1
|
Gupta AD, Jaiswal VK, Chabhadiya K, Singh RS, Gupta MK, Singh H. A critical review on the properties and applications of bulk micro and nanobubbles for the degradation of organic pollutants in wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 976:179310. [PMID: 40188725 DOI: 10.1016/j.scitotenv.2025.179310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/19/2025] [Accepted: 03/30/2025] [Indexed: 04/23/2025]
Abstract
The presence of persistent organic pollutants in wastewater streams has presented significant challenges towards their removal. In the recent decade, bulk micro (1-100 μm) and nanobubble (50-150 nm) (MNB) technology has exhibited technological advancements via integration of MNB technology in degrading organic pollutants from wastewater streams. The present review critically analyses the physico-chemical properties such as stability, zeta potential, mass transfer rates, rising velocity and size distribution of MNBs. The paradigm shift from conventional wastewater treatment to more sustainable solution is initiated by the production of OH- ions and free radicals for the degradation of organic pollutants by the MNB technology. Applications of MNBs are also explored in various wastewater treatment processes such as floatation, membrane cleaning, adsorption, aeration, and advanced oxidation processes. Future researches highlighting the challenges in the development of efficient and robust MNB technology and its real-time applications have also been highlighted. It is anticipated that MNBs could be a sustainable and economic solution for wastewater treatment.
Collapse
Affiliation(s)
- Arijit Dutta Gupta
- Department of Chemical, Petroleum & Hydrogen Technology, NIMS University, Rajasthan, Jaipur 303121, India; Department of Chemical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Vivek Kumar Jaiswal
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Karan Chabhadiya
- Krakow School for Interdisciplinary PhD Studies, Polish Academy of Sciences, Krakow 31-342, Poland; Division of Biogenic Raw Material, Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Krakow 31-261, Poland
| | - Ram Sharan Singh
- Department of Chemical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - M K Gupta
- Department of Mechanical Engineering, Madan Mohan Malaviya University of Technology, Gorakhpur 273010, India
| | - Harinder Singh
- Department of Chemical Engineering, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| |
Collapse
|
2
|
Ulatowski K, Szczygielski P, Sobieszuk P. Impact of Water Purity and Oxygen Content in Gas Phase on Effectiveness of Surface Cleaning with Microbubbles. MATERIALS (BASEL, SWITZERLAND) 2024; 17:6046. [PMID: 39769645 PMCID: PMC11728041 DOI: 10.3390/ma17246046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/28/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025]
Abstract
Cleaning of surfaces without complex cleaning agents is an important subject, especially in food, pharmaceutical, and biomedical applications. The subject of microbubble and nanobubble cleaning is considered one of the most promising ways to intensify this process. In this work, we check whether and how the purity of water used for microbubble generation, as well as the gas used, affects the effectiveness of cleaning stainless-steel surfaces. Surfaces contaminated with Pluronic L-121 solution were cleaned by water of three purities: ultrapure water (<0.05 μS/cm), water after reversed osmosis (~6.0 μS/cm), and tap water (~0.8 mS/cm). Similarly, three different gases were supplied to the generation setup for microbubble generation: air, oxygen, and nitrogen. Stainless steel plates were immersed in water during microbubble generation and cleaned for a given time. FTIR (Fourier Transform Infrared Spectroscopy) and contact angle analysis were employed for the analysis of surfaces. The results of cleaning were repeatable between plates and showed different cleaning effects depending on both the purity of water (concentration of ions) and gas composition. We have proposed different mechanisms that are dominant with respect to specific combinations of ion concentration and oxygen content in gas, which are directly connected to the microbubble stability and reactivity of gas.
Collapse
Affiliation(s)
- Karol Ulatowski
- Department of Biotechnology and Bioprocess Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| | | | - Paweł Sobieszuk
- Department of Biotechnology and Bioprocess Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
| |
Collapse
|
3
|
Koundle P, Nirmalkar N, Momotko M, Boczkaj G. Ozone nanobubble technology as a novel AOPs for pollutants degradation under high salinity conditions. WATER RESEARCH 2024; 263:122148. [PMID: 39098154 DOI: 10.1016/j.watres.2024.122148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/26/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
Conventional water treatment systems frequently exhibit diminished efficiency at high salinity - a significant issue especially for real industrial effluents - mostly due to the creation of intricate structures between pollutants and salts. One of the primary obstacles associated with high salinity conditions is the generation of by-products that pose additional hurdles for treatment. In this work, we have investigated the novel advanced oxidation process a so-called ozone nanobubble technology for degradation of the pollutants at high salinity conditions. The mass transfer is often the rate-limiting step in gas-liquid process and the poor rate of mass transfer diminishes the overall efficacy. One of the primary disadvantages associated with ozone is its restricted solubility and instability when dissolved in an aqueous solution. These characteristics impose limitations on its potential applications and need the use of specialized systems to facilitate gas-liquid interaction. In this work, we have also suggested enhancing the ozonation process through the utilization of ozone nanobubbles. The findings of our experiment and subsequent analysis indicate that the presence of nanobubbles enhances the process of ozonation through three key mechanisms: (i) an increased mass transfer coefficient, (ii) a higher rate of reactive oxygen species (ROS) generation attributed to the charged interface, and (iii) the nanobubble interface serving as an active surface for chemical reactions. The predicted mass transfer coefficients were found to range from 3 to 3.5 min-1, a value that is notably greater than that seen for microbubbles. The study showcased the degradation of methylene blue dye through the utilization of ozone nanobubbles, which exhibited a much higher rate of dye degradation compared to ozone microbubbles. The confirmation of the radical degradation mechanism was achieved by the utilization of electron spin resonance (ESR) measurements. The developed process has high potential for application in industrial scale textile wastewater treatment.
Collapse
Affiliation(s)
- Priya Koundle
- Department of Chemical Engineering, Indian Institute of Technology Ropar, Rupnagar 140001, India
| | - Neelkanth Nirmalkar
- Department of Chemical Engineering, Indian Institute of Technology Ropar, Rupnagar 140001, India.
| | - Malwina Momotko
- Department of Sanitary Engineering, Civil and Environment Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, Gdansk 80-233, Poland
| | - Grzegorz Boczkaj
- Department of Sanitary Engineering, Civil and Environment Engineering, Faculty of Civil and Environmental Engineering, Gdansk University of Technology, G. Narutowicza St. 11/12, Gdansk 80-233, Poland; School of Civil, Environmental, and Architectural Engineering, College of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
4
|
Ahmed AKA, Shalaby M, Negim O, Abdel-Wahed T. Relationship between chlorine decay and nanobubble application in secondary treated wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 90:363-372. [PMID: 39007324 DOI: 10.2166/wst.2024.205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/31/2024] [Indexed: 07/16/2024]
Abstract
There has been numerous research on the uses of treated wastewater that needs chlorine disinfection, but none have looked at the impacts of injecting nanobubbles (NBs) on the decomposition of residual chlorine. Gas NB injection in treated wastewater improves its properties. The kinetics of disinfectant decay could be impacted by changes in treated wastewater properties. This paper studies the effect of various NB injections on the residual chlorine decay of secondary treated wastewater (STWW). It also outlines the empirical equations that were developed to represent these impacts. The results show that each type of NBs in treated wastewater had a distinct initial chlorine concentration. The outcomes demonstrated a clear impact on the decrease of the needed chlorine quantity and the reduction of chlorine decay rate when utilizing NB injection for the STWW. As a result, the residual chlorine will remain for a longer time and will resist any microbiological growth under the application of NBs on treated wastewater. Moreover, NBs in secondary treated effluent reduce chlorine usage, lowering wastewater disinfection costs.
Collapse
Affiliation(s)
| | - Moussa Shalaby
- Civil Engineering Department, Faculty of Engineering, Sohag University, Sohag, Egypt E-mail:
| | - Osama Negim
- Soil and Water Department, Faculty of Agriculture, Sohag University, Sohag, Egypt
| | - Talaat Abdel-Wahed
- Civil Engineering Department, Faculty of Engineering, Sohag University, Sohag, Egypt
| |
Collapse
|
5
|
Hou T, Song H, Cui Z, He C, Liu L, Li P, Li G, Zhang Q, Zhang Z, Lei Z, Litti YV, Jiao Y. Nanobubble technology to enhance energy recovery from anaerobic digestion of organic solid wastes: Potential mechanisms and recent advancements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172885. [PMID: 38697546 DOI: 10.1016/j.scitotenv.2024.172885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/15/2024] [Accepted: 04/27/2024] [Indexed: 05/05/2024]
Abstract
Nanobubble (NB) technology has gained popularity in the environmental field owing to its distinctive characteristics and ecological safety. More recently, the application of NB technology in anaerobic digestion (AD) systems has been proven to promote substrate degradation and boost the production of biogas (H2 and/or CH4). This review presents the recent advancements in the application of NB technology in AD systems. Meanwhile, it also sheds light on the underlying mechanisms of NB technology that contribute to the enhanced biogas production from AD of organic solid wastes. Specifically, the working principles of the NB generator are first summarized, and then the structure of the NB generator is optimized to accommodate the demand for NB characteristics in the AD system. Subsequently, it delves into a detailed discussion of how the addition of nanobubble water (NBW) affects AD performance and the different factors that NB can potentially contribute. As a simple and environmentally friendly additive, NBW was commonly used in the AD process to enhance the fluidity and mass transfer characteristics of digestate. Additionally, NB has the potential to enhance the functionality of different types of microbial enzymes that play crucial roles in the AD process. This includes boosting extracellular hydrolase activities, optimizing coenzyme F420, and improving cellulase function. Finally, it is proposed that NBW has development potential for the pretreatment of substrate and inoculum, with future development being directed towards this aim.
Collapse
Affiliation(s)
- Tingting Hou
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Henan Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Hao Song
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Henan Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhiqiang Cui
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Henan Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Chao He
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Henan Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China.
| | - Liang Liu
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Henan Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Pengfei Li
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Henan Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Gang Li
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Henan Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Quanguo Zhang
- Key Laboratory of New Materials and Facilities for Rural Renewable Energy of Ministry of Agriculture and Rural Affairs, College of Mechanical & Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Biomass Energy and Nanomaterials, Henan Agricultural University, Zhengzhou 450002, China; Henan Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhenya Zhang
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yuri V Litti
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Youzhou Jiao
- Henan University of Engineering, Zhengzhou 451191, China.
| |
Collapse
|
6
|
Yaparatne S, Morón-López J, Bouchard D, Garcia-Segura S, Apul OG. Nanobubble applications in aquaculture industry for improving harvest yield, wastewater treatment, and disease control. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172687. [PMID: 38663593 DOI: 10.1016/j.scitotenv.2024.172687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/03/2024] [Accepted: 04/20/2024] [Indexed: 05/09/2024]
Abstract
The ever-growing demand for aquaculture has led the industry to seek novel approaches for more sustainable practices. These attempts aim to increase aquaculture yield by increasing energy efficiency and decreasing footprint and chemical demand without compromising animal health. For this, emerging nanobubbles (NBs) aeration technology gained attention. NBs are gas-filled pockets suspended as sphere-like cavities (bulk NBs) or attached to surfaces (surface NBs) with diameters of <1 μm. Compared to macro and microbubbles, NBs have demonstrated unique characteristics such as long residence times in water, higher gas mass transfer efficiency, and hydroxyl radical production. This paper focuses on reviewing NB technology in aquaculture systems by summarizing and discussing uses and implications. Three focus areas were targeted to review the applicability and effects of NBs in aquaculture: (i) NBs aeration to improve the aquaculture harvest yield and subsequent wastewater treatment; (ii) NB application for inactivation of harmful microorganisms; and (iii) NBs for reducing oxidative stress and improving animal health. Thus, this study reviews the research studies published in the last 10 years in which air, oxygen, ozone, and hydrogen NBs were tested to improve gas mass transfer, wastewater treatment, and control of pathogenic microorganisms. The experimental results indicated that air and oxygen NBs yield significantly higher productivity, growth rate, total harvest, survival rate, and less oxygen consumption in fish and shrimp farming. Secondly, the application of air and ozone NBs demonstrated the ability of efficient pollutant degradation. Third, NB application demonstrated effective control of infectious bacteria and viruses, and thus increased fish survival, as well as different gene expression patterns that induce immune responses to infections. Reviewed studies lack robust comparative analyses of the efficacy of macro- and microbubble treatments. Also, potential health and safety implications, as well as economic feasibility through factors such as changes in capital infrastructure, routine maintenance and energy consumption need to be considered and evaluated in parallel to applicability. Therefore, even with a promising future, further studies are needed to confirm the benefits of NB treatment versus conventional aquaculture practices.
Collapse
Affiliation(s)
- Sudheera Yaparatne
- Department of Civil and Environmental Engineering, University of Maine, Orono, ME 04469, United States
| | - Jesús Morón-López
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, United States
| | - Deborah Bouchard
- Aquaculture Research Institute, University of Maine, Orono, ME 04469, United States
| | - Sergi Garcia-Segura
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, United States
| | - Onur G Apul
- Department of Civil and Environmental Engineering, University of Maine, Orono, ME 04469, United States.
| |
Collapse
|
7
|
Yadav G, Nirmalkar N, Ohl CD. Electrochemically reactive colloidal nanobubbles by water splitting. J Colloid Interface Sci 2024; 663:518-531. [PMID: 38422977 DOI: 10.1016/j.jcis.2024.02.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
HYPOTHESIS The existing literature reports have conflicting views on reactive oxygen species (ROS) generation by bulk nanobubbles. Consequently, we propose the hypothesis that (i) ROS may be generated during the process of nanobubble generation through water splitting, and (ii) bulk nanobubbles possess electrochemical reactivity, which could potentially lead to continuous ROS generation even after the cessation of nanobubble production. EXPERIMENTS A comprehensive set of experiments was conducted to generate nanobubbles in pure water using the water-splitting method. The primary aims of this study are as follows: (i) nanobubble generation by electrolysis and its characterization; (ii) to provide conclusive evidence that the nano-entities are indeed nanobubbles; (iii) to quantify the production of reactive oxygen species during the process of nanobubble generation and (iv) to establish evidence for the presence of electrochemically reactive nanobubbles. The findings of our experiment suggest that bulk nanobubbles possess the ability to generate reactive oxygen species (ROS) during the process of nanobubble nucleation. Additionally, our results indicate that bulk nanobubbles are electrochemically reactive after the cessation of nanobubble production. The electron spin spectroscopy (ESR) response and degradation of the dye compound over time confirm the electrochemical reactivity of bulk nanobubbles.
Collapse
Affiliation(s)
- Gaurav Yadav
- Department of Chemical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India
| | - Neelkanth Nirmalkar
- Department of Chemical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India.
| | - Claus-Dieter Ohl
- Otto von Guerricke University, Institute for Physics, Universitätsplatz, Magdeburg, 39106, Germany
| |
Collapse
|
8
|
Fitzgerald E, Kumar A, Poulose S, Coey JMD. Interaction and Stability of Nanobubbles and Prenucleation Calcium Clusters during Ultrasonic Treatment of Hard Water. ACS OMEGA 2024; 9:2547-2558. [PMID: 38250393 PMCID: PMC10795157 DOI: 10.1021/acsomega.3c07305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/27/2023] [Accepted: 12/08/2023] [Indexed: 01/23/2024]
Abstract
To investigate the stability of nanobubbles in natural hard water, a series of eight samples ranging in hardness from 0 to 332 mg/L CaCO3 were sonicated for periods of 5-45 min with an ultrasonic horn. Conductivity, temperature, ζ-potential, composition, and pH of the water were analyzed, together with the crystal structure of any calcium carbonate precipitate. Quasi-stable populations of bulk nanobubbles in Millipore and soft water are characterized by a ζ-potential of -35 to -20 mV, decaying over 60 h or more. After sonicating the hardest waters for about 10 min, they turn cloudy due to precipitation of amorphous calcium carbonate when the water temperature reaches 40 °C; the ζ-potential then jumps from -10 to +20 mV and remains positive for several days. From an analysis of the change of conductivity of the hard water before and after sonication, it is estimated that 37 ± 5% of calcium was not originally in solution but existed in nanoscale prenucleation clusters, which decorate the nanobubbles formed in the early stages of sonication. Heating and charge screening in the nanobubble colloid cause the decorated bubbles to collapse or disperse, leaving an amorphous precursor of aragonite. Sonicating the soft supernatant increases its conductivity and pH and restores the negative ζ-potential associated with bulk nanobubbles, but there is no further precipitation. Our study of the correlation between nanobubble production and calcium agglomeration spanning the hardness and composition ranges of natural waters shows that the sonication method for introducing nanobubbles is viable only for hard water if it is kept cold; the stability of the nanobubble colloid will be reduced in any case by the presence of dissolved calcium and magnesium.
Collapse
Affiliation(s)
- Eavan Fitzgerald
- School of Physics, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Anup Kumar
- School of Physics, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - Sruthy Poulose
- School of Physics, Trinity College Dublin, Dublin D02 PN40, Ireland
| | - J. M. D. Coey
- School of Physics, Trinity College Dublin, Dublin D02 PN40, Ireland
| |
Collapse
|
9
|
Qi J, Huang Q, Yuan K, Fang H, Zhang L, Hu J. Evolution of Bulk Nanobubbles under Different Freezing Conditions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16873-16880. [PMID: 37966887 DOI: 10.1021/acs.langmuir.3c02530] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The freezing process of aqueous solutions plays a crucial role in various applications including cryopreservation, glaciers, and frozen materials. However, less research has focused on the influence of nanoscale gas bubble formation or collapse in water during freezing, which may significantly impact the formation of ice crystals. Herein, we report for the first time that the freezing process can produce nanobubbles in aqueous solutions, and their size and number concentration could be changed by different cooling rates, i.e., the size would decrease as the cooling rate increased, and the maximum number concentration was found at the -80 °C system. Furthermore, increasing the dissolved gas content in the solution enhanced the production of nanobubbles, whereas for preexisting nanobubbles, the freezing resulted in a decrease in their number concentration, which was negatively correlated with the cooling rate. Our results indicated that a moderate cooling rate of -80 °C favored nanobubble generation, whereas a higher cooling rate was preferable for maintaining preexisting nanobubbles. Conversely, a lower cooling rate could be employed to eliminate preexisting nanobubbles. This study explored the evolution and stability of nanobubbles during the freezing process, providing valuable insights into the application or elimination of nanobubbles.
Collapse
Affiliation(s)
- Juncheng Qi
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Huang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Kaiwei Yuan
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hengxin Fang
- Research Institute of Interdisciplinary Sciences & School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Lijuan Zhang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Jun Hu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
- Xiangfu Laboratory, Jiashan 314102, China
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| |
Collapse
|
10
|
Chae S, Kim MS, Kim JH, Fortner JD. Nanobubble Reactivity: Evaluating Hydroxyl Radical Generation (or Lack Thereof) under Ambient Conditions. ACS ES&T ENGINEERING 2023; 3:1504-1510. [PMID: 37854075 PMCID: PMC10581208 DOI: 10.1021/acsestengg.3c00124] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 10/20/2023]
Abstract
Nanobubble (NB) generation of reactive oxygen species (ROS), especially hydroxyl radical (·OH), has been controversial. In this work, we extensively characterize NBs in solution, with a focus on ROS generation (as ·OH), through a number of methods including degradation of ·OH-specific target compounds, electron paramagnetic resonance (EPR), and a fluorescence-based indicator. Generated NBs exhibit consistent physical characteristics (size, surface potential, and concentration) when compared with previous studies. For conditions described, which are considered as high O2 NB concentrations, no degradation of benzoic acid (BA), a well-studied ·OH scavenger, was observed in the presence of NBs (over 24 h) and no EPR signal for ·OH was detected. While a positive fluorescence response was measured when using a fluorescence probe for ·OH, aminophenyl fluorescein (APF), we provide an alternate explanation for the result. Gas/liquid interfacial characterization indicates that the surface of a NB is proton-rich and capable of inducing acid-catalyzed hydrolysis of APF, which results in a false (positive) fluorescence response. Given these negative results, we conclude that NB-induced ·OH generation is minimal, if at all, for conditions evaluated.
Collapse
Affiliation(s)
- Seung
Hee Chae
- Department
of Chemical and Environmental Engineering, Yale University, 17 Hillhouse Ave., New Haven, Connecticut 06520, United States
| | - Min Sik Kim
- Department
of Environmental Engineering and Soil Environment Research Center, Jeonbuk National University, Jeonju, Jeollabukdo 54896, Republic of Korea
| | - Jae-Hong Kim
- Department
of Chemical and Environmental Engineering, Yale University, 17 Hillhouse Ave., New Haven, Connecticut 06520, United States
| | - John D. Fortner
- Department
of Chemical and Environmental Engineering, Yale University, 17 Hillhouse Ave., New Haven, Connecticut 06520, United States
| |
Collapse
|
11
|
Montazeri SM, Kalogerakis N, Kolliopoulos G. Effect of chemical species and temperature on the stability of air nanobubbles. Sci Rep 2023; 13:16716. [PMID: 37794127 PMCID: PMC10550960 DOI: 10.1038/s41598-023-43803-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023] Open
Abstract
The colloidal stability of air nanobubbles (NBs) was studied at different temperatures (0-30 °C) and in the presence of sulfates, typically found in mining effluents, in a wide range of Na2SO4 concentrations (0.001 to 1 M), along with the effect of surfactants (sodium dodecyl sulfate), chloride salts (NaCl), and acid/base reagents at a pH range from 4 to 9. Using a nanobubble generator based on hydrodynamic cavitation, 1.2 × 108 bubbles/mL with a typical radius of 84.66 ± 7.88 nm were generated in deionized water. Multiple evidence is provided to prove their presence in suspension, including the Tyndall effect, dynamic light scattering, and nanoparticle size analysis. Zeta potential measurements revealed that NBs are negatively charged even after two months (from - 19.48 ± 1.89 to - 10.13 ± 1.71 mV), suggesting that their stability is due to the negative charge on their surface. NBs were found to be more stable in alkaline solutions compared to acidic ones. Further, low amounts of both chloride and sulfate dissolved salts led to a reduction of the size of NBs. However, when high amounts of dissolved salts are present, NBs are more likely to coalesce, and their size to be increased. Finally, the investigation of the stability of air NBs at low temperatures revealed a non-monotonic relationship between temperature and NBs upon considering water self-ionization and ion mobility. This research aims to open a new frontier towards the application of the highly innovative NBs technology on the treatment of mining, mineral, and metal processing effluents, which are challenging aqueous solutions containing chloride and sulfate species.
Collapse
Affiliation(s)
- Seyed Mohammad Montazeri
- Department of Mining, Metallurgical, and Materials Engineering, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Nicolas Kalogerakis
- School of Chemical and Environmental Engineering, Technical University of Crete, 73100, Chania, Greece
| | - Georgios Kolliopoulos
- Department of Mining, Metallurgical, and Materials Engineering, Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
12
|
Li T, Cui Z, Sun J, Li Q, Wang Y, Li G. Oxidative Capacity of Oxygen Nanobubbles and Their Mechanism for the Catalytic Oxidation of Ferrous Ions with Copper as a Catalyst in Sulfuric Acid Medium. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37452782 DOI: 10.1021/acs.langmuir.3c01047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Nanobubble (NB) technology has demonstrated the potential to enhance or substitute for current treatment processes in various areas. However, research employing it as a novel advanced oxidation process has thus far been relatively limited. Herein, we focused on the oxidative capacity of oxygen NBs and investigated the feasibility of utilizing their enhanced oxidation of ferrous ions (Fe2+) in a sulfuric acid medium when using copper as a catalyst and their effect mechanism. It was demonstrated that oxygen NBs could collapse to produce hydroxyl radicals (·OH) in the absence of dynamic stimuli using electron spin resonance spectroscopy, and methylene blue was used as a molecular probe for ·OH to illustrate that NB stability, determined by their properties, is the critical factor affecting ·OH release. In subsequent Fe2+ oxidation experiments, it was discovered that both strong acidity and copper ions (Cu2+) contribute to accelerating the collapse of NBs to produce ·OH. While ·OH derived from the collapse of NBs acts on Fe2+, the molecular oxygen generated homologously with ·OH will further activate the catalytic oxidation of Fe2+ by interacting with Cu2+. With the synergistic effect of the above two oxidation-driven mechanisms, the oxidation rate of Fe2+ can be significantly increased up to 88% due to the exceptional properties of oxygen NBs, which facilitate the formation of an atmosphere with persistent oxygen supersaturation and the generation of oxidation radicals. This study provides significant insight into applying NBs as a prospective technology for enhanced oxidation processes.
Collapse
Affiliation(s)
- Ting Li
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Zhao Cui
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Jing Sun
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Qian Li
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Yongdong Wang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Guangyue Li
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| |
Collapse
|
13
|
Cheng G, Zhang M, Li Y, Lau E. Improving micro-fine mineral flotation via micro/nano technologies. SEP SCI TECHNOL 2023. [DOI: 10.1080/01496395.2022.2140293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- G. Cheng
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, PR China
- State Key Laboratory of Mineral Processing, BGRIMM Technology Group, Beijing, PR China
- Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, Henan Polytechnic University, Jiaozuo, PR China
| | - M.N. Zhang
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, PR China
| | - Y.L. Li
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan, PR China
| | - E.V. Lau
- School of Engineering, Monash University Malaysia, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
14
|
Prakash R, Lee J, Moon Y, Pradhan D, Kim SH, Lee HY, Lee J. Experimental Investigation of Cavitation Bulk Nanobubbles Characteristics: Effects of pH and Surface-Active Agents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1968-1986. [PMID: 36692411 DOI: 10.1021/acs.langmuir.2c03027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nanobubbles (NBs) have a widespread application in antimicrobial activity, wastewater treatment, and ecological restoration due to numerous peculiar characteristics, such as small diameter, long-term stability, and ability to produce hydroxyl radicals. Despite significant applications, only limited comprehensive investigations are available on the role of surfactants and pH in NBs characteristics. Therefore, this study examines the effects of different surfactants (i.e., anionic, cationic, and nonionic) and pH medium on bulk NB formation, diameter, concentration, bubble size distribution (BSD), ζ-potential, and stability. The effect of surfactant at concentrations above and below the critical micelle concentration was investigated. NBs were generated in deionized (DI) water using a piezoelectric transducer. The stability of NBs was assessed by tracking the variation in diameter and concentration over time. In a neutral medium, the diameter of NBs is smaller than in other surfactant or pH mediums. The diameter, concentration, BSD, and stability of NBs are strongly influenced by the ζ-potential rather than the solution medium. BSD curve shifts to a smaller bubble diameter when the magnitude of ζ-potential is high in any solution. In pure water, surfactant, and pH mediums, NBs have existed for a long time. NBs have a shorter life span in environments with a pH ≤ 3. Surfactant adsorption on the surface of NBs increases with increasing surfactant concentration up to a certain limit, beyond which it declines substantially. The Derjaguin-Landau-Verwey-Overbeek (DLVO) theory was used to interpret the NBs stability, resulting in a total potential energy barrier that is positive and greater than 45.55 kBT for 6 ≤ pH ≤ 11, whereas for pH < 6, the potential energy barrier essentially vanishes. Moreover, an effort has also been made to explicate the plausible prospect of ion distribution and its alignment surrounding NBs in cationic and anionic surfactants. This study will extend the in-depth investigation of NBs for industrial applications involving NBs.
Collapse
Affiliation(s)
- Ritesh Prakash
- Microfluidic Convergence Laboratory, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Jinseok Lee
- Microfluidic Convergence Laboratory, School of Mechanical Engineering, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Youngkwang Moon
- Microfluidic Convergence Laboratory, School of Mechanical Engineering, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Diva Pradhan
- Microfluidic Convergence Laboratory, School of Mechanical Engineering, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Seung-Hyun Kim
- School of Engineering, Brown University, Providence, Rhode Island02912, United States
| | - Ho-Yong Lee
- Department of Material Science and Engineering, Sunmoon University, Asan31460, Republic of Korea
| | - Jinkee Lee
- Microfluidic Convergence Laboratory, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon16419, Republic of Korea
- Microfluidic Convergence Laboratory, School of Mechanical Engineering, Sungkyunkwan University, Suwon16419, Republic of Korea
| |
Collapse
|
15
|
Huang M, Nhung NTH, Wu Y, He C, Wang K, Yang S, Kurokawa H, Matsui H, Dodbiba G, Fujita T. Different nanobubbles mitigate cadmium toxicity and accumulation of rice (Oryza sativa L.) seedlings in hydroponic cultures. CHEMOSPHERE 2023; 312:137250. [PMID: 36423719 DOI: 10.1016/j.chemosphere.2022.137250] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd) contamination can pose a severe threat to food production and human health. The accumulation of Cd in rice will decrease rice biomass, photosynthetic activity, and antioxidant capacity, affecting crop yield. The effects of different nanobubbles on the growth and Cd accumulation of rice seedlings under hydroponic conditions were investigated in this study. The results showed that the biomass, photosynthetic pigment content, and antioxidant enzyme activity of rice seedlings decreased when treated with Cd alone and that Cd induced lipid peroxidation in rice seedlings. However, when different types of nanobubbles were introduced into the nutrient solution, the bioavailability of Cd in the solution was reduced. As a result, the Cd content in rice was significantly decreased compared to treatment with Cd alone. Nanobubbles increased the biomass of rice, enhanced photosynthesis, and improved the antioxidant capacity of rice by increasing antioxidant enzyme activities to alleviate Cd-induced oxidative stress. At the same time, nanobubbles increased the Fe content in rice, which decreased the Cd content, as Cd is antagonistic to Fe. In conclusion, these results suggested that nanobubbles are a potential method of mitigating Cd stress that may help to improve rice yield and could be further explored in production.
Collapse
Affiliation(s)
- Minyi Huang
- College of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Nguyen Thi Hong Nhung
- College of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Yongxiang Wu
- College of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Chunlin He
- College of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Kaituo Wang
- College of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Shangdong Yang
- Agricultural College, Guangxi University, Nanning, 530004, China
| | - Hiromi Kurokawa
- Algae Biomass Energy System R&D Center (ABES), University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Hirofumi Matsui
- Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Gjergj Dodbiba
- Graduate School of Engineering, The University of Tokyo, Bunkyo, 113-8656, Japan
| | - Toyohisa Fujita
- College of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
16
|
Sharma S, Sekhon AS, Unger P, Lampien A, Galland AT, Bhavnani K, Michael M. Impact of ultrafine bubbles on the survivability of probiotics in fermented milks. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2023.105591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
17
|
Hyaluronic acid hydrolysis using vacuum ultraviolet TiO 2 photocatalysis combined with an oxygen nanobubble system. Carbohydr Polym 2023; 299:120178. [PMID: 36876793 DOI: 10.1016/j.carbpol.2022.120178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/16/2022] [Accepted: 09/27/2022] [Indexed: 11/23/2022]
Abstract
Advanced technologies for producing high-quality low molecular weight hyaluronic acid (LMW-HA) are required from the perspective of cost-efficiency and biosafety. Here, we report a new LMW-HA production system from high molecular weight HA (HMW-HA) using vacuum ultraviolet TiO2 photocatalysis with an oxygen nanobubble system (VUV-TP-NB). The VUV-TP-NB treatment for 3 h resulted in a satisfactory LMW-HA (approximately 50 kDa measured by GPC) yield with a low endotoxin level. Further, there were no inherent structural changes in the LMW-HA during the oxidative degradation process. Compared with conventional acid and enzyme hydrolysis methods, VUV-TP-NB showed similar degradation degree with viscosity though reduced process time by at least 8-fold. In terms of endotoxin and antioxidant effects, degradation using VUV-TP-NB demonstrated the lowest endotoxin level (0.21 EU/mL) and highest radical scavenging activity. This nanobubble-based photocatalysis system can thus be used to produce biosafe LMW-HA cost-effectively for food, medical, and cosmetics applications.
Collapse
|
18
|
Fundamentals and applications of nanobubbles: A review. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Wu Y, Huang M, He C, Wang K, Nhung NTH, Lu S, Dodbiba G, Otsuki A, Fujita T. The Influence of Air Nanobubbles on Controlling the Synthesis of Calcium Carbonate Crystals. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15217437. [PMID: 36363030 PMCID: PMC9655898 DOI: 10.3390/ma15217437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 06/01/2023]
Abstract
Numerous approaches have been developed to control the crystalline and morphology of calcium carbonate. In this paper, nanobubbles were studied as a novel aid for the structure transition from vaterite to calcite. The vaterite particles turned into calcite (100%) in deionized water containing nanobubbles generated by high-speed shearing after 4 h, in comparison to a mixture of vaterite (33.6%) and calcite (66.3%) by the reaction in the deionized water in the absence of nanobubbles. The nanobubbles can coagulate with calcite based on the potential energy calculated and confirmed by the extended DLVO (Derjaguin-Landau-Verwey-Overbeek) theory. According to the nanobubble bridging capillary force, nanobubbles were identified as the binder in strengthening the coagulation between calcite and vaterite and accelerated the transformation from vaterite to calcite.
Collapse
Affiliation(s)
- Yongxiang Wu
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Minyi Huang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Chunlin He
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Kaituo Wang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Nguyen Thi Hong Nhung
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Siming Lu
- Zhengzhou Non-Ferrous Metals Research Institute Ltd. of CHALCO, Zhengzhou 450041, China
| | - Gjergj Dodbiba
- Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Akira Otsuki
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Diagonal Las Torres 2640, Peñalolén, Santiago 7941169, Chile
- Waste Science & Technology, Luleå University of Technology, SE 971 87 Luleå, Sweden
| | - Toyohisa Fujita
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|
20
|
Ma X, Li M, Xu X, Sun C. Coupling Effects of Ionic Surfactants and Electrolytes on the Stability of Bulk Nanobubbles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193450. [PMID: 36234578 PMCID: PMC9565236 DOI: 10.3390/nano12193450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 05/14/2023]
Abstract
As interest in the extensive application of bulk nanobubbles increases, it is becoming progressively important to understand the key factors affecting their anomalous stability. The scientific intrigue over nanobubbles originates from the discrepancy between the Epstein-Plesset prediction and experimental observations. Herein, the coupling effects of ionic surfactants and electrolytes on the stability of bulk nanobubbles is studied. Experimental results show that ionic surfactants not only reduce the surface tension but also promote the accumulation of net charges, which facilitate the nucleation and stabilization of bulk nanobubbles. The addition of an electrolyte in a surfactant solution further results in a decrease in the zeta potential and the number concentration of nanobubbles due to the ion shielding effect, essentially colloidal stability. An adsorption model for the coexistence of ionic surfactants and electrolytes in solution, that specifically considers the effect of the adsorption layer thickness within the framework of the modified Poisson-Boltzmann equation, is developed. A quantitative agreement between the predicted and experimental surface tension is found in a wide range of bulk concentrations. The spatial distribution of the surface potential, surfactant ions and counterions in the vicinity of the interface of bulk nanobubbles are described. Our study intrinsically paves a route to investigate the stability of bulk nanobubbles.
Collapse
|
21
|
Wang J, Guo Y, Jiao Z, Tan J, Zhang M, Zhang Q, Gu N. Generation of micro-nano bubbles by magneto induced internal heat for protecting cells from intermittent hypoxic damage. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Effect of aging time, airflow rate, and nonionic surfactants on the surface tension of bulk nanobubbles water. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
An Assessment of the Role of Combined Bulk Micro- and Nano-Bubbles in Quartz Flotation. MINERALS 2022. [DOI: 10.3390/min12080944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Bulk micro-nano-bubbles (BMNBs) have been proven to be effective at improving the flotation recovery and kinetics of fine-grained minerals. However, there is currently no research reported on the correlation between the properties of BMNBs and flotation performance. For this purpose, aqueous dispersions with diverse properties were created by altering preparation time (0, 1, 2, 3, 5, and 7 min), aeration rate (0, 0.5, 1, 1.5, and 2 L/min) and aging time (0, 0.5, 1, and >3 min). Micro- and nano-bubbles were characterized using focused beam reflection measurements (FBRM) and nanoparticle tracking analysis (NTA), respectively. The micro-flotation of quartz particles was performed using an XFG-cell in the presence and absence of BMNBs with Cetyltrimethylammonium bromide (CTAB) as a collector. The characterization of bubble sizes showed that the bulk micro-bubble (BMB) and bulk nanobubble (BNB) diameters ranged from 1–10 μm and 50–400 nm, respectively. It was found that the preparation parameters and aging time considerably affected the number of generated bubbles. When BNBs and BMBs coexisted, the recovery of fine quartz particles significantly improved (about 7%), while in the presence of only BNBs the promotion of flotation recovery was not significant (2%). This was mainly related to the aggregate via bridging, which was an advantage for quartz flotation. In comparison, no aggregates were detected when only nano-bubbles were present in the bulk solution.
Collapse
|
24
|
Odziomek M, Ulatowski K, Dobrowolska K, Górniak I, Sobieszuk P, Sosnowski TR. Aqueous dispersions of oxygen nanobubbles for potential application in inhalation therapy. Sci Rep 2022; 12:12455. [PMID: 35864438 PMCID: PMC9302230 DOI: 10.1038/s41598-022-16720-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/14/2022] [Indexed: 11/22/2022] Open
Abstract
Inhalation is a non-invasive method of local drug delivery to the respiratory system. This study analyzed the potential use of aqueous dispersion of oxygen nanobubbles (ADON) as a drug carrier with the additional function of oxygen supplementation to diseased lungs. The suitability of the membrane-based method of ADON preparation and, next, the stability of ADON properties during storage and after aerosolization in nebulizers of various designs (jet, ultrasonic, and two vibrating mesh devices) was investigated. The increased oxygen content in the aerosol generated in two mesh nebulizers suggests that the proposed concept may be helpful in the oxygen supplementation during drug delivery by aerosol inhalation without using an additional oxygen source. This application can increase the overall effectiveness of lung disease treatment and pulmonary rehabilitation.
Collapse
Affiliation(s)
- Marcin Odziomek
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1 Street, 00-645, Warsaw, Poland.
| | - Karol Ulatowski
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1 Street, 00-645, Warsaw, Poland
| | - Katarzyna Dobrowolska
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1 Street, 00-645, Warsaw, Poland
| | - Izabela Górniak
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1 Street, 00-645, Warsaw, Poland
| | - Paweł Sobieszuk
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1 Street, 00-645, Warsaw, Poland
| | - Tomasz R Sosnowski
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1 Street, 00-645, Warsaw, Poland.
| |
Collapse
|
25
|
The Challenges and Prospects of Recovering Fine Copper Sulfides from Tailings Using Different Flotation Techniques: A Review. MINERALS 2022. [DOI: 10.3390/min12050586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Flotation is a common mineral processing method used to upgrade copper sulfide ores; in this method, copper sulfide mineral particles are concentrated in froth, and associated gangue minerals are separated as tailings. However, a significant amount of copper is lost into tailings during the processing; therefore, tailings can be considered secondary resources or future deposits of copper. Particle–bubble collision efficiency and particle–bubble aggregate stability determines the recovery of target particles; this attachment efficiency plays a vital role in the selectivity process. The presence of fine particles in the flotation circuit is because of excessive grinding, which is to achieve a higher degree of liberation. Complex sulfide ores of markedly low grade further necessitate excessive grinding to achieve the maximum degree of liberation. In the flotation process, fine particles due to their small mass and momentum are unable to collide with rising bubbles, and their rate of flotation is very slow, further lowering the recovery of target minerals. This collision efficiency mainly depends on the particle–bubble size ratio and the concentration of particles present in the pulp. To overcome this problem and to maintain a favorable particle–bubble size ratio, different techniques have been employed by researchers to enhance particle–bubble collision efficiency either by increasing particle size or by decreasing bubble size. In this article, the mechanism of tailing loss is discussed in detail. In addition, flotation methods for fine particles recovery such as microbubble flotation, column flotation, nanobubble flotation, polymer flocculation, shear flocculation, oil agglomeration, and carrier flotation are reviewed, and their applications and limitations are discussed in detail.
Collapse
|
26
|
Feng M, Ma X, Zhang Z, Luo KH, Sun C, Xu X. How sodium chloride extends lifetime of bulk nanobubbles in water. SOFT MATTER 2022; 18:2968-2978. [PMID: 35352084 DOI: 10.1039/d2sm00181k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We present a molecular dynamics simulation study on the effects of sodium chloride addition on stability of a nitrogen bulk nanobubble in water. We find that the lifetime of the bulk nanobubble is extended in the presence of NaCl and reveal the underlying mechanisms. We do not observe spontaneous accumulation or specific arrangement of ions/charges around the nanobubble. Importantly, we quantitatively show that the N2 molecule selectively diffuses through water molecules rather than pass by any ions after it leaves the nanobubble due to the much weaker water-water interactions than ion-water interactions. The strong ion-water interactions cause hydration effects and disrupt hydrogen bond networks in water, which leave fewer favorable paths for the diffusion of N2 molecules, and by that reduce the degree of freedom in the dissolution of the nanobubble and prolong its lifetime. These results demonstrate that the hydration of ions plays an important role in stability of the bulk nanobubble by affecting the dynamics of hydrogen bonds and the diffusion properties of the system, which further confirm and interpret the selective diffusion path of N2 molecules and the extension of lifetime of the nanobubble. The new atomistic insights obtained from the present research could potentially benefit the practical application of bulk nanobubbles.
Collapse
Affiliation(s)
- Muye Feng
- Center for Combustion Energy, Key Laboratory of Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China.
| | - Xiaotong Ma
- Center for Combustion Energy, Key Laboratory of Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China.
| | - Zeyun Zhang
- Center for Combustion Energy, Key Laboratory of Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China.
| | - Kai H Luo
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Chao Sun
- Center for Combustion Energy, Key Laboratory of Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China.
| | - Xuefei Xu
- Center for Combustion Energy, Key Laboratory of Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
27
|
Syaeful Alam H, Sutikno P, Soelaiman TAF, Sugiarto AT. Population Balance Modeling and Multi‐Response Optimization of a Swirling‐Flow Nanobubble Generator. Chem Eng Technol 2022. [DOI: 10.1002/ceat.202100360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hilman Syaeful Alam
- Faculty of Mechanical and Aerospace Engineering Institut Teknologi Bandung, Doctoral Program of Mechanical Engineering Jalan Ganesha 10 40132 Bandung Indonesia
- National Research and Innovation Agency Jalan Sangkuriang Gedung 80 40135 Bandung Indonesia
| | - Priyono Sutikno
- Faculty of Mechanical and Aerospace Engineering Institut Teknologi Bandung, Doctoral Program of Mechanical Engineering Jalan Ganesha 10 40132 Bandung Indonesia
| | - Tubagus Ahmad Fauzi Soelaiman
- Faculty of Mechanical and Aerospace Engineering Institut Teknologi Bandung, Doctoral Program of Mechanical Engineering Jalan Ganesha 10 40132 Bandung Indonesia
| | - Anto Tri Sugiarto
- National Research and Innovation Agency Jalan Sangkuriang Gedung 80 40135 Bandung Indonesia
| |
Collapse
|
28
|
Recent Developments in Generation, Detection and Application of Nanobubbles in Flotation. MINERALS 2022. [DOI: 10.3390/min12040462] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This paper reviews recent developments in the fundamental understating of ultrafine (nano) bubbles (NBs) and presents technological advances and reagent types used for their generation in flotation. The generation of NBs using various approaches including ultrasonication, solvent exchange, temperature change, hydrodynamic cavitation, and electrolysis was assessed. Most importantly, restrictions and opportunities with respect to the detection of NBs were comprehensively reviewed, focusing on various characterization techniques such as the laser particle size analyzer (LPSA), nanoparticle tracking (NTA), dynamic light scattering (DLS), zeta-phase light scattering (ZPALS), and zeta sizer. As a key feature, types and possible mechanisms of surfactants applied to stabilize NBs were also explored. Furthermore, flotation-assisted nano-bubbles was reported as an efficient method for recovering minerals, with a special focus on flotation kinetics. It was found that most researchers reported the existence and formation of NBs by different techniques, but there is not enough information on an accurate measurement of their size distribution and their commonly used reagents. It was also recognized that a suitable method for generating NBs, at a high rate and with a low cost, remains a technical challenge in flotation. The application of hydrodynamic cavitation based on a venturi tube and using the LPSA and NTA in laboratory scales were identified as the most predominant approaches for the generation and detection of NBs, respectively. In this regard, neither pilot- nor industrial-scale case studies were found in the literature; they were only highlighted as future works. Although the NB-stabilizing effects of electrolytes have been well-explored, the mechanisms related to surfactants remain the issue of further investigation. The effectiveness of the NB-assisted flotation processes has been mostly addressed for single minerals, and only a few works have been reported for bulk materials. Finally, we believe that the current review paves the way for an appropriate selection of generating and detecting ultrafine bubbles and shines the light on a profound understanding of its effectiveness.
Collapse
|
29
|
Luvita V, Sugiarto A, Bismo S. Characterization of dielectric barrier discharge reactor with nanobubble application for industrial water treatment and depollution. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1016/j.sajce.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
30
|
Zhang R, Hou W, Wang H, Hu E, Lei Z, Hu F, Zhou W, Wang Q. Oxidative leaching of sandstone uranium ore assisted by ozone micro-nano bubbles. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08241-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Zhou S, Nazari S, Hassanzadeh A, Bu X, Ni C, Peng Y, Xie G, He Y. The effect of preparation time and aeration rate on the properties of bulk micro-nanobubble water using hydrodynamic cavitation. ULTRASONICS SONOCHEMISTRY 2022; 84:105965. [PMID: 35240410 PMCID: PMC8889407 DOI: 10.1016/j.ultsonch.2022.105965] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 05/11/2023]
Abstract
Fundamental research on bulk micro-nanobubbles (BMNBs) has grown rapidly due to the demand for their industrial applications and potential role in interfacial sciences. This work focuses on examining properties of such bubbles, including the number, concentration, zeta potential, and surface tension in water. For this purpose, BMNBs were generated by the hydrodynamic cavitation (HC) mechanism. Distilled water and air in the experiments were the liquid and gas phases, respectively. The characterization of bulk microbubbles (BMBs) and bulk nanobubbles (BNBs) were performed through focused beam reflectance measurement (FBRM) and nanoparticle tracking analysis (NTA) techniques, respectively. Zeta potential and surface tension of aqueous solutions were measured at different time and aeration rates. The results showed that aeration rate and preparation time had an important role in the properties of BNBs (concentration, bubble size, and surface charge) and BMBs (number, and bubble size). The instability of BMBs led to the rapid changes in the dissolved oxygen (DO) content in the water. The number of BMBs decreased when preparation time and aeration rate increased, but their size remained constant. By enhancing the preparation time and aeration rate, the concentration of BNBs improved first and then reduced. Additionally, the surface tension of an aqueous solution containing BNBs was significantly lower than that of pure water.
Collapse
Affiliation(s)
- Shaoqi Zhou
- Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), China University of Mining and Technology, Xuzhou 221116, China; School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Sabereh Nazari
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Ahmad Hassanzadeh
- Maelgwyn Mineral Services Ltd, Ty Maelgwyn, 1A Gower Road, Cathays, Cardiff CF24 4PA, United Kingdom; Department of Geoscience and Petroleum, Faculty of Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Xiangning Bu
- Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), China University of Mining and Technology, Xuzhou 221116, China; School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China.
| | - Chao Ni
- Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), China University of Mining and Technology, Xuzhou 221116, China; School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Yaoli Peng
- Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), China University of Mining and Technology, Xuzhou 221116, China; School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Guangyuan Xie
- Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), China University of Mining and Technology, Xuzhou 221116, China; School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Yaqun He
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|
32
|
Zhang Z, Chang N, Wang S, Lu J, Li K, Zheng C. Enhancing sulfide mitigation via the sustainable supply of oxygen from air-nanobubbles in gravity sewers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152203. [PMID: 34890666 DOI: 10.1016/j.scitotenv.2021.152203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/19/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Traditional air or oxygen injection is an effective and economical mitigation strategy for sulfide control in pressure sewers, but it is not suitable for gravity sewers due to the low solubility of oxygen in water under normal atmospheric conditions. Herein, an air-nanobubble (ANB) injection method was proposed for sulfide mitigation in gravity sewers, and its sulfide control efficiency was evaluated by long-term laboratory gravity sewer reactors. The results showed that an average inhibition rate of 45.36% for sulfide was obtained when ANBs were implemented, which was 3.75 times higher than that of the traditional air injection method, revealing the effectiveness and feasibility of the ANB injection method. As suggested by microbial community analysis of sewer biofilms, the relative abundance of sulfate-reducing bacteria (SRB) decreased 40.57% while that of sulfur oxidizing bacteria (SOB) increased 215.27% in the presence of ANBs, indicating that sulfide mitigation by ANB injection included both the inhibition of sulfide production and the oxidation of dissolved sulfide. The specific cost consumption of ANB injection was 1.7 $/kg-S, which was only 6.85% of that of traditional air injection (24.8 $/kg-S), suggesting that the sustainable supply of oxygen based on ANB injection is not only environmentally but also economically beneficial for sulfide mitigation. The findings of this study may provide an efficient sulfide mitigation strategy for the management of corrosion and malodour issues in the poorly ventilated gravity sewers.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Na Chang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Sheping Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; Xi'an Municipal Design and Research Institute, No.100 Zhuque Road, Xi'an 710068, People's Republic of China
| | - Jinsuo Lu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China; Key Laboratory of Northwest Water Resources, Environment and Ecology, Ministry of Education, People's Republic of China; Key Laboratory of Environmental Engineering, Shaanxi Province, People's Republic of China.
| | - Kexin Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, People's Republic of China
| | - Cailin Zheng
- Ankang Municipal Facilities Management, House and Urban Rural Development Department of Ankang, NO.1 Bingjiang Road, Ankang 725000, Shaanxi Province, People's Republic of China
| |
Collapse
|
33
|
Ma X, Li M, Pfeiffer P, Eisener J, Ohl CD, Sun C. Ion adsorption stabilizes bulk nanobubbles. J Colloid Interface Sci 2022; 606:1380-1394. [PMID: 34492474 DOI: 10.1016/j.jcis.2021.08.101] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022]
Abstract
The mechanism leading to the extraordinary stability of bulk nanobubbles in aqueous solutions remains an outstanding problem in soft matter, modern surface science, and physical chemistry science. In this work, the stability of bulk nanobubbles in electrolyte solutions under different pH levels and ionic strengths is studied. Nanobubbles are generated via the technique of ultrasonic cavitation, and characterized for size, number concentration and zeta potential under ambient conditions. Experimental results show that nanobubbles can survive in both acidic and basic solutions with pH values far away from the isoelectric point. We attribute the enhanced stability with increasing acidity or alkalinity of the aqueous solutions to the effective accumulation of net charges, regardless of their sign. The kinetic stability of the nanobubbles in various aqueous solutions is evaluated within the classic DLVO framework. Further, by combining a modified Poisson-Boltzmann equation with a modified Langmuir adsorption model, we describe a simple model that captures the influence of ion species and bulk concentration and reproduce the dependence of the nanobubble's surface potential on pH. We also discuss the apparent contradiction between quantitative calculation by ion stabilization model and experimental results. This essentially requires insight into the structure and dynamics of interfacial water on the atomic-scale.
Collapse
Affiliation(s)
- Xiaotong Ma
- Center for Combustion Energy, Key laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
| | - Mingbo Li
- Center for Combustion Energy, Key laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China.
| | - Patricia Pfeiffer
- Otto von Guericke University Magdeburg, Institute of Experimental Physics, Universitätsplatz 2, 39016 Magdeburg, Germany
| | - Julian Eisener
- Otto von Guericke University Magdeburg, Institute of Experimental Physics, Universitätsplatz 2, 39016 Magdeburg, Germany
| | - Claus-Dieter Ohl
- Otto von Guericke University Magdeburg, Institute of Experimental Physics, Universitätsplatz 2, 39016 Magdeburg, Germany
| | - Chao Sun
- Center for Combustion Energy, Key laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
34
|
|
35
|
Zeng F, Du M, Chen Z. Nanosized Contrast Agents in Ultrasound Molecular Imaging. Front Bioeng Biotechnol 2021; 9:758084. [PMID: 34912789 PMCID: PMC8666542 DOI: 10.3389/fbioe.2021.758084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
Applying nanosized ultrasound contrast agents (nUCAs) in molecular imaging has received considerable attention. nUCAs have been instrumental in ultrasound molecular imaging to enhance sensitivity, identification, and quantification. nUCAs can achieve high performance in molecular imaging, which was influenced by synthetic formulations and size. This review presents an overview of nUCAs from different synthetic formulations with a discussion on imaging and detection technology. Then we also review the progress of nUCAs in preclinical application and highlight the recent challenges of nUCAs.
Collapse
Affiliation(s)
- Fengyi Zeng
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, China.,Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China.,Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Meng Du
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, China.,Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhiyi Chen
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, China.,Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
36
|
Population balance modeling of flotation pulp: The route from process frequency functions to spatially distributed models. Comput Chem Eng 2021. [DOI: 10.1016/j.compchemeng.2021.107506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Li T, Cui Z, Sun J, Jiang C, Li G. Generation of Bulk Nanobubbles by Self-Developed Venturi-Type Circulation Hydrodynamic Cavitation Device. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12952-12960. [PMID: 34714096 DOI: 10.1021/acs.langmuir.1c02010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bulk nanobubbles (BNBs) have attracted substantial interest from academia and industry owing to their peculiar properties and extensive potential applications. However, a scalable engineering method needs to be developed. Herein, we developed a nanobubble generator based on venturi-type recirculating hydrodynamic cavitation. The existence of nanobubbles produced by our generator was confirmed using physicochemical test methods, including the Tyndall effect, multiple freeze-thaw degassing experiments, and trace metal analysis. Subsequently, the effects of different operating parameters (circulation time and operating pressure) on bulk nanobubble production and properties, as well as their stability, were investigated. The results suggest that the characteristics of BNBs varied with the circulation time (5-20 min) and operating pressure (2-5 bar). However, all the particle size distribution of BNBs had a bimodal distribution with a mean diameter of 180-210 nm for the different circulation time and operating pressures. For example, by increasing the circulation time from 5 to 20 min, the peak value of size distribution decreased from 333/122 nm to 218/52 nm, and the average sample scattering signal count rate (Avg. Count Rate) increased from 133 to 303 Kcps. The evaluation of the stability of the BNBs formed for the circulation time of 15 min and the operating pressure of 3 bar showed that they could continue existence and stability in the suspension for 72 h. The study results might provide a valuable method for further investigation of industrial applications of venturi-type nanobubble generators.
Collapse
Affiliation(s)
- Ting Li
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Zhao Cui
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Jing Sun
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Chang Jiang
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Guangyue Li
- School of Resources & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| |
Collapse
|
38
|
Bulk Nanobubbles: generation using a two-chamber swirling flow nozzle and long-term stability in water. J Flow Chem 2021. [DOI: 10.1007/s41981-021-00208-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
Sugimoto T, Hamamoto S, Nishimura T. Inhibited nanobubble transport in a saturated porous medium: Effects of deposited colloidal particles. JOURNAL OF CONTAMINANT HYDROLOGY 2021; 242:103854. [PMID: 34293646 DOI: 10.1016/j.jconhyd.2021.103854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/20/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Nanobubbles have recently attracted much interest for their practical use and potential applications in environmental issues. The pre-existence of deposited colloidal particles in porous media commonly occurs when nanobubbles applied to porous media interact with deposited colloidal particles. However, the current understanding of the effect of the interactions with pre-deposited colloidal particles on nanobubble transport in saturated porous media remains incomplete, and the effects are often overlooked. Therefore, we performed 1D column experiments with sequential injections of colloidal and nanobubble suspensions to study the effect of pre-deposited materials on the retention and release of colloids and nanobubbles in packed glass beads. In this study, we used resonant mass measurements to measure the number concentrations of colloids and nanobubbles during transport experiments for the first time to distinguish between coexisting solid colloidal particles and nanobubbles with different buoyancies in mixed effluent during transport. The nanobubble retention increased because of the pre-existence of deposited colloidal particles, indicating that the deposited colloidal particles act as additional deposition sites and physical obstacles for nanobubbles through physicochemical (including hydrophobic) interactions. This study also provides a future reference for the applicability of resonant mass measurement to cotransport experiments of different buoyant particles, including colloids, nanobubbles, and oil droplets.
Collapse
Affiliation(s)
- Takuya Sugimoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8572, Japan; Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Shoichiro Hamamoto
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Taku Nishimura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
40
|
Fu HM, Peng MW, Yan P, Wei Z, Fang F, Guo JS, Chen YP. Potential role of nanobubbles in dynamically modulating the structure and stability of anammox granular sludge within biological nitrogen removal process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147110. [PMID: 33901950 DOI: 10.1016/j.scitotenv.2021.147110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
The generation of visible macrobubbles considerably affects the structure and function of anammox granules in the anammox granular sludge (AnGS) system. However, the existence of nanobubbles (NBs) and their role in maintaining the AnGS structure and stability are unclear because of the complexity of the system and lack of effective analytical methods. In this study, methods for NB analysis and assessment of their effects were developed to investigate the formation and characteristics of NBs in an AnGS system and the effects of NBs on the properties and function of AnGS. The results indicated that dissolved gas supersaturation caused by AnGS generated NBs of 2.75 × 108 bubbles/mL inside an AnGS reactor after running for 300 min at 30 °C. The increasing absolute value of the zeta potential of NBs with time indicated that the NBs in the AnGS system were gradually stable. The size of the stable NBs ranged from 150 nm to 400 nm. NB formation also increased the space and pressure between cells, leading to the breakage of the cell cluster and causing structural changes in granules. Changes in the local granular microstructure caused by NBs were favorable for the porous structure of granules to avoid granular disintegration and flotation caused by the excessive secretion of extracellular polymeric substances blocking gas channels. The formation and stability of NBs penetrating the cell clusters played a crucial role in the formation and stability of nanopores around or inside the cell clusters, further providing a basis for the formation of high-porosity structures and efficient mass transfer of AnGS.
Collapse
Affiliation(s)
- Hui-Min Fu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Meng-Wen Peng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China.
| | - Zhen Wei
- College of Aerospace Engineering, Chongqing University, Chongqing 400045, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| |
Collapse
|
41
|
Li M, Ma X, Eisener J, Pfeiffer P, Ohl CD, Sun C. How bulk nanobubbles are stable over a wide range of temperatures. J Colloid Interface Sci 2021; 596:184-198. [DOI: 10.1016/j.jcis.2021.03.064] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/04/2021] [Accepted: 03/11/2021] [Indexed: 11/28/2022]
|
42
|
Kalogerakis N, Kalogerakis GC, Botha QP. Environmental applications of nanobubble technology: Field testing at industrial scale. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nicolas Kalogerakis
- School of Environmental Engineering Technical University of Crete Chania Greece
| | | | | |
Collapse
|
43
|
Eklund F, Alheshibri M, Swenson J. Differentiating bulk nanobubbles from nanodroplets and nanoparticles. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101427] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
Zhou L, Wang S, Zhang L, Hu J. Generation and stability of bulk nanobubbles: A review and perspective. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101439] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
45
|
Svetovoy VB. Spontaneous chemical reactions between hydrogen and oxygen in nanobubbles. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
46
|
Hou T, Zhao J, Lei Z, Shimizu K, Zhang Z. Enhanced energy recovery via separate hydrogen and methane production from two-stage anaerobic digestion of food waste with nanobubble water supplementation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143234. [PMID: 33162132 DOI: 10.1016/j.scitotenv.2020.143234] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/21/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
This study investigated the enhancement effect of N2- and Air-nanobubble water (NBW) supplementation on two-stage anaerobic digestion (AD) of food waste (FW) for separate production of hydrogen and methane. In the first stage for hydrogen production, the highest cumulative H2 yield (27.31 ± 1.21 mL/g-VSadded) was obtained from FW + Air-NBW, increasing by 38% compared to the control (FW + deionized water (DW)). In the second stage for methane production, the cumulative CH4 yield followed a descending order of FW + Air-NBW (373.63 ± 3.58 mL/g-VSadded) > FW + N2-NBW (347.63 ± 7.05 mL/g-VSadded) > FW + DW (300.93 ± 3.24 mL/g-VSadded, control), increasing by 24% in FW + Air-NBW and 16% in FW + N2-NBW compared to the control, respectively. Further investigations indicate that different gas-NBW may positively impact the different stages of AD process. Addition of N2-NBW only enhanced the hydrolysis/acidification of FW with no significant effect on methanogenesis. By comparison, addition of Air-NBW promoted both hydrolysis/acidification stage and methanogenesis stage, reflecting by the enhanced activities of four extracellular hydrolases at the end of hydrolysis/acidification and coenzyme F420 at the end of methanogenesis, respectively. Results from this work suggest the potential application of Air-NBW in the two-stage AD for efficient renewable energy recovery from FW.
Collapse
Affiliation(s)
- Tingting Hou
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Jiamin Zhao
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Kazuya Shimizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
47
|
Tanaka S, Kobayashi H, Ohuchi S, Terasaka K, Fujioka S. Destabilization of ultrafine bubbles in water using indirect ultrasonic irradiation. ULTRASONICS SONOCHEMISTRY 2021; 71:105366. [PMID: 33246314 PMCID: PMC7786561 DOI: 10.1016/j.ultsonch.2020.105366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/15/2020] [Accepted: 10/01/2020] [Indexed: 05/06/2023]
Abstract
Ultrafine bubble (UFB) is a bubble with a diameter of less than 1 μm. Little attention has been paid to the defoaming and removal of UFBs. This study proposes a method to destabilize UFBs by using indirect ultrasonic irradiation. Besides, the destabilization mechanism of UFB was investigated. The ultrasonic frequency was 1.6 MHz and the dissipated power was 30 W. UFB dispersions were prepared using two different types of bubble generators: pressurized dissolution method and swirling liquid flow method. The effects of ultrasonic irradiation on the stability of UFBs were evaluated by particle tracking analysis (PTA) and electrophoretic zeta potential measurement. Results showed that the indirect ultrasonic irradiation for 30 min reduced the number concentration of UFBs by 90% regardless of the generation method. This destabilization was attributed to a decrease in the magnitude of zeta potential of UFBs due to the changes in pH and electrical conductivity. These changes in the electrochemical properties were caused by the formation of nitric acid. To study the destabilization mechanism, the pH of the UFB dispersions were modified by titration; the chemical and mechanical effects of ultrasound were separately examined. It was found that not only the chemical effect caused by the formation of nitric acid but also the mechanical effect contributed to the destabilization of UFB. Feasibility studies were also performed for UFBs in an aqueous surfactant solution and UFBs in a solid particle dispersion. The proposed method selectively destabilized UFBs in the solutions.
Collapse
Affiliation(s)
- Shunya Tanaka
- School of Science for Open and Environmental Systems, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Hirona Kobayashi
- National Institute of Technology and Evaluation (NITE), 2-49-10 Nishihara, Shibuya-ku, Tokyo 151-0066, Japan
| | - Seika Ohuchi
- National Institute of Technology and Evaluation (NITE), 2-49-10 Nishihara, Shibuya-ku, Tokyo 151-0066, Japan
| | - Koichi Terasaka
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan.
| | - Satoko Fujioka
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
48
|
Ji Y, Guo Z, Tan T, Wang Y, Zhang L, Hu J, Zhang Y. Generating Bulk Nanobubbles in Alcohol Systems. ACS OMEGA 2021; 6:2873-2881. [PMID: 33553905 PMCID: PMC7860054 DOI: 10.1021/acsomega.0c05222] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Bulk nanobubbles (NBs) have attracted wide attention due to their peculiar physicochemical properties and great potential in applications in various fields. However, so far there are no reports on bulk NBs generated in pure organic systems, which we think is very important as NBs would largely improve the efficiency of gas-liquid mass transfer and facilitate chemical reactions to take place. In this paper, we verified that air and N2 NBs could be generated in a series of alcohol solutions by using various methods including acoustical cavitation, pressurization-depressurization, and vibration. The experiments proved that NBs existed in alcohol solutions, with a highest density of 5.8 × 107 bubble/mL in propanol. Our results also indicated that bulk NBs could stably exist for at least hours in alcohol systems. The parameters in generating NBs in alcohols were optimized. Our findings open up an opportunity for improving gas-liquid mass transfer efficiency in the field of the chemical industry.
Collapse
Affiliation(s)
- Yuwen Ji
- Key
Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Guo
- Key
Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingyuan Tan
- Key
Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujiao Wang
- Key
Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Lijuan Zhang
- Key
Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Zhangjiang
Lab, Shanghai Advanced Research Institute,
Chinese Academy of Sciences, Shanghai 201210, China
| | - Jun Hu
- Key
Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Zhangjiang
Lab, Shanghai Advanced Research Institute,
Chinese Academy of Sciences, Shanghai 201210, China
| | - Yi Zhang
- Key
Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Zhangjiang
Lab, Shanghai Advanced Research Institute,
Chinese Academy of Sciences, Shanghai 201210, China
| |
Collapse
|
49
|
Investigation of nanobubble enhanced reverse anionic flotation of hematite and associated mechanisms. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2020.10.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Uvarov IV, Shlepakov PS, Postnikov AV, Svetovoy VB. Highly energetic impact of H 2 and O 2 nanobubbles on Pt surface. J Colloid Interface Sci 2021; 582:167-176. [PMID: 32818712 DOI: 10.1016/j.jcis.2020.07.135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 11/16/2022]
Abstract
Hypothesis Water electrolysis performed by short (≲5μs) voltage pulses of alternating polarity generates a dense cloud of H2 and O2 nanobubbles. Platinum electrodes turn black in this process, while they behave differently when the polarity is not altered. We prove that the modification of Pt is associated with highly energetic impact of nanobubbles rather than with any electrochemical process. Experiments Nanobubbles are generated by planar Pt or Ti microelectrodes. The process is driven by a series of alternating or single polarity pulses. In the case of Ti electrodes a Pt plate is separated by a gap from the electrodes. Nanoparticles on the surface of platinum are investigated with a scanning electron microscope and elemental composition is analysed using an energy-dispersive X-ray spectrometer. Findings Vigorous formation of Pt nanoparticles with a size of 10 nm is observed when the process is driven by the alternating polarity pulses. The effects of Pt corrosion have different character and cannot explain the phenomenon. Similar nanoparticles are observed when the Pt plate is exposed to a stream of nanobubbles. The process is explained by spontaneous combustion of hydrogen and oxygen nanobubbles on Pt surface. The phenomenon can be used to remove strongly adhered particles from solids.
Collapse
Affiliation(s)
- Ilia V Uvarov
- Valiev Institute of Physics and Technology of Russian Academy of Sciences, Yaroslavl Branch, Universitetskaya 21, 150007 Yaroslavl, Russia
| | - Pavel S Shlepakov
- Valiev Institute of Physics and Technology of Russian Academy of Sciences, Yaroslavl Branch, Universitetskaya 21, 150007 Yaroslavl, Russia
| | - Alexander V Postnikov
- Valiev Institute of Physics and Technology of Russian Academy of Sciences, Yaroslavl Branch, Universitetskaya 21, 150007 Yaroslavl, Russia
| | - Vitaly B Svetovoy
- Department of Robotics and Mechatronics, University of Twente, PO 217, 7500 AE Enschede, the Netherlands; A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciencies, Leninsky prospect 31 bld. 4, 119071 Moscow, Russia.
| |
Collapse
|