1
|
Khan SN, Zhao M, Fennell PS, Anthony EJ. Construction of Highly Mesoporous Metal-Organic Frameworks via Green Metallic Solvents Assisted Route for Chemical CO 2 Fixation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2502624. [PMID: 40211671 DOI: 10.1002/smll.202502624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/26/2025] [Indexed: 05/27/2025]
Abstract
An easy and versatile method of constructing hierarchically micro- and mesoporous metal-organic frameworks (MOFs) using newly synthesized green metallic solvents (GMS) is proposed. This method can generally be applied to several different series of MOFs. For the first time synthesized, GMS are eco-friendly, easily synthesizable, and play multiple roles of pore expanders, structure directing agents, and bring an additional ligand into the MOF structure. Hierarchically assembled MOF materials via MGS-assisted route showed highly improved structural properties and are exceptionally adjustable regarding all important structural parameters. Compared to its pristine MOF, hierarchically constructed relineMg@UiO-66 showed almost 2.5 times higher surface area, 3 times increased total pore volume, and large mesopores (17-31 nm). In addition to 84.65 mg g-1 CO2 adsorption capacity of relineMg@UiO-66, which is almost 243% increase over its pristine UiO-66 (34.89 mg g-1), relineMg@UiO-66 displays long-term cyclic performance with 94.8% capacity retention over ten consecutive cycles. Moreover, relineMg@UiO-66 exhibits outstanding heterogeneous catalytic activity (yield≈97%) in a CO2 cycloaddition reaction with different epoxides. Density functional theory (DFT) calculations reveal that the judicious tuning of Zr-O coordination environment with GMS optimized secondary building unit (SBU) of Zr6(µ3-O)4(µ3-OH)4-(CO2)12 cluster with OH-symmetry in MOF's frameworks assembly for enhanced adsorption and heterogeneous catalysis.
Collapse
Affiliation(s)
- Saleem Nawaz Khan
- School of Environment, Tsinghua University, Beijing, 100084, China
- Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, 215163, China
| | - Ming Zhao
- School of Environment, Tsinghua University, Beijing, 100084, China
- Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, 215163, China
- Beijing Laboratory of Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing, 100084, P. R. China
- Institute for Carbon Neutrality, Tsinghua University, Beijing, 100084, P. R. China
| | - Paul S Fennell
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Edward J Anthony
- Energy and Power Theme, Cranfield University, Cranfield, Bedfordshire, MK43 0AL, UK
| |
Collapse
|
2
|
Chen T, Xu Z. Design and engineering of microenvironments of supported catalysts toward more efficient chemical synthesis. Adv Colloid Interface Sci 2025; 337:103387. [PMID: 39729822 DOI: 10.1016/j.cis.2024.103387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/01/2024] [Accepted: 12/19/2024] [Indexed: 12/29/2024]
Abstract
Catalytic species such as molecular catalysts and metal catalysts are commonly attached to varieties of supports to simplify their separation and recovery and accommodate various reaction conditions. The physicochemical microenvironments surrounding catalytic species play an important role in catalytic performance, and the rational design and engineering of microenvironments can achieve more efficient chemical synthesis, leading to greener and more sustainable catalysis. In this review, we highlight recent works addressing the topic of the design and engineering of microenvironments of supported catalysts, including supported molecular catalysts and supported metal catalysts. Six types of materials, including oxide nano/microparticle, mesoporous silica nanoparticle (MSN), polymer nanomaterial, reticular material, zeolite, and carbon-based nanomaterial, are widely used as supports for the immobilization of catalytic species. We summarize and discuss the synthesis and modification of supports and the positive effects of microenvironments on catalytic properties such as metal-support interaction, molecular recognition, pseudo-solvent effect, regulating mass transfer, steric effect, etc. These design principles and engineering strategies allow access to a better understanding of structure-property relationships and advance the development of more efficient catalytic processes.
Collapse
Affiliation(s)
- Tianyou Chen
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Zushun Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
3
|
Tippner S, Hernández-Castillo D, Schacher FH, González L. All-Atom Molecular Dynamics Simulations of Grafted Poly( N, N-dimethylaminoethyl methacrylate) Brushes. J Phys Chem B 2025; 129:2105-2114. [PMID: 39929640 PMCID: PMC11848925 DOI: 10.1021/acs.jpcb.4c07928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/15/2025] [Accepted: 01/24/2025] [Indexed: 02/21/2025]
Abstract
Modeling polymer brushes is essential for understanding their complex behavior at surfaces and interfaces, enabling the design of materials with tunable properties. We present a computational protocol to model polymer brushes composed of grafted, brush-like chains of the charged polymer poly(N,N-dimethylaminoethyl methacrylate) (p(DMAEMA)) using an all-atom representation that captures detailed molecular interactions and structural properties. The approach is flexible and non-grid-based and allows for randomized strand configurations and the incorporation of periodic boundary conditions, enabling the construction of asymmetric polymer brush setups. An atactic p(DMAEMA) configuration is demonstrated as an example, though the protocol can be readily adapted to construct other brush-like polymer systems with varying tacticities or compositions, depending on the pH environment. Furthermore, this can be extended to stimuli-responsive materials, which generate conformation or charge upon changes in pH value or other external triggers. Molecular dynamics simulations are then employed to gain insights into the conformational behavior of the grafted p(DMAEMA) brushes and their surrounding aqueous environment, as well as their response to temperature, protonation, and variations in grafting densities, in terms of the solvent-accessible surface area, radius of gyration, and radial distribution functions. This versatile protocol provides a robust tool for simulating and analyzing the properties of diverse polyelectrolyte polymer brush systems and also as composite materials.
Collapse
Affiliation(s)
- Simon Tippner
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
- Doctoral
School in Chemistry (DoSChem), University
of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - David Hernández-Castillo
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
- Doctoral
School in Chemistry (DoSChem), University
of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Felix H. Schacher
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
| | - Leticia González
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
- Vienna
Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| |
Collapse
|
4
|
Madubuko N, Sultan U, Carl S, Lehmann D, Zhou X, Soegaard A, Taccardi N, Apeleo Zubiri B, Wintzheimer S, Spiecker E, Haumann M, Vogel N, Wasserscheid P. Controlled Nanopore Sizes in Supraparticle Supports for Enhanced Propane Dehydrogenation with GaPt SCALMS Catalysts. ACS APPLIED NANO MATERIALS 2024; 7:24356-24367. [PMID: 39539809 PMCID: PMC11555637 DOI: 10.1021/acsanm.4c03577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 11/16/2024]
Abstract
The efficient immobilization of GaPt liquid metal alloy droplets onto tailored supports improves catalytic performance by preventing coalescence and subsequent loss of active surface area. Herein, we use tailored supraparticle (SP) supports with controlled nanopores to systematically study the influence of pore sizes on the catalytic stability of GaPt supported catalytically active liquid metal solution (SCALMS) in propane dehydrogenation (PDH). Initially, GaPt droplets were prepared via an atom-efficient and scalable ultrasonication method with recycling loops to yield droplets <300 nm. Subsequently, these droplets were immobilized onto SiO2-based SPs with controlled pore sizes ranging from 45 to 320 nm. Catalytic evaluations in PDH revealed that GaPt immobilized on SPs with larger pores demonstrated superior stability over 15 h time-on-stream evidenced by reduced deactivation rates from 0.046 to 0.026 h-1. Nanocomputed tomography and identical location SEM confirmed the successful immobilization of GaPt droplets within the interstitial sites formed by the primary particles constituting the SPs. These remained unchanged before and after the catalytic reaction, demonstrating efficient coalescence prevention. Our findings underscore the importance of support pore size engineering for improving the stability of GaPt SCALMS catalysts and highlight, particularly, the high potential of using SPs in this context.
Collapse
Affiliation(s)
- Nnamdi Madubuko
- Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Lehrstuhl für Chemische Reaktionstechnik
(CRT), 91058 Erlangen, Germany
| | - Umair Sultan
- Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Lehrstuhl für Chemische Reaktionstechnik
(CRT), 91058 Erlangen, Germany
- Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Institute
of Particle Technology, 91058 Erlangen, Germany
| | - Simon Carl
- Institute
of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis
and Electron Microscopy (CENEM), Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), IZNF, 91058 Erlangen, Germany
| | - Daniel Lehmann
- Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Lehrstuhl für Chemische Reaktionstechnik
(CRT), 91058 Erlangen, Germany
| | - Xin Zhou
- Institute
of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis
and Electron Microscopy (CENEM), Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), IZNF, 91058 Erlangen, Germany
| | - Alexander Soegaard
- Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Lehrstuhl für Chemische Reaktionstechnik
(CRT), 91058 Erlangen, Germany
| | - Nicola Taccardi
- Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Lehrstuhl für Chemische Reaktionstechnik
(CRT), 91058 Erlangen, Germany
| | - Benjamin Apeleo Zubiri
- Institute
of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis
and Electron Microscopy (CENEM), Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), IZNF, 91058 Erlangen, Germany
| | - Susanne Wintzheimer
- Department
of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
- Fraunhofer-Institute
for Silicate Research ISC, Neunerplatz 2, 97082 Würzburg, Germany
| | - Erdmann Spiecker
- Institute
of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis
and Electron Microscopy (CENEM), Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), IZNF, 91058 Erlangen, Germany
| | - Marco Haumann
- Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Lehrstuhl für Chemische Reaktionstechnik
(CRT), 91058 Erlangen, Germany
- Department
of Chemistry, Research Centre for Synthesis and Catalysis, University of Johannesburg, P.O. Box 524, Auckland Park 2006, Johannesburg, 2092, South Africa
| | - Nicolas Vogel
- Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Institute
of Particle Technology, 91058 Erlangen, Germany
| | - Peter Wasserscheid
- Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Lehrstuhl für Chemische Reaktionstechnik
(CRT), 91058 Erlangen, Germany
- Forschungszentrum
Jülich GmbH, Helmholtz-Institute
Erlangen-Nürnberg for Renewable Energy (IEK-11), 91058 Erlangen, Germany
- Forschungszentrum
Jülich GmbH, Institute for a Sustainable
Hydrogen Economy (INW), 52428 Jülich, Germany
| |
Collapse
|
5
|
Gangwar N, Gangwar C, Sarkar J. A review on template-assisted approaches & self assembly of nanomaterials at liquid/liquid interface. Heliyon 2024; 10:e36810. [PMID: 39263084 PMCID: PMC11387549 DOI: 10.1016/j.heliyon.2024.e36810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/09/2024] [Accepted: 08/22/2024] [Indexed: 09/13/2024] Open
Abstract
In recent times, nanomaterials (NMs) have gained significant attention for their unique properties and wide-ranging applications. This increased interest has driven research aimed at developing more efficient synthetic approaches in the fields of material science. Moreover, today's increasing demand for materials underscores the need for innovative technologies that can effectively scale up production to meet these growing needs. Hence, this review is primarily delve deeply into the template-assisted method i.e., an advance bottom-up approach for NMs synthesis. Furthermore, this review emphasizes to explore the advancements in soft template-based synthetic strategies for nanostructured materials as it provides high control on morphology and size. Therefore, this review specifically organized around on providing an in-depth discussion of the liquid/liquid interface-assisted soft template method, applications, and the factors affecting liquid/liquid interface for NMs synthesis. These key points are instrumental in driving advancements, highlighting the ongoing need for further enhancement and refinement of smart technologies. Finally, we conclude the review by describing the challenges and future perspectives of the liquid/liquid-assisted approach for NMs designing.
Collapse
Affiliation(s)
- Nisha Gangwar
- Department of Chemistry, University of Lucknow, Lucknow, 226007, U.P., India
| | - Chinky Gangwar
- Department of Chemistry, University of Lucknow, Lucknow, 226007, U.P., India
- Department of Chemistry, B.S.N.V.P.G. College (KKV), Lucknow, 226001, U.P., India
| | - Joy Sarkar
- Department of Chemistry, University of Lucknow, Lucknow, 226007, U.P., India
| |
Collapse
|
6
|
Gallo M, Banchero M, Cerbella V, Ronchetti S, Onida B. The order affects the release of vitamin D from hybrid self-assembled silica systems. Heliyon 2024; 10:e36080. [PMID: 39253207 PMCID: PMC11381583 DOI: 10.1016/j.heliyon.2024.e36080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024] Open
Abstract
Vitamin D (VD) suffers from low water solubility and strong degradation, which both decrease its bioavailability. This work aims at obtaining a silica-surfactant-VD hybrid material and verifying if this system can protect VD from degradation and enhance its solubility. This preliminary study aspires at tuning the mesostructure order of the hybrid system (by modifying the surfactant amount) with the scope of controlling, somewhat, its drug release capability. To this purpose, two silica-surfactant-VD systems with different long-range order were synthesized and characterized in terms of physico-chemical properties and release behavior in a model solution mimicking the topical environment. Results show that the hybrid materials are able to incorporate VD, protect it from degradation up to 17 months and release it in aqueous media. The mesostructure order and the interaction between VD, surfactant and silica seem to play a key role in tuning kinetics and the amount of released drug. While the less ordered structure incorporates less VD with faster and higher release percentage, the more ordered one incorporates more VD but, due to the stronger interactions with the carrier, requires a partial dissolution of the matrix to occur before releasing the drug, so inducing a lag-time and a smaller released quantity.
Collapse
Affiliation(s)
- Marta Gallo
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129, Torino, Italy
| | - Mauro Banchero
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129, Torino, Italy
| | - Vittoria Cerbella
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129, Torino, Italy
| | - Silvia Ronchetti
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129, Torino, Italy
| | - Barbara Onida
- Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, Corso Duca Degli Abruzzi, 24, 10129, Torino, Italy
| |
Collapse
|
7
|
Chen L, Zhang S, Duan Y, Song X, Chang M, Feng W, Chen Y. Silicon-containing nanomedicine and biomaterials: materials chemistry, multi-dimensional design, and biomedical application. Chem Soc Rev 2024; 53:1167-1315. [PMID: 38168612 DOI: 10.1039/d1cs01022k] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The invention of silica-based bioactive glass in the late 1960s has sparked significant interest in exploring a wide range of silicon-containing biomaterials from the macroscale to the nanoscale. Over the past few decades, these biomaterials have been extensively explored for their potential in diverse biomedical applications, considering their remarkable bioactivity, excellent biocompatibility, facile surface functionalization, controllable synthesis, etc. However, to expedite the clinical translation and the unexpected utilization of silicon-composed nanomedicine and biomaterials, it is highly desirable to achieve a thorough comprehension of their characteristics and biological effects from an overall perspective. In this review, we provide a comprehensive discussion on the state-of-the-art progress of silicon-composed biomaterials, including their classification, characteristics, fabrication methods, and versatile biomedical applications. Additionally, we highlight the multi-dimensional design of both pure and hybrid silicon-composed nanomedicine and biomaterials and their intrinsic biological effects and interactions with biological systems. Their extensive biomedical applications span from drug delivery and bioimaging to therapeutic interventions and regenerative medicine, showcasing the significance of their rational design and fabrication to meet specific requirements and optimize their theranostic performance. Additionally, we offer insights into the future prospects and potential challenges regarding silicon-composed nanomedicine and biomaterials. By shedding light on these exciting research advances, we aspire to foster further progress in the biomedical field and drive the development of innovative silicon-composed nanomedicine and biomaterials with transformative applications in biomedicine.
Collapse
Affiliation(s)
- Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Shanshan Zhang
- Department of Ultrasound Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Yanqiu Duan
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China.
| | - Xinran Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China.
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
8
|
Cong D, Zhang Z, Xu M, Wang J, Pu X, Huang Z, Liao X, Yin G. Vanadium-Doped Mesoporous Bioactive Glass Promotes Osteogenic Differentiation of rBMSCs via the WNT/β-Catenin Signaling Pathway. ACS APPLIED BIO MATERIALS 2023; 6:3863-3874. [PMID: 37648658 DOI: 10.1021/acsabm.3c00486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Pentavalent vanadium [V(V)] has been studied as bioactive ions to improve the bone defect repair; however, its osteogenic promotion mechanism is still not fully understood so far. In this study, a V-doped mesoporous bioactive glass (V-MBG) was prepared, and its effects on osteogenic differentiation of rat bone marrow mesenchymal stem cells (rBMSCs) and potential signaling pathways were investigated. The physicochemical characterization revealed that the incorporation of V slightly reduced the specific surface area and increased the mesoporous pore size, and the abundant mesopores of V-MBG were beneficial to the sustained dissolution of V(V) ions as well as calcium, silicon, and phosphorus ions. Cell proliferation results indicated that the high dilution ratio (>16) V-MBG extract markedly promoted the proliferation of rBMSCs compared with the control group and the same dilution ratio MBG extract. Compared with the same dilution ratio MBG extract, diluted V-MBG extracts markedly promoted the secretion of alkaline phosphatase (ALP) and osteocalcin (OCN) protein at day 7 but insignificantly stimulated the runt-related transcription factor 2 (RUNX2) and vascular endothelial growth factor (VEGF) protein synthesis. In depth, the diluted V-MBG extracts remarkably up-regulated the expression of WNT/β-catenin pathway direct target genes, including WNT3a, β-catenin, and AXIN2 genes in contrast to the same dilution ratio MBG extracts, suggesting that the released V(V) ions might promote osteogenic differentiation of rBMSCs via the WNT/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Dianzi Cong
- College of Biomedical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, Sichuan 610065, P. R. China
| | - Zhou Zhang
- College of Biomedical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, Sichuan 610065, P. R. China
| | - Mengjie Xu
- College of Biomedical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, Sichuan 610065, P. R. China
| | - Juan Wang
- College of Biomedical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, Sichuan 610065, P. R. China
| | - Ximing Pu
- College of Biomedical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, Sichuan 610065, P. R. China
| | - Zhongbing Huang
- College of Biomedical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, Sichuan 610065, P. R. China
| | - Xiaoming Liao
- College of Biomedical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, Sichuan 610065, P. R. China
| | - Guangfu Yin
- College of Biomedical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, Sichuan 610065, P. R. China
| |
Collapse
|
9
|
Zhou R, Chang M, Shen M, Cong Y, Chen Y, Wang Y. Sonocatalytic Optimization of Titanium-Based Therapeutic Nanomedicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301764. [PMID: 37395421 PMCID: PMC10477905 DOI: 10.1002/advs.202301764] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/28/2023] [Indexed: 07/04/2023]
Abstract
Recent considerable technological advances in ultrasound-based treatment modality provides a magnificent prospect for scientific communities to conquer the related diseases, which is featured with remarkable tissue penetration, non-invasive and non-thermal characteristics. As one of the critical elements that influences treatment outcomes, titanium (Ti)-based sonosensitizers with distinct physicochemical properties and exceptional sonodynamic efficiency have been applied extensively in the field of nanomedical applications. To date, a myriad of methodologies has been designed to manipulate the sonodynamic performance of titanium-involved nanomedicine and further enhance the productivity of reactive oxygen species for disease treatments. In this comprehensive review, the sonocatalytic optimization of diversified Ti-based nanoplatforms, including defect engineering, plasmon resonance modulation, heterojunction, modulating tumor microenvironment, as well as the development of synergistic therapeutic modalities is mainly focused. The state-of-the-art Ti-based nanoplatforms ranging from preparation process to the extensive medical applications are summarized and highlighted, with the goal of elaborating on future research prospects and providing a perspective on the bench-to-beside translation of these sonocatalytic optimization tactics. Furthermore, to spur further technological advancements in nanomedicine, the difficulties currently faced and the direction of sonocatalytic optimization of Ti-based therapeutic nanomedicine are proposed and outlooked.
Collapse
Affiliation(s)
- Ruirui Zhou
- Department of UltrasoundShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200433P. R. China
| | - Meiqi Chang
- Laboratory CenterShanghai Municipal Hospital of Traditional Chinese MedicineShanghai University of Traditional Chinese MedicineShanghai200071P. R. China
| | - Mengjun Shen
- Department of UltrasoundShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200433P. R. China
| | - Yang Cong
- Department of UltrasoundShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200433P. R. China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Yin Wang
- Department of UltrasoundShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200433P. R. China
| |
Collapse
|
10
|
Maiga DT, Kibechu RW, Mamba BB, Msagati TAM, Phadi TT. Preparation of Novel Solid Phase Extraction Sorbents for Polycyclic Aromatic Hydrocarbons (PAHs) in Aqueous Media. Molecules 2023; 28:6129. [PMID: 37630383 PMCID: PMC10457983 DOI: 10.3390/molecules28166129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/02/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
In this study, functionalized mesoporous silica was prepared and characterized as a stationary phase using various analytical and solid-state techniques, including a Fourier-transform infrared (FTIR) spectrometer, thermogravimetric analysis, and nitrogen sorption. The results confirmed the successful synthesis of the hybrid stationary phase. The potential of the prepared hybrid mesoporous silica as a solid-phase extraction (SPE) stationary phase for separating and enriching polycyclic aromatic hydrocarbons (PAHs) in both spiked water samples and real water samples was evaluated. The analysis involved extracting the PAHs from the water samples using solid-phase extraction and analyzing the extracts using a two-dimensional gas chromatograph coupled to a time-of-flight mass spectrometer (GC × GC-TOFMS). The synthesized sorbent exhibited outstanding performance in extracting PAHs from both spiked water samples and real water samples. In the spiked water samples, the recoveries of the PAHs ranged from 79.87% to 95.67%, with relative standard deviations (RSDs) ranging from 1.85% to 8.83%. The limits of detection (LOD) for the PAHs were in the range of 0.03 µg/L to 0.04 µg/L, while the limits of quantification (LOQ) ranged from 0.05 µg/L to 3.14 µg/L. Furthermore, all the calibration curves showed linearity, with correlation coefficients (r) above 0.98. Additionally, the results from real water samples indicated that the levels of individual PAH detected ranged from 0.57 to 12.31 µg/L with a total of 44.67 µg/L. These findings demonstrate the effectiveness of the hybrid mesoporous silica as a promising stationary phase for solid-phase extraction and sensitive detection of PAHs in water samples.
Collapse
Affiliation(s)
- Deogratius T. Maiga
- Measurement and Control Division, Council for Mineral Technology (MINTEK), Private Bag X3015, Randburg, Johannesburg 2125, South Africa
- Institute for Nanotechnology and Water Sustainability, College of Science Engineering and Technology, UNISA Science Campus, University of South Africa, Roodepoort, Johannesburg 1710, South Africa
| | - Rose W. Kibechu
- Department of Chemistry, University of Eswatini, P/Bag 4 Kwaluseni Campus, Kwaluseni 0004, Eswatini
| | - Bhekie B. Mamba
- Institute for Nanotechnology and Water Sustainability, College of Science Engineering and Technology, UNISA Science Campus, University of South Africa, Roodepoort, Johannesburg 1710, South Africa
- State Key Laboratory of Separation Membranes and Membrane Process, National Center for International Joint Research on Membrane Science and Technology, Tianjin 300387, China
| | - Titus A. M. Msagati
- Institute for Nanotechnology and Water Sustainability, College of Science Engineering and Technology, UNISA Science Campus, University of South Africa, Roodepoort, Johannesburg 1710, South Africa
| | - Terence T. Phadi
- Measurement and Control Division, Council for Mineral Technology (MINTEK), Private Bag X3015, Randburg, Johannesburg 2125, South Africa
| |
Collapse
|
11
|
Pal N, Chakraborty D, Cho EB, Seo JG. Recent Developments on the Catalytic and Biosensing Applications of Porous Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2184. [PMID: 37570502 PMCID: PMC10420944 DOI: 10.3390/nano13152184] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023]
Abstract
Nanoscopic materials have demonstrated a versatile role in almost every emerging field of research. Nanomaterials have come to be one of the most important fields of advanced research today due to its controllable particle size in the nanoscale range, capacity to adopt diverse forms and morphologies, high surface area, and involvement of transition and non-transition metals. With the introduction of porosity, nanomaterials have become a more promising candidate than their bulk counterparts in catalysis, biomedicine, drug delivery, and other areas. This review intends to compile a self-contained set of papers related to new synthesis methods and versatile applications of porous nanomaterials that can give a realistic picture of current state-of-the-art research, especially for catalysis and sensor area. Especially, we cover various surface functionalization strategies by improving accessibility and mass transfer limitation of catalytic applications for wide variety of materials, including organic and inorganic materials (metals/metal oxides) with covalent porous organic (COFs) and inorganic (silica/carbon) frameworks, constituting solid backgrounds on porous materials.
Collapse
Affiliation(s)
- Nabanita Pal
- Department of Physics and Chemistry, Mahatma Gandhi Institute of Technology, Gandipet, Hyderabad 500075, India;
| | - Debabrata Chakraborty
- Institute for Applied Chemistry, Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea;
| | - Eun-Bum Cho
- Institute for Applied Chemistry, Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea;
| | - Jeong Gil Seo
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Clean-Energy Research Institute, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
12
|
da Silva Junior RM, dos Santos EH, Nakagaki S. Metalloporphyrin-based multifunctional catalysts for one-pot assisted Tandem reaction. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
13
|
Brief History, Preparation Method, and Biological Application of Mesoporous Silica Molecular Sieves: A Narrative Review. Molecules 2023; 28:molecules28052013. [PMID: 36903259 PMCID: PMC10004212 DOI: 10.3390/molecules28052013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
It has been more than 30 years since the first ordered mesoporous silica molecular sieve (MCM-41) was reported, but the enthusiasm for exploiting mesoporous silica is still growing due to its superior properties, such as its controllable morphology, excellent hosting capability, easy functionalization, and good biocompatibility. In this narrative review, the brief history of the discovery of mesoporous silica and several important mesoporous silica families are summarized. The development of mesoporous silica microspheres with nanoscale dimensions, hollow mesoporous silica microspheres, and dendritic mesoporous silica nanospheres is also described. Meanwhile, common synthesis methods for traditional mesoporous silica, mesoporous silica microspheres, and hollow mesoporous silica microspheres are discussed. Then, we introduce the biological applications of mesoporous silica in fields such as drug delivery, bioimaging, and biosensing. We hope this review will help people to understand the history of the development of mesoporous silica molecular sieves and become familiar with their synthesis methods and applications in biology.
Collapse
|
14
|
Mashkovtsev M, Zhirenkina N, Kharisova K, Buinachev S, Zhidkov I, Rychkov V. Rationale for development of high surface zirconium hydroxide: Synthesis route and mechanism discussion. POWDER TECHNOL 2023. [DOI: 10.1016/j.powtec.2023.118299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
15
|
Berijani K, Chang LM, Gu ZG. Chiral templated synthesis of homochiral metal-organic frameworks. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
16
|
Panda J, Sahoo T, Swain J, Panda PK, Tripathy BC, Samantaray R, Sahu R. The Journey from Porous Materials to Metal-organic Frameworks and their Catalytic Applications: A Review. Curr Org Synth 2023; 20:220-237. [PMID: 35209833 DOI: 10.2174/1570179419666220223093955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/27/2021] [Accepted: 01/18/2022] [Indexed: 11/22/2022]
Abstract
Metal-Organic Frameworks (MOFs), a class of inorganic-organic hybrid materials, have been at the center of material science for the past three decades. They are synthesized by metal ions and organic linker precursors and have become very potential materials for different applications ranging from sensing, separation, catalytic behaviour to biomedical applications and drug delivery, owing to their structural flexibility, porosity and functionality. They are also very promising in heterogeneous catalysis for various industrial applications. These catalysts can be easily synthesized with extremely high surface areas, tunable pore sizes, and incorporation of catalytic centers via post-synthetic modification (PSM) or exchange of their components as compared to traditional heterogeneous catalysts, which is the preliminary requirement of a better catalyst. Here, in this review, we have presented the history of MOFs, different synthesis procedures, and MOFcatalysed reactions; for instance, coupling reactions, condensation reactions, Friedel-Crafts reaction, oxidation, etc. Special attention has been given to MOFs containing different catalytic centers, including open metal sites, incorporation of catalytic centers through PSM, and bifunctional acidbase sites. The important role of catalytic centers present in MOFs and reaction mechanisms have also been outlined with examples.
Collapse
Affiliation(s)
- Jagannath Panda
- School of Applied Sciences, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar- 751024, India
| | - Tejaswini Sahoo
- School of Applied Sciences, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar- 751024, India
| | - Jaykishon Swain
- School of Applied Sciences, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar- 751024, India
| | - Prasanna Kumar Panda
- Institute of Minerals and Material Technology (CSIR-IMMT), Bhubaneswar-751013, India
| | | | - Raghabendra Samantaray
- School of Biotechnology and Chemical Technology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar-751024, India
| | - Rojalin Sahu
- School of Applied Sciences, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar- 751024, India
| |
Collapse
|
17
|
Shu Y, Song X, Lan F, Zhao C, Guan Q, Li W. N-Doped Carbon Interior-Modified Mesoporous Silica-Confined Nickel Nanoclusters for Stereoselective Hydrogenation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Yu Shu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin300071, China
| | - Xiaoyun Song
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin300071, China
| | - Fujun Lan
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin300071, China
| | - Chaoyue Zhao
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin300071, China
| | - Qingxin Guan
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin300071, China
| | - Wei Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin300071, China
| |
Collapse
|
18
|
Yu CH, Betrehem UM, Ali N, Khan A, Ali F, Nawaz S, Sajid M, Yang Y, Chen T, Bilal M. Design strategies, surface functionalization, and environmental remediation potentialities of polymer-functionalized nanocomposites. CHEMOSPHERE 2022; 306:135656. [PMID: 35820475 DOI: 10.1016/j.chemosphere.2022.135656] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Inorganic nanoparticles (NPs) have a tunable shape, size, surface morphology, and unique physical properties like catalytic, magnetic, electronic, and optical capabilities. Unlike inorganic nanomaterials, organic polymers exhibit excellent stability, biocompatibility, and processability with a tailored response to external stimuli, including pH, heat, light, and degradation properties. Nano-sized assemblies derived from inorganic and polymeric NPs are combined in a functionalized composite form to import high strength and synergistically promising features not reflected in their part as a single constituent. These new properties of polymer/inorganic functionalized materials have led to emerging applications in a variety of fields, such as environmental remediation, drug delivery, and imaging. This review spotlights recent advances in the design and construction of polymer/inorganic functionalized materials with improved attributes compared to single inorganic and polymeric materials for environmental sustainability. Following an introduction, a comprehensive review of the design and potential applications of polymer/inorganic materials for removing organic pollutants and heavy metals from wastewater is presented. We have offered valuable suggestions for piloting, and scaling-up polymer functionalized nanomaterials using simple concepts. This review is wrapped up with a discussion of perspectives on future research in the field.
Collapse
Affiliation(s)
- Chun-Hao Yu
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Uwase Marie Betrehem
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Nisar Ali
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Adnan Khan
- Institute of Chemical Sciences, University of Peshawar, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Farman Ali
- Department of Chemistry, Hazara University, KPK, Mansehra, 21300, Pakistan
| | - Shahid Nawaz
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Muhammad Sajid
- Faculty of Materials and Chemical Engineering, Yibin University, Yibin, 644000, Sichuan, China
| | - Yong Yang
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, PR China
| | - Tiantian Chen
- Key Laboratory of Regional Resource Exploitation and Medicinal Research, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu Province, PR China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| |
Collapse
|
19
|
Ordered mesoporous carbons from liquefied wood: morphological effects of nucleation and growth processes. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Biomedical applications of mesoporous silica nanoparticles as a drug delivery carrier. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103729] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Kumar I, Nayak R, Chaudhary LB, Pandey VN, Mishra SK, Singh NK, Srivastava A, Prasad S, Naik RM. Fabrication of α-Fe 2O 3 Nanostructures: Synthesis, Characterization, and Their Promising Application in the Treatment of Carcinoma A549 Lung Cancer Cells. ACS OMEGA 2022; 7:21882-21890. [PMID: 35785292 PMCID: PMC9245107 DOI: 10.1021/acsomega.2c02083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
In the present work, iron nanoparticles were synthesized in the α-Fe2O3 phase with the reduction of potassium hexachloroferrate(III) by using l-ascorbic acid as a reducing agent in the presence of an amphiphilic non-ionic polyethylene glycol surfactant in an aqueous solution. The synthesized α-Fe2O3 NPs were characterized by powder X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, atomic force microscopy, dynamic light scattering, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and ultraviolet-visible spectrophotometry. The powder X-ray diffraction analysis result confirmed the formation of α-Fe2O3 NPs, and the average crystallite size was found to be 45 nm. The other morphological studies suggested that α-Fe2O3 NPs were predominantly spherical in shape with a diameter ranges from 40 to 60 nm. The dynamic light scattering analysis revealed the zeta potential of α-Fe2O3 NPs as -28 ± 18 mV at maximum stability. The ultraviolet-visible spectrophotometry analysis shows an absorption peak at 394 nm, which is attributed to their surface plasmon vibration. The cytotoxicity test of synthesized α-Fe2O3 NPs was investigated against human carcinoma A549 lung cancer cells, and the biological adaptability exhibited by α-Fe2O3 NPs has opened a pathway to biomedical applications in the drug delivery system. Our investigation confirmed that l-ascorbic acid-coated α-Fe2O3 NPs with calculated IC50 ≤ 30 μg/mL are the best suited as an anticancer agent, showing the promising application in the treatment of carcinoma A549 lung cancer cells.
Collapse
Affiliation(s)
- Indresh Kumar
- Department
of Chemistry, University of Lucknow, Lucknow 226007, U.P., India
| | - Rashmi Nayak
- Plant
Diversity Systematics and Herbarium Division, CSIR-National Botanical Research Institute, Lucknow 226001, U.P., India
| | - Lal Babu Chaudhary
- Plant
Diversity Systematics and Herbarium Division, CSIR-National Botanical Research Institute, Lucknow 226001, U.P., India
| | - Vashist Narayan Pandey
- Experimental
Botany and Nutraceutical Laboratory, Department of Botany, DDU Gorakhpur University, Gorakhpur 273009, U.P., India
| | - Sheo K. Mishra
- Department
of Physics, Indira Gandhi National Tribal
University, Amarkantak 484887, M.P., India
| | | | | | - Surendra Prasad
- School of
Biological and Chemical Sciences, Faculty of Science, Technology and
Environment, University of the South Pacific, Suva, Fiji
| | - Radhey Mohan Naik
- Department
of Chemistry, University of Lucknow, Lucknow 226007, U.P., India
| |
Collapse
|
22
|
Sharma V, Agrawal A, Singh O, Goyal R, Sarkar B, Gopinathan N, Gumfekar SP. A Comprehensive Review on the Synthesis Techniques of Porous Materials for Gas Separation and Catalysis. CAN J CHEM ENG 2022. [DOI: 10.1002/cjce.24507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Vikrant Sharma
- Department of Chemical Engineering Indian Institute of Technology Ropar India
| | - Ankit Agrawal
- CSIR‐Indian Institute of Petroleum Dehradun India
- Academy of Scientific and Innovative Research (AcSIR), Gaziabad India
| | - Omvir Singh
- CSIR‐Indian Institute of Petroleum Dehradun India
- Academy of Scientific and Innovative Research (AcSIR), Gaziabad India
| | - Reena Goyal
- CSIR‐Indian Institute of Petroleum Dehradun India
- Department of Chemical Engineering Indian Institute of Technology Roorkee India
| | - Bipul Sarkar
- CSIR‐Indian Institute of Petroleum Dehradun India
| | - Navin Gopinathan
- Department of Chemical Engineering Indian Institute of Technology Ropar India
| | - Sarang P. Gumfekar
- Department of Chemical Engineering Indian Institute of Technology Ropar India
| |
Collapse
|
23
|
Athab ZH, Halbus AF, Greenway GM. One-step strategy for the synthesis of magnetic mesoporous carbon composite materials incorporating iron, cobalt and nickel nanoparticles. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02271-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Behera P, Subudhi S, Tripathy SP, Parida K. MOF derived nano-materials: A recent progress in strategic fabrication, characterization and mechanistic insight towards divergent photocatalytic applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214392] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Wang J, Wang P, Wu Z, Yu T, Abudula A, Sun M, Ma X, Guan G. Mesoporous catalysts for catalytic oxidation of volatile organic compounds: preparations, mechanisms and applications. REV CHEM ENG 2022. [DOI: 10.1515/revce-2021-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Volatile organic compounds (VOCs) are mainly derived from human activities, but they are harmful to the environment and our health. Catalytic oxidation is the most economical and efficient method to convert VOCs into harmless substances of water and carbon dioxide at relatively low temperatures among the existing techniques. Supporting noble metal and/or transition metal oxide catalysts on the porous materials and direct preparation of mesoporous catalysts are two efficient ways to obtain effective catalysts for the catalytic oxidation of VOCs. This review focuses on the preparation methods for noble-metal-based and transition-metal-oxide-based mesoporous catalysts, the reaction mechanisms of the catalytic oxidations of VOCs over them, the catalyst deactivation/regeneration, and the applications of such catalysts for VOCs removal. It is expected to provide guidance for the design, preparation and application of effective mesoporous catalysts with superior activity, high stability and low cost for the VOCs removal at lower temperatures.
Collapse
Affiliation(s)
- Jing Wang
- School of Chemical Engineering , Northwest University, International Science & Technology Cooperation Base of MOST for Clean Utilization of Hydrocarbon Resources; Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy; Shaanxi Research Center of Engineering Technology for Clean Coal Conversion; and Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi , Xi’an 710069 , Shaanxi , China
| | - Peifen Wang
- Graduate School of Science and Technology , Hirosaki University , 1-Bunkyocho , Hirosaki 036-8560 , Aomori , Japan
| | - Zhijun Wu
- Graduate School of Science and Technology , Hirosaki University , 1-Bunkyocho , Hirosaki 036-8560 , Aomori , Japan
| | - Tao Yu
- Graduate School of Science and Technology , Hirosaki University , 1-Bunkyocho , Hirosaki 036-8560 , Aomori , Japan
| | - Abuliti Abudula
- Graduate School of Science and Technology , Hirosaki University , 1-Bunkyocho , Hirosaki 036-8560 , Aomori , Japan
| | - Ming Sun
- School of Chemical Engineering , Northwest University, International Science & Technology Cooperation Base of MOST for Clean Utilization of Hydrocarbon Resources; Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy; Shaanxi Research Center of Engineering Technology for Clean Coal Conversion; and Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi , Xi’an 710069 , Shaanxi , China
| | - Xiaoxun Ma
- School of Chemical Engineering , Northwest University, International Science & Technology Cooperation Base of MOST for Clean Utilization of Hydrocarbon Resources; Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy; Shaanxi Research Center of Engineering Technology for Clean Coal Conversion; and Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi , Xi’an 710069 , Shaanxi , China
| | - Guoqing Guan
- Graduate School of Science and Technology , Hirosaki University , 1-Bunkyocho , Hirosaki 036-8560 , Aomori , Japan
- Energy Conversion Engineering Laboratory , Institute of Regional Innovation (IRI), Hirosaki University , 2-1-3 Matsubara , Aomori 030-0813 , Japan
| |
Collapse
|
26
|
Muhammud AM, Gupta NK. Nanostructured SiO 2 material: synthesis advances and applications in rubber reinforcement. RSC Adv 2022; 12:18524-18546. [PMID: 35799930 PMCID: PMC9218877 DOI: 10.1039/d2ra02747j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/31/2022] [Indexed: 11/21/2022] Open
Abstract
Silica is a commercially significant material due to its extensive use in widespread applications and products. Synthetic amorphous silica (SAS) is a form of SiO2 that is intentionally manufactured and has been produced and marketed for decades without significant changes in its physico-chemical properties. The industrial production of nanostructured SiO2 is nowadays challenged by the expensive raw material use and high energy consumption. The search for non-petroleum-based fillers such as nanostructured SiO2, which are environmentally friendly, cheap, abundant, renewable, and efficient, has been initiated nowadays. Therefore, a large number of research activities have been carried out so far for the preparation of SAS from potential alternate precursors, i.e., synthetic chemicals, biogenic, and mineral ore resources. Reinforcement of rubbers with nanostructured SiO2 fillers is a process of great practical and technological importance for improving their mechanical, dynamic, and thermal properties. The efficiencies of SiO2 reinforcement correlate with different factors such as filler structure, surface area, rubber–filler interactions, and filler–filler interactions with their effects. This review paper discusses the recent synthesis advances of nanostructured SiO2 from synthetic chemicals, biogenic and mineral ore resources, their physical characteristics, and applications in rubber reinforcement, overcoming challenges. Finally, summary and future work recommendations have been mentioned well for future researchers. This review discusses recent advances in the synthesis of nanostructured SiO2 from synthetic chemicals, and biogenic and mineral ore resources, its physical characteristics, and its applications in rubber reinforcement.![]()
Collapse
Affiliation(s)
- Agraw Mulat Muhammud
- Department of Applied Chemistry, Adama Science and Technology University, Ethiopia
| | - Neeraj Kumar Gupta
- Department of Applied Chemistry, Adama Science and Technology University, Ethiopia
| |
Collapse
|
27
|
Bhaduri K, Ghosh A, Auroux A, Chatterjee S, Bhaumik A, Chowdhury B. Soft-templating routes for the synthesis of mesoporous tantalum phosphates and their catalytic activity in glycerol dehydration and carbonylation reactions. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Favier L, Sescu AM, Abdelkader E, Oughebbi Berthou L, Lutic D. Urea-Assisted Synthesis of Mesoporous TiO 2 Photocatalysts for the Efficient Removal of Clofibric Acid from Water. MATERIALS 2021; 14:ma14206035. [PMID: 34683623 PMCID: PMC8540116 DOI: 10.3390/ma14206035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/17/2021] [Accepted: 10/11/2021] [Indexed: 11/18/2022]
Abstract
Mesoporous TiO2 photocatalysts intended for the advanced removal of clofibric acid (CA) from water were synthesized by the sol-gel method in a medium containing cetyl-trimethyl-ammonium bromide (CTAB) and urea, using either ethanol or isopropanol to dilute the TiO2 precursor. The activation of the samples was undertaken at 550, 650 and 750 °C. The XRD revealed that the nature of the solvent resulted in significant differences in the anatase-to-rutile ratios obtained at different temperatures. The specific surface area values were situated between 9 and 43 m2·g−1 and the band gap values were similar for all the samples. The photocatalytic activity of the prepared samples was examined for the degradation of CA, an emergent water contaminant. The photocatalytic tests performed under UV-A irradiation revealed that the photo-reactivity of these materials depends on the calcination temperature. The best results were obtained for the samples calcined at 750 °C, which showed high yields of CA elimination, as well as almost complete mineralization (over 95%) after 180 min of reaction. Good results in terms of catalyst reusability in the reaction were found for the catalyst showing the highest photo-reactivity. Therefore, the samples can be considered good candidates for future water remediation applications.
Collapse
Affiliation(s)
- Lidia Favier
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR–UMR6226, Univ Rennes, F-35000 Rennes, France;
- Correspondence: (L.F.); (D.L.); Tel.: +33-223238135 (L.F.); +40-740-236565 (D.L.)
| | - Amalia Maria Sescu
- Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania;
| | - Elaziouti Abdelkader
- Laboratoire des Sciences, Technologie et Génie des Procédés L.S.T.G.P, Université des Sciences et de la Technologie d’Oran Mohammed Boudiaf (USTO M.B), Oran 31000, Algeria;
| | - Laurence Oughebbi Berthou
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR–UMR6226, Univ Rennes, F-35000 Rennes, France;
| | - Doina Lutic
- Faculty of Chemistry, “Alexandru Ioan Cuza” University of Iasi, 700506 Iasi, Romania
- Correspondence: (L.F.); (D.L.); Tel.: +33-223238135 (L.F.); +40-740-236565 (D.L.)
| |
Collapse
|
29
|
Niazian M, Molaahmad Nalousi A, Azadi P, Ma'mani L, Chandler SF. Perspectives on new opportunities for nano-enabled strategies for gene delivery to plants using nanoporous materials. PLANTA 2021; 254:83. [PMID: 34559312 DOI: 10.1007/s00425-021-03734-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Engineered nanocarriers have great potential to deliver different genetic cargos to plant cells and increase the efficiency of plant genetic engineering. Genetic engineering has improved the quality and quantity of crops by introducing desired DNA sequences into the plant genome. Traditional transformation strategies face constraints such as low transformation efficiency, damage to plant tissues, and genotype dependency. Smart nanovehicle-based delivery is a newly emerged method for direct DNA delivery to plant genomes. The basis of this new approach of plant genetic transformation, nanomaterial-mediated gene delivery, is the appropriate protection of transferred DNA from the nucleases present in the cell cytoplasm through the nanocarriers. The conjugation of desired nucleic acids with engineered nanocarriers can solve the problem of genetic manipulation in some valuable recalcitrant plant genotypes. Combining nano-enabled genetic transformation with the new and powerful technique of targeted genome editing, CRISPR (clustered regularly interspaced short palindromic repeats), can create new protocols for efficient improvement of desired plants. Silica-based nanoporous materials, especially mesoporous silica nanoparticles (MSNs), are currently regarded as exciting nanoscale platforms for genetic engineering as they possess several useful properties including ordered and porous structure, biocompatibility, biodegradability, and surface chemistry. These specific features have made MSNs promising candidates for the design of smart, controlled, and targeted delivery systems in agricultural sciences. In the present review, we discuss the usability, challenges, and opportunities for possible application of nano-enabled biomolecule transformation as part of innovative approaches for target delivery of genes of interest into plants.
Collapse
Affiliation(s)
- Mohsen Niazian
- Field and Horticultural Crops Research Department, Kurdistan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Jam-e Jam Cross Way, P. O. Box 741, Sanandaj, 66169-36311, Iran.
| | - Ayoub Molaahmad Nalousi
- Department of Genetic Engineering, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, 3135933151, Iran.
| | - Pejman Azadi
- Department of Genetic Engineering, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, 3135933151, Iran.
| | - Leila Ma'mani
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, 3135933151, Iran.
| | | |
Collapse
|
30
|
SBA-15 with Crystalline Walls Produced via Thermal Treatment with the Alkali and Alkali Earth Metal Ions. MATERIALS 2021; 14:ma14185270. [PMID: 34576497 PMCID: PMC8466871 DOI: 10.3390/ma14185270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/04/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022]
Abstract
Crystalline walled SBA-15 with large pore size were prepared using alkali and alkali earth metal ions (Na+, Li+, K+ and Ca2+). For this work, the ratios of alkali metal ions (Si/metal ion) ranged from 2.1 to 80, while the temperatures tested ranged from 500 to 700 °C. The SBA-15 prepared with Si/Na+ ratios ranging from 2.1 to 40 at 700 °C exhibited both cristobalite and quartz SiO2 structures in pore walls. When the Na+ amount increased (i.e., Si/Na increased from 80 to 40), the pore size was increased remarkably but the surface area and pore volume of the metal ion-based SBA-15 were decreased. When the SBA-15 prepared with Li+, K+ and Ca2+ ions (Si/metal ion = 40) was thermally treated at 700 °C, the crystalline SiO2 of quartz structure with large pore diameter (i.e., 802.5 Å) was observed for Ca+2 ion-based SBA-15, while no crystalline SiO2 structures were observed in pore walls for both the K+ and Li+ ions treated SBA-15. The crystalline SiO2 structures may be formed by the rearrangement of silica matrix when alkali or alkali earth metal ions are inserted into silica matrix at elevated temperature.
Collapse
|
31
|
Kashapov R, Ibragimova A, Pavlov R, Gabdrakhmanov D, Kashapova N, Burilova E, Zakharova L, Sinyashin O. Nanocarriers for Biomedicine: From Lipid Formulations to Inorganic and Hybrid Nanoparticles. Int J Mol Sci 2021; 22:7055. [PMID: 34209023 PMCID: PMC8269010 DOI: 10.3390/ijms22137055] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 02/07/2023] Open
Abstract
Encapsulation of cargoes in nanocontainers is widely used in different fields to solve the problems of their solubility, homogeneity, stability, protection from unwanted chemical and biological destructive effects, and functional activity improvement. This approach is of special importance in biomedicine, since this makes it possible to reduce the limitations of drug delivery related to the toxicity and side effects of therapeutics, their low bioavailability and biocompatibility. This review highlights current progress in the use of lipid systems to deliver active substances to the human body. Various lipid compositions modified with amphiphilic open-chain and macrocyclic compounds, peptide molecules and alternative target ligands are discussed. Liposome modification also evolves by creating new hybrid structures consisting of organic and inorganic parts. Such nanohybrid platforms include cerasomes, which are considered as alternative nanocarriers allowing to reduce inherent limitations of lipid nanoparticles. Compositions based on mesoporous silica are beginning to acquire no less relevance due to their unique features, such as advanced porous properties, well-proven drug delivery efficiency and their versatility for creating highly efficient nanomaterials. The types of silica nanoparticles, their efficacy in biomedical applications and hybrid inorganic-polymer platforms are the subject of discussion in this review, with current challenges emphasized.
Collapse
Affiliation(s)
- Ruslan Kashapov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Street 8, 420088 Kazan, Russia; (A.I.); (R.P.); (D.G.); (N.K.); (E.B.); (L.Z.); (O.S.)
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Amri F, Septiani NLW, Rezki M, Iqbal M, Yamauchi Y, Golberg D, Kaneti YV, Yuliarto B. Mesoporous TiO 2-based architectures as promising sensing materials towards next-generation biosensing applications. J Mater Chem B 2021; 9:1189-1207. [PMID: 33406200 DOI: 10.1039/d0tb02292f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the past two decades, mesoporous TiO2 has emerged as a promising material for biosensing applications. In particular, mesoporous TiO2 materials with uniform, well-organized pores and high surface areas typically exhibit superior biosensing performance, which includes high sensitivity, broad linear response, low detection limit, good reproducibility, and high specificity. Therefore, the development of biosensors based on mesoporous TiO2 has significantly intensified in recent years. In this review, the expansion and advancement of mesoporous TiO2-based biosensors for glucose detection, hydrogen peroxide detection, alpha-fetoprotein detection, immobilization of enzymes, proteins, and bacteria, cholesterol detection, pancreatic cancer detection, detection of DNA damage, kanamycin detection, hypoxanthine detection, and dichlorvos detection are summarized. Finally, the future perspective and research outlook on the utilization of mesoporous TiO2-based biosensors for the practical diagnosis of diseases and detection of hazardous substances are also given.
Collapse
Affiliation(s)
- Fauzan Amri
- Department of Engineering Physics, Faculty of Industrial Technology, Institute of Technology Bandung, Ganesha 10, Bandung 40132, Indonesia.
| | - Ni Luh Wulan Septiani
- Department of Engineering Physics, Faculty of Industrial Technology, Institute of Technology Bandung, Ganesha 10, Bandung 40132, Indonesia.
| | - Muhammad Rezki
- Department of Engineering Physics, Faculty of Industrial Technology, Institute of Technology Bandung, Ganesha 10, Bandung 40132, Indonesia.
| | - Muhammad Iqbal
- Department of Engineering Physics, Faculty of Industrial Technology, Institute of Technology Bandung, Ganesha 10, Bandung 40132, Indonesia.
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Tsukuba, Ibaraki 305-0044, Japan and School of Chemical Engineering & Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia and JST-ERATO Yamauchi Materials Space-Tectonics Project, Kagami Memorial Research Institute for Science and Technology, Waseda University, 2-8-26 Nishi-Waseda, Shinjuku, Tokyo 169-0051, Japan
| | - Dmitri Golberg
- Centre for Materials Science and School of Chemistry and Physics Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia and Nanotubes Group, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Tsukuba, Ibaraki 305-0044, Japan.
| | - Yusuf Valentino Kaneti
- Department of Engineering Physics, Faculty of Industrial Technology, Institute of Technology Bandung, Ganesha 10, Bandung 40132, Indonesia. and JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Tsukuba, Ibaraki 305-0044, Japan
| | - Brian Yuliarto
- Department of Engineering Physics, Faculty of Industrial Technology, Institute of Technology Bandung, Ganesha 10, Bandung 40132, Indonesia. and Research Center for Nanosciences and Nanotechnology (RCNN), Institute of Technology Bandung, Bandung 40132, Indonesia
| |
Collapse
|
33
|
Chatterjee R, Bhanja P, Bhaumik A. The design and synthesis of heterogeneous catalysts for environmental applications. Dalton Trans 2021; 50:4765-4771. [PMID: 33877175 DOI: 10.1039/d1dt00544h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the rapid advancements in synthetic strategies, the field of heterogeneous catalysis has expanded enormously over the last few decades, and today it is one of the foremost areas in energy and environmental research. Various templating and non-templating routes for designing porous nanomaterial-based catalysts starting from precursor building blocks are highlighted here. CO2 and biomass are two major abundant resources that can be utilized as feedstocks for various heterogeneous catalytic processes. These are described in brief, together with environmental clean-up applications and future perspectives for addressing environmental issues.
Collapse
Affiliation(s)
- Rupak Chatterjee
- School of Materials Science, Indian Association for the Cultivation of Science, 2A & 2B Raja S C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| | | | | |
Collapse
|
34
|
Modak A, Ghosh A, Bhaumik A, Chowdhury B. CO 2 hydrogenation over functional nanoporous polymers and metal-organic frameworks. Adv Colloid Interface Sci 2021; 290:102349. [PMID: 33780826 DOI: 10.1016/j.cis.2020.102349] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022]
Abstract
CO2 is one of the major environmental pollutants and its mitigation is attracting huge attention over the years due to continuous increase in this greenhouse gas emission in the atmosphere. Being environmentally hazardous and plentiful presence in nature, CO2 utilization as C1 resource into fuels and feedstock is very demanding from the green chemistry perspectives. To accomplish this CO2 utilization issue, functional organic materials like porous organic polymers (POPs), covalent organic frameworks (COFs) as well as organic-inorganic hybrid materials like metal-organic frameworks (MOFs), having characteristics of large surface area, high thermal stability and tunability in the porous nanostructures play significant role in designing the suitable catalyst for the CO2 hydrogenation reactions. Although CO2 hydrogenation is a widely studied and emerging area of research, till date review exclusively focused on designing POPs, COFs and MOFs bearing reactive functional groups is very limited. A thorough literature review on this matter will enrich our knowledge over the CO2 hydrogenation processes and the catalytic sites responsible for carrying out these chemical transformations. We emphasize recent state-of-the art developments in POPs/COFs/MOFs having unique functionalities and topologies in stabilizing metallic NPs and molecular complexes for the CO2 reduction reactions. The major differences between MOFs and porous organics are critically summarized in the outlook section with the aim of the future benefit in mitigating CO2 emission from ambient air.
Collapse
|
35
|
Peng L, Peng Y, Primo A, García H. Porous Graphitic Carbons Containing Nitrogen by Structuration of Chitosan with Pluronic P123. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13499-13507. [PMID: 33703877 PMCID: PMC8528379 DOI: 10.1021/acsami.0c19463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Using Pluronic P123 as a structure-directing agent and chitosan as a carbon precursor, different porous carbons with remarkable morphologies such as orthohedra or spheres with diametrically opposite holes are obtained. These particles of micrometric size are constituted by the stacking of thin sheets (60 nm) that become increasingly bent in the opposite sense, concave in the upper and convex in the bottom hemispheres, as the chitosan proportion increases. TEM images, after dispersion of the particles by sonication, show that besides micrometric graphene sheets, the material is constituted by nanometric onion-like carbons. The morphology and structure of these porous carbons can be explained based on the ability of Pluronic P123 to undergo self-assembly in aqueous solution due to its amphoteric nature and the filmogenic properties of chitosan to coat Pluronic P123 nanoobjects undergoing structuration and becoming transformed into nitrogen-doped graphitic carbons. XPS analysis reveals the presence of nitrogen in their composition. These porous carbons exhibit a significant CO2 adsorption capacity of above 3 mmol g-1 under 100 kPa at 273 K attributable to their large specific surface area, ultraporosity, and the presence of basic N sites. In addition, the presence of dopant elements in the graphitic carbons opening the gap is responsible for the photocatalytic activity for H2 generation in the presence of sacrificial electron donors, reaching a H2 production of 63 μmol g-1 in 24 h.
Collapse
Affiliation(s)
- Lu Peng
- Instituto Universitario de
Tecnología Química, Universitat
Politècnica de València-Consejo Superior de Investigaciones
Científicas, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Yong Peng
- Instituto Universitario de
Tecnología Química, Universitat
Politècnica de València-Consejo Superior de Investigaciones
Científicas, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Ana Primo
- Instituto Universitario de
Tecnología Química, Universitat
Politècnica de València-Consejo Superior de Investigaciones
Científicas, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Hermenegildo García
- Instituto Universitario de
Tecnología Química, Universitat
Politècnica de València-Consejo Superior de Investigaciones
Científicas, Av. de los Naranjos s/n, 46022 Valencia, Spain
| |
Collapse
|
36
|
Poolakkandy RR, Menamparambath MM. Soft-template-assisted synthesis: a promising approach for the fabrication of transition metal oxides. NANOSCALE ADVANCES 2020; 2:5015-5045. [PMID: 36132034 PMCID: PMC9417152 DOI: 10.1039/d0na00599a] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/18/2020] [Indexed: 05/27/2023]
Abstract
The past few decades have witnessed transition metal oxides (TMOs) as promising candidates for a plethora of applications in numerous fields. The exceptional properties retained by these materials have rendered them of paramount emphasis as functional materials. Thus, the controlled and scalable synthesis of transition metal oxides with desired properties has received enormous attention. Out of different top-down and bottom-up approaches, template-assisted synthesis predominates as an adept approach for the facile synthesis of transition metal oxides, owing to its phenomenal ability for morphological and physicochemical tuning. This review presents a comprehensive examination of the recent advances in the soft-template-assisted synthesis of TMOs, focusing on the morphological and physicochemical tuning aided by different soft-templates. The promising applications of TMOs are explained in detail, emphasizing those with excellent performances.
Collapse
Affiliation(s)
| | - Mini Mol Menamparambath
- Department of Chemistry, National Institute of Technology Calicut Calicut-673601 Kerala India
| |
Collapse
|
37
|
Pal N, Lee JH, Cho EB. Recent Trends in Morphology-Controlled Synthesis and Application of Mesoporous Silica Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2122. [PMID: 33113856 PMCID: PMC7692592 DOI: 10.3390/nano10112122] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 01/12/2023]
Abstract
The outstanding journey towards the investigation of mesoporous materials commences with the discovery of high surface area porous silica materials, named MCM-41 (Mobil Composition of Matter-41) according to the inventors' name Mobile scientists in the United States. Based on a self-assembled supramolecular templating mechanism, the synthesis of mesoporous silica has extended to wide varieties of silica categories along with versatile applications of all these types in many fields. These silica families have some extraordinary structural features, like highly tunable nanoscale sized pore diameter, good Brunauer-Emmett-Teller (BET) surface areas, good flexibility to accommodate different organic and inorganic functional groups, metals etc., onto their surface. As a consequence, thousands of scientists and researchers throughout the world have reported numerous silica materials in the form of published articles, communication, reviews, etc. Beside this, attention is also given to the morphology-oriented synthesis of silica nanoparticles and their significant effects on the emerging fields of study like catalysis, energy applications, sensing, environmental, and biomedical research. This review highlights a consolidated overview of those morphology-based mesoporous silica particles, emphasizing their syntheses and potential role in many promising fields of research.
Collapse
Affiliation(s)
- Nabanita Pal
- Department of Physics and Chemistry, Mahatma Gandhi Institute of Technology, Gandipet, Hyderabad 500075, India;
| | - Jun-Hyeok Lee
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Korea;
| | - Eun-Bum Cho
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Korea;
| |
Collapse
|
38
|
Jarmolińska S, Feliczak-Guzik A, Nowak I. Synthesis, Characterization and Use of Mesoporous Silicas of the Following Types SBA-1, SBA-2, HMM-1 and HMM-2. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4385. [PMID: 33019709 PMCID: PMC7579092 DOI: 10.3390/ma13194385] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 01/09/2023]
Abstract
Mesoporous silicas have enjoyed great interest among scientists practically from the moment of their discovery thanks to their unique attractive properties. Many types of mesoporous silicas have been described in literature, the most thoroughly MCM-41 and SBA-15 ones. The focus of this review are the methods of syntheses, characterization and use of mesoporous silicas from SBA (Santa Barbara Amorphous) and HMM (Hybrid Mesoporous Materials) groups. The first group is represented by (i) SBA-1 of three-dimensional cubic structure and Pm3n symmetry and (ii) SBA-2 of three-dimensional combined hexagonal and cubic structures and P63/mmc symmetry. The HMM group is represented by (i) HMM-1 of two-dimensional hexagonal structure and p6mm symmetry and (ii) HMM-2 of three-dimensional structure and P63/mmc symmetry. The paper provides comprehensive information on the above-mentioned silica materials available so far, also including the data for the silicas modified with metal ions or/and organic functional groups and examples of the materials applications.
Collapse
Affiliation(s)
| | | | - Izabela Nowak
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland; (S.J.); (A.F.-G.)
| |
Collapse
|
39
|
Kamyab SM, Modabberi S, Williams CD, Badiei A. Synthesis of Sodalite from Sepiolite by Alkali Fusion Method and Its Application to Remove Fe 3+, Cr 3+, and Cd 2+ from Aqueous Solutions. ENVIRONMENTAL ENGINEERING SCIENCE 2020; 37:689-701. [DOI: 10.1089/ees.2019.0492] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Affiliation(s)
| | - Soroush Modabberi
- School of Geology, College of Science, University of Tehran, Tehran, Iran
| | - Craig D. Williams
- School of Applied Sciences, University of Wolverhampton, Wolverhampton, England
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
40
|
Improvement of mesoporous silica nanoparticles: A new approach in the administration of NSAIDS. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Synergistic effect of mesoporous metal oxides and PtO2 nanoparticles in aerobic oxidation of ethanol and ionic liquid induced acetaldehyde selectivity. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
42
|
Satoh Y, Fuchise K, Nozawa T, Sato K, Igarashi M. A catalyst- and additive-free synthesis of alkoxyhydrosiloxanes from silanols and alkoxyhydrosilanes. Chem Commun (Camb) 2020; 56:8218-8221. [PMID: 32555824 DOI: 10.1039/d0cc03379k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A convenient method for the selective synthesis of alkoxyhydrosiloxanes that bear SiH and SiOR2 groups on the same silicon atom, R13Si-O-SiR32-n(OR2)nH (n = 0, 1, or 2), via a simple catalyst- and additive-free dealcoholization reaction between silanols and alkoxyhydrosilanes has been developed. These alkoxyhydrosiloxanes can be easily converted into Si(OR2)3-containing siloxanes by zinc catalyzed alkoxylation and alkoxy-containing silphenylene polymers by platinum catalyzed hydrosilylation.
Collapse
Affiliation(s)
- Yasushi Satoh
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | | | | | | | | |
Collapse
|
43
|
Yadav R, Baskaran T, Kaiprathu A, Ahmed M, Bhosale SV, Joseph S, Al‐Muhtaseb AH, Singh G, Sakthivel A, Vinu A. Recent Advances in the Preparation and Applications of Organo‐functionalized Porous Materials. Chem Asian J 2020; 15:2588-2621. [DOI: 10.1002/asia.202000651] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/26/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Rekha Yadav
- Department of Chemistry Sri Venkateswara College University of Delhi Delhi 110021 India
| | - Thangaraj Baskaran
- Department of Chemistry Central University of Kerala Periye P.O. 671320 Kerala India
| | - Anjali Kaiprathu
- Department of Chemistry Central University of Kerala Periye P.O. 671320 Kerala India
| | - Maqsood Ahmed
- Department of Chemistry University of Delhi Delhi India
| | | | - Stalin Joseph
- Global Innovative Center for Advanced Nanomaterials Faculty of Engineering and Built Environment The University of Newcastle Callaghan 2308, NSW Australia
| | - Ala'a H. Al‐Muhtaseb
- Department of Petroleum and Chemical Engineering College of Engineering Sultan Qaboos University Muscat 123 P.O.Box 33 Oman
| | - Gurwinder Singh
- Global Innovative Center for Advanced Nanomaterials Faculty of Engineering and Built Environment The University of Newcastle Callaghan 2308, NSW Australia
| | | | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials Faculty of Engineering and Built Environment The University of Newcastle Callaghan 2308, NSW Australia
| |
Collapse
|
44
|
Ferreira VRA, Azenha MA, Pereira CM, Silva AF. Cation‐bioimprinted mesoporous polysaccharide/sol–gel composites prepared in media containing choline chloride‐based deep eutectic solvents. J Appl Polym Sci 2020. [DOI: 10.1002/app.48842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- V. R. A. Ferreira
- CIQ‐UPDepartamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 4169‐007 Porto Portugal
| | - M. A. Azenha
- CIQ‐UPDepartamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 4169‐007 Porto Portugal
| | - C. M. Pereira
- CIQ‐UPDepartamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 4169‐007 Porto Portugal
| | - A. F. Silva
- CIQ‐UPDepartamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 4169‐007 Porto Portugal
| |
Collapse
|
45
|
Obrero JM, Filippin AN, Alcaire M, Sanchez-Valencia JR, Jacob M, Matei C, Aparicio FJ, Macias-Montero M, Rojas TC, Espinos JP, Saghi Z, Barranco A, Borras A. Supported Porous Nanostructures Developed by Plasma Processing of Metal Phthalocyanines and Porphyrins. Front Chem 2020; 8:520. [PMID: 32626693 PMCID: PMC7311806 DOI: 10.3389/fchem.2020.00520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/19/2020] [Indexed: 11/22/2022] Open
Abstract
The large area scalable fabrication of supported porous metal and metal oxide nanomaterials is acknowledged as one of the greatest challenges for their eventual implementation in on-device applications. In this work, we will present a comprehensive revision and the latest results regarding the pioneering use of commercially available metal phthalocyanines and porphyrins as solid precursors for the plasma-assisted deposition of porous metal and metal oxide films and three-dimensional nanostructures (hierarchical nanowires and nanotubes). The most advanced features of this method relay on its ample general character from the point of view of the porous material composition and microstructure, mild deposition and processing temperature and energy constrictions and, finally, its straightforward compatibility with the direct deposition of the porous nanomaterials on processable substrates and device-architectures. Thus, taking advantage of the variety in the composition of commercially available metal porphyrins and phthalocyanines, we present the development of metal and metal oxides layers including Pt, CuO, Fe2O3, TiO2, and ZnO with morphologies ranging from nanoparticles to nanocolumnar films. In addition, we combine this method with the fabrication by low-pressure vapor transport of single-crystalline organic nanowires for the formation of hierarchical hybrid organic@metal/metal-oxide and @metal/metal-oxide nanotubes. We carry out a thorough characterization of the films and nanowires using SEM, TEM, FIB 3D, and electron tomography. The latest two techniques are revealed as critical for the elucidation of the inner porosity of the layers.
Collapse
Affiliation(s)
- Jose M Obrero
- Nanotechnology on Surfaces and Plasma Laboratory, Materials Science Institute of Seville (ICMS, CSIC-US), Seville, Spain
| | - Alejandro N Filippin
- Nanotechnology on Surfaces and Plasma Laboratory, Materials Science Institute of Seville (ICMS, CSIC-US), Seville, Spain
| | - Maria Alcaire
- Nanotechnology on Surfaces and Plasma Laboratory, Materials Science Institute of Seville (ICMS, CSIC-US), Seville, Spain
| | - Juan R Sanchez-Valencia
- Nanotechnology on Surfaces and Plasma Laboratory, Materials Science Institute of Seville (ICMS, CSIC-US), Seville, Spain.,Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla, Seville, Spain
| | - Martin Jacob
- Université Grenoble Alpes, CEA, LETI, Grenoble, France
| | | | - Francisco J Aparicio
- Nanotechnology on Surfaces and Plasma Laboratory, Materials Science Institute of Seville (ICMS, CSIC-US), Seville, Spain
| | - Manuel Macias-Montero
- Nanotechnology on Surfaces and Plasma Laboratory, Materials Science Institute of Seville (ICMS, CSIC-US), Seville, Spain.,Instituto de Óptica Daza Baldés (CSIC), Madrid, Spain
| | - Teresa C Rojas
- Nanotechnology on Surfaces and Plasma Laboratory, Materials Science Institute of Seville (ICMS, CSIC-US), Seville, Spain
| | - Juan P Espinos
- Nanotechnology on Surfaces and Plasma Laboratory, Materials Science Institute of Seville (ICMS, CSIC-US), Seville, Spain
| | - Zineb Saghi
- Université Grenoble Alpes, CEA, LETI, Grenoble, France
| | - Angel Barranco
- Nanotechnology on Surfaces and Plasma Laboratory, Materials Science Institute of Seville (ICMS, CSIC-US), Seville, Spain
| | - Ana Borras
- Nanotechnology on Surfaces and Plasma Laboratory, Materials Science Institute of Seville (ICMS, CSIC-US), Seville, Spain
| |
Collapse
|
46
|
Kasipandi S, Ali M, Li Y, Bae JW. Phosphorus‐Modified Mesoporous Inorganic Materials for Production of Hydrocarbon Fuels and Value‐Added Chemicals. ChemCatChem 2020. [DOI: 10.1002/cctc.202000418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Saravanan Kasipandi
- School of Chemical Engineering Sungkyunkwan University (SKKU) 2066 Seobu-ro Jangan-gu, Suwon Gyeonggi-do 16419 Republic of Korea
- Department of Chemical and Metallurgical Engineering School of Chemical Engineering Aalto University Kemistintie 1 P.O. Box 16100 Espoo FI-00076 Finland
| | - Mansoor Ali
- School of Chemical Engineering Sungkyunkwan University (SKKU) 2066 Seobu-ro Jangan-gu, Suwon Gyeonggi-do 16419 Republic of Korea
| | - Yongdan Li
- Department of Chemical and Metallurgical Engineering School of Chemical Engineering Aalto University Kemistintie 1 P.O. Box 16100 Espoo FI-00076 Finland
| | - Jong Wook Bae
- School of Chemical Engineering Sungkyunkwan University (SKKU) 2066 Seobu-ro Jangan-gu, Suwon Gyeonggi-do 16419 Republic of Korea
| |
Collapse
|
47
|
Gnanasekaran K, Chang H, Smeets PJM, Korpanty J, Geiger FM, Gianneschi NC. In Situ Ni 2+ Stain for Liposome Imaging by Liquid-Cell Transmission Electron Microscopy. NANO LETTERS 2020; 20:4292-4297. [PMID: 32453587 DOI: 10.1021/acs.nanolett.0c00898] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Solvated soft matter, both biological and synthetic, can now be imaged in liquids using liquid-cell transmission electron microscopy (LCTEM). However, such systems are usually composed solely of organic molecules (low Z elements) producing low contrast in TEM, especially within thick liquid films. We aimed to visualize liposomes by LCTEM rather than requiring cryogenic TEM (cryoTEM). This is achieved here by imaging in the presence of aqueous metal salt solutions. The increase in scattering cross-section by the cation gives a staining effect that develops in situ, which could be captured by real space TEM and verified by in situ energy dispersive x-ray spectroscopy (EDS). We identified beam-induced staining as a time-dependent process that enhances contrast to otherwise low contrast materials. We describe the development of this imaging method and identify conditions leading to exceptionally low electron doses for morphology visualization of unilamellar vesicles before beam-induced damage propagates.
Collapse
Affiliation(s)
- Karthikeyan Gnanasekaran
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Evanston, Illinois 60208, United States
| | - HanByul Chang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Evanston, Illinois 60208, United States
| | - Paul J M Smeets
- International Institute for Nanotechnology, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- NUANCE Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Joanna Korpanty
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Evanston, Illinois 60208, United States
| | - Franz M Geiger
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Evanston, Illinois 60208, United States
| | - Nathan C Gianneschi
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- International Institute for Nanotechnology, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biomedical Engineering, Pharmacology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Evanston, Illinois 60208, United States
| |
Collapse
|
48
|
Pal N. Nanoporous metal oxide composite materials: A journey from the past, present to future. Adv Colloid Interface Sci 2020; 280:102156. [PMID: 32335382 DOI: 10.1016/j.cis.2020.102156] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/14/2020] [Accepted: 04/06/2020] [Indexed: 11/29/2022]
Abstract
Along with the progress of porous metal oxides, the development of multi-metal oxide composite materials have received a significant attention in the last few decades owing to the interesting physical and chemical properties of the hybrid oxide nanostructures. Consequently, a large number of national and international articles, communications etc. related to these oxide composites have come to light. This review conveys a comprehensive overview of those nanoporous metal oxide composites, illustrating various synthetic pathways and formation mechanisms for composite oxides based on template and non-templated routes. Also, characteristic properties of the synthesized materials analyzed using various techniques have been discussed systematically here. Moreover, the current review will also focus on a thorough literature survey of significant potential applications of these oxide composites in different fields including catalysis, biosensing, adsorption, energy conversion, toxic chemical removal, solar cell etc. demonstrating the impact of the metal compositions, nanostructures on the performances of the materials. Finally, a brief perspective is mentioned indicating the future prospects of these porous composites. Though, the scope of this review is limited to porous metal oxide composites, the information presented here can be helpful for any researchers working in other emerging fields.
Collapse
Affiliation(s)
- Nabanita Pal
- Department of Physics and Chemistry, Mahatma Gandhi Institute of Technology, Gandipet, Hyderabad 500075, India.
| |
Collapse
|
49
|
Akbarian M, Tayebi L, Mohammadi-Samani S, Farjadian F. Mechanistic Assessment of Functionalized Mesoporous Silica-Mediated Insulin Fibrillation. J Phys Chem B 2020; 124:1637-1652. [DOI: 10.1021/acs.jpcb.9b10980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mohsen Akbarian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 7193371, Iran
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, Wisconsin 53233-2186, United States
| | - Soliman Mohammadi-Samani
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 7193371, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7193371, Iran
| | - Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz 7193371, Iran
| |
Collapse
|
50
|
Fabrication of highly ordered mesoporous titania via micelle fusion-aggregation assembly route by synergistic interactions among titanium precursor, block copolymer templates and solvent. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|