1
|
Zhao R, Zhou Y, Shen H, Guan L, Wang Y, Shen X, Wang F, Yao X. Preparation and Encapsulation of DPP-IV Inhibitory Peptides: Challenges and Strategies for Functional Food Development. Foods 2025; 14:1479. [PMID: 40361562 PMCID: PMC12071791 DOI: 10.3390/foods14091479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/16/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Dipeptidyl peptidase IV (DPP-IV) inhibitory peptides have emerged as promising functional ingredients for managing type 2 diabetes due to their ability to enhance insulin secretion and improve glycemic control. This review provides a concise overview of current strategies for the preparation and encapsulation of DPP-IV inhibitory peptides, with a focus on food industry application, evaluating bioinformatics for substrate selection, and methods like mild enzymatic hydrolysis, cost-effective fermentation, and high-purity chemical synthesis for peptide production. Challenges associated with incorporating these peptides into food products are addressed, including impacts on sensory properties, stability during processing and digestion, and the need for effective delivery systems to enhance bioavailability. Potential solutions to improve peptide stability and targeted release, such as emulsions, liposomes, and nanoparticles, are explored. Future research directions are outlined, emphasizing the necessity for scalable production methods, co-encapsulation strategies, and consumer acceptance studies to facilitate the commercialization of DPP-IV inhibitory peptides as functional food ingredients. By addressing these key areas, this review aims to provide a theoretical foundation and practical guidance for the development of DPP-IV inhibitory peptides, paving the way for their broader application in the prevention and management of type 2 diabetes.
Collapse
Affiliation(s)
- Rui Zhao
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (R.Z.); (Y.Z.); (H.S.); (L.G.); (Y.W.); (X.S.); (F.W.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Ye Zhou
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (R.Z.); (Y.Z.); (H.S.); (L.G.); (Y.W.); (X.S.); (F.W.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Huifang Shen
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (R.Z.); (Y.Z.); (H.S.); (L.G.); (Y.W.); (X.S.); (F.W.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Lijun Guan
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (R.Z.); (Y.Z.); (H.S.); (L.G.); (Y.W.); (X.S.); (F.W.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Yao Wang
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (R.Z.); (Y.Z.); (H.S.); (L.G.); (Y.W.); (X.S.); (F.W.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Xinting Shen
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (R.Z.); (Y.Z.); (H.S.); (L.G.); (Y.W.); (X.S.); (F.W.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Fei Wang
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (R.Z.); (Y.Z.); (H.S.); (L.G.); (Y.W.); (X.S.); (F.W.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Xinmiao Yao
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China; (R.Z.); (Y.Z.); (H.S.); (L.G.); (Y.W.); (X.S.); (F.W.)
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| |
Collapse
|
2
|
Jobe MC, Mwanza M. Inhibitive effect of Urginea epigea methanolic extract and silver/zinc oxide nanoparticles on Aspergillus and aflatoxin production. PLoS One 2025; 20:e0320454. [PMID: 40273086 PMCID: PMC12021180 DOI: 10.1371/journal.pone.0320454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/18/2025] [Indexed: 04/26/2025] Open
Abstract
Food crops contaminated with Aspergillus flavus due to aflatoxins can be hazardous for both humans and animals, hence endeavours are being explored to find natural antifungals to combat the contamination and mycotoxin issue. The current study used the agar dilution method to assess the effect of Urginea epigea methanolic extract and biosynthesized silver-zinc oxide nanoparticles on the toxigenic strain of Aspergillus. In the experiment, an aflatoxin-producing strain was used, and potato dextrose agar was diluted with methanolic extract from U. epigea and silver/zinc oxide nanoparticles at concentrations of 0, 6.5, 12, 25, and 50 mg/mL, respectively. Mycelia growth diameters were measured to test inhibitory activity. A significant decrease in fungal growth was observed at different concentrations (P < 0,05) when compared to the control. At 50 mg/mL, the extract of U. epigea significantly reduced the growth of A. flavus by 100%. PCR data shows that the expression of aflD and aflR was significantly downregulated (P < 0.005) by the treatments, with U. epigea having a 50fold decrease when compared to Ag/ZnO nanoparticles. Compared to the controls, Ag/ZnO nanoparticles down-regulated the expression of aflD and aflR in A. flavus by more than 30-fold. However, there was less expression by nanoparticles, as evidenced by the sequence alignment. A. flavus growth and aflatoxin B1 production were both considerably suppressed by U. epigea methanolic extract, through the presence of phytochemicals thus has the potential to be employed as an alternative antifungal agent to control aflatoxigenic fungus. The study recommends investigating and extracting the active compound present in the U. epigea bulb.
Collapse
Affiliation(s)
- Martha Cebile Jobe
- Department of Animal Health, North-West University, Mahikeng Campus, Mmabatho, Mahikeng, South Africa
- Food Security and Safety Focus Area, North-West University, Mahikeng Campus, Mmabatho, Mahikeng, South Africa
| | - Mulunda Mwanza
- Department of Animal Health, North-West University, Mahikeng Campus, Mmabatho, Mahikeng, South Africa
- Food Security and Safety Focus Area, North-West University, Mahikeng Campus, Mmabatho, Mahikeng, South Africa
| |
Collapse
|
3
|
Maslizan M, Haris MS, Ajat M, Md Jamil SNA, Azhar SC, Zahid NI, Mat Azmi ID. Non-lamellar lyotropic liquid crystalline nanoparticles as nanocarriers for enhanced drug encapsulation of atorvastatin calcium and proanthocyanidins. Chem Phys Lipids 2024; 260:105377. [PMID: 38325712 DOI: 10.1016/j.chemphyslip.2024.105377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/08/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Atorvastatin calcium (ATV) and proanthocyanidins (PAC) have a strong antioxidant activity, that can benefit to reduce the atherosclerotic plaque progression. Unfortunately, the bioavailability of ATV is greatly reduced due to its limited drug solubility while the PAC drug is unstable upon exposure to the atmospheric oxygen. Herein, the lyotropic liquid crystalline nanoparticles (LLCNPs) constructed by a binary mixture of soy phosphatidylcholine (SPC) and citric acid ester of monoglyceride (citrem) at different weight ratios were used to encapsulate the hydrophobic ATV and hydrophilic PAC. The LLCNPs were further characterized by small-angle X-ray scattering and dynamic light scattering. Depending on the lipid composition, the systems have a size range of 140-190 nm and were able to encapsulate both drugs in the range of 90-100%. Upon increasing the citrem content of drug-loaded LLCNPs, the hexosomes (H2) was completely transformed to an emulsified inverse micellar (L2). The optimum encapsulation efficiency (EE) of ATV and PAC were obtained in citrem/SPC weight ratio 4:1 (L2) and 1:1 (H2), respectively. There was a substantial change in the mean size and PDI of the nanoparticles upon 30 days of storage with the ATV-loaded LLCNPs exhibiting greater colloidal instability than PAC-loaded LLCNPs. The biphasic released pattern (burst released at the initial stage followed by the sustained released at the later stage) was perceived in ATV formulation, while the burst drug released pattern was observed in PAC formulations that could be attributed by its internal H2 structure. Interestingly, the cytokine studies showed that the PAC-LLCNPs promisingly up regulate the expressions of tumor necrosis factor-alpha (TNF-α) better than the drug-free and ATV-loaded LLCNPs samples. The structural tunability of citrem/SPC nanoparticles and their effect on physicochemical characteristic, biological activities and potential as an alternative drug delivery platform in the treatment of atherosclerosis are discussed.
Collapse
Affiliation(s)
- Mardhiah Maslizan
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Muhammad Salahuddin Haris
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, 25200 Kuantan, Pahang, Malaysia
| | - Mokrish Ajat
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
| | - Siti Nurul Ain Md Jamil
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia; Centre of Foundation Studies for Agricultural Science, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
| | - Shah Christirani Azhar
- Centre of Foundation Studies for Agricultural Science, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
| | - N Idayu Zahid
- Centre for Fundamental and Frontier Sciences in Nanostructure Self-Assembly, Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Intan Diana Mat Azmi
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia; Centre of Foundation Studies for Agricultural Science, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
4
|
Siddiqui SA, Singh S, Bahmid NA, Sasidharan A. Applying innovative technological interventions in the preservation and packaging of fresh seafood products to minimize spoilage - A systematic review and meta-analysis. Heliyon 2024; 10:e29066. [PMID: 38655319 PMCID: PMC11035943 DOI: 10.1016/j.heliyon.2024.e29066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/12/2024] [Accepted: 03/29/2024] [Indexed: 04/26/2024] Open
Abstract
Seafood, being highly perishable, faces rapid deterioration in freshness, posing spoilage risks and potential health concerns without proper preservation. To combat this, various innovative preservation and packaging technologies have emerged. This review delves into these cutting-edge interventions designed to minimize spoilage and effectively prolong the shelf life of fresh seafood products. Techniques like High-Pressure Processing (HPP), Modified Atmosphere Packaging (MAP), bio-preservation, and active and vacuum packaging have demonstrated the capability to extend the shelf life of seafood products by up to 50%. However, the efficacy of these technologies relies on factors such as the specific type of seafood product and the storage temperature. Hence, careful consideration of these factors is essential in choosing an appropriate preservation and packaging technology.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315 Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing Str. 7, 49610, Quakenbrück, Germany
| | - Shubhra Singh
- Department of Tropical Agriculture and International cooperation, National Pingtung University of Science and Technology, 91201, Taiwan
| | - Nur Alim Bahmid
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Gading, Playen, Gunungkidul, 55861, Yogyakarta, Indonesia
| | - Abhilash Sasidharan
- Department of Fish Processing Technology, Kerala University of Fisheries and Ocean Studies, Panangad P.O 682506, Kerala, India
| |
Collapse
|
5
|
Prawulanari AS, Noisa P, Thumanu K, Yongsawatdigul J. Effect of ultrasound and thermal pretreatments on antioxidant activity of egg white hydrolysate. J Food Sci 2024; 89:356-369. [PMID: 38126113 DOI: 10.1111/1750-3841.16886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/08/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
The use of ultrasonic (US) treatment of egg white prior to enzymatic hydrolysis to produce hydrolysate with antioxidant activity was investigated. The state of egg white (raw vs. cooked form) along with two levels of Alcalase (1% and 10% (w/w) protein) was applied. Hydrolysis and antioxidant activity of hydrolysate increased by US pretreatment at intensity of 41.53 W/cm2 . The hydrolysate prepared from US treatment on raw egg white hydrolyzed by 1% Alcalase (US-R1%) showed the lowest degree of hydrolysis (DH); however, its 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging and ferric reducing antioxidant power activities were the highest. In contrast, the highest cytoprotective effect and intracellular reactive oxygen species scavenging activity were more notable in the hydrolysate prepared from US treatment of boiled egg white hydrolyzed by 10% Alcalase (US-B10%), which also exhibited the highest DH and metal chelation ability. The hydrolysate possessing cellular antioxidant activity (CAA) showed the highest proportion of small molecular weight peptides (<200 Da). Fourier-transform infrared spectroscopy revealed an increase of N- and C-terminal ends at 1500 and 1400 cm-1 , respectively, in concomitant with a decrease of amide I. Principal component analysis showed clear differentiation of spectra from different levels of enzyme according to their DH, C-terminal ends, and antioxidant activity. Our findings suggested that cooked egg white followed by US pretreatment was beneficial to produce hydrolysate containing high CAA.
Collapse
Affiliation(s)
- Astri Suryani Prawulanari
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Parinya Noisa
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Kanjana Thumanu
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, Thailand
| | - Jirawat Yongsawatdigul
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| |
Collapse
|
6
|
Cui H, Jiang Q, Gao N, Tian J, Wu Y, Li J, Yang S, Zhang S, Si X, Li B. Complexes of glycated casein and carboxymethyl cellulose enhance stability and control release of anthocyanins. Food Res Int 2024; 176:113804. [PMID: 38163683 DOI: 10.1016/j.foodres.2023.113804] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/21/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
To improve the stability and sustained-release property of anthocyanins (ACNs), casein (CA) - dextran (DEX) glycated conjugates (UGCA) and carboxymethyl cellulose (CMC) were used to prepare ACNs-loaded binary and ternary complexes. The ACNs-loaded binary complexes (ACNs-UGCA) and ternary complexes (ACNs-UGCA-CMC) achieved by 8 min' ultrasonic treatment with 40 % amplitude. The binary and ternary complexes showed spherical structure and good dispersibility, with the average size of 121.2 nm and 132.4 nm respectively. The anthocyanins encapsulation efficiency of ACNs-UGCA-CMC increased almost 20 % than ACNs-UGCA. ACNs-UGCA-CMC had better colloidal stabilities than ACNs-UGCA, such as thermal stability and dilution stability. Simultaneously, both of the binary and ternary complexes significantly prevented anthocyanins from being degraded by heat treatment, ascorbic acid, sucrose and simulated gastrointestinal environment. The protective effect of ACNs-UGCA-CMC was more significant. Furthermore, ACNs-UGCA-CMC showed slower anthocyanins release in simulated releasing environment in vitro and a long retention time in vivo. Our current study provides a potential delivery for improving the stability and controlling release of anthocyanins.
Collapse
Affiliation(s)
- Huijun Cui
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Qiao Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Ningxuan Gao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yunan Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Jiaxin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Shufang Yang
- Zhejiang Lanmei Technology Co., Ltd., Zhuji, Zhejiang 311800, China
| | - Shugang Zhang
- Yunneng (Dalian) Biotechnology Co., Ltd., Dalian, Liaoning 116600, China
| | - Xu Si
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
7
|
Singh DP, Gopinath P. Tragacanth gum-based nano-nutraceuticals synthesis by encapsulation of beetroot juice and Ocimum basilicum leaves for micronutrient deficient population. Int J Biol Macromol 2023; 253:127502. [PMID: 37863139 DOI: 10.1016/j.ijbiomac.2023.127502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 10/22/2023]
Abstract
Micronutrient deficiencies, such as iron, folic acid, and vitamins C and D, are currently prevalent due to inadequate consumption of natural food sources, namely raw vegetables and fruits. This deficiency is compounded by the growing reliance on synthetic nutraceuticals and processed food, which exhibit poor absorbency within the gastrointestinal tract. Scientific studies consistently indicate that naturally prepared whole foods are superior in terms of nutrient absorption compared to processed and synthetic supplements. To address this issue, we utilized FDA-approved tragacanth gum (TG) in the synthesis of nano-nutraceuticals by encapsulating beetroot juice and ball-milled sweet basil (Ocimum basilicum). TG, in its micro or macro form, possesses the remarkable ability to form hydrogels capable of absorbing water up to 50 times its weight. However, the hydrogel-forming property diminishes when TG is reduced to the nanoscale. We effectively exploited these properties to facilitate the synthesis of nano-nutraceuticals. The procedure involved encapsulating beetroot juice and sweet basil nanopowder using TG hydrogel, followed by freeze-drying. Subsequently, the freeze-dried encapsulated TG composite was subjected to ball-milling to achieve the desired nano-nutraceuticals. These nano-nutraceuticals naturally contain essential nutrients such as iron, folic acid, ascorbic acid, chlorophyll, niacin, and sugars, without the need for chemical processing or preservatives.
Collapse
Affiliation(s)
- Dravin Pratap Singh
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - P Gopinath
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India; Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
8
|
Barani M, Paknia F, Roostaee M, Kavyani B, Kalantar-Neyestanaki D, Ajalli N, Amirbeigi A. Niosome as an Effective Nanoscale Solution for the Treatment of Microbial Infections. BIOMED RESEARCH INTERNATIONAL 2023; 2023:9933283. [PMID: 37621700 PMCID: PMC10447041 DOI: 10.1155/2023/9933283] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/27/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Numerous disorders go untreated owing to a lack of a suitable drug delivery technology or an appropriate therapeutic moiety, particularly when toxicities and side effects are a major concern. Treatment options for microbiological infections are not fulfilled owing to significant adverse effects or extended therapeutic options. Advanced therapy options, such as active targeting, may be preferable to traditional ways of treating infectious diseases. Niosomes can be defined as microscopic lamellar molecules formed by a mixture of cholesterol, nonionic surfactants (alkyl or dialkyl polyglycerol ethers), and sometimes charge-inducing agents. These molecules comprise both hydrophilic and hydrophobic moieties of varying solubilities. In this review, several pathogenic microbes such as Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Plasmodium, Leishmania, and Candida spp. have been evaluated. Also, the development of a proper niosomal formulation for the required application was discussed. This review also reviews that an optimal formulation is dependent on several aspects, including the choice of nonionic surfactant, fabrication process, and fabrication parameters. Finally, this review will give information on the effectiveness of niosomes in treating acute microbial infections, the mechanism of action of niosomes in combating microbial pathogens, and the advantages of using niosomes over other treatment modalities.
Collapse
Affiliation(s)
- Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Paknia
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran
| | - Maryam Roostaee
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Batoul Kavyani
- Department of Medical Microbiology (Bacteriology & Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Davood Kalantar-Neyestanaki
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medical Microbiology (Bacteriology & Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Alireza Amirbeigi
- Department of General Surgery, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
9
|
Wardana AP, Aminah NS, Kristanti AN, Fahmi MZ, Zahrah HI, Widiyastuti W, Ajiz HA, Zubaidah U, Wiratama PA, Takaya Y. Nano Uncaria gambir as Chemopreventive Agent Against Breast Cancer. Int J Nanomedicine 2023; 18:4471-4484. [PMID: 37555190 PMCID: PMC10406122 DOI: 10.2147/ijn.s403385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/19/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Breast cancer is one of the main causes of death in women. Uncaria gambir is an Indonesian herbal plant that can be used as an anti-cancer. However, herbal medicines have low bioavailability, which affects their bioactivity. Nanoencapsulation can increase bioavailability and stability of bioactive compounds in herbal medicines. PURPOSE This recent finding tried to unravel anti-cancer and chemopreventive of U. gambir nano-encapsulated by Na-alginate. STUDY DESIGN U. gambir bioactive compounds were isolated and characterized using UV-Vis spectrometer, FTIR, NMR and HR-MS. U. gambir extract was nanoencapsulated using Na-alginate. Anti-cancer effect was assessed by MTT assay towards T47D cell. Meanwhile, a chemopreventive analysis was carried out in breast cancer mice-induced benzo[α]pyrene. The healthy mice were divided into 8 groups comprising control and treatment. RESULTS Elucidation of U. gambir ethyl acetate extract confirmed high catechin content, 89.34% (w/w). Successful nanoencapsulation of U. gambir (G-NPs) was indicated. The particle size of G-NPs was 78.40 ± 12.25 nm. Loading efficiency (LE) and loading amount (LA) of G-NPs were 97.56 ± 0.04% and 32.52 ± 0.01%, respectively. G-NPs had an EC50 value of 10.39 ± 3.50 µg/mL, which was more toxic than the EC50 value of extract towards the T47D cell line. Administration of 200 mg/kg BW G-NPs to mice induced by benzo[α]pyrene exhibited SOD and GSH levels of 13.69 ng/mL and 455.6 ng/mL. In addition, the lowest TNF-α level was 27.96 ng/mL. A dose of 100 mg/kg BW G-NPs could best increase CAT levels by 7.18 ng/mL. There was no damage or histological abnormalities found in histological analysis of the breast tissue in the group given 200 mg/kg BW G-NPs.
Collapse
Affiliation(s)
- Andika Pramudya Wardana
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Nanik Siti Aminah
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya, East Java, Indonesia
- Biotechnology of Tropical Medicinal Plants Research Group, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Alfinda Novi Kristanti
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya, East Java, Indonesia
- Biotechnology of Tropical Medicinal Plants Research Group, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Mochamad Zakki Fahmi
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya, East Java, Indonesia
| | | | - W Widiyastuti
- Department of Chemical Engineering, Faculty of Industrial Technology and Systems Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, East Java, Indonesia
| | - Hendrix Abdul Ajiz
- Department of Chemical Engineering, Faculty of Industrial Technology and Systems Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, East Java, Indonesia
| | - Ummi Zubaidah
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Priangga Adi Wiratama
- Department of Anatomic Pathology, Faculty of Medicine, Universitas Airlangga – RSUD Dr. Soetomo Academic General Hospital, Surabaya, East Java, Indonesia
| | | |
Collapse
|
10
|
Guo M, Cui W, Li Y, Fei S, Sun C, Tan M, Su W. Microfluidic fabrication of size-controlled nanocarriers with improved stability and biocompatibility for astaxanthin delivery. Food Res Int 2023; 170:112958. [PMID: 37316049 DOI: 10.1016/j.foodres.2023.112958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/25/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023]
Abstract
Improving the stability of astaxanthin (AST) is a vital way to enhance its oral bioavailability. In this study, a microfluidic strategy for the preparation of astaxanthin nano-encapsulation system was proposed. Thanks to the precise control of microfluidic and the rapid preparation ability of the Mannich reaction, the resulting astaxanthin nano-encapsulation system (AST-ACNs-NPs) was obtained with average sizes of 200 nm, uniform spherical shape and high encapsulation rate of 75%. AST was successfully doped into the nanocarriers, according to the findings of the DFT calculation, fluorescence spectrum, Fourier transform spectroscopy, and UV-vis absorption spectroscopy. Compared with free AST, AST-ACNs-NPs showed better stability under the conditions of high temperature, pH and UV light with<20% activity loss rate. The nano-encapsulation system containing AST could significantly reduce the hydrogen peroxide produced by reactive oxygen species, keep the potential of the mitochondrial membrane at a healthy level, and improve the antioxidant ability of H2O2-induced RAW 264.7 cells. These results indicated that microfluidics-based astaxanthin delivery system is an effective solution to improve the bioaccessibility of bioactive substances and has potential application value in food industry.
Collapse
Affiliation(s)
- Meng Guo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Weina Cui
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Yuanchao Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| | - Siyuan Fei
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Chaofan Sun
- College of Science, Northeast Forestry University, Harbin 150040, Heilongjiang, China
| | - Mingqian Tan
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Wentao Su
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
11
|
Lv JM, Ismail BB, Ye XQ, Zhang XY, Gu Y, Chen JC. Ultrasonic-assisted nanoencapsulation of kiwi leaves proanthocyanidins in liposome delivery system for enhanced biostability and bioavailability. Food Chem 2023; 416:135794. [PMID: 36878119 DOI: 10.1016/j.foodchem.2023.135794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/27/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023]
Abstract
The poor biostability and bioavailability of proanthocyanidins limit their application. In this study, it was hypothesized that encapsulation in lecithin-based nanoliposomes using ultrasonic technology improves the above properties. Based on preliminary experiments, the effects of lecithin mass ratio (1-9%, wt.), pH (3.2-6.8), ultrasonic power (0-540 W), and time (0-10 min) on biostability and bioavailability of purified kiwi leaves proanthocyanidins (PKLPs) were determined. Nanoliposomes prepared optimally with lecithin (5%, wt.), pH = 3.2, ultrasonic power (270 W), and time (5 min) demonstrated a significantly (p < 0.05) improved physicochemical stability, homogeneity, and high encapsulation efficiency (73.84%) relative to control. The PKLPs bioaccessibility during in vitro digestion increased by 2.28-3.07-fold, with a remarkable sustained release and delivery to the small intestine. Similar results were obtained by in vivo analyses, showing over 200% increase in PKLPs bioaccessibility compared to the control. Thus, PKLPs-loaded nanoliposomes are promising candidates for foods and supplements for novel applications.
Collapse
Affiliation(s)
- Ji-Min Lv
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Balarabe B Ismail
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China; Department of Food Science & Technology, Faculty of Agriculture, Bayero University, Kano, PMB 3011, Kano, Nigeria.
| | - Xing-Qian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Xia-Yan Zhang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Ye Gu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Jian-Chu Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China.
| |
Collapse
|
12
|
Rajasekaran B, Singh A, Ponnusamy A, Patil U, Zhang B, Hong H, Benjakul S. Ultrasound treated fish myofibrillar protein: Physicochemical properties and its stabilizing effect on shrimp oil-in-water emulsion. ULTRASONICS SONOCHEMISTRY 2023; 98:106513. [PMID: 37429184 PMCID: PMC10336788 DOI: 10.1016/j.ultsonch.2023.106513] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/21/2023] [Accepted: 07/02/2023] [Indexed: 07/12/2023]
Abstract
Effects of ultrasonication at different amplitudes (40% and 60%) and time (5, 10, and 15 min) on the physicochemical and emulsifying properties of the fish myofibrillar protein (FMP) were investigated. Solubility, surface hydrophobicity, and emulsifying properties were augmented when FMP was subjected to ultrasonication at 40% amplitude for 15 min (p < 0.05). Protein pattern study revealed that augmenting amplitude and duration of ultrasound treatment reduced band intensity of myosin heavy chain. Ultrasound treatment facilitated the adsorption of FMP on oil droplets as indicated by the increases in both adsorbed and interfacial protein contents (p < 0.05). Ultrasound-treated FMP (UFMP) sample showed the alteration in chemical bonds as depicted by Fourier transform infrared (FTIR) spectra. Ultrasound treatment altered the β-sheet and random coil of FMP. During storage for 30 days at 30 °C, UFMP stabilized shrimp oil (SO)-in-water emulsion had higher turbidity but lower d32, d43, and polydispersity index than emulsion stabilized by untreated FMP (p < 0.05). Furthermore, emulsion stabilized by UFMP had lower flocculation and coalescence indices (p < 0.05). Microstructure observation revealed smaller droplet sizes and higher stability of droplets in emulsion stabilized by UFMP. Confocal laser scanning microscopic images demonstrated a monodisperse emulsion stabilized by UFMP. This coincided with higher viscosity and modulus values (G' and G″ ). Emulsion stabilized by UFMP exhibited viscous, shear-thinning, and non-Newtonian behavior and no phase separation occurred during storage. Therefore, ultrasonication was proven to be a potential method for enhancing the emulsifying properties of FMP and improving the stability of SO-in-water emulsion during prolonged storage.
Collapse
Affiliation(s)
- Bharathipriya Rajasekaran
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Avtar Singh
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Arunachalasivamani Ponnusamy
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Umesh Patil
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Bin Zhang
- College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
13
|
Shabbirahmed AM, Joel J, Gomez A, Patel AK, Singhania RR, Haldar D. Environment friendly emerging techniques for the treatment of waste biomass: a focus on microwave and ultrasonication processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:79706-79723. [PMID: 37336854 DOI: 10.1007/s11356-023-28271-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/11/2023] [Indexed: 06/21/2023]
Abstract
In the recent past, an increasing interest is mostly observed in using microwave and ultrasonic irradiation to aid the biological conversion of waste materials into value-added products. This study is focused on various individual impacts of microwaves and ultrasonic waves for the treatment of biomass before the synthesis of value-added products. Following, a comprehensive review of the mechanisms governing microwaves and ultrasonication as the treatment methods, their effects on biomass disruption, solubilization of organic matter, modification of the crystalline structure, enzymatic hydrolysis and production of reducing sugars was performed. However, based on the lab-scale experiments evaluated, microwaves and ultrasonication were studied to be economically and energetically ineffective despite their beneficial effects on the waste biomass. This article reviews some of the difficulties associated with using microwaves and ultrasonic irradiation for the efficient processing of waste biomasses and identified some potential directions for future study.
Collapse
Affiliation(s)
- Asma Musfira Shabbirahmed
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India
| | - Jesse Joel
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India
| | - Anbu Gomez
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow, 226029, India
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Dibyajyoti Haldar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India.
| |
Collapse
|
14
|
Mobasheri K, Zaefizadeh M, Ghobeh M, Eidi A. Synthesis of Novel Magnetic Quercetin-Neuropeptide Nanocomposite as a Smart Nano-Drug Shuttle System: Investigation of Its Effect on Behavior, Histopathological Characteristics, and Expression of MAPT and APP Genes in Alzheimer's Disease Rats. J Alzheimers Dis 2023:JAD221095. [PMID: 37393494 DOI: 10.3233/jad-221095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common type of dementia. The drugs introduced for this disease have many side effects and limitations in use, so the production of a suitable herbal medicine to cure AD patients is essential. OBJECTIVE The aim of this research is to make a magnetic neuropeptide nano shuttle as a targeted carrier for the transfer of quercetin to the brains of AD model rats. METHODS In this work, a magnetic quercetin-neuropeptide nanocomposite (MQNPN) was fabricated and administered to the rat's brain by the shuttle drug of the Margatoxin scorpion venom neuropeptide, and will be a prospect for targeted drug delivery in AD. The MQNPN has been characterized by FTIR, spectroscopy, FE-SEM, XRD, and VSM. Investigations into the efficacy of MQNPN, MTT, and real Time PCR for MAPT and APP genes expression were performed. After 7 days treatment with Fe3O4 (Ctr) and MQNPN treatment in AD rat, superoxide dismutase activity and quercetin in blood serum and brain was detected. Hematoxylin-Eosin staining was applied for histopathological analysis. RESULTS Analysis of data showed that MQNPN increased the activity of superoxide dismutase. The histopathology results of the hippocampal region of AD rats also confirmed their improvement after treatment with MQNPN. MQNPN treatment caused a significant decrease in the relative expression of MAPT and APP genes. CONCLUSION MQNPN is a suitable carrier for the transfer of quercetin to the rat hippocampus, and has a significant effect in reducing AD symptoms in terms of histopathology, behavioral testing, and changing the expression of AD-related genes.
Collapse
Affiliation(s)
- Kamelia Mobasheri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Zaefizadeh
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Biology, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| | - Maryam Ghobeh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Akram Eidi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
15
|
López KL, Ravasio A, González-Aramundiz JV, Zacconi FC. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) Prepared by Microwave and Ultrasound-Assisted Synthesis: Promising Green Strategies for the Nanoworld. Pharmaceutics 2023; 15:1333. [PMID: 37242575 PMCID: PMC10221859 DOI: 10.3390/pharmaceutics15051333] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Many pharmaceutically active molecules are highly lipophilic, which renders their administration and adsorption in patients extremely challenging. Among the countless strategies to overcome this problem, synthetic nanocarriers have demonstrated superb efficiency as drug delivery systems, since encapsulation can effectively prevent a molecules' degradation, thus ensuring increased biodistribution. However, metallic and polymeric nanoparticles have been frequently associated with possible cytotoxic side effects. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC), which are prepared with physiologically inert lipids, therefore emerged as an ideal strategy to bypass toxicities issues and avoid the use of organic solvents in their formulations. Different approaches to preparation, using only moderate amounts of external energy to facilitate a homogeneous formation, have been proposed. Greener synthesis strategies have the potential to provide faster reactions, more efficient nucleation, better particle size distribution, lower polydispersities, and furnish products with higher solubility. Particularly microwave-assisted synthesis (MAS) and ultrasound-assisted synthesis (UAS) have been utilized in the manufacturing of nanocarrier systems. This narrative review addresses the chemical aspects of those synthesis strategies and their positive influence on the characteristics of SLNs and NLCs. Furthermore, we discuss the limitations and future challenges for the manufacturing processes of both types of nanoparticles.
Collapse
Affiliation(s)
- Karla L. López
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
- Escuela de Química y Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Andrea Ravasio
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - José Vicente González-Aramundiz
- Escuela de Química y Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Centro de Investigación en Nanotecnología y Materiales Avanzados, Pontificia, CIEN-UC, Universidad Católica de Chile, Santiago 7820436, Chile
| | - Flavia C. Zacconi
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
- Centro de Investigación en Nanotecnología y Materiales Avanzados, Pontificia, CIEN-UC, Universidad Católica de Chile, Santiago 7820436, Chile
- Center for Nanomedicine, Diagnostic & Drug Development (ND3), Universidad de Talca, Talca 3460000, Chile
| |
Collapse
|
16
|
Dima C, Assadpour E, Nechifor A, Dima S, Li Y, Jafari SM. Oral bioavailability of bioactive compounds; modulating factors, in vitro analysis methods, and enhancing strategies. Crit Rev Food Sci Nutr 2023; 64:8501-8539. [PMID: 37096550 DOI: 10.1080/10408398.2023.2199861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Foods are complex biosystems made up of a wide variety of compounds. Some of them, such as nutrients and bioactive compounds (bioactives), contribute to supporting body functions and bring important health benefits; others, such as food additives, are involved in processing techniques and contribute to improving sensory attributes and ensuring food safety. Also, there are antinutrients in foods that affect food bioefficiency and contaminants that increase the risk of toxicity. The bioefficiency of food is evaluated with bioavailability which represents the amount of nutrients or bioactives from the consumed food reaching the organs and tissues where they exert their biological activity. Oral bioavailability is the result of some physicochemical and biological processes in which food is involved such as liberation, absorption, distribution, metabolism, and elimination (LADME). In this paper, a general presentation of the factors influencing oral bioavailability of nutrients and bioactives as well as the in vitro techniques for evaluating bioaccessibility and is provided. In this context, a critical analysis of the effects of physiological factors related to the characteristics of the gastrointestinal tract (GIT) on oral bioavailability is discussed, such as pH, chemical composition, volumes of gastrointestinal (GI) fluids, transit time, enzymatic activity, mechanical processes, and so on, and the pharmacokinetics factors including BAC and solubility of bioactives, their transport across the cell membrane, their biodistribution and metabolism. The impact of matrix and food processing on the BAC of bioactives is also explained. The researchers' recent concerns for improving oral bioavailability of nutrients and food bioactives using both traditional techniques, for example, thermal treatments, mechanical processes, soaking, germination and fermentation, as well as food nanotechnologies, such as loading of bioactives in different colloidal delivery systems (CDSs), is also highlighted.
Collapse
Affiliation(s)
- Cristian Dima
- Faculty of Food Science and Engineering, "Dunarea de Jos" University of Galati, Galati, Romania
| | - Elham Assadpour
- Food Industry Research Co, Gorgan, Iran
- Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Alexandru Nechifor
- Faculty of Medicine and Pharmacy - Medical Clinical Department, Dunarea de Jos" University of Galati, Galati, Romania
| | - Stefan Dima
- Faculty of Science and Environment, "Dunarea de Jos" University of Galati, Galati, Romania
| | - Yan Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
17
|
Tavakolian M, Koshani R, Tufenkji N, van de Ven TGM. Antibacterial Pickering emulsions stabilized by bifunctional hairy nanocellulose. J Colloid Interface Sci 2023; 643:328-339. [PMID: 37080040 DOI: 10.1016/j.jcis.2023.04.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/22/2023] [Accepted: 04/10/2023] [Indexed: 04/22/2023]
Abstract
HYPOTHESIS Pickering emulsions, defined as emulsions that are stabilized by colloidal particles, provide dispersion stability by preventing coalescence of the dispersed phase. In this study, we used a bifunctional hairy nanocellulose (BHNC) bearing both aldehyde and carboxylic acid groups as an stabilizer. We hypothesize that these particles as Pickering stabilizers can effectively reside at the oil-water interface, better than hairy nanocelluloses containing only carboxyl groups or aldehyde groups, and provide long-term stability without the need of any surfactants. EXPERIMENTS Varying concentrations of BHNC were tested to explore the optimal concentration that provides emulsion stability. The effects of various preparation conditions such as salt and pH were also studied. Finally, carvacrol, an antibacterial essential oil, was loaded in the oil phase to develop antibacterial emulsions. FINDINGS It was shown that a 1% BHNC suspension provides 90% and 80% stability for a duration of 30 and 60 days, respectively. A theoretical model using nuclear magnetic resonance relaxometry data is developed to prove that only a monolayer of BHNC covers oil droplets. Increasing the concentration of BHNC decreased the size of oil droplets, which as a result increases the surface area available for monolayer coverage. It was also shown that the antibacterial emulsions are highly effective against Gram-negative (i.e. E. coli) and Gram-positive (i.e. S. aureus) bacteria. Accordingly, BHNC as a highly functionalized bio-derived colloidal particle opens new opportunities for engineering highly stable Pickering emulsions.
Collapse
Affiliation(s)
- Mandana Tavakolian
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, QC H3A 0C5, Canada; Pulp and Paper Research Centre, McGill University, 3420 University Street, Montreal, QC H3A 2A7, Canada; Quebec Centre for Advanced Materials (QCAM), 3420 University Street, Montreal, QC H3A 2A7, Canada.
| | - Roya Koshani
- Pulp and Paper Research Centre, McGill University, 3420 University Street, Montreal, QC H3A 2A7, Canada; Quebec Centre for Advanced Materials (QCAM), 3420 University Street, Montreal, QC H3A 2A7, Canada; Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada.
| | - Nathalie Tufenkji
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, QC H3A 0C5, Canada; Quebec Centre for Advanced Materials (QCAM), 3420 University Street, Montreal, QC H3A 2A7, Canada.
| | - Theo G M van de Ven
- Pulp and Paper Research Centre, McGill University, 3420 University Street, Montreal, QC H3A 2A7, Canada; Quebec Centre for Advanced Materials (QCAM), 3420 University Street, Montreal, QC H3A 2A7, Canada; Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada.
| |
Collapse
|
18
|
Ratova DMV, Mikheev IV, Chermashentsev GR, Maslakov KI, Kottsov SY, Stolbov DN, Maksimov SV, Sozarukova MM, Proskurnina EV, Proskurnin MA. Green and Sustainable Ultrasound-Assisted Anodic Electrochemical Preparation of Graphene Oxide Dispersions and Their Antioxidant Properties. Molecules 2023; 28:molecules28073238. [PMID: 37050001 PMCID: PMC10096744 DOI: 10.3390/molecules28073238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
A fast method for preparing aqueous graphene oxide (GO) dispersions by electrochemical oxidation of a graphite anode without preliminary intercalation with oxidizing agents is proposed. Ultrasonic probing was used in the modulation mode of ultrasonic waves (work/rest) for more efficient graphite oxidation-exfoliation. It is shown that the 4/2 s mode of ultrasonic modulation is the most effective due to the probe material's low corrosion while maintaining the optimum synthesis temperature not exceeding 30-35 °C and achieving the best characteristics of the resulting product. Three cases of anodic oxidation of graphite to obtain graphene oxide were considered: (1) a combined cathode-anode compartment, (2) a split cathode-anode salt-bridged compartment, and (3) separated anode compartment with a 3.5 kDa dialysis membrane. It was determined that the approach to synthesis with a divided cathode-anode compartment makes it possible to obtain GO sheets with fewer defects compared to chemical methods or methods with a combined cathode-anode compartment and makes it possible to control the oxidation degree of the material (C:O ratio) by varying the current density. The prepared samples showed good stability for more than six months. The spectral and morphological characteristics were studied. Using chemiluminometry in the luminol/Co(II)/H2O2 system, the antioxidant properties concerning three key reactive oxygen species (H2O2, superoxide anion radical, and hydroxyl radical) were demonstrated. It was also shown that the prepared GO dispersions do not induce lipid and phospholipid peroxidation.
Collapse
Affiliation(s)
- Daria-Maria V Ratova
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119991 Moscow, Russia
| | - Ivan V Mikheev
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119991 Moscow, Russia
| | - Grigoryi R Chermashentsev
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119991 Moscow, Russia
| | - Konstantin I Maslakov
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119991 Moscow, Russia
| | - Sergei Yu Kottsov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 117901 Moscow, Russia
| | - Dmitrii N Stolbov
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119991 Moscow, Russia
| | - Sergey V Maksimov
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119991 Moscow, Russia
| | - Madina M Sozarukova
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119991 Moscow, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 117901 Moscow, Russia
| | - Elena V Proskurnina
- Laboratory of Molecular Biology, Research Centre for Medical Genetics, 1 Moskvorechye St., 115522 Moscow, Russia
| | - Mikhail A Proskurnin
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, 119991 Moscow, Russia
| |
Collapse
|
19
|
Tan C, Zhu Y, Ahari H, Jafari SM, Sun B, Wang J. Sonochemistry: An emerging approach to fabricate biopolymer cross-linked emulsions for the delivery of bioactive compounds. Adv Colloid Interface Sci 2023; 311:102825. [PMID: 36525841 DOI: 10.1016/j.cis.2022.102825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Sonochemistry shows remarkable potential in the synthesis or modification of new micro/nanomaterials, particularly the cross-linked emulsions for drug delivery. However, the trend of utilizing sonochemical emulsions for delivery of food-derived bioactive compounds has been just started. The extension of sonochemistry as a tool for engineering bioactive delivery systems will make the approach more universal and greatly increase its applications in the food industry. This review summarizes different types of biopolymeric cross-linked emulsions (CLEs) synthesized via sonochemical approach, including CLEs, surface-modified CLEs, cross-linked high internal phase emulsions, and some novel systems templated on CLEs. Special emphasis is directed toward the cross-linking mechanisms of biopolymers at the oil-water interfaces under acoustic cavitation and the physicochemical principles underlying sonochemical fabrication. We also highlight the advantages and challenges associated with the delivery performance of each system for bioactive compounds. The potential in delivering bioactives using sonochemical emulsions has not been fully reached. There are still a number of issues that need to be overcome, including low cross-linking degree of biopolymers, degradation of bioactives in sonochemical process, and unclear biological fate of encapsulated bioactive compounds. This review may guide future trends in exploring efficient sonochemical strategies and multifunctional delivery systems for food applications.
Collapse
Affiliation(s)
- Chen Tan
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yuqian Zhu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Hamed Ahari
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Baoguo Sun
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
20
|
Jobe MC, Mthiyane DM, Mwanza M, Onwudiwe DC. Biosynthesis of zinc oxide and silver/zinc oxide nanoparticles from Urginea epigea for antibacterial and antioxidant applications. Heliyon 2022; 8:e12243. [PMID: 36593860 PMCID: PMC9803788 DOI: 10.1016/j.heliyon.2022.e12243] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/28/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Zinc oxide (ZnO) and silver-zinc oxide (Ag/ZnO) nanocomposite were synthesized by a green method using Zn(CH3COO)2 and AgNO3 as precursors for zinc and silver respectively; and Urginea epigea bulb extract as a reducing/capping agent. The nanomaterials were characterized by X-ray diffraction (XRD) analysis, Fourier transform infrared spectrophotometer (FTIR), ultraviolet-visible spectrophotometer, scanning, and transmission electron microscopy (SEM and TEM). Their elemental composition was studied using EDX analysis, while elementary mapping was used to show the distribution of the constituent elements. The powder X-ray diffraction confirmed hexagonal phase ZnO, while the Ag/ZnO nanocomposites identified additional planes due to cubic phase Ag nanoparticles. The absorption spectrum of the nanocomposite indicated a red shifting of the absorption band of the metallic ZnO and a surface plasmon resonance (SPR) band's appearance in the visible region due to the metallic Ag nanoparticles. The analysis from the TEM image showed the particles were of spherical morphology with a mean size of 35 nm (ZnO) and 33.50 nm (Ag/ZnO). The biological activity of the nanoparticles was studied for their antibacterial and antioxidant capacity so as to assess their ability to hinder bacterial growth and capture radical species respectively. The results demonstrated that the modification of ZnO with silver nanoparticles enhanced the antibacterial potency but reduced the antioxidant activity. This biogenic method offers a facile approach to nanoparticles for biological purposes, and the strategy may be extended to other metal oxide and their composites with metallic silver nanoparticles as a more effective approach compared to the physical and chemical routes.
Collapse
Affiliation(s)
- Martha Cebile Jobe
- Department of Animal Science, School of Agricultural Sciences, Faculty of Natural and Agricultural Sciences, North-West University (Mahikeng Campus), Private Bag X2046, Mmabatho, South Africa
| | - Doctor M.N. Mthiyane
- Department of Animal Science, School of Agricultural Sciences, Faculty of Natural and Agricultural Sciences, North-West University (Mahikeng Campus), Private Bag X2046, Mmabatho, South Africa,Food Security and Safety Focus Area, North-West University (Mahikeng Campus), Mmabatho 2735, South Africa
| | - Mulunda Mwanza
- Food Security and Safety Focus Area, North-West University (Mahikeng Campus), Mmabatho 2735, South Africa,Department of Animal Health, School of Agricultural Sciences, North-West University (Mahikeng Campus), Private Bag X2046, Mmabatho, South Africa
| | - Damian C. Onwudiwe
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, North-West University (Mahikeng Campus), Private Bag X2046, Mmabatho, South Africa,Department of Chemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, North-West University (Mahikeng Campus), Private Bag X2046, Mmabatho, South Africa,Corresponding author.
| |
Collapse
|
21
|
Lin L, Mahdi AA, Li C, Al-Ansi W, Al-Maqtari QA, Hashim SB, Cui H. Enhancing the properties of Litsea cubeba essential oil/peach gum/polyethylene oxide nanofibers packaging by ultrasonication. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
22
|
Biswas S, Rashid TU. Effect of ultrasound on the physical properties and processing of major biopolymers-a review. SOFT MATTER 2022; 18:8367-8383. [PMID: 36321472 DOI: 10.1039/d2sm01339h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Designing and developing modern techniques to facilitate the extraction and modification of functional properties of biopolymers are key motivations among researchers. As a low-cost, sustainable, non-toxic, and fast process, ultrasound has been considered a method to improve the processing of carbohydrate and protein-based biopolymers such as cellulose, chitin, starch, alginate, carrageenan, gelatine, and guar gum. A better understanding of the complex physicochemical behavior of biopolymers under ultrasonication may fortify the eminence of this technology in advanced-level applications. This review summarizes the recent advances in biopolymer processing and the effect of ultrasound on the physical properties of the selected biopolymers. A major focus will be given to the mechanisms of action and their impact on the properties and extraction. At the end, some possible suggestions are highlighted which need future investigation for amending the physical properties of biopolymers using ultrasonication.
Collapse
Affiliation(s)
- Shanta Biswas
- Department of Chemistry, Louisiana State University, Baton Rouge, LA-70803, USA.
| | - Taslim Ur Rashid
- Fiber and Polymer Science, Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, 1020 Main Campus Drive, Raleigh, NC, 27695, USA
- Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka-1000, Bangladesh.
| |
Collapse
|
23
|
Ultrasound-reinforced encapsulation of proanthocyanidin by chitosan-chondroitin sulfate nanosystem. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
Lactoferrin-Chitosan-TPP Nanoparticles: Antibacterial Action and Extension of Strawberry Shelf-Life. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02927-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Silva M, Kadam MR, Munasinghe D, Shanmugam A, Chandrapala J. Encapsulation of Nutraceuticals in Yoghurt and Beverage Products Using the Ultrasound and High-Pressure Processing Technologies. Foods 2022; 11:2999. [PMID: 36230075 PMCID: PMC9564056 DOI: 10.3390/foods11192999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Dairy and beverage products are considered highly nutritious. The increase demand for added nutritional benefits within the food systems consumed by the consumers paves the pathway towards fortifying nutraceuticals into these products. However, nutraceuticals are highly unstable towards harsh processing conditions. In addition, the safety of dairy and beverage products plays a very important role. Therefore, various heat treatments are in practice. As the heat-treated dairy and beverage products tends to illustrate several alterations in their organoleptic characteristics and nutritional properties, the demand for alternative non-thermal processing technologies has increased extensively within the food industry. Ultrasound and high-pressure processing technologies are desirable for this purpose as well as a safe and non-destructive technology towards encapsulation of nutraceuticals into food systems. There are benefits in implementing these two technologies in the production of dairy and beverage products with encapsulants, such as manufacturing high-quality products with improved nutritional value while simultaneously enhancing the sensory characteristics such as flavour, taste, texture, and colour and attaining the microbial quality. The primary objective of this review is to provide detailed information on the encapsulation of nutraceuticals and mechanisms involved with using US and HPP technologies on producing encapsulated yoghurt and beverage products.
Collapse
Affiliation(s)
- Mayumi Silva
- School of Science, RMIT University, Bundoora, VIC 3083, Australia
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana 10206, Sri Lanka
| | - Mayur Raghunath Kadam
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur 613005, India
| | - Dilusha Munasinghe
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Akalya Shanmugam
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur 613005, India
- Centre for Excellence in Non-Thermal Processing, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur 613005, India
| | | |
Collapse
|
26
|
Manochkumar J, Singh A, Efferth T, Ramamoorthy S. Untapping the protective role of carotenoids against respiratory diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154286. [PMID: 35820304 DOI: 10.1016/j.phymed.2022.154286] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/15/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Recent studies revealed a substantial role of carotenoids to treat respiratory diseases. This review aimed to give an updated overview of the investigational evidence on the preventive properties of carotenoids against respiratory diseases both in vitro and in vivo along with their pathophysiology and mechanisms of action. HYPOTHESIS Carotenoids as a potential therapeutic class of bioactive compounds to treat respiratory diseases. RESULTS Carotenoids such as β-carotene, lycopene, crocin, bixin, lutein, and astaxanthin show beneficial effects against chronic lung diseases (e.g., asthma, emphysema, fibrosis, COPD, acute lung injury, and lung cancer). Moreover, in vitro and in vivo studies also supported the preventive role of carotenoids. These carotenoids showed a beneficial role by activation of the NRF2/HO-1 pathway and inhibition of the NF-кB, MAPK, JAK/STAT-3, and PI3K/AKT pathways. Additionally, epidemiological studies also showed that dietary intake of carotenoids lowers the risk of lung diseases. CONCLUSION Carotenoids may be used as drugs or can be given in combination with other drugs to prevent and treat respiratory diseases. Although in vitro and in vivo results are encouraging, further well-conducted randomized clinical trials are required to approve carotenoids as drug candidates.
Collapse
Affiliation(s)
- Janani Manochkumar
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014 Tamil Nadu, India
| | - Anuma Singh
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014 Tamil Nadu, India
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University Mainz, Germany
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014 Tamil Nadu, India.
| |
Collapse
|
27
|
Karthika C, Najda A, Klepacka J, Zehravi M, Akter R, Akhtar MF, Saleem A, Al-Shaeri M, Mondal B, Ashraf GM, Tagde P, Ramproshad S, Ahmad Z, Khan FS, Rahman MH. Involvement of Resveratrol against Brain Cancer: A Combination Strategy with a Pharmaceutical Approach. Molecules 2022; 27:4663. [PMID: 35889532 PMCID: PMC9320031 DOI: 10.3390/molecules27144663] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
A brain tumor (BT) is a condition in which there is growth or uncontrolled development of the brain cells, which usually goes unrecognized or is diagnosed at the later stages. Since the mechanism behind BT is not clear, and the various physiological conditions are difficult to diagnose, the success rate of BT is not very high. This is the central issue faced during drug development and clinical trials with almost all types of neurodegenerative disorders. In the first part of this review, we focus on the concept of brain tumors, their barriers, and the types of delivery possible to target the brain cells. Although various treatment methods are available, they all have side effects or toxic effects. Hence, in the second part, a correlation was made between the use of resveratrol, a potent antioxidant, and its advantages for brain diseases. The relationship between brain disease and the blood-brain barrier, multi-drug resistance, and the use of nanomedicine for treating brain disorders is also mentioned. In short, a hypothetical concept is given with a background investigation into the use of combination therapy with resveratrol as an active ingredient, the possible drug delivery, and its formulation-based approach.
Collapse
Affiliation(s)
- Chenmala Karthika
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty 643001, India;
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Science in Lublin, Doświadczalna Street 51A, 20280 Lublin, Poland
| | - Joanna Klepacka
- Department of Commodity Science and Food Analysis, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2, 10719 Olsztyn, Poland;
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University, Alkharj 11942, Saudi Arabia;
| | - Rokeya Akter
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Lahore Campus, Riphah International University, Lahore 54950, Pakistan;
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Majed Al-Shaeri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Banani Mondal
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj 1400, Bangladesh; (B.M.); (S.R.)
| | - Ghulam Md. Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Priti Tagde
- Amity Institute of Pharmacy, Amity University, Noida 201301, India;
| | - Sarker Ramproshad
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj 1400, Bangladesh; (B.M.); (S.R.)
| | - Zubair Ahmad
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
| | - Farhat S. Khan
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
| |
Collapse
|
28
|
Nano-Formulation Endows Quorum Quenching Enzyme-Antibiotic Hybrids with Improved Antibacterial and Antibiofilm Activities against Pseudomonas aeruginosa. Int J Mol Sci 2022; 23:ijms23147632. [PMID: 35886980 PMCID: PMC9321661 DOI: 10.3390/ijms23147632] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/05/2022] [Accepted: 07/09/2022] [Indexed: 11/21/2022] Open
Abstract
The emergence of antibiotic resistant bacteria coupled with the shortage of efficient antibacterials is one of the most serious unresolved problems for modern medicine. In this study, the nano-hybridization of the clinically relevant antibiotic, gentamicin, with the bacterial pro-pathological cell-to-cell communication-quenching enzyme, acylase, is innovatively employed to increase its antimicrobial efficiency against Pseudomonas aeruginosa planktonic cells and biofilms. The sonochemically generated hybrid gentamicin/acylase nano-spheres (GeN_AC NSs) showed a 16-fold improved bactericidal activity when compared with the antibiotic in bulk form, due to the enhanced physical interaction and disruption of the P. aeruginosa cell membrane. The nano-hybrids attenuated 97 ± 1.8% of the quorum sensing-regulated virulence factors’ production and inhibited the bacterium biofilm formation in an eight-fold lower concentration than the stand-alone gentamicin NSs. The P. aeruginosa sensitivity to GeN_AC NSs was also confirmed in a real time assay monitoring the bacterial cells elimination, using a quartz crystal microbalance with dissipation. In protein-enriched conditions mimicking the in vivo application, these hybrid nano-antibacterials maintained their antibacterial and antibiofilm effectiveness at concentrations innocuous to human cells. Therefore, the novel GeN_AC NSs with complementary modes of action show potential for the treatment of P. aeruginosa biofilm infections at a reduced antibiotic dosage.
Collapse
|
29
|
Laein SS, Khanzadi S, Hashemi M, Gheybi F, Azizzadeh M. Peppermint essential oil-loaded solid lipid nanoparticle in gelatin coating: Characterization and antibacterial activity against foodborne pathogen inoculated on rainbow trout (Oncorhynchus mykiss) fillet during refrigerated storage. J Food Sci 2022; 87:2920-2931. [PMID: 35703572 DOI: 10.1111/1750-3841.16221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/13/2022] [Accepted: 05/17/2022] [Indexed: 01/02/2023]
Abstract
The present study was conducted to determine the characterization and antibacterial activity of peppermint essential oil-loaded solid lipid nanoparticle (PEO-SLN) and its impact on the quality of trout fillet stored at 4 ± 1°C for 12 days. The SLNs were prepared through a bath sonication technique. PEO-SLNs contained 0.2% (w/v) PEO in 2% of lipid phase glycerol monostearate (GMS) and tween 80 (1% w/v) used as a surfactant in the aqueous phase. The characterization parameter of PEO-SLN was evaluated, and the antibacterial activity of PEO-SLNs was conducted under in vitro conditions. Trout samples were analyzed for inoculated Pseudomonas aeruginosa, Listeria monocytogenes, and Escherichia coli O157:H7 during refrigerated storage. The mean particle size of PEO-SLNs was 154.83 ± 1.21 nm with a polydispersity index (PDI) of 0.35 ± 0.01 and zeta potential was about -24.16 ± 0.51 mV. The results indicated that PEO-SLN had higher antibacterial activity than the free form of PEO and also when used in combination with gelatin coating (gel + PEO-SLN) had a significant effect on preventing microbial growth in trout fillets (p < 0.05). The most decreasing rate of P. aeruginosa (1.92 log CFU/g), E. coli O157:H7 (0.71 log CFU/g), and L. monocytogenes count (1.69 log CFU/g) was seen in gel + PEO-SLN. These findings illustrated that PEO-SLNs could potentially be utilized in the food industry to increase the shelf life of fish fillets.
Collapse
Affiliation(s)
- Sara Safaeian Laein
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Saeid Khanzadi
- Department of Food Hygiene and Aquaculture, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Hashemi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Gheybi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Azizzadeh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
30
|
Improvement of the Stability and Release of Sulforaphane-enriched Broccoli Sprout Extract Nanoliposomes by Co-encapsulation into Basil Seed Gum. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02826-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
31
|
Palla CA, Aguilera-Garrido A, Carrín ME, Galisteo-González F, Gálvez-Ruiz MJ. Preparation of highly stable oleogel-based nanoemulsions for encapsulation and controlled release of curcumin. Food Chem 2022; 378:132132. [DOI: 10.1016/j.foodchem.2022.132132] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/16/2021] [Accepted: 01/09/2022] [Indexed: 02/07/2023]
|
32
|
Chen L, Niu X, Fan X, Liu Y, Yang J, Xu X, Zhou G, Zhu B, Ullah N, Feng X. Highly absorbent antibacterial chitosan-based aerogels for shelf-life extension of fresh pork. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108644] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
33
|
Cai B, Mazahreh J, Ma Q, Wang F, Hu X. Ultrasound-assisted fabrication of biopolymer materials: A review. Int J Biol Macromol 2022; 209:1613-1628. [PMID: 35452704 DOI: 10.1016/j.ijbiomac.2022.04.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/15/2022] [Accepted: 04/06/2022] [Indexed: 12/19/2022]
Abstract
There is an urgent need to develop technologies that can physically manipulate the structure of biocompatible and green polymer materials in order to tune their performance in an efficient, repeatable, easy-to-operate, chemical-free, non-contact, and highly controllable manner. Ultrasound technology produces a cavitation effect that promotes the generation of free radicals, the fracture of chemical chain segments and a rapid change of morphology. The cavitation effects are accompanied by thermal, chemical, and biological effects that interact with the material being studied. With its high efficiency, cleanliness, and reusability applications, ultrasound has a vast range of opportunity within the field of natural polymer-based materials. This work expounds the basic principle of ultrasonic cavitation and analyzes the influence that ultrasonic strength, temperature, frequency and induced liquid surface tension on the physical and chemical properties of biopolymer materials. The mechanism and the influence that ultrasonic modification has on materials is discussed, with highlighted details on the agglomeration, degradation, morphology, structure, and the mechanical properties of these novel materials from naturally derived polymers.
Collapse
Affiliation(s)
- Bowen Cai
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Janine Mazahreh
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| | - Qingyu Ma
- School of Computer and Electrical Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China
| | - Fang Wang
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA.
| |
Collapse
|
34
|
Bahrami A, Delshadi R, Cacciotti I, Faridi Esfanjani A, Rezaei A, Tarhan O, Lee CC, Assadpour E, Tomas M, Vahapoglu B, Capanoglu Guven E, Williams L, Jafari SM. Targeting foodborne pathogens via surface-functionalized nano-antimicrobials. Adv Colloid Interface Sci 2022; 302:102622. [PMID: 35248971 DOI: 10.1016/j.cis.2022.102622] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 01/10/2023]
Abstract
The incorporation of antibiotics and bioactive compounds into non-toxic nanoparticles has been popularly used to produce effective antimicrobial nanocarriers against foodborne pathogens. These systems can protect antimicrobials against harsh environments, control their release, and increase their antimicrobial activities; however, their functions can be decreased by some major barriers. Intracellular localization of bacteria protects them from the host immune system and antimicrobial agents. Also, bacteria can cause constant infection by nestling in professional phagocytic cells. In the last years, surface functionalization of nanocarriers by passive and active modification methods has been applied for their protection against clearance from the blood, increasing both circulation time and uptake by target cells. For achieving this objective, different functional agents such as specifically targeted peptides internalize ligands, saccharide ligands, or even therapeutic molecules (e.g., antibodies or enzymes) are used. In this review, techniques for functionalizing the surface of antimicrobial-loaded nanocarriers have been described. This article offers a comprehensive review of the potential of functional nanoparticles to increase the performance of antimicrobials against foodborne pathogens through targeting delivery.
Collapse
|
35
|
Chavda VP, Vihol D, Mehta B, Shah D, Patel M, Vora LK, Pereira-Silva M, Paiva-Santos AC. Phytochemical-loaded liposomes for anticancer therapy: an updated review. Nanomedicine (Lond) 2022; 17:547-568. [PMID: 35259920 DOI: 10.2217/nnm-2021-0463] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The major obstacles observed in current chemotherapy are severe adverse effects, narrow therapeutic indexes and multidrug resistance. Anticancer phytochemicals are extracted and purified from natural plants, providing alternative therapeutic approaches with recognized biomedical benefits. However, poor bioavailability, high dose requirements and non-specific targeting have made those molecules less effective. To tackle those issues, liposomal nanovesicles for phytochemical delivery are taken into consideration for improving the therapeutic effectiveness by increasing transportation across cell barriers and conferring attractive cancer-specific targeting capabilities. In the present review, the liposomal approaches of anticancer phytochemicals are discussed, and recent advances in these formulations applied to cancer phytotherapy are further reviewed by an informed approach.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics & Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, 380009, India
| | - Disha Vihol
- Pharmacy Section, L M College of Pharmacy, Ahmedabad, 380009, India
| | - Bhavya Mehta
- Pharmacy Section, L M College of Pharmacy, Ahmedabad, 380009, India
| | - Dhruvil Shah
- Pharmacy Section, L M College of Pharmacy, Ahmedabad, 380009, India
| | - Manan Patel
- Pharmacy Section, L M College of Pharmacy, Ahmedabad, 380009, India
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, UK
| | - Miguel Pereira-Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, 3000-548, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, 3000-548, Portugal
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, 3000-548, Portugal.,REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, 3000-548, Portugal
| |
Collapse
|
36
|
Ma Z, Li L, Wu C, Huang Y, Teng F, Li Y. Effects of combined enzymatic and ultrasonic treatments on the structure and gel properties of soybean protein isolate. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113123] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Alonso-Estrada D, Ochoa-Viñals N, Pacios-Michelena S, Ramos-González R, Núñez-Caraballo A, Michelena Álvarez LG, Martínez-Hernández JL, Neira-Vielma AA, Ilyina A. No Solid Colloidal Carriers: Aspects Thermodynamic the Immobilization Chitinase and Laminarinase in Liposome. Front Bioeng Biotechnol 2022; 9:793340. [PMID: 35198549 PMCID: PMC8860326 DOI: 10.3389/fbioe.2021.793340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
The present review describes the basic properties of colloidal and vesicular vehicles that can be used for immobilization of enzymes. The thermodynamic aspects of the immobilization of enzymes (laminarinase and chitinase) in liposomes are discussed. These systems protect enzymes against environmental stress and allow for a controlled and targeted release. The diversity of colloidal and vesicular carriers allows the use of enzymes for different purposes, such as mycolytic enzymes used to control phytopathogenic fungi.
Collapse
Affiliation(s)
- Dania Alonso-Estrada
- Nanobioscience and Biological and Genomic Sciences Research Groups, Postgraduate Program in Food Science and Technology, Faculty of Chemical Sciences of the Autonomous University of Coahuila, Saltillo, México
| | - Nayra Ochoa-Viñals
- Nanobioscience and Biological and Genomic Sciences Research Groups, Postgraduate Program in Food Science and Technology, Faculty of Chemical Sciences of the Autonomous University of Coahuila, Saltillo, México
| | - Sandra Pacios-Michelena
- Nanobioscience and Biological and Genomic Sciences Research Groups, Postgraduate Program in Food Science and Technology, Faculty of Chemical Sciences of the Autonomous University of Coahuila, Saltillo, México
| | - Rodolfo Ramos-González
- CONACYT- Autonomous University of Coahuila, Postgraduate Program in Food Science and Technology, Faculty of Chemical Sciences of the Autonomous University of Coahuila, Saltillo, México
| | | | | | - José Luis Martínez-Hernández
- Nanobioscience and Biological and Genomic Sciences Research Groups, Postgraduate Program in Food Science and Technology, Faculty of Chemical Sciences of the Autonomous University of Coahuila, Saltillo, México
| | - Alberto Antonio Neira-Vielma
- Nanobioscience and Biological and Genomic Sciences Research Groups, Postgraduate Program in Food Science and Technology, Faculty of Chemical Sciences of the Autonomous University of Coahuila, Saltillo, México
| | - Anna Ilyina
- Nanobioscience and Biological and Genomic Sciences Research Groups, Postgraduate Program in Food Science and Technology, Faculty of Chemical Sciences of the Autonomous University of Coahuila, Saltillo, México
| |
Collapse
|
38
|
Preparation and Evaluation of Gefitinib Containing Nanoliposomal Formulation for Lung Cancer Therapy. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-00938-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
39
|
He Q, Zhang L, Yang Z, Ding T, Ye X, Liu D, Guo M. Antibacterial mechanisms of thyme essential oil nanoemulsions against Escherichia coli O157:H7 and Staphylococcus aureus: Alterations in membrane compositions and characteristics. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2021.102902] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
40
|
Chawla R, Sivakumar S, Kaur H. Antimicrobial edible films in food packaging: Current scenario and recent nanotechnological advancements- a review. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2020.100024] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
41
|
Lamri M, Bhattacharya T, Boukid F, Chentir I, Dib AL, Das D, Djenane D, Gagaoua M. Nanotechnology as a Processing and Packaging Tool to Improve Meat Quality and Safety. Foods 2021; 10:2633. [PMID: 34828914 PMCID: PMC8623812 DOI: 10.3390/foods10112633] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023] Open
Abstract
Nanoparticles are gaining momentum as a smart tool towards a safer, more cost-effective and sustainable food chain. This study aimed to provide an overview of the potential uses, preparation, properties, and applications of nanoparticles to process and preserve fresh meat and processed meat products. Nanoparticles can be used to reinforce the packaging material resulting in the improvement of sensory, functional, and nutritional aspects of meat and processed meat products. Further, these particles can be used in smart packaging as biosensors to extend the shelf-life of fresh and processed meat products and also to monitor the final quality of these products during the storage period. Nanoparticles are included in product formulation as carriers of health-beneficial and/or functional ingredients. They showed great efficiency in encapsulating bioactive ingredients and preserving their properties to ensure their functionality (e.g., antioxidant and antimicrobial) in meat products. As a result, nanoparticles can efficiently contribute to ensuring product safety and quality whilst reducing wastage and costs. Nevertheless, a wider implementation of nanotechnology in meat industry is highly related to its economic value, consumers' acceptance, and the regulatory framework. Being a novel technology, concerns over the toxicity of nanoparticles are still controversial and therefore efficient analytical tools are deemed crucial for the identification and quantification of nanocomponents in meat products. Thus, migration studies about nanoparticles from the packaging into meat and meat products are still a concern as it has implications for human health associated with their toxicity. Moreover, focused economic evaluations for implementing nanoparticles in meat packaging are crucial since the current literature is still scarce and targeted studies are needed before further industrial applications.
Collapse
Affiliation(s)
- Melisa Lamri
- Laboratory of Food Quality and Food Safety, Department of Food technology, Université Mouloud Mammeri, Tizi-Ouzou 15000, Algeria; (M.L.); (D.D.)
| | - Tanima Bhattacharya
- Innovation, Incubation & Industry (I-Cube) Laboratory, Techno India NJR Institute of Technology, Udaipur 313003, India;
| | - Fatma Boukid
- Food Safety and Functionality Programme, Institute of Agriculture and Food Research and Technology (IRTA), 17121 Monells, Spain;
| | - Imene Chentir
- Laboratory of Food, Processing, Control and Agroressources Valorization, Higher School of Food Science and Agri-Food Industry, Algiers 16200, Algeria;
| | - Amira Leila Dib
- GSPA Research Laboratory, Institut des Sciences Vétérinaires, Université Frères Mentouri Constantine 1, Constantine 25000 Algeria;
| | - Debashrita Das
- School of Community Science & Technology, IIEST Shibpur, Howrah 711103, India;
| | - Djamel Djenane
- Laboratory of Food Quality and Food Safety, Department of Food technology, Université Mouloud Mammeri, Tizi-Ouzou 15000, Algeria; (M.L.); (D.D.)
| | - Mohammed Gagaoua
- Food Quality and Sensory Science Department, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland
| |
Collapse
|
42
|
Nonthermal Processing Technologies for Stabilization and Enhancement of Bioactive Compounds in Foods. FOOD ENGINEERING REVIEWS 2021. [DOI: 10.1007/s12393-021-09295-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
43
|
Delshadi R, Bahrami A, Assadpour E, Williams L, Jafari SM. Nano/microencapsulated natural antimicrobials to control the spoilage microorganisms and pathogens in different food products. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108180] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
44
|
Chotphruethipong L, Hutamekalin P, Sukketsiri W, Benjakul S. Effects of sonication and ultrasound on properties and bioactivities of liposomes loaded with hydrolyzed collagen from defatted sea bass skin conjugated with epigallocatechin gallate. J Food Biochem 2021; 45:e13809. [PMID: 34145603 DOI: 10.1111/jfbc.13809] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 11/28/2022]
Abstract
Hydrolyzed collagen (HC) from defatted sea bass skin conjugated with 3% epigallocatechin gallate (EGCG) was prepared and the resulting HC-EGCG conjugate at various levels (0.25%-2%, w/v) was loaded into liposome. The obtained liposomes were subjected to sonication (S). Liposome loaded with 1% conjugate showed the highest encapsulation efficiency (EE) (p < .05). When the ultrasound-assisted process (UAP) at different amplitudes (20% and 40%) and times (2, 5, 10, and 15 min) were implemented, the highest EE of conjugate-loaded liposome was found at 20% amplitude for 2 min (p < .05). When S-liposome and UAP-liposome were lyophilized, decreasing EE of both samples was observed (p < .05). Lyophilized UAP-liposome had higher stability than lyophilized S-liposome during storage at 25℃ for 28 days. Additionally, antioxidant activity in the gastrointestinal track model system (GIMs) and digest obtained from GIMs were higher for UAP-liposome (p < .05). Therefore, liposome can be used for the delivery of conjugate. PRACTICAL APPLICATIONS: HC from defatted sea bass skin is considered to possess several bioactivities, especially skin nourishment and bone strengthening. Nevertheless, antioxidant activity, related to the treatment of several ailments, is still low for HC. Thus, grafting of HC with polyphenol such as EGCG via free radical method can be used for the enhancement of the antioxidant activity of HC. Although the resulting conjugate has augmented activity, it is unstable during storage and in the gastrointestinal digestion system. Liposome is a promising means to stabilize the conjugate under harsh condition, especially with the aid of the UAP. Thus, liposome loaded with conjugate having the reduced size has higher antioxidant activity with increased stability, which can have a wider range of applications.
Collapse
Affiliation(s)
- Lalita Chotphruethipong
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Thailand
| | - Pilaiwanwadee Hutamekalin
- Division of Health and Applied Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Wanida Sukketsiri
- Division of Health and Applied Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
45
|
Naqash F, Masoodi FA, Gani A, Nazir S, Jhan F. Pectin recovery from apple pomace: physico‐chemical and functional variation based on methyl‐esterification. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Farah Naqash
- Department of Food Science and Technology University of Kashmir Srinagar India
| | - F. A. Masoodi
- Department of Food Science and Technology University of Kashmir Srinagar India
| | - Adil Gani
- Department of Food Science and Technology University of Kashmir Srinagar India
| | - Sadaf Nazir
- Department of Food Science and Technology University of Kashmir Srinagar India
| | - Faiza Jhan
- Department of Food Science and Technology University of Kashmir Srinagar India
| |
Collapse
|
46
|
Cao H, Saroglu O, Karadag A, Diaconeasa Z, Zoccatelli G, Conte‐Junior CA, Gonzalez‐Aguilar GA, Ou J, Bai W, Zamarioli CM, de Freitas LAP, Shpigelman A, Campelo PH, Capanoglu E, Hii CL, Jafari SM, Qi Y, Liao P, Wang M, Zou L, Bourke P, Simal‐Gandara J, Xiao J. Available technologies on improving the stability of polyphenols in food processing. FOOD FRONTIERS 2021; 2:109-139. [DOI: 10.1002/fft2.65] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
AbstractPolyphenols are the most important phytochemicals in our diets and have received great attention due to their broad benefits for human health by suppressing oxidative stress and playing a protective role in preventing different pathologies such as cardiovascular disease, cancer, diabetes, and obesity. The stability of polyphenols depends on their environments of processing and storage, such as pH and temperature. A wide range of technologies has been developed to stabilize polyphenols during processing. This review will provide an overview of the stability of polyphenols in relation to their structure, the factors impacting the stability of polyphenols, the new products deriving from unstable polyphenols, and the effect of a series of technologies for the stabilization of polyphenols, such as chemical modification, nanotechnology, lyophilization, encapsulation, cold plasma treatment, polyphenol–protein interaction, and emulsion as a means of improving stability. Finally, the effects of cooking and storage on the stability of polyphenols were discussed.
Collapse
Affiliation(s)
- Hui Cao
- College of Food Science and Technology Guangdong Ocean University Zhanjiang Guangdong China
| | - Oznur Saroglu
- Food Engineering Department Yıldız Technical University Istanbul Turkey
| | - Ayse Karadag
- Food Engineering Department Yıldız Technical University Istanbul Turkey
| | - Zoriţa Diaconeasa
- Faculty of Food Science and Technology University of Agricultural Science and Veterinary Medicine Cluj‐Napoca Cluj‐Napoca Romania
| | | | - Carlos Adam Conte‐Junior
- Laboratory of Advanced Analyses in Biochemistry and Molecular Biology (LAABBM) Department of Biochemistry Institute of Chemistry Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | - Gustavo A. Gonzalez‐Aguilar
- Coordinación de Tecnología de Alimentos de Origen Vegetal Centro de Investigación en Alimentación y Desarrollo A. C. Hermosillo Mexico
| | - Juanying Ou
- Institute of Food Safety and Nutrition Jinan University Guangzhou China
| | - Weibin Bai
- Institute of Food Safety and Nutrition Jinan University Guangzhou China
| | - Cristina Mara Zamarioli
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto Núcleo de Pesquisa em Produtos Naturais e Sintéticos – Universidade de São Paulo Ribeirão Preto Brazil
| | - Luis Alexandre Pedro de Freitas
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto Núcleo de Pesquisa em Produtos Naturais e Sintéticos – Universidade de São Paulo Ribeirão Preto Brazil
| | - Avi Shpigelman
- Faculty of Biotechnology and Food Engineering and Russell Berrie Nanotechnology Institute Technion – Israel Institute of Technology Haifa Israel
| | - Pedro H. Campelo
- School of Agrarian Science Federal University of Amazonas Manaus Brazil
| | - Esra Capanoglu
- Department of Food Engineering Faculty of Chemical and Metallurgical Engineering İstanbul Technical University Istanbul Turkey
| | - Ching Lik Hii
- Faculty of Science and Engineering University of Nottingham Malaysia Semenyih Malaysia
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology Gorgan University of Agricultural Science and Natural Resources Gorgan Iran
| | - Yaping Qi
- Purdue Quantum Science and Engineering Institute Purdue University West Lafayette Indiana USA
| | - Pan Liao
- Department of Biochemistry Purdue University West Lafayette Indiana USA
| | - Mingfu Wang
- School of Biological Sciences The University of Hong Kong Pokfulam Road Hong Kong
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs Chengdu University Chengdu China
| | - Paula Bourke
- Plasma Research Group, School of Biosystems and Food Engineering University College Dublin Dublin Ireland
- School of Biological Sciences Institute for Global Food Security Queens University Belfast Belfast UK
| | - Jesus Simal‐Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science Faculty of Food Science and Technology University of Vigo – Ourense Campus Ourense Spain
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science Faculty of Food Science and Technology University of Vigo – Ourense Campus Ourense Spain
| |
Collapse
|
47
|
Mikheev IV, Pirogova MO, Usoltseva LO, Uzhel AS, Bolotnik TA, Kareev IE, Bubnov VP, Lukonina NS, Volkov DS, Goryunkov AA, Korobov MV, Proskurnin MA. Green and rapid preparation of long-term stable aqueous dispersions of fullerenes and endohedral fullerenes: The pros and cons of an ultrasonic probe. ULTRASONICS SONOCHEMISTRY 2021; 73:105533. [PMID: 33799110 PMCID: PMC8044700 DOI: 10.1016/j.ultsonch.2021.105533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/03/2021] [Accepted: 03/16/2021] [Indexed: 05/13/2023]
Abstract
A green, scalable, and sustainable approach to prepare aqueous fullerene dispersions (AFD) C60, C70, endohedral metallofullerene Gd@C82, and their derivatives C60Cl6, C70Cl10, and supramolecular and ester-like derivatives, 10 fullerene species total, is proposed. For the first time, an immersed ultrasonic probe was used to preparing dispersions for pristine fullerenes without addends. Both ultrasound-assisted solvent-exchange and direct sonication techniques for AFD preparation using an immersed probe were tested. The average time for AFD preparation decreases 10-15 times compared to an ultrasound-bath-assisted technique, while final fullerene concentrations in AFDs remained at tens of ppm (up to 80 ppm). The aqueous dispersions showed long-term stability, a negatively charged surface with a zeta potential up to -32 mV with an average nanocluster diameter of no more than 180 nm. The total anionic and cationic compositions of samples were found by inductively coupled plasma atomic emission spectroscopy and chromatographic techniques. The highlights and challenges of using an ultrasound probe for AFD production are discussed.
Collapse
Affiliation(s)
- Ivan V Mikheev
- Chemistry Department Analytical Chemistry Division of Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Mariya O Pirogova
- Chemistry Department Analytical Chemistry Division of Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Liliia O Usoltseva
- Chemistry Department Physical Chemistry Division of Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Anna S Uzhel
- Chemistry Department Analytical Chemistry Division of Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Timofey A Bolotnik
- Chemistry Department Analytical Chemistry Division of Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Ivan E Kareev
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region, Russia.
| | - Viacheslav P Bubnov
- Institute of Problems of Chemical Physics of the Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region, Russia.
| | - Natalia S Lukonina
- Chemistry Department Physical Chemistry Division of Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Dmitry S Volkov
- Chemistry Department Analytical Chemistry Division of Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Alexey A Goryunkov
- Chemistry Department Physical Chemistry Division of Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Mikhail V Korobov
- Chemistry Department Physical Chemistry Division of Lomonosov Moscow State University, 119991 Moscow, Russia.
| | - Mikhail A Proskurnin
- Chemistry Department Analytical Chemistry Division of Lomonosov Moscow State University, 119991 Moscow, Russia.
| |
Collapse
|
48
|
Espinosa-Sandoval L, Ochoa-Martínez C, Ayala-Aponte A, Pastrana L, Gonçalves C, Cerqueira MA. Polysaccharide-Based Multilayer Nano-Emulsions Loaded with Oregano Oil: Production, Characterization, and In Vitro Digestion Assessment. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:878. [PMID: 33808246 PMCID: PMC8067034 DOI: 10.3390/nano11040878] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/21/2022]
Abstract
The food industry has increased its interest in using "consumer-friendly" and natural ingredients to produce food products. In the case of emulsifiers, one of the possibilities is to use biopolymers with emulsification capacity, such as octenyl succinic anhydride modified starch, which can be used in combination with other polysaccharides, such as chitosan and carboxymethylcellulose, in order to improve the capacity to protect bioactive compounds. In this work, multilayer nano-emulsion systems loaded with oregano essential oil were produced by high energy methods and characterized. The process optimization was carried out based on the evaluation of particle size, polydispersity index, and zeta potential. Optimal conditions were achieved for one-layer nano-emulsions resulting in particle size and zeta potential of 180 nm and -42 mV, two layers (after chitosan addition) at 226 nm and 35 mV, and three layers (after carboxymethylcellulose addition) of 265 nm and -1 mV, respectively. The encapsulation efficiency of oregano essential oil within nano-emulsions was 97.1%. Stability was evaluated up to 21 days at 4 and 20 °C. The three layers nano-emulsion demonstrated to be an efficient delivery system of oregano essential oil, making 40% of the initial oregano essential oil available versus 13% obtained for oregano essential oil in oil, after exposure to simulated digestive conditions.
Collapse
Affiliation(s)
- Luz Espinosa-Sandoval
- School of Food Engineering, Universidad del Valle, 76001 Cali, Colombia; (L.E.-S.); (C.O.-M.); (A.A.-A.)
| | - Claudia Ochoa-Martínez
- School of Food Engineering, Universidad del Valle, 76001 Cali, Colombia; (L.E.-S.); (C.O.-M.); (A.A.-A.)
| | - Alfredo Ayala-Aponte
- School of Food Engineering, Universidad del Valle, 76001 Cali, Colombia; (L.E.-S.); (C.O.-M.); (A.A.-A.)
| | - Lorenzo Pastrana
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal; (L.P.); (M.A.C.)
| | - Catarina Gonçalves
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal; (L.P.); (M.A.C.)
| | - Miguel A. Cerqueira
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal; (L.P.); (M.A.C.)
| |
Collapse
|
49
|
Bagheri M, Jafari SM, Eikani MH. Ultrasonic-assisted production of zero-valent iron-decorated graphene oxide/activated carbon nanocomposites: Chemical transformation and structural evolution. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 118:111362. [DOI: 10.1016/j.msec.2020.111362] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/02/2020] [Accepted: 08/05/2020] [Indexed: 12/19/2022]
|
50
|
Comunian T, Babazadeh A, Rehman A, Shaddel R, Akbari-Alavijeh S, Boostani S, Jafari S. Protection and controlled release of vitamin C by different micro/nanocarriers. Crit Rev Food Sci Nutr 2020; 62:3301-3322. [DOI: 10.1080/10408398.2020.1865258] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- T. Comunian
- Department of Food Engineering, School of Food Engineering, University of Campinas, Campinas, Brazil
| | - A. Babazadeh
- Center for Motor Neuron Disease Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - A. Rehman
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
| | - R. Shaddel
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - S. Akbari-Alavijeh
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - S. Boostani
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - S.M. Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|