
| | - Armando Pérez-Torres
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 3000, Circuito Escolar s/n, Ciudad Universitaria, Ciudad de México 04510, Mexico;
| | - Maria Lucia Taylor
- Unidad de Micología, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Ciudad de México 04510, Mexico;
| |
Collapse
|
2
|
Considerations about the Geographic Distribution of Histoplasma Species. Appl Environ Microbiol 2022; 88:e0201021. [PMID: 35262368 DOI: 10.1128/aem.02010-21] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Histoplasmosis is a mycotic infection principally affecting pulmonary tissue; sometimes, histoplasmosis can progress into a systemic disease. This infection involves immunocompetent and immunosuppressed human and other mammalian hosts, depending on particular circumstances. Histoplasmosis infection has been documented worldwide. The infection is acquired by inhaling infective mycelial propagules of the dimorphic fungus Histoplasma capsulatum. New reports of clinical cases of histoplasmosis in extreme latitudes could be related to human social adaptations and climate changes in the world, which are creating new favorable environments for this fungus and for bats, its major natural reservoirs and dispersers. Histoplasma has been isolated from most continents, and it is considered a complex of cryptic species, consisting of various groups of isolates that differ genetically and correlate with a particular geographic distribution. Based on updated studies, Histoplasma taxonomy is adjusting to new genetic data. Here, we have suggested that Histoplasma has at least 14 phylogenetic species distributed worldwide and new genotypes that could be under deliberation. Histoplasma's geographic radiation began in South America millions of years ago when the continents were joined and the climate was favorable. For fungal spreading, the role of bats and some birds is crucial, although other natural factors could also participate.
Collapse
|
3
|
Detection of Cytokines and Collectins in Bronchoalveolar Fluid Samples of Patients Infected with Histoplasma capsulatum and Pneumocystis jirovecii. J Fungi (Basel) 2021; 7:jof7110938. [PMID: 34829225 PMCID: PMC8623738 DOI: 10.3390/jof7110938] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022] Open
Abstract
Histoplasmosis and pneumocystosis co-infections have been reported mainly in immunocompromised humans and in wild animals. The immunological response to each fungal infection has been described primarily using animal models; however, the host response to concomitant infection is unknown. The present work aimed to evaluate the pulmonary immunological response of patients with pneumonia caused either by Histoplasma capsulatum, Pneumocystis jirovecii, or their co-infection. We analyzed the pulmonary collectin and cytokine patterns of 131 bronchoalveolar lavage samples, which included HIV and non-HIV patients infected with H. capsulatum, P. jirovecii, or both fungi, as well as healthy volunteers and HIV patients without the studied fungal infections. Our results showed an increased production of the surfactant protein-A (SP-A) in non-HIV patients with H. capsulatum infection, contrasting with HIV patients (p < 0.05). Significant differences in median values of SP-A, IL-1β, TNF-α, IFN-γ, IL-18, IL-17A, IL-33, IL-13, and CXCL8 were found among all the groups studied, suggesting that these cytokines play a role in the local inflammatory processes of histoplasmosis and pneumocystosis. Interestingly, non-HIV patients with co-infection and pneumocystosis alone showed lower levels of SP-A, IL-1β, TNF-α, IFN-γ, IL-18, IL-17A, and IL-23 than histoplasmosis patients, suggesting an immunomodulatory ability of P. jirovecii over H. capsulatum response.
Collapse
|
4
|
Peptidogalactomannan from Histoplasma capsulatum yeast cell wall: role of the chemical structure in recognition and activation by peritoneal macrophages. Braz J Microbiol 2021; 52:479-489. [PMID: 33611739 DOI: 10.1007/s42770-021-00447-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/03/2021] [Indexed: 10/22/2022] Open
Abstract
Histoplasma capsulatum is the causative agent of histoplasmosis, a systemic disease responsible for most reported causes of morbidity and mortality among immunosuppressed individuals. Peptidogalactomannan (pGM) was purified from the yeast cell wall of H. capsulatum isolated from bats, and its structure and involvement in modulating the host immune response were evaluated. Gas chromatography, methylation analysis, and two-dimensional nuclear magnetic resonance (2D-NMR) were used for the structural characterization of pGM. Methylation and 2D-NMR data revealed that pGM comprises a main chain containing α-D-Manp (1 → 6) residues substituted at O-2 by α-D-Manp (1 → 2)-linked side chains, non-reducing end units of α-D-Galf, or β-D-Galp linked (1→ 6) to α-D-Manp side chains. The involvement of H. capsulatum pGM in antigenic reactivity and in interactions with macrophages was demonstrated by ELISA and phagocytosis assay, respectively. The importance of the carbohydrate and protein moieties of pGM in sera reactivity was evaluated. Periodate oxidation abolished much pGM antigenic reactivity, suggesting that the sugar moiety is the most immunogenic part of pGM. Reactivity slightly decreased in pGM treated with proteinase K, suggesting that the peptide moiety plays a minor role in pGM antigenicity. In vitro experiments suggested that pGM is involved in the phagocytosis of H. capsulatum yeast and induction of IL-10 and IFN-γ secretion by peritoneal macrophages from C57BL/6 mice. These findings demonstrated the role of pGM in the H. capsulatum-host interaction.
Collapse
|
5
|
Prado MK, Fontanari C, Souza CO, Gardinassi LG, Zoccal KF, de Paula-Silva FW, Peti AP, Sorgi CA, Meirelles AF, Ramos SG, Alves-Filho JC, Faccioli LH. IL-22 Promotes IFN-γ-Mediated Immunity against Histoplasma capsulatum Infection. Biomolecules 2020; 10:E865. [PMID: 32517114 PMCID: PMC7356283 DOI: 10.3390/biom10060865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
Histoplasma capsulatum is the agent of histoplasmosis, one of the most frequent mycoses in the world. The infection initiates with fungal spore inhalation, transformation into yeasts in the lungs and establishment of a granulomatous disease, which is characterized by a Th1 response. The production of Th1 signature cytokines, such as IFN-γ, is crucial for yeast clearance from the lungs, and to prevent dissemination. Recently, it was demonstrated that IL-17, a Th17 signature cytokine, is also important for fungal control, particularly in the absence of Th1 response. IL-22 is another cytokine with multiple functions on host response and disease progression. However, little is known about the role of IL-22 during histoplasmosis. In this study, we demonstrated that absence of IL-22 affected the clearance of yeasts from the lungs and increased the spreading to the spleen. In addition, IL-22 deficient mice (Il22-/-) succumbed to infection, which correlated with reductions in the numbers of CD4+ IFN-γ+ T cells, reduced IFN-γ levels, and diminished nitric oxide synthase type 2 (NOS2) expression in the lungs. Importantly, treatment with rIFN-γ mitigated the susceptibility of Il22-/- mice to H. capsulatum infection. These data indicate that IL-22 is crucial for IFN-γ/NO production and resistance to experimental histoplasmosis.
Collapse
Affiliation(s)
- Morgana K.B. Prado
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas da Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil; (M.K.B.P.); (C.F.); (C.O.S.S.); (L.G.G.); (K.F.Z.); (F.W.G.P.-S.); (A.P.F.P.); (C.A.S.); (A.F.G.M.)
- Programa de Pós-Graduação em Imunologia Básica e Aplicada da Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Caroline Fontanari
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas da Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil; (M.K.B.P.); (C.F.); (C.O.S.S.); (L.G.G.); (K.F.Z.); (F.W.G.P.-S.); (A.P.F.P.); (C.A.S.); (A.F.G.M.)
| | - Camila O.S. Souza
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas da Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil; (M.K.B.P.); (C.F.); (C.O.S.S.); (L.G.G.); (K.F.Z.); (F.W.G.P.-S.); (A.P.F.P.); (C.A.S.); (A.F.G.M.)
- Programa de Pós-Graduação em Imunologia Básica e Aplicada da Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Luiz G. Gardinassi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas da Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil; (M.K.B.P.); (C.F.); (C.O.S.S.); (L.G.G.); (K.F.Z.); (F.W.G.P.-S.); (A.P.F.P.); (C.A.S.); (A.F.G.M.)
| | - Karina F. Zoccal
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas da Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil; (M.K.B.P.); (C.F.); (C.O.S.S.); (L.G.G.); (K.F.Z.); (F.W.G.P.-S.); (A.P.F.P.); (C.A.S.); (A.F.G.M.)
| | - Francisco W.G. de Paula-Silva
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas da Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil; (M.K.B.P.); (C.F.); (C.O.S.S.); (L.G.G.); (K.F.Z.); (F.W.G.P.-S.); (A.P.F.P.); (C.A.S.); (A.F.G.M.)
| | - Ana P.F. Peti
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas da Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil; (M.K.B.P.); (C.F.); (C.O.S.S.); (L.G.G.); (K.F.Z.); (F.W.G.P.-S.); (A.P.F.P.); (C.A.S.); (A.F.G.M.)
| | - Carlos A. Sorgi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas da Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil; (M.K.B.P.); (C.F.); (C.O.S.S.); (L.G.G.); (K.F.Z.); (F.W.G.P.-S.); (A.P.F.P.); (C.A.S.); (A.F.G.M.)
| | - Alyne F.G. Meirelles
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas da Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil; (M.K.B.P.); (C.F.); (C.O.S.S.); (L.G.G.); (K.F.Z.); (F.W.G.P.-S.); (A.P.F.P.); (C.A.S.); (A.F.G.M.)
| | - Simone G. Ramos
- Departamento de Patologia e Medicina Legal da Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil;
| | - José C. Alves-Filho
- Departamento de Farmacologia da Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil;
| | - Lúcia H. Faccioli
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas da Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil; (M.K.B.P.); (C.F.); (C.O.S.S.); (L.G.G.); (K.F.Z.); (F.W.G.P.-S.); (A.P.F.P.); (C.A.S.); (A.F.G.M.)
| |
Collapse
|
6
|
Suárez-Álvarez RO, Sahaza JH, Berzunza-Cruz M, Becker I, Curiel-Quesada E, Pérez-Torres A, Reyes-Montes MDR, Taylor ML. Dimorphism and Dissemination of Histoplasma capsulatum in the Upper Respiratory Tract after Intranasal Infection of Bats and Mice with Mycelial Propagules. Am J Trop Med Hyg 2020; 101:716-723. [PMID: 31287042 PMCID: PMC6726946 DOI: 10.4269/ajtmh.18-0788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This article describes, for the first time, the role of the nasal mucosa (NM) as the initial site for the Histoplasma capsulatum mycelial-to-yeast transition. The results highlight that yeasts may arrive to the cervical lymph nodes (CLN) via phagocytes. Bats and mice were intranasally infected with H. capsulatum mycelial propagules and they were killed 10, 20, and 40 minutes and 1, 2, and 3 hours after infection. The NM and the CLN were monitored for fungal presence. Yeasts compatible with H. capsulatum were detected within the NM and the CLN dendritic cells (DCs) 2–3 hours postinfection, using immunohistochemistry. Histoplasma capsulatum was re-isolated by culturing at 28°C from the CLN of both mammalian hosts 2–3 hours postinfection. Reverse transcription-polymerase chain reaction assays were designed to identify fungal dimorphism, using mycelial-specific (MS8) and yeast-specific (YPS3) gene expression. This strategy supported fast fungal dimorphism in vivo, which began in the NM 1 hour postinfection (a time point when MS8 and YPS3 genes were expressed) and it was completed at 3 hours (a time point when only the YPS3 transcripts were detected) in both bats and mice. The presence of intracellular yeasts in the nasal-associated lymphoid tissue (NALT), in the NM nonassociated with the NALT, and within the interdigitating DCs of the CLN suggests early fungal dissemination via the lymph vessels.
Collapse
Affiliation(s)
- Roberto O Suárez-Álvarez
- Departamento de Micología, Instituto Nacional de Enfermedades Infecciosas- Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán", Buenos Aires, Argentina.,Unidad de Micología, Departamento de Microbiología-Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Jorge H Sahaza
- Unidad de Micología Médica y Experimental, Corporación para Investigaciones Biológicas, Medellín, Colombia.,Unidad de Micología, Departamento de Microbiología-Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Miriam Berzunza-Cruz
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ingeborg Becker
- Departamento de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Everardo Curiel-Quesada
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Armando Pérez-Torres
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - María Del Rocío Reyes-Montes
- Unidad de Micología, Departamento de Microbiología-Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Maria Lucia Taylor
- Unidad de Micología, Departamento de Microbiología-Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
7
|
Use of an Argentinean Wildlife Tissue Collection for Epidemiological Studies of Histoplasmosis. Mycopathologia 2020; 185:905-915. [PMID: 31993951 DOI: 10.1007/s11046-020-00430-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 01/21/2020] [Indexed: 12/13/2022]
Abstract
Histoplasmosis is a worldwide systemic endemic mycosis caused by several cryptic species included within the Histoplasma capsulatum complex. Domestic and wild mammals are susceptible to infection by this fungus and could be used as indicators of its presence in the environment. The aim of the study was to identify the natural reservoirs of H. capsulatum in the Argentinean Humid Pampas eco-region analyzing a wildlife frozen-tissue collection and trace its distribution patterns over time and space. Tissue samples from 34 small wild mammals caught in the Humid Pampas were analyzed using two molecular markers: 100 kDa protein coding gene (Hcp100) and ITS1 rDNA. Results showed that 32.4% of them were infected with H. capsulatum and its DNA was detected in 5/17 Calomys laucha; 3/6 Calomys musculinus; 1/5 Akodon azarae, 1/3 Monodelphis dimidiata; and 1/2 Didelphis albiventris. In the single specimen studied of Cavia aperea, no H. capsulatum DNA was detected. This is the first H. capsulatum infection report in C. laucha and C. musculinus rodents and M. dimidiate opossum which proves that tissue collections are an important source of material for epidemiological studies of endemic disease over time.
Collapse
|
8
|
Sahaza JH, Rodríguez-Arellanez G, Canteros CE, Reyes-Montes MDR, Taylor ML. Thermotolerance of Histoplasma capsulatum at 40 °C predominates among clinical isolates from different Latin American regions. Braz J Infect Dis 2020; 24:44-50. [PMID: 31987782 PMCID: PMC9392019 DOI: 10.1016/j.bjid.2019.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/13/2019] [Accepted: 12/28/2019] [Indexed: 12/01/2022] Open
Abstract
The yeast phase of 22 Histoplasma capsulatum clinical isolates from Mexico, Argentina, Colombia, and Guatemala and three reference strains, one from Panama and two from the United States of America (USA), were screened for thermosensitivity characteristics using different analyses. Growth curves at 0, 3, 6, 12, 24, and 30 h of incubation at 37 and 40 °C, the growth inhibition percentage at 40 °C, and the doubling time at 37 and 40 °C were determined for all yeasts studied. Most of the isolates examined exhibited thermotolerant phenotypes at 40 °C, whereas a thermosensitive phenotype at 40 °C was only detected in the Downs reference strain from the USA. Growth inhibition values lower than 33.8% supported the predominance of the thermotolerant phenotype at 40 °C. The doubling time means found for the different isolates were 5.14 h ± 1.47 h at 37 °C and 5.55 h ± 1.87 h at 40 °C. This is the first report to underscore the predominance of thermotolerant and delayed doubling time phenotypes in H. capsulatum clinical isolates from different regions of Latin America.
Collapse
Affiliation(s)
- Jorge H Sahaza
- Universidad Nacional Autónoma de México (UNAM), Facultad de Medicina, Departamento de Microbiología-Parasitología, Ciudad de México, Mexico; Unidad de Micología Médica y Experimental, Corporación Para Investigaciones Biológicas, Medellín, Colombia
| | - Gabriela Rodríguez-Arellanez
- Universidad Nacional Autónoma de México (UNAM), Facultad de Medicina, Departamento de Microbiología-Parasitología, Ciudad de México, Mexico
| | - Cristina E Canteros
- Departamento Micologı́a, INEI-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - María Del Rocío Reyes-Montes
- Universidad Nacional Autónoma de México (UNAM), Facultad de Medicina, Departamento de Microbiología-Parasitología, Ciudad de México, Mexico.
| | - Maria Lucia Taylor
- Universidad Nacional Autónoma de México (UNAM), Facultad de Medicina, Departamento de Microbiología-Parasitología, Ciudad de México, Mexico.
| |
Collapse
|
9
|
Roussey JA, Olszewski MA, Osterholzer JJ. Immunoregulation in Fungal Diseases. Microorganisms 2016; 4:microorganisms4040047. [PMID: 27973396 PMCID: PMC5192530 DOI: 10.3390/microorganisms4040047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 02/07/2023] Open
Abstract
This review addresses specific regulatory mechanisms involved in the host immune response to fungal organisms. We focus on key cells and regulatory pathways involved in these responses, including a brief overview of their broader function preceding a discussion of their specific relevance to fungal disease. Important cell types discussed include dendritic cells and regulatory T cells, with a focus on specific studies relating to their effects on immune responses to fungi. We highlight the interleukin-10, programmed cell death 1, and cytotoxic T lymphocyte-associated protein 4 signaling pathways and emphasize interrelationships between these pathways and the regulatory functions of dendritic cells and regulatory T cells. Throughout our discussion, we identify selected studies best illustrating the role of these cells and pathways in response to specific fungal pathogens to provide a contextual understanding of the tightly-controlled network of regulatory mechanisms critical to determining the outcome of exposure to fungal pathogens. Lastly, we discuss two unique phenomena relating to immunoregulation, protective tolerance and immune reactivation inflammatory syndrome. These two clinically-relevant conditions provide perspective as to the range of immunoregulatory mechanisms active in response to fungi.
Collapse
Affiliation(s)
- Jonathan A Roussey
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA.
- Pulmonary Section, Medical Service, VA Ann Arbor Health System, Ann Arbor, MI 48105, USA.
| | - Michal A Olszewski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA.
- Pulmonary Section, Medical Service, VA Ann Arbor Health System, Ann Arbor, MI 48105, USA.
- Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, MI 48109, USA.
| | - John J Osterholzer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA.
- Pulmonary Section, Medical Service, VA Ann Arbor Health System, Ann Arbor, MI 48105, USA.
- Graduate Program in Immunology, University of Michigan Health System, Ann Arbor, MI 48109, USA.
| |
Collapse
|
10
|
Teixeira MDM, Patané JSL, Taylor ML, Gómez BL, Theodoro RC, de Hoog S, Engelthaler DM, Zancopé-Oliveira RM, Felipe MSS, Barker BM. Worldwide Phylogenetic Distributions and Population Dynamics of the Genus Histoplasma. PLoS Negl Trop Dis 2016; 10:e0004732. [PMID: 27248851 PMCID: PMC4889077 DOI: 10.1371/journal.pntd.0004732] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/03/2016] [Indexed: 12/11/2022] Open
Abstract
Background Histoplasma capsulatum comprises a worldwide complex of saprobiotic fungi mainly found in nitrogen/phosphate (often bird guano) enriched soils. The microconidia of Histoplasma species may be inhaled by mammalian hosts, and is followed by a rapid conversion to yeast that can persist in host tissues causing histoplasmosis, a deep pulmonary/systemic mycosis. Histoplasma capsulatum sensu lato is a complex of at least eight clades geographically distributed as follows: Australia, Netherlands, Eurasia, North American classes 1 and 2 (NAm 1 and NAm 2), Latin American groups A and B (LAm A and LAm B) and Africa. With the exception of the Eurasian cluster, those clades are considered phylogenetic species. Methodology/Principal Findings Increased Histoplasma sampling (n = 234) resulted in the revision of the phylogenetic distribution and population structure using 1,563 aligned nucleotides from four protein-coding regions. The LAm B clade appears to be divided into at least two highly supported clades, which are geographically restricted to either Colombia/Argentina or Brazil respectively. Moreover, a complex population genetic structure was identified within LAm A clade supporting multiple monophylogenetic species, which could be driven by rapid host or environmental adaptation (~0.5 MYA). We found two divergent clades, which include Latin American isolates (newly named as LAm A1 and LAm A2), harboring a cryptic cluster in association with bats. Conclusions/Significance At least six new phylogenetic species are proposed in the Histoplasma species complex supported by different phylogenetic and population genetics methods, comprising LAm A1, LAm A2, LAm B1, LAm B2, RJ and BAC-1 phylogenetic species. The genetic isolation of Histoplasma could be a result of differential dispersion potential of naturally infected bats and other mammals. In addition, the present study guides isolate selection for future population genomics and genome wide association studies in this important pathogen complex. Histoplasmosis is a potentially severe fungal disease of mammals caused by Histoplasma capsulatum. The highest incidence of the disease is reported on the American continent, and approximately 30% of HIV and histoplasmosis co-infections are fatal. Previous studies have suggested at least 7 phylogenetic species within H. capsulatum, however by increasing taxon sampling and using different phylogenetic and population genetic methods, we detect at least 5 additional phylogenetic species within Latin America (LAm A1, LAm A2, LAm B1, LAm B2, RJ and BAC-1). These phylogenetic species are nested in the former LAm A clade. We found evidence that bats may be a cause of speciation in Histoplasma, as well-supported monophyletic clades were found in association with different species of bats. The radiation of the Latin American H. capsulatum species took a place around 5 million years ago, which is consistent with the radiation and diversification of bat species. Previous phylogenetic distribution of Histoplasma is upheld and strong support is indicated for the species delineation and evolution of this important pathogen.
Collapse
Affiliation(s)
- Marcus de M. Teixeira
- Division of Pathogen Genomics, Translational Genomics Research Institute-North, Flagstaff, Arizona, United States of America
- Department of Cell Biology, University of Brasília, Brasilia, Brazil
| | - José S. L. Patané
- Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | - Maria L. Taylor
- Department of Microbiology and Parasitology, National Autonomous University of Mexico, Mexico City, Mexico
| | - Beatriz L. Gómez
- Corporación para Investigaciones Biológicas (CIB), Medellín, Colombia
| | - Raquel C. Theodoro
- Department of Cell Biology and Genetics/ Institute of Tropical Medicine, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Sybren de Hoog
- CBS-KNAW Fungal Biodiversity Centre, Utrecht, Netherlands
| | - David M. Engelthaler
- Division of Pathogen Genomics, Translational Genomics Research Institute-North, Flagstaff, Arizona, United States of America
| | - Rosely M. Zancopé-Oliveira
- Mycology Laboratory, National Institute of Infectology Evandro Chagas, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Bridget M. Barker
- Division of Pathogen Genomics, Translational Genomics Research Institute-North, Flagstaff, Arizona, United States of America
- * E-mail:
| |
Collapse
|
11
|
Pitangui NDS, Sardi JDCO, Voltan AR, Dos Santos CT, da Silva JDF, da Silva RAM, Souza FO, Soares CP, Rodríguez-Arellanes G, Taylor ML, Mendes-Giannini MJS, Fusco-Almeida AM. An Intracellular Arrangement of Histoplasma capsulatum Yeast-Aggregates Generates Nuclear Damage to the Cultured Murine Alveolar Macrophages. Front Microbiol 2016; 6:1526. [PMID: 26793172 PMCID: PMC4707385 DOI: 10.3389/fmicb.2015.01526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 12/18/2015] [Indexed: 11/26/2022] Open
Abstract
Histoplasma capsulatum is responsible for a human systemic mycosis that primarily affects lung tissue. Macrophages are the major effector cells in humans that respond to the fungus, and the development of respiratory disease depends on the ability of Histoplasma yeast cells to survive and replicate within alveolar macrophages. Therefore, the interaction between macrophages and H. capsulatum is a decisive step in the yeast dissemination into host tissues. Although the role played by components of cell-mediated immunity in the host's defense system and the mechanisms used by the pathogen to evade the host immune response are well understood, knowledge regarding the effects induced by H. capsulatum in host cells at the nuclear level is limited. According to the present findings, H. capsulatum yeast cells display a unique architectural arrangement during the intracellular infection of cultured murine alveolar macrophages, characterized as a formation of aggregates that seem to surround the host cell nucleus, resembling a “crown.” This extranuclear organization of yeast-aggregates generates damage on the nucleus of the host cell, producing DNA fragmentation and inducing apoptosis, even though the yeast cells are not located inside the nucleus and do not trigger changes in nuclear proteins. The current study highlights a singular intracellular arrangement of H. capsulatum yeast near to the nucleus of infected murine alveolar macrophages that may contribute to the yeast's persistence under intracellular conditions, since this fungal pathogen may display different strategies to prevent elimination by the host's phagocytic mechanisms.
Collapse
Affiliation(s)
- Nayla de Souza Pitangui
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Janaina de Cássia Orlandi Sardi
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Aline R Voltan
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Claudia T Dos Santos
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Julhiany de Fátima da Silva
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Rosangela A M da Silva
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Felipe O Souza
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Christiane P Soares
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Gabriela Rodríguez-Arellanes
- Departamento de Microbiologia y Parasitologia, Facultad de Medicina, Universidad Nacional Autónoma de México México City, México
| | - Maria Lucia Taylor
- Departamento de Microbiologia y Parasitologia, Facultad de Medicina, Universidad Nacional Autónoma de México México City, México
| | - Maria J S Mendes-Giannini
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| | - Ana M Fusco-Almeida
- Faculdade de Ciências Farmacêuticas, UNESP - Univ Estadual Paulista, Campus Araraquara, Departamento de Análises Clínicas, Laboratório de Micologia Clínica São Paulo, Brazil
| |
Collapse
|