1
|
Liu X, Li Y, Ji X, Fei X, Tian J, Xu L, Wang Y. Hydrogel microspheres immobilized lipase inspired by golf ball surfaces for the deacidification of Antarctic krill oil. Food Chem 2025; 475:143348. [PMID: 39961209 DOI: 10.1016/j.foodchem.2025.143348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/04/2025] [Accepted: 02/09/2025] [Indexed: 03/09/2025]
Abstract
Lipase-catalyzed esterification for enhancing oil quality has garnered extensive attention due to its eco-friendly and efficient merits. Nevertheless, during the catalytic esterification process at the oil-water interface to reduce acid value, the immobilized lipase is prone to detachment as a result of continuous mechanical agitation. In this study, inspired by the aerodynamic theory of golf ball surfaces, a novel immobilized enzyme system is designed and fabricated to improve the quality of Antarctic krill oil and prolong its storage time. The surface of the poly-pullulan hydrogel microspheres is chemically modified to expose numerous active reaction sites, forming a pitted structure similar to that of a golf ball. These pits on the surface of the microspheres can effectively mitigate the impact of the oil phase fluid on the immobilized enzyme on the surface of the carriers during the catalytic process, reducing lipase shedding and enhancing the catalytic reuse rate of the immobilized enzyme system. The obtained immobilized enzyme microspheres can still retain 70.1 % of the initial activity after 10 reuses. The high acid value of Antarctic krill oil (10.14mgKOH/g) can be effectively esterified and deacidified, and the acid value can be decreased to 2.18mgKOH/g.
Collapse
Affiliation(s)
- Xiaolu Liu
- Instrumental Analysis Center, Dalian Polytechnic University, Dalian 116034, China; School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yao Li
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xuan Ji
- Instrumental Analysis Center, Dalian Polytechnic University, Dalian 116034, China; School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xu Fei
- Instrumental Analysis Center, Dalian Polytechnic University, Dalian 116034, China.
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Longquan Xu
- Instrumental Analysis Center, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
2
|
Sun M, Gao J, Zhao Y, Ding P, Zhang W, Cai J. Enhancing lipase enzymatic performance with dynamic covalent dextran-based hydrogels. Int J Biol Macromol 2025; 305:141254. [PMID: 39978516 DOI: 10.1016/j.ijbiomac.2025.141254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/28/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
How to maintain high catalytic activity and stability in the process of biocatalysis is crucial, inspiring strategies to construct an appropriate immobilized hydrogel system. Inspired by biologically relevant interactions of natural polymers, we crafted a polysaccharide-based dynamic hydrogel through imine bonds among lipase, oxidized dextrans (ODex) and carboxymethylchitosan. The successful preparation of ODex and the in situ immobilization of lipase through a Schiff base reaction were verified by FT-IR, 1H NMR, XRD, and the hydroxylamine hydrochloride method. The resultant gel endows the lipase with improved storage stability, thermal stability, reusability, and a higher degree of triacylglycerol hydrolysis. Furthermore, the immobilized lipase in the gel exhibits superior activity under harsh conditions, including high temperatures, strong bases, and exposure to organic solvents. The polysaccharide-based dynamic hydrogel represents a promising platform for enzyme immobilization, offering versatile applications in industrial biocatalysis.
Collapse
Affiliation(s)
- Meng Sun
- College of Life Science, Xinyang Normal University, Xinyang 464000, China.
| | - Jie Gao
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Yingying Zhao
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Peng Ding
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Wanying Zhang
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Junwen Cai
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
3
|
Sun R, Wei C, Tang X, Sun Y, Ji J. Nanostructured Lipid Carrier-Filled Hydrogel Beads for the Delivery of Curcumin: Digestion, Intestinal Permeation, and Antioxidant Bioactivity After Gastrointestinal Digestion. Pharmaceutics 2025; 17:541. [PMID: 40430834 PMCID: PMC12115321 DOI: 10.3390/pharmaceutics17050541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/30/2025] [Accepted: 04/21/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: The aim of the present study was to develop nanostructured lipid carrier (NLC)-filled hydrogel beads for the delivery of curcumin in functional foods. Methods: Curcumin-loaded NLC-filled hydrogel beads based on calcium alginate were developed using the extrusion method. Various preparation parameters, physicochemical characteristics, gastrointestinal fates, and antioxidant bioactivities were studied to confirm the feasibility of this delivery system. Results: Curcumin-loaded NLCs were successfully filled into hydrogel beads with an encapsulation efficiency above 80%. The stability test displayed that the stability of curcumin encapsulated within NLCs was further enhanced when the NLCs were filled into beads. During in vitro digestion, the lipolysis rate of the lipid matrix and the release rate of curcumin encapsulated in NLCs were adjusted by the hydrogel beads. The ex vivo intestinal permeation study indicated that the intestinal permeation of curcumin from the digestion products of curcumin-loaded NLC-hydrogel beads, prepared with appropriate alginate concentrations (0.5% and 1%), was significantly enhanced compared to that of curcumin-loaded NLCs. Furthermore, the digestion products of curcumin-loaded NLC-hydrogel beads (1% alginate) exhibited significantly enhanced antioxidant bioactivity compared to those of curcumin-loaded NLCs. Conclusions: This study demonstrated that NLC-hydrogel beads might be a promising delivery system for hydrophobic bioactive compounds in functional food systems.
Collapse
Affiliation(s)
| | | | | | | | - Juling Ji
- Department of Pathology, Medical School of Nantong University, Nantong 226001, China; (R.S.); (C.W.); (X.T.); (Y.S.)
| |
Collapse
|
4
|
Wang R, Wang S, Chen J, Xu Y, Yu X, Barboiu M, Zhang Y. Enhanced activity and self-regeneration in dynameric cross-linked enzyme nanoaggregates. SCIENCE ADVANCES 2025; 11:eads9371. [PMID: 40073133 PMCID: PMC11900872 DOI: 10.1126/sciadv.ads9371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025]
Abstract
Directed evolution, enzyme design, and effective immobilization have been used to improve the catalytic activity. Dynamic polymers offer a promising platform to improve enzyme activity in aqueous solutions. Here, amphiphilic dynamers and lipase self-assemble into nanoparticles of 150- to 600-nanometer diameter, showing remarkable threefold enhancement in catalytic activity. In addition, they also demonstrated the ability to promote the reversible refolding of the partially or completely denatured lipase. The catalytic efficiency is completed with its more convenient handling of dynameric nanoparticles facilitating the efficient recovery and reuse of the enzyme with cost-effective uses. Molecular simulation studies revealed an in-depth understanding of how the dynamer action mechanism affects the conformational changes of lipase. The dynamer served as an effective hydrophobic support, facilitating the lid opening and substrate access to the catalytic triad, resulting in a substantial activation with an improved stability and recyclability of the lipase.
Collapse
Affiliation(s)
- Rui Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, P.R. China
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, P.R. China
| | - Shang Wang
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, P.R. China
| | - Jinghua Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, P.R. China
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, P.R. China
| | - Xiaowei Yu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, 214122, P.R. China
| | - Mihail Barboiu
- Adaptive Supramolecular Nanosystems Group, Institut Européen des Membranes, University of Montpellier, CNRS UMR 5365, ENSCM, Place Eugène Bataillon, CC 047, F-34095 Montpellier, France
| | - Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, P.R. China
| |
Collapse
|
5
|
Zhao J, Ma M, Zeng Z, Wan D, Yan X, Xia J, Yu P, Gong D. Production, purification, properties and current perspectives for modification and application of microbial lipases. Prep Biochem Biotechnol 2024; 54:1001-1016. [PMID: 38445829 DOI: 10.1080/10826068.2024.2323196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
With the industrialization and development of modern science, the application of enzymes as green and environmentally friendly biocatalysts in industry has been increased widely. Among them, lipase (EC. 3.1.1.3) is a very prominent biocatalyst, which has the ability to catalyze the hydrolysis and synthesis of ester compounds. Many lipases have been isolated from various sources, such as animals, plants and microorganisms, among which microbial lipase is the enzyme with the most diverse enzymatic properties and great industrial application potential. It therefore has promising applications in many industries, such as food and beverages, waste treatment, biofuels, leather, textiles, detergent formulations, ester synthesis, pharmaceuticals and medicine. Although many microbial lipases have been isolated and characterized, only some of them have been commercially exploited. In order to cope with the growing industrial demands and overcome these shortcomings to replace traditional chemical catalysts, the preparation of new lipases with thermal/acid-base stability, regioselectivity, organic solvent tolerance, high activity and yield, and reusability through excavation and modification has become a hot research topic.
Collapse
Affiliation(s)
- Junxin Zhao
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Maomao Ma
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Zheling Zeng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang, China
| | - Dongman Wan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Food Science and Technology, Nanchang University, Nanchang, China
| | - Xianghui Yan
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang, China
| | - Jiaheng Xia
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang, China
| | - Ping Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- School of Resource and Environmental and Chemical Engineering, Nanchang University, Nanchang, China
| | - Deming Gong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Jiangxi Province Key Laboratory of Edible and Medicinal Resources Exploitation, Nanchang University, Nanchang, China
- New Zealand Institute of Natural Medicine Research, Auckland, New Zealand
| |
Collapse
|
6
|
Esimbekova EN, Torgashina IG, Nemtseva EV, Kratasyuk VA. Enzymes Immobilized into Starch- and Gelatin-Based Hydrogels: Properties and Application in Inhibition Assay. MICROMACHINES 2023; 14:2217. [PMID: 38138386 PMCID: PMC10745932 DOI: 10.3390/mi14122217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
The present work is a review of the research on using hydrogels based on natural biodegradable polymers, starch, and gelatin for enzyme immobilization. This review addresses the main properties of starch and gelatin that make them promising materials in biotechnology for producing enzyme preparations stable during use and storage and insensitive to chemical and physical impacts. The authors summarize their achievements in developing the preparations of enzymes immobilized in starch and gelatin gels and assess their activity, stability, and sensitivity for use as biorecognition elements of enzyme inhibition-based biosensors.
Collapse
Affiliation(s)
- Elena N. Esimbekova
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia; (E.N.E.); (I.G.T.); (E.V.N.)
- Laboratory of Photobiology, Institute of Biophysics of Siberian Branch of Russian Academy of Science, 660036 Krasnoyarsk, Russia
| | - Irina G. Torgashina
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia; (E.N.E.); (I.G.T.); (E.V.N.)
| | - Elena V. Nemtseva
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia; (E.N.E.); (I.G.T.); (E.V.N.)
- Laboratory of Photobiology, Institute of Biophysics of Siberian Branch of Russian Academy of Science, 660036 Krasnoyarsk, Russia
| | - Valentina A. Kratasyuk
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 660041 Krasnoyarsk, Russia; (E.N.E.); (I.G.T.); (E.V.N.)
- Laboratory of Photobiology, Institute of Biophysics of Siberian Branch of Russian Academy of Science, 660036 Krasnoyarsk, Russia
| |
Collapse
|
7
|
Jiang Z, Sun K, Wu H, Dong W, Ma J, Jiang M. Preparation and Characterization of a Novel Morphosis of Dextran and Its Derivatization with Polyethyleneimine. Molecules 2023; 28:7210. [PMID: 37894689 PMCID: PMC10609354 DOI: 10.3390/molecules28207210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Dextran, a variant of α-glucan with a significant proportion of α-(1,6) bonds, exhibits remarkable solubility in water. Nonetheless, the precipitation of dextran has been observed in injection vials during storage. The present study aimed to establish a technique for generating insoluble dextran and analyze its structural properties. Additionally, the potential for positively ionizing IS-dextran with polyethyleneimine was explored, with the ultimate objective of utilizing IS-dextran-PEI as a promising support for enzyme immobilization. As a result, IS-dextran was obtained by the process of slow evaporation with an average molecular weight of 6555 Da and a yield exceeding 60%. The calculated crystallinity of IS-dextran, which reaches 93.62%, is indicative of its irregular and dense structure, thereby accounting for its water insolubility. Furthermore, positive charge modification of IS-dextran, coupled with the incorporation of epichlorohydrin, resulted in all zeta potentials of IS-dextran-PEIs exceeding 30 mV, making it a promising supporting factor for enzyme immobilization.
Collapse
Affiliation(s)
| | | | | | | | - Jiangfeng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China
| | | |
Collapse
|
8
|
dos Santos LN, Perna RF, Vieira AC, de Almeida AF, Ferreira NR. Trends in the Use of Lipases: A Systematic Review and Bibliometric Analysis. Foods 2023; 12:3058. [PMID: 37628057 PMCID: PMC10453403 DOI: 10.3390/foods12163058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Scientific mapping using bibliometric data network analysis was applied to analyze research works related to lipases and their industrial applications, evaluating the current state of research, challenges, and opportunities in the use of these biocatalysts, based on the evaluation of a large number of publications on the topic, allowing a comprehensive systematic data analysis, which had not yet been conducted in relation to studies specifically covering lipases and their industrial applications. Thus, studies involving lipase enzymes published from 2018 to 2022 were accessed from the Web of Science database. The extracted records result in the analysis of terms of bibliographic compatibility among the articles, co-occurrence of keywords, and co-citation of journals using the VOSviewer algorithm in the construction of bibliometric maps. This systematic review analysis of 357 documents, including original and review articles, revealed studies inspired by lipase enzymes in the research period, showing that the development of research, together with different areas of knowledge, presents good results related to the applications of lipases, due to information synchronization. Furthermore, this review showed the main challenges in lipase applications regarding increased production and operational stability; establishing well-defined evaluation criteria, such as cultivation conditions, activity, biocatalyst stability, type of support and reactor; thermodynamic studies; reuse cycles; and it can assist in defining goals for the development of successful large-scale applications, showing several points for improvement of future studies on lipase enzymes.
Collapse
Affiliation(s)
- Lucely Nogueira dos Santos
- Postgraduate Program in Food Science and Technology, Institute of Technology, Federal University of Pará (UFPA), Belém 66075-110, Brazil;
| | - Rafael Firmani Perna
- Graduate Program in Chemical Engineering, Institute of Science and Technology, Federal University of Alfenas (UNIFAL-MG), Poços de Caldas 37715-400, Brazil; (R.F.P.); (A.C.V.)
| | - Ana Carolina Vieira
- Graduate Program in Chemical Engineering, Institute of Science and Technology, Federal University of Alfenas (UNIFAL-MG), Poços de Caldas 37715-400, Brazil; (R.F.P.); (A.C.V.)
| | - Alex Fernando de Almeida
- Engineering of Bioprocesses and Biotechnology, Federal University of Tocantins (UFT-TO), Gurupi 77402-970, Brazil;
| | - Nelson Rosa Ferreira
- Postgraduate Program in Food Science and Technology, Institute of Technology, Federal University of Pará (UFPA), Belém 66075-110, Brazil;
- Faculty of Food Engineering, Institute of Technology, Federal University of Pará (UFPA), Belém 66075-110, Brazil
| |
Collapse
|
9
|
Qin Z, Li Y, Feng N, Fei X, Tian J, Xu L, Wang Y. Modulating the performance of lipase-hydrogel microspheres in a "micro water environment". Colloids Surf B Biointerfaces 2023; 223:113171. [PMID: 36739676 DOI: 10.1016/j.colsurfb.2023.113171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 01/24/2023]
Abstract
In our previous work, we successfully stimulated lipase activity in an anhydrous reaction system using porous polyacrylamide hydrogel microsphere (PPAHM) as a carrier of lipase and free water. However, the effect of the existence state and content of water in lipase-porous polyacrylamide hydrogel microsphere (L-PPAHM) on the interfacial activation remained unclear. In this work, L-PPAHM with different water contents were obtained by water mist rehydration and were used to catalyze the synthesis of conjugated linoleic acid ethyl ester (CLA-EE). The results revealed that there were three existence states of water in L-PPAHM: bound water, semi-bound water and free water, and free water provided the "micro water environment" for the interfacial activation of lipase. The reusability of L-PPAHM with different water contents showed that the activity and stability of L-PPAHM could be achieved by varying the water content of L-PPAHM. The proportion of free water in L-PPAHM increased, and the activity of L-PPAHM increased, but the strength of hydrogen bond interaction between PPAHM and lipase weakened, resulting in the decrease of stability. L-PPAHM with 2/3 of water absorption could ensure sufficient immobilized lipase activity and stability, and its water absorption property could reduce the free water generated during esterification, thus increasing the yield of CLA-EE.
Collapse
Affiliation(s)
- Zhengqiang Qin
- Instrumental Analysis Center, Dalian Polytechnic University, Dalian 116034, China; School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yao Li
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Nuan Feng
- Instrumental Analysis Center, Dalian Polytechnic University, Dalian 116034, China; School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xu Fei
- Instrumental Analysis Center, Dalian Polytechnic University, Dalian 116034, China.
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Longquan Xu
- Instrumental Analysis Center, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
10
|
de Moura Dickel JD, Carvalho JK, Silveira MAD, Menegotto Dos Santos P, Rodrigues MLF, Fagundes-Klen MR, Rosa CA, Johann S, Buzanello CV, da Silva de Lucca RA, de Oliveira Santos AR, da Rosa MF. Aspergillus sclerotiorum lipolytic activity and its application in bioremediation of high-fat dairy wastewater environments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:35517-35527. [PMID: 36529799 DOI: 10.1007/s11356-022-24669-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Oils and grease (O&G) have low affinity for water and represent a class of pollutants present in the dairy industry. Enzyme-mediated bioremediation using biocatalysts, such as lipases, has shown promising potential in biotechnology, as they are versatile catalysts with high enantioselectivity and regioselectivity and easy availability, being considered a clean technology (white biotechnology). Specially in the treatment of effluents from dairy industries, these enzymes are of particular importance as they specifically hydrolyze O&G. In this context, the objective of this work is to prospect filamentous fungi with the ability to synthesize lipases for application in a high-fat dairy wastewater environment. We identified and characterized the fungal species Aspergillus sclerotiorum as a good lipase producer. Specifically, we observed highest lipolytic activity (20.72 U g-1) after 96 h of fermentation using sunflower seed as substrate. The fungal solid fermented was used in the bioremediation in dairy effluent to reduce O&G. The experiment was done in kinetic from 24 to 168 h and reduced over 90% of the O&G present in the sample after 168 h. Collectively, our work demonstrated the efficiency and applicability of fungal fermented solids in bioremediation and how this process can contribute to a more sustainable wastewater pretreatment, reducing the generation of effluents produced by dairy industries.
Collapse
Affiliation(s)
| | - Jéssyca Ketterine Carvalho
- Engineering and Exact Sciences Center, State University Western Paraná, Toledo, PR, Brazil.
- Department of Engineering and Exact, Federal University of Paraná, Palotina, PR, Brazil.
| | - Maruhen Amir Datsch Silveira
- Centre de Recherche du CHU de Québec - Université Laval, Axe Oncologie, Quebec, QC, G1V 4G2, Canada
- Centre de Recherche Sur Le Cancer de L'Université Laval, Quebec, QC, G1R 3S3, Canada
| | | | | | | | - Carlos Augusto Rosa
- Microbiology Department, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Susana Johann
- Microbiology Department, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | | |
Collapse
|
11
|
Cieh NL, Mokhtar MN, Baharuddin AS, Mohammed MAP, Wakisaka M. Progress on Lipase Immobilization Technology in Edible Oil and Fat Modifications. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2172427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Ng Lin Cieh
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Noriznan Mokhtar
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Laboratory of Processing and Product Development, Institute of Plantation Studies, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Azhari Samsu Baharuddin
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Afandi P. Mohammed
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Minato Wakisaka
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| |
Collapse
|
12
|
Scalability of U-Shape Magnetic Nanoparticles-Based Microreactor–Lipase-Catalyzed Preparative Scale Kinetic Resolutions of Drug-like Fragments. Catalysts 2023. [DOI: 10.3390/catal13020384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
The production of active pharmaceutical ingredients (APIs) and fine chemicals is accelerating due to the advent of novel microreactors and new materials for immobilizing customized biocatalysts that permit long-term use in continuous-flow reactors. This work studied the scalability of a tunable U-shape magnetic nanoparticles (MNPs)-based microreactor. The reactor consisted of a polytetrafluoroethylene tube (PTFE) of various inner diameters (ID = 0.75 mm, 1.50 mm, or 2.15 mm) and six movable permanent magnets positioned under the tube to create reaction chambers allowing the fluid reaction mixture to flow through and above the enzyme-loaded MNPs anchored by permanent magnets. The microreactors with various tube sizes and MNP capacities were tested with the preparative scale kinetic resolution of the drug-like alcohols 4-(3,4-dihydroisoquinolin-2(1H)-yl)butan-2-ol (±)-1a and 4-(3,4-dihydroquinolin-1(2H)-yl)butan-2-ol (±)-1b, utilizing Lipase B from Candida antarctica immobilized covalently onto MNPs, leading to highly enantioenriched products [(R)-2a,b and (S)-1a,b]. The results in the U-shape MNP flow reactor were compared with reactions in the batch mode with CaLB-MNPs using similar conditions. Of the three different systems, the one with ID = 1.50 mm showed the best balance between the maximum loading capacity of biocatalysts in the reactor and the most effective cross-section area. The results showed that this U-shaped tubular microreactor might be a simple and flexible instrument for many processes in biocatalysis, providing an easy-to-set-up alternative to existing techniques.
Collapse
|
13
|
Al Angari YM, Almulaiky YQ, Alotaibi MM, Hussein MA, El-Shishtawy RM. Synthesis and Characterization of Aminoamidine-Based Polyacrylonitrile Fibers for Lipase Immobilization with Effective Reusability and Storage Stability. Int J Mol Sci 2023; 24:ijms24031970. [PMID: 36768290 PMCID: PMC9915712 DOI: 10.3390/ijms24031970] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Lipases are extensively utilized industrial biocatalysts that play an important role in various industrial and biotechnological applications. Herein, polyacrylonitrile (PAN) was treated with hexamethylene diamine (HMDA) and activated by glutaraldehyde, then utilized as a carrier support for Candida rugosa lipase. In this regard, the morphological structure of modified PAN before and after the immobilization process was evaluated using FTIR and SEM analyses. The immobilized lipase exhibited the highest activity at pH 8.0, with an immobilization yield of 81% and an activity of 91%. The optimal pH and temperature for free lipase were 7.5 and 40 °C, while the immobilized lipase exhibited its optimal activity at a pH of 8.0 and a temperature of 50 °C. After recycling 10 times, the immobilized lipase maintained 76% of its activity and, after 15 reuses, it preserved 61% of its activity. The lipase stability was significantly improved after immobilization, as it maintained 76% of its initial activity after 60 days of storage. The calculated Km values were 4.07 and 6.16 mM for free and immobilized lipase, and the Vmax values were 74 and 77 μmol/mL/min, respectively. These results demonstrated that synthetically modified PAN is appropriate for immobilizing enzymes and has the potential for commercial applications.
Collapse
Affiliation(s)
- Yasser M. Al Angari
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yaaser Q. Almulaiky
- Department of Chemistry, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21921, Saudi Arabia
| | - Maha M. Alotaibi
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mahmoud A. Hussein
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Reda M. El-Shishtawy
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: or
| |
Collapse
|
14
|
Noro J, Cavaco-Paulo A, Silva C. Chemical modification of lipases: A powerful tool for activity improvement. Biotechnol J 2022; 17:e2100523. [PMID: 35544709 DOI: 10.1002/biot.202100523] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/08/2022] [Accepted: 03/19/2022] [Indexed: 11/11/2022]
Abstract
The demand for adequate and ecologically acceptable procedures to produce the most differentiated products has been growing in recent decades, with enzymes being excellent examples of the advances achieved so far. Lipases are astonishing catalysts with a vast range of applications including the synthesis of esters, flavours, biodiesel, and polymers. The broad specificity of the substrates, as well as the regio-, stereo-, and enantioselectivity, are the differentiating factors of these enzymes. Structural modification is a current approach to enhance the activity of lipases. Chemical modification of lipases to improve catalytic performance is of great interest considering the increasingly broad fields of application. Together with the physical immobilization onto solid supports, different strategies have been developed to produce catalysts with higher activity and stability. In this review, practical insights into the different strategies developed in recent years regarding the modification of lipases are described. For the first time, the impact of the modifications on the activity and stability of lipases, as well as on the biotechnological applications, is fully compiled. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jennifer Noro
- CEB-Centre of Biological Engineering, University of Minho, Braga, 4710-057, Portugal.,LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Artur Cavaco-Paulo
- CEB-Centre of Biological Engineering, University of Minho, Braga, 4710-057, Portugal.,LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| | - Carla Silva
- CEB-Centre of Biological Engineering, University of Minho, Braga, 4710-057, Portugal.,LABBELS - Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
15
|
Evaluation of M xO y/fucoidan hybrid system and their application in lipase immobilization process. Sci Rep 2022; 12:7218. [PMID: 35508694 PMCID: PMC9068721 DOI: 10.1038/s41598-022-11319-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/21/2022] [Indexed: 11/17/2022] Open
Abstract
In this work, new MxOy/fucoidan hybrid systems were fabricated and applied in lipase immobilization. Magnesium (MgO) and zirconium (ZrO2) oxides were used as MxOy inorganic matrices. In the first step, the proposed oxides were functionalized with fucoidan from Fucus vesiculosus (Fuc). The obtained MgO/Fuc and ZrO2/Fuc hybrids were characterized by means of spectroscopic analyses, including Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and nuclear magnetic resonance. Additionally, thermogravimetric analysis was performed to determine the thermal stability of the hybrids. Based on the results, the mechanism of interaction between the oxide supports and fucoidan was also determined. Furthermore, the fabricated MxOy/fucoidan hybrid materials were used as supports for the immobilization of lipase from Aspergillus niger, and a model reaction (transformation of p-nitrophenyl palmitate to p-nitrophenol) was performed to determine the catalytic activity of the proposed biocatalytic system. In that reaction, the immobilized lipase exhibited high apparent and specific activity (145.5 U/gcatalyst and 1.58 U/mgenzyme for lipase immobilized on MgO/Fuc; 144.0 U/gcatalyst and 2.03 U/mgenzyme for lipase immobilized on ZrO2/Fuc). The immobilization efficiency was also confirmed using spectroscopic analyses (FTIR and XPS) and confocal microscopy.
Collapse
|
16
|
Enespa, Chandra P, Singh DP. Sources, purification, immobilization and industrial applications of microbial lipases: An overview. Crit Rev Food Sci Nutr 2022; 63:6653-6686. [PMID: 35179093 DOI: 10.1080/10408398.2022.2038076] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Microbial lipase is looking for better attention with the fast growth of enzyme proficiency and other benefits like easy, cost-effective, and reliable manufacturing. Immobilized enzymes can be used repetitively and are incapable to catalyze the reactions in the system continuously. Hydrophobic supports are utilized to immobilize enzymes when the ionic strength is low. This approach allows for the immobilization, purification, stability, and hyperactivation of lipases in a single step. The diffusion of the substrate is more advantageous on hydrophobic supports than on hydrophilic supports in the carrier. These approaches are critical to the immobilization performance of the enzyme. For enzyme immobilization, synthesis provides a higher pH value as well as greater heat stability. Using a mixture of immobilization methods, the binding force between enzymes and the support rises, reducing enzyme leakage. Lipase adsorption produces interfacial activation when it is immobilized on hydrophobic support. As a result, in the immobilization process, this procedure is primarily used for a variety of industrial applications. Microbial sources, immobilization techniques, and industrial applications in the fields of food, flavor, detergent, paper and pulp, pharmaceuticals, biodiesel, derivatives of esters and amino groups, agrochemicals, biosensor applications, cosmetics, perfumery, and bioremediation are all discussed in this review.
Collapse
Affiliation(s)
- Enespa
- School for Agriculture, Sri Mahesh Prasad Post Graduate College, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Prem Chandra
- Food Microbiology & Toxicology Laboratory, Department of Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, Uttar Pradesh, India
| | - Devendra Pratap Singh
- Department of Environmental Science, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
17
|
Timchenko M, Molchanov V, Molchanov M, Timchenko A, Sogorin E. Investigation of lipolytic activity of the red king crab hepatopancreas homogenate by NMR spectroscopy. PeerJ 2022; 10:e12742. [PMID: 35036105 PMCID: PMC8734460 DOI: 10.7717/peerj.12742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/13/2021] [Indexed: 01/07/2023] Open
Abstract
The digestive gland of craboids (hepatopancreas) is rich in a huge number of various enzymes (collagenases, nucleases, hyaluronidases, proteases), which are well studied at the moment. However, little is known about crustacean lipases. In this work, using 1H NMR spectroscopy, it was found that the hepatopancreas homogenate of the red king crab Paralithodes camtschaticus demonstrates high lipolytic activity against triacetin in a wide pH range and shows moderate activity against the caprylic/capric triglyceride emulsion. Under the action of the hepatopancreas homogenate, triacylglycerols are converted into 1,2-diacylglycerol, and then into 2-monoacylglycerol and 1-monoacylglycerol. The 1-monoacylglycerol predominates in the reaction products. The use of NMR spectroscopy makes it possible to quickly detect hydrolysis products and evaluate the reaction direction.
Collapse
Affiliation(s)
- Maria Timchenko
- Laboratory of NMR biosystems, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Vladislav Molchanov
- Medical Physics Department, Dubna State University, Branch Protvino, Protvino, Russia
| | - Maxim Molchanov
- Laboratory of NMR biosystems, Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia
| | - Alexander Timchenko
- Group of Experimental Research and Engineering Oligomeric Structures, Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia
| | - Evgeny Sogorin
- Institute for Biological Instrumentation, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Russia
| |
Collapse
|
18
|
Zaitsev SY, Voronina OA. An innovative approach to assessing the integral parameters of the hybrid pig blood for the methodological support of animal husbandry development. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20225101009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The main aims of research were: to measure the surface tension (ST) values of hybrid pig blood; to establish the relationships between these ST-values and obtained biochemical parameters of the same blood samples. All studied animals (n=43) were healthy and grown at the feeding stations (Russia). The ST-values (measured using PAT-device) of the pig blood were obtained at initial (n=30) and final (n=13) points of animal fattening. The following correlations between eST at final (or initial) point of pig fattening and the biochemical parameters were obtained: +0.80 (+0.19) with the ratio of albumins to globulins (A/G), -0.39 with globulins (-0.38) with phospholipids, +0.32 (+0.40) with the “de Ritis” coefficient, -0.52 (+0.35) with Cl. The correlations between eTA at same fattening points and the biochemical parameters were obtained: +0.32 with A/G ratio, +0.18 with globulins, +0.36 with phospholipids, +0.28 (+0.17) with the “de Ritis” coefficient, -0.32 (+0.21) with Mg, +0.35 with Fe, +0.30 with Cl, +0.31 (+0.34) with the ratio of calcium to phosphorus (Ca/P). Such tendency indicated the stabilization of pig physiological-biochemical status during their fattening. The authors recommended the following eST (42-46 mN/m) and eTA (10-30 mN·m-1·s-½) blood parameters as reference values for further applications in husbandry.
Collapse
|
19
|
Almeida FLC, Castro MPJ, Travália BM, Forte MBS. Erratum to “Trends in lipase immobilization: Bibliometric review and patent analysis” [Process Biochem. 110 (2021) 37–51]. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
20
|
Almeida FLC, Castro MPJ, Travália BM, Forte MBS. Trends in lipase immobilization: Bibliometric review and patent analysis. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
21
|
Sharma A, Thatai KS, Kuthiala T, Singh G, Arya SK. Employment of polysaccharides in enzyme immobilization. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Antipin IS, Alfimov MV, Arslanov VV, Burilov VA, Vatsadze SZ, Voloshin YZ, Volcho KP, Gorbatchuk VV, Gorbunova YG, Gromov SP, Dudkin SV, Zaitsev SY, Zakharova LY, Ziganshin MA, Zolotukhina AV, Kalinina MA, Karakhanov EA, Kashapov RR, Koifman OI, Konovalov AI, Korenev VS, Maksimov AL, Mamardashvili NZ, Mamardashvili GM, Martynov AG, Mustafina AR, Nugmanov RI, Ovsyannikov AS, Padnya PL, Potapov AS, Selektor SL, Sokolov MN, Solovieva SE, Stoikov II, Stuzhin PA, Suslov EV, Ushakov EN, Fedin VP, Fedorenko SV, Fedorova OA, Fedorov YV, Chvalun SN, Tsivadze AY, Shtykov SN, Shurpik DN, Shcherbina MA, Yakimova LS. Functional supramolecular systems: design and applications. RUSSIAN CHEMICAL REVIEWS 2021; 90:895-1107. [DOI: 10.1070/rcr5011] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The interest in functional supramolecular systems for the design of innovative materials and technologies, able to fundamentally change the world, is growing at a high pace. The huge array of publications that appeared in recent years in the global literature calls for systematization of the structural trends inherent in the formation of these systems revealed at different molecular platforms and practically useful properties they exhibit. The attention is concentrated on the topics related to functional supramolecular systems that are actively explored in institutes and universities of Russia in the last 10–15 years, such as the chemistry of host–guest complexes, crystal engineering, self-assembly and self-organization in solutions and at interfaces, biomimetics and molecular machines and devices.The bibliography includes 1714 references.
Collapse
|
23
|
Abstract
Phosphorylation is a reversible, enzyme-controlled posttranslational process affecting approximately one-third of all proteins in eukaryotic cells at any given time. Any deviation in the degree and/or site of phosphorylation leads to an abnormal conformation of proteins, resulting in a decline or loss of their function. Knowledge of phosphorylation-related pathways is essential for understanding the understanding of the disease pathogenesis and for the design of new therapeutic strategies. Recent availability of various kinases at an affordable price differs in activity, specificity, and stability and provides the opportunity of studying and modulating this reaction in vitro. We can exploit this knowledge for other applications. There is an enormous potential to produce fully decorated and active recombinant proteins, either for biomedical or cosmetic applications. Closely related is the possibility to exploit current achievements and develop new safe and efficacious vaccines, drugs, and immunomodulators. In this review, we outlined the current enzyme-based possibilities for in vitro phosphorylation of peptides and recombinant proteins and the added value that immobilized kinases provide.
Collapse
|
24
|
Covalent Immobilization of
Candida antarctica
Lipase B on Functionalized Hollow Mesoporous Silica Nanoparticles. ChemistrySelect 2021. [DOI: 10.1002/slct.202100713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Different strategies for the lipase immobilization on the chitosan based supports and their applications. Int J Biol Macromol 2021; 179:170-195. [PMID: 33667561 DOI: 10.1016/j.ijbiomac.2021.02.198] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 01/15/2023]
Abstract
Immobilized enzymes have received incredible interests in industry, pharmaceuticals, chemistry and biochemistry sectors due to their various advantages such as ease of separation, multiple reusability, non-toxicity, biocompatibility, high activity and resistant to environmental changes. This review in between various immobilized enzymes focuses on lipase as one of the most practical enzyme and chitosan as a preferred biosupport for lipase immobilization and provides a broad range of studies of recent decade. We highlight several aspects of lipase immobilization on the surface of chitosan support containing various types of lipase and immobilization techniques from physical adsorption to covalent bonding and cross-linking with their benefits and drawbacks. The recent advances and future perspectives that can improve the present problems with lipase and chitosan such as high-price of lipase and low mechanical resistance of chitosan are also discussed. According to the literature, optimization of immobilization methods, combination of these methods with other techniques, physical and chemical modifications of chitosan, co-immobilization and protein engineering can be useful as a solution to overcome the mentioned limitations.
Collapse
|
26
|
Zaitsev SY, Savina AA, Volnin AA, Voronina OA, Bogolyubova NV. Comparative Study of the Water-Soluble Antioxidants in Fodder Additives and Sheep Blood Serum by Amperometric and Biochemical Methods. Animals (Basel) 2020; 10:1186. [PMID: 32668800 PMCID: PMC7401643 DOI: 10.3390/ani10071186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022] Open
Abstract
The effects of chitosan as feed additive for animals (FAFAs) on various digestive processes are an important to study because of the animal nutrition and production quality, healthcare and farming. The aims of this study were to evaluate the total amount of water-soluble antioxidants (TAWSA) of chitosan and high protein microbiologically synthesized concentrate as FAFAs; to assess the effect of these FAFAs on TAWSA values, parameters of sheep blood serum and rumen content by biochemical, physical and chemical methods. The laboratory studies of TAWSA values of feed components based on chitosan from different manufacturers or/and a high-protein concentrate were implemented. The animal experiments were carried out on six rumen-fistulated ewes (in three rounds of 14 days each, i.e., three groups) to confirm the results of the laboratory studies. The particular differences of the TAWSA of sheep blood by using both FAFAs by amperometric method were determined. A strong negative correlation -0.67 (or -0.86) was observed between TAWSA and the total protein (globulin's) content in the blood for the Group 3 of animals. A moderate (0.40) or strong (0.73) positive correlation between TAWSA and total protein content in the blood for the Group 2 of animals than weak correlation 0.23 (or 0.26) for the control Group 1. In conclusion, the correlations between the value changes of TAWSA vs. major biochemical parameters of a blood serum of rumen-fistulated ewes (Group 3 > Group 2 > Group 1) or some indicators of the rumen content (ingesta pH, total content of volatile fatty acids, etc.) were found for the first time.
Collapse
Affiliation(s)
- Sergei Yu. Zaitsev
- L.K. Ernst Federal Science Center for Animal Husbandry, Dubrovitsy 60, Podolsk Municipal District, 142132 Moscow, Russia; (A.A.S.); (A.A.V.); (O.A.V.); (N.V.B.)
| | | | | | | | | |
Collapse
|
27
|
Das S, Behera S, Balasubramanian S. Orientational Switch of the Lipase A Enzyme at the Oil-Water Interface: An Order of Magnitude Increase in Turnover Rate with a Single Surfactant Tag Explained. J Phys Chem Lett 2020; 11:2977-2982. [PMID: 32202805 DOI: 10.1021/acs.jpclett.0c00470] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Interfacially active lipases can be immobilized at a biphasic interface to enhance turnover recyclability and to facilitate product separation. Extensive coarse-grained molecular dynamics simulations of lipase A (LipA) from Bacillus subtilis show a bimodal orientational distribution of the enzyme at an oil-water interface, arising from its ellipsoidal Janus particle-like character. The relative orientational preference can be tuned by pH. The simulations rationalize a rare experimental observation of an order of magnitude increase in the turnover rate of this lipase upon its noncovalent tagging by a single surfactant molecule at the interface, compared to its rate in bulk water. The adsorption free energy, the interfacial activation, a decrease in the number of orientational fluctuations, and an increased rate of translational diffusion, to all of which the Janus character of LipA contributes, are the factors responsible for this enhancement. This study can spur further investigations of the Janus behavior of enzymes to enhance their activity as well as to stabilize the biphasic emulsion needed for interfacial catalysis.
Collapse
Affiliation(s)
- Sudip Das
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560 064, India
| | - Sudarshan Behera
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560 064, India
| | - Sundaram Balasubramanian
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560 064, India
| |
Collapse
|