1
|
Taghizadeh F, Hashemi Baghi A, Khodadadi F, Shahbazi Y, Salehi M, Ayyoubzadeh SM, Haeri A. Genetic algorithm optimization of tree-based models to predict cargo- and carrier-related factors affecting drug release from liposomes. NANOSCALE 2025. [PMID: 40421505 DOI: 10.1039/d5nr00016e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Liposomal drug delivery systems have shown promising potential to improve drug delivery in several aspects. Precise in vitro characterization of formulated liposomes is vital to achieve proper in vivo function. In particular, in vitro release testing of liposomes offers crucial insights for predicting in vivo drug release behavior, guiding the development of more effective liposomal formulations. Herein, random forest (RF)- and XGboost-genetic algorithms were implemented to establish a model to predict release profiles of liposomes based on critical characteristics of carriers, cargoes, and release media. The models were trained with a dataset consisting of release parameters of 203 different liposomal formulations extracted from the literature, divided into three categories: all cargoes, therapeutics with log P < 1, and log P > 1. The SHapley additive exPlanations (SHAP) approach was used to determine how data contributes to the model prediction. A mean squared error of 1.648 highlighted the capability of the genetic algorithm to optimize the hyperparameters of the tree-based models. Furthermore, the developed models demonstrated high accuracy as evidenced by loss functions and statistical metrics such as root mean squared error, mean absolute error, and R-squared. Our results shed light on the distinct influence of phase transition temperature, drug concentration, log P, water solubility, molecular weight, vesicle size, cholesterol to phospholipid molar ratio, and surfactant concentration in the release medium on drug release at different phases of the release profiles. The predictive models developed in this study can facilitate the design of an ideal liposomal formulation for any desired release profile.
Collapse
Affiliation(s)
- Fatemeh Taghizadeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ali Hashemi Baghi
- Department of Industrial Engineering and Management Systems, Amirkabir University of Technology, Tehran, Iran
| | - Fatemeh Khodadadi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Yasamin Shahbazi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Masoumeh Salehi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Mohammad Ayyoubzadeh
- Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Scorzafave L, Manti EN, Fiorillo M, Curcio M, Cirillo G, Frattaruolo L, Nicoletta FP, Cappello AR, Iemma F. Merging fusogenic DOPE and a tumour targeted self-assembling biopolymer: Smart hybrid liposomes for drug vectorization in cancer therapy. Colloids Surf B Biointerfaces 2025; 253:114786. [PMID: 40378459 DOI: 10.1016/j.colsurfb.2025.114786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/16/2025] [Accepted: 05/09/2025] [Indexed: 05/19/2025]
Abstract
In this study, a smart hybrid liposome system was achieved combining a self-assembling biopolymer conjugate (human serum albumin-hyaluronic acid) with targeting and redox-responsive activity with dioleoyl phosphatidylethanolamine, a fusogenic phospholipid. The obtained hybrid liposomal structures were found to possess suitable physicochemical properties for cancer therapy application, with mean size of 65 nm, negative surface charge (-27 mV) and the ability to efficiently encapsulate Doxorubicin in the inner liposomal core with high efficiency. The drug loaded hybrid liposomes (DOX@HBLs) were able to trigger the drug release under simulated acidic and redox conditions of the tumor environment, whereas the biological characterization demonstrated the safety and the selectivity of the formulation, able to target the cancer cells (toxicity similar to that of the free drug) while sparing the healthy cells (viability > 90 % in all cases). Furthermore, compared to free drug, DOX@HBLs were able to reduce cell motility, impair metabolic pathways essential for cancer progression, and effectively inhibit spheroid formation (by almost 50 % after 20 days incubation) in both Estrogen Receptor-positive and Triple Negative Breast Cancer cells, demonstrating their high potential as unconventional drug delivery vectors in cancer therapy.
Collapse
Affiliation(s)
- Ludovica Scorzafave
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende, CS 87036, Italy
| | - Eugenia Nicol Manti
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende, CS 87036, Italy
| | - Marco Fiorillo
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende, CS 87036, Italy.
| | - Manuela Curcio
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende, CS 87036, Italy.
| | - Giuseppe Cirillo
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende, CS 87036, Italy
| | - Luca Frattaruolo
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende, CS 87036, Italy
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende, CS 87036, Italy
| | - Anna Rita Cappello
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende, CS 87036, Italy
| | - Francesca Iemma
- Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, Rende, CS 87036, Italy
| |
Collapse
|
3
|
Nouri Z, Barfar A, Perseh S, Motasadizadeh H, Maghsoudian S, Fatahi Y, Nouri K, Yektakasmaei MP, Dinarvand R, Atyabi F. Exosomes as therapeutic and drug delivery vehicle for neurodegenerative diseases. J Nanobiotechnology 2024; 22:463. [PMID: 39095888 PMCID: PMC11297769 DOI: 10.1186/s12951-024-02681-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 06/30/2024] [Indexed: 08/04/2024] Open
Abstract
Neurodegenerative disorders are complex, progressive, and life-threatening. They cause mortality and disability for millions of people worldwide. Appropriate treatment for neurodegenerative diseases (NDs) is still clinically lacking due to the presence of the blood-brain barrier (BBB). Developing an effective transport system that can cross the BBB and enhance the therapeutic effect of neuroprotective agents has been a major challenge for NDs. Exosomes are endogenous nano-sized vesicles that naturally carry biomolecular cargoes. Many studies have indicated that exosome content, particularly microRNAs (miRNAs), possess biological activities by targeting several signaling pathways involved in apoptosis, inflammation, autophagy, and oxidative stress. Exosome content can influence cellular function in healthy or pathological ways. Furthermore, since exosomes reflect the features of the parental cells, their cargoes offer opportunities for early diagnosis and therapeutic intervention of diseases. Exosomes have unique characteristics that make them ideal for delivering drugs directly to the brain. These characteristics include the ability to pass through the BBB, biocompatibility, stability, and innate targeting properties. This review emphasizes the role of exosomes in alleviating NDs and discusses the associated signaling pathways and molecular mechanisms. Furthermore, the unique biological features of exosomes, making them a promising natural transporter for delivering various medications to the brain to combat several NDs, are also discussed.
Collapse
Affiliation(s)
- Zeinab Nouri
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashkan Barfar
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahra Perseh
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Motasadizadeh
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Samane Maghsoudian
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Keyvan Nouri
- Student Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Rassoul Dinarvand
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Fatemeh Atyabi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Gao D, Yan C, Wang Y, Yang H, Liu M, Wang Y, Li C, Li C, Cheng G, Zhang L. Drug-eluting contact lenses: Progress, challenges, and prospects. Biointerphases 2024; 19:040801. [PMID: 38984804 DOI: 10.1116/6.0003612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/17/2024] [Indexed: 07/11/2024] Open
Abstract
Topical ophthalmic solutions (eye drops) are becoming increasingly popular in treating and preventing ocular diseases for their safety, noninvasiveness, and ease of handling. However, the static and dynamic barriers of eyes cause the extremely low bioavailability (<5%) of eye drops, making ocular therapy challenging. Thus, drug-eluting corneal contact lenses (DECLs) have been intensively investigated as a drug delivery device for their attractive properties, such as sustained drug release and improved bioavailability. In order to promote the clinical application of DECLs, multiple aspects, i.e., drug release and penetration, safety, and biocompatibility, of these drug delivery systems were thoroughly examined. In this review, we systematically discussed advances in DECLs, including types of preparation materials, drug-loading strategies, drug release mechanisms, strategies for penetrating ocular barriers, in vitro and in vivo drug delivery and penetration detection, safety, and biocompatibility validation methods, as well as challenges and future perspectives.
Collapse
Affiliation(s)
- Dongdong Gao
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning 116033, China
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Chunxiao Yan
- The Third People's Hospital of Dalian, Liaoning Provincial Key Laboratory of Cornea and Ocular Surface Diseases, Liaoning Provincial Optometry Technology Engineering Research Center, Dalian, Liaoning 116033, China
| | - Yong Wang
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Heqing Yang
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Mengxin Liu
- The Third People's Hospital of Dalian, Liaoning Provincial Key Laboratory of Cornea and Ocular Surface Diseases, Liaoning Provincial Optometry Technology Engineering Research Center, Dalian, Liaoning 116033, China
| | - Yi Wang
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Chunmei Li
- Tsinglan School, Songshan Lake, Dongguan 523000, China
| | - Chao Li
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Gang Cheng
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Lijun Zhang
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning 116033, China
- The Third People's Hospital of Dalian, Liaoning Provincial Key Laboratory of Cornea and Ocular Surface Diseases, Liaoning Provincial Optometry Technology Engineering Research Center, Dalian, Liaoning 116033, China
| |
Collapse
|
5
|
Bansal K, Singh V, Mishra S, Bajpai M. Articulating the Pharmacological and Nanotechnological Aspects of Genistein: Current and Future Prospectives. Curr Pharm Biotechnol 2024; 25:807-824. [PMID: 38902930 DOI: 10.2174/0113892010265344230919170611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/10/2023] [Accepted: 08/19/2023] [Indexed: 06/22/2024]
Abstract
Throughout the past several centuries, herbal constituents have been the subject of scientific interest and the latest research into their therapeutic potential is underway. Genistein is a soy-derived isoflavone found in huge amounts in soy, along with the plants of the Fabaceae family. Scientific studies have demonstrated the beneficial effects of genistein on various health conditions. Genistein presents a broad range of pharmacological activities, including anticancer, neuroprotective, cardioprotective, antiulcer, anti-diabetic, wound healing, anti-bacterial, antiviral, skin, and radioprotective effects. However, the hydrophobic nature of genistein results in constrained absorption and restricts its therapeutic potential. In this review, the number of nanocarriers for genistein delivery has been explored, such as polymeric nanoparticles, nanostructured lipid carriers, solid lipid nanoparticles, liposomes, micelles, transferosomes, and nanoemulsions and nanofibers. These nano-formulations of genistein have been utilized as a potential strategy for various disorders, employing a variety of ex vivo, in vitro, and in vivo models and various administration routes. This review concluded that genistein is a potential therapeutic agent for treating various diseases, including cancer, neurodegenerative disorders, cardiovascular disorders, obesity, diabetes, ulcers, etc., when formulated in suitable nanocarriers.
Collapse
Affiliation(s)
- Keshav Bansal
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Vanshita Singh
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Samiksha Mishra
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Meenakshi Bajpai
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| |
Collapse
|
6
|
Liu H, Wang Q, Guo J, Feng K, Ruan Y, Zhang Z, Ji X, Wang J, Zhang T, Sun X. Prodrug-based strategy with a two-in-one liposome for Cerenkov-induced photodynamic therapy and chemotherapy. J Control Release 2023; 364:206-215. [PMID: 37884209 DOI: 10.1016/j.jconrel.2023.10.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/14/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Cerenkov radiation induced photodynamic therapy (CR-PDT) can tackle the tissue penetration limitation of traditional PDT. However, co-delivery of radionuclides and photosensitizer may cause continuous phototoxicity in normal tissues during the circulation. 5-aminolevulinic acid (ALA) which can intracellularly transform into photosensitive protoporphyrin IX (PpIX) is a cancer-selective photosensitizer with negligible side effect. However, the hydrophilic nature of ALA and the further conversion of PpIX to photoinactive Heme severely hinder the therapeutic benefits of ALA-based PDT. Herein, we developed an 89Zr-labeled, pH responsive ALA and artemisinin (ART) co-loaded liposome (89Zr-ALA-Liposome-ART) for highly selective cancer therapy. 89Zr can serve as the internal excitation source to self-activate PpIX for CR-PDT, and the photoinactive Heme can activate the chemotherapeutic effect of ART. The 89Zr-ALA-Liposome-ART exhibited excellent tumor inhibition capability in subcutaneous 4T1-tumor-bearing Balb/c mice via CR-PDT and chemotherapy. Combined with anti-PD-L1, the 89Zr-ALA-Liposome-ART elicited strong antitumor immunity to against tumor recurrence.
Collapse
Affiliation(s)
- Huihui Liu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Qing Wang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Jingru Guo
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Kai Feng
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yiling Ruan
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Zhihao Zhang
- Department of Radiopharmaceuticals, Nuclear Medicine Clinical Translation Center, School of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China
| | - Xin Ji
- Department of Radiopharmaceuticals, Nuclear Medicine Clinical Translation Center, School of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China
| | - Jigang Wang
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Tao Zhang
- Department of Radiopharmaceuticals, Nuclear Medicine Clinical Translation Center, School of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China.
| | - Xiaolian Sun
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
7
|
Mehryab F, Taghizadeh F, Goshtasbi N, Merati F, Rabbani S, Haeri A. Exosomes as cutting-edge therapeutics in various biomedical applications: An update on engineering, delivery, and preclinical studies. Biochimie 2023; 213:139-167. [PMID: 37207937 DOI: 10.1016/j.biochi.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/29/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
Exosomes are cell-derived nanovesicles, circulating in different body fluids, and acting as an intercellular mechanism. They can be purified from culture media of different cell types and carry an enriched content of various protein and nucleic acid molecules originating from their parental cells. It was indicated that the exosomal cargo can mediate immune responses via many signaling pathways. Over recent years, the therapeutic effects of various exosome types were broadly investigated in many preclinical studies. Herein, we present an update on recent preclinical studies on exosomes as therapeutic and/or delivery agents for various applications. The exosome origin, structural modifications, natural or loaded active ingredients, size, and research outcomes were summarized for various diseases. Overall, the present article provides an overview of the latest exosome research interests and developments to clear the way for the clinical study design and application.
Collapse
Affiliation(s)
- Fatemeh Mehryab
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Taghizadeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nazanin Goshtasbi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Merati
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Solomon MA. Determination of the Subcellular Distribution of Fluorescently Labeled Liposomes Using Confocal Microscopy. Methods Mol Biol 2023; 2622:265-276. [PMID: 36781769 DOI: 10.1007/978-1-0716-2954-3_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
It is being increasingly recognized that therapeutics need to be delivered to specific organelle targets within cells. Liposomes are versatile lipid-based drug delivery vehicles that can be surface modified to deliver the loaded cargo to specific subcellular locations within the cell. Hence, the development of such technology requires a means of measuring subcellular distribution by utilizing imaging techniques that can visualize and quantitate the extent of this subcellular localization. The apparent increase of resolution along the Z-axis offered by confocal microscopy makes this technique suitable for such studies. In this chapter, we will describe the application of confocal laser scanning microscopy (CLSM) to determine the subcellular distribution of fluorescently labeled mitochondriotropic liposomes.
Collapse
|
9
|
Image-guided drug delivery in nanosystem-based cancer therapies. Adv Drug Deliv Rev 2023; 192:114621. [PMID: 36402247 DOI: 10.1016/j.addr.2022.114621] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/18/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
The past decades have shown significant advancements in the development of solid tumor treatment. For instance, implementation of nanosystems for drug delivery has led to a reduction in side effects and improved delivery to the tumor region. However, clinical translation has faced challenges, as tumor drug levels are still considered to be inadequate. Interdisciplinary research has resulted in the development of more advanced drug delivery systems. These are coined "smart" due to the ability to be followed and actively manipulated in order to have better control over local drug release. Therefore, image-guided drug delivery can be a powerful strategy to improve drug activity at the target site. Being able to visualize the inflow of the administered smart nanosystem within the tumor gives the potential to determine the right moment to apply the facilitator to initiate drug release. Here we provide an overview of available nanosystems, imaging moieties, and imaging techniques. We discuss preclinical application of these smart drug delivery systems, the strength of image-guided drug delivery, and the future of personalized treatment.
Collapse
|
10
|
Zhang Y, Guan R, Huang H. Anti-Allergic Effects of Quercetin and Quercetin Liposomes in RBL-2H3 Cells. Endocr Metab Immune Disord Drug Targets 2023; 23:692-701. [PMID: 35761488 DOI: 10.2174/1871530322666220627151830] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Quercetin is a kind of flavonoid with important bioactivities, such as hypoglycemic, antioxidant, anti-inflammatory, and anti-allergic properties. Although it is unstable, it is worth exploring how to better exert its anti-allergic effect. OBJECTIVE The current study aimed to elucidate the anti-allergic effect of quercetin liposomes on RBL-2H3 cells in vitro. METHODS Quercetin liposomes were prepared to improve the anti-allergic activity of quercetin through a green thin-film dispersion method. We compared the anti-allergic effects of quercetin and quercetin liposomes in RBL-2H3 cells. The anti-allergic activity of the quercetin liposomes was evaluated by the level of β-hexosaminidase, histamine, Ca2+, IL-4, IL-8, and MCP-1. RESULTS The results showed that quercetin liposomes could significantly restrain the release of β-hexosaminidase and histamine, calcium influx, and the expression of inflammatory factors, whose effect is stronger than quercetin. CONCLUSION Collectively, our research suggests that the quercetin liposome can be used as a potential allergy antagonist.
Collapse
Affiliation(s)
- Yanhui Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou, China
| | - Rongfa Guan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, P.R. China
| | - Haizhi Huang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou, China
| |
Collapse
|
11
|
Siva S, Jin JO, Choi I, Kim M. Nanoliposome based biosensors for probing mycotoxins and their applications for food: A review. Biosens Bioelectron 2023; 219:114845. [PMID: 36327568 DOI: 10.1016/j.bios.2022.114845] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/28/2022] [Accepted: 10/19/2022] [Indexed: 11/19/2022]
Abstract
Mycotoxins are the most common feed and food contaminants affecting animals and humans, respectively; continuous exposure causes tremendous health problems such as kidney disorders, infertility, immune suppression, liver inflammation, and cancer. Consequently, their control and quantification in food materials is crucial. Biosensors are potential tools for the rapid detection and quantification of mycotoxins with high sensitivity and selectivity. Nanoliposomes (NLs) are vesicular carriers formed by self-assembling phospholipids that surround the aqueous cores. Utilizing their biocompatibility, biodegradability, and high carrying capacity, researchers have employed NLs in biosensors for monitoring various targets in biological and food samples. The NLs are used for surface modification, signal marker delivery, and detection of toxins, bacteria, pesticides, and diseases. Here, we review marker-entrapped NLs used in the development of NL-based biosensors for mycotoxins. These biosensors are sensitive, selective, portable, and cost-effective analytical tools, and the resulting signal can be produced and/or amplified with or without destroying the NLs. In addition, this review emphasizes the benefits of the immunoliposome method in comparison with traditional detection approaches. We expect this review to serve as a valuable reference for researchers in this rapidly growing field. The insights provided may facilitate the rational design of next-generation NL-based biosensors.
Collapse
Affiliation(s)
- Subramanian Siva
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| | - Jun-O Jin
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| | - Inho Choi
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Department of Medical Biotechnology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| | - Myunghee Kim
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| |
Collapse
|
12
|
Khalili L, Dehghan G, Sheibani N, Khataee A. Smart active-targeting of lipid-polymer hybrid nanoparticles for therapeutic applications: Recent advances and challenges. Int J Biol Macromol 2022; 213:166-194. [PMID: 35644315 DOI: 10.1016/j.ijbiomac.2022.05.156] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 12/24/2022]
Abstract
The advances in producing multifunctional lipid-polymer hybrid nanoparticles (LPHNs) by combining the biomimetic behavior of liposomes and architectural advantages of polymers have provided great opportunities for selective and efficient therapeutics delivery. The constructed LPHNs exhibit different therapeutic efficacies for special uses based on characteristics of different excipients. However, the high mechanical/structural stability of hybrid nano-systems could be viewed as both a negative property and a positive feature, where the concomitant release of drug molecules in a controllable manner is required. In addition, difficulties in scaling up the LPHNs production, due to involvement of several criteria, limit their application for biomedical fields, especially in monitoring, bioimaging, and drug delivery. To address these challenges bio-modifications have exhibited enormous potential to prepare reproducible LPHNs for site-specific therapeutics delivery, diagnostic and preventative applications. The ever-growing surface bio-functionality has provided continuous vitality to this biotechnology and has also posed desirable biosafety to nanoparticles (NPs). As a proof-of-concept, this manuscript provides a crucial review of coated lipid and polymer NPs displaying excellent surface functionality and architectural advantages. We also provide a description of structural classifications and production methodologies, as well as the biomedical possibilities and translational obstacles in the development of surface modified nanocarrier technology.
Collapse
Affiliation(s)
- Leila Khalili
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran.
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, Cell and Regenerative Biology, and Biomedical Engineering, University of Wisconsin School of Medicine, Madison, WI, USA
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, Mersin 10, Turkey.
| |
Collapse
|
13
|
Hosseinpour-Moghadam R, Mehryab F, Torshabi M, Haeri A. Applications of Novel and Nanostructured Drug Delivery Systems for the Treatment of Oral Cavity Diseases. Clin Ther 2021; 43:e377-e402. [PMID: 34844769 DOI: 10.1016/j.clinthera.2021.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Novel drug delivery systems (DDSs) hold great promise for the treatment of oral cavity diseases. The main objective of this article was to provide a detailed overview regarding recent advances in the use of novel and nanostructured DDSs in alleviating and treating unpleasant conditions of the oral cavity. Strategies to maximize the benefits of these systems in the treatment of oral conditions and future directions to overcome these issues are also discussed. METHODS Publications from the last 10 years investigating novel and nanostructured DDSs for pathologic oral conditions were browsed in a systematic search using the PubMed/MEDLINE, Web of Science, and Scopus databases. Research on applications of novel DDSs for periodontitis, oral carcinomas, oral candidiasis, xerostomia, lichen planus, aphthous stomatitis, and oral mucositis is summarized. A narrative exploratory review of the most recent literature was undertaken. FINDINGS Conventional systemic administration of therapeutic agents could exhibit high clearance of drugs from the bloodstream and low accumulation at the target site. In contrast, conventional topical systems face problems such as short residence time in the affected region and low patient compliance. Novel and nanostructured DDSs are among the most effective and commonly used methods for overcoming the problems of conventional DDSs. The main advantages of these systems are that they possess the ability to protect active agents from systemic and local clearance, enhance bioavailability and cellular uptake, and provide immediate or modified release of therapeutic agents after administration. In the design of local drug delivery devices such as nanofiber mats, films, and patches, components and excipients can significantly affect factors such as drug release rate, residence time in the oral cavity, and taste in the mouth. Choosing appropriate additives is therefore essential. IMPLICATIONS Local drug delivery devices such as nanofiber mats, nanoparticles, liposomes, hydrogels, films, and patches for oral conditions can significantly affect drug efficacy and safety. However, more precise clinical studies should be designed and conducted to confirm promising in vitro and in vivo results. In recent years, novel and nanostructured DDSs increasingly attracted the attention of researchers as a means of treatment and alleviation of oral diseases and unpleasant conditions. However, more clinical studies should be performed to confirm promising in vitro and in vivo results. To transform a successful laboratory model into a marketable product, the long-term stability of prepared formulations is essential. Also, proper scale-up methods with optimum preparation costs should be addressed.
Collapse
Affiliation(s)
- Reza Hosseinpour-Moghadam
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mehryab
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Torshabi
- Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Shariatinia Z. Big family of nano- and microscale drug delivery systems ranging from inorganic materials to polymeric and stimuli-responsive carriers as well as drug-conjugates. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Lebrón JA, López-López M, García-Calderón CB, V. Rosado I, Balestra FR, Huertas P, Rodik RV, Kalchenko VI, Bernal E, Moyá ML, López-Cornejo P, Ostos FJ. Multivalent Calixarene-Based Liposomes as Platforms for Gene and Drug Delivery. Pharmaceutics 2021; 13:pharmaceutics13081250. [PMID: 34452211 PMCID: PMC8398082 DOI: 10.3390/pharmaceutics13081250] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 12/13/2022] Open
Abstract
The formation of calixarene-based liposomes was investigated, and the characterization of these nanostructures was carried out using several techniques. Four amphiphilic calixarenes were used. The length of the hydrophobic chains attached to the lower rim as well as the nature of the polar group present in the upper rim of the calixarenes were varied. The lipid bilayer was formed with one calixarene and with the phospholipid 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine, DOPE. The cytotoxicity of the liposomes for various cell lines was also studied. From the results obtained, the liposomes formed with the least cytotoxic calixarene, (TEAC12)4, were used as nanocarriers of both nucleic acids and the antineoplastic drug doxorubicin, DOX. Results showed that (TEAC12)4/DOPE/p-EGFP-C1 lipoplexes, of a given composition, can transfect the genetic material, although the transfection efficiency substantially increases in the presence of an additional amount of DOPE as coadjuvant. On the other hand, the (TEAC12)4/DOPE liposomes present a high doxorubicin encapsulation efficiency, and a slow controlled release, which could diminish the side effects of the drug.
Collapse
Affiliation(s)
- José Antonio Lebrón
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, 41012 Seville, Spain; (J.A.L.); (E.B.)
| | - Manuel López-López
- Department of Chemical Engineering, Physical Chemistry and Materials Science, Faculty of Experimental Sciences, University of Huelva, Campus de El Carmen, Avda. de las Fuerzas Armadas s/n, 21071 Huelva, Spain;
| | - Clara B. García-Calderón
- Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, Avda. Manuel Siurot s/n, 41013 Seville, Spain; (C.B.G.-C.); (I.V.R.)
| | - Ivan V. Rosado
- Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, Avda. Manuel Siurot s/n, 41013 Seville, Spain; (C.B.G.-C.); (I.V.R.)
| | - Fernando R. Balestra
- Department of Genetics, Faculty of Biology, University of Seville, C/Profesor García González 1, 41012 Seville, Spain; (F.R.B.); (P.H.)
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), University of Seville-CSIC-University Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Spain
| | - Pablo Huertas
- Department of Genetics, Faculty of Biology, University of Seville, C/Profesor García González 1, 41012 Seville, Spain; (F.R.B.); (P.H.)
- Andalusian Center of Molecular Biology and Regenerative Medicine (CABIMER), University of Seville-CSIC-University Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Spain
| | - Roman V. Rodik
- Institute of Organic Chemistry, National Academy of Science of Ukraine, Murmanska Str. 5, 02660 Kiev, Ukraine; (R.V.R.); (V.I.K.)
| | - Vitaly I. Kalchenko
- Institute of Organic Chemistry, National Academy of Science of Ukraine, Murmanska Str. 5, 02660 Kiev, Ukraine; (R.V.R.); (V.I.K.)
| | - Eva Bernal
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, 41012 Seville, Spain; (J.A.L.); (E.B.)
| | - María Luisa Moyá
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, 41012 Seville, Spain; (J.A.L.); (E.B.)
- Correspondence: (M.L.M.); (P.L.-C.); (F.J.O.); Tel.: +34-954-557-175 (M.L.M.)
| | - Pilar López-Cornejo
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, 41012 Seville, Spain; (J.A.L.); (E.B.)
- Correspondence: (M.L.M.); (P.L.-C.); (F.J.O.); Tel.: +34-954-557-175 (M.L.M.)
| | - Francisco J. Ostos
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, C/Profesor García González 1, 41012 Seville, Spain; (J.A.L.); (E.B.)
- Correspondence: (M.L.M.); (P.L.-C.); (F.J.O.); Tel.: +34-954-557-175 (M.L.M.)
| |
Collapse
|
16
|
Recent Biomedical Approaches for Chitosan Based Materials as Drug Delivery Nanocarriers. Pharmaceutics 2021; 13:pharmaceutics13040587. [PMID: 33924046 PMCID: PMC8073149 DOI: 10.3390/pharmaceutics13040587] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 01/08/2023] Open
Abstract
In recent decades, drug delivery systems (DDSs) based on nanotechnology have been attracting substantial interest in the pharmaceutical field, especially those developed based on natural polymers such as chitosan, cellulose, starch, collagen, gelatin, alginate and elastin. Nanomaterials based on chitosan (CS) or chitosan derivatives are broadly investigated as promising nanocarriers due to their biodegradability, good biocompatibility, non-toxicity, low immunogenicity, great versatility and beneficial biological effects. CS, either alone or as composites, are suitable substrates in the fabrication of different types of products like hydrogels, membranes, beads, porous foams, nanoparticles, in-situ gel, microparticles, sponges and nanofibers/scaffolds. Currently, the CS based nanocarriers are intensely studied as controlled and targeted drug release systems for different drugs (anti-inflammatory, antibiotic, anticancer etc.) as well as for proteins/peptides, growth factors, vaccines, small DNA (DNAs) and short interfering RNA (siRNA). This review targets the latest biomedical approaches for CS based nanocarriers such as nanoparticles (NPs) nanofibers (NFs), nanogels (NGs) and chitosan coated liposomes (LPs) and their potential applications for medical and pharmaceutical fields. The advantages and challenges of reviewed CS based nanocarriers for different routes of administration (oral, transmucosal, pulmonary and transdermal) with reference to classical formulations are also emphasized.
Collapse
|
17
|
Babadi D, Dadashzadeh S, Osouli M, Abbasian Z, Daryabari MS, Sadrai S, Haeri A. Biopharmaceutical and pharmacokinetic aspects of nanocarrier-mediated oral delivery of poorly soluble drugs. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
18
|
Tan C, Wang J, Sun B. Biopolymer-liposome hybrid systems for controlled delivery of bioactive compounds: Recent advances. Biotechnol Adv 2021; 48:107727. [PMID: 33677025 DOI: 10.1016/j.biotechadv.2021.107727] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/04/2021] [Accepted: 02/27/2021] [Indexed: 12/16/2022]
Abstract
Conventional liposomes still face many challenges associated with the poor physical and chemical stability, considerable loss of encapsulated cargo, lack of stimulus responsiveness, and rapid elimination from blood circulation. Integration of versatile functional biopolymers has emerged as an attractive strategy to overcome the limitation of usage of liposomes. This review comprehensively summarizes the most recent studies (2015-2020) and their challenges aiming at the exploration of biopolymer-liposome hybrid systems, including surface-modified liposomes, biopolymer-incorporated liposomes, guest-in-cyclodextrin-in-liposome, liposome-in-hydrogel, liposome-in-film, and liposome-in-nanofiber. The physicochemical principles and key technical information underlying the combined strategies for the fabrication of polymeric liposomes, the advantages and limitations of each of the systems, and the stabilization mechanisms are discussed through various case studies. Special emphasis is directed toward the synergistic efficiencies of biopolymers and phospholipid bilayers on encapsulation, protection, and controlled delivery of bioactives (e.g., vitamins, carotenoids, phenolics, peptides, and other health-related compounds) for the biomedical, pharmaceutical, cosmetic, and functional food applications. The major challenges, opportunities, and possible further developments for future studies are also highlighted.
Collapse
Affiliation(s)
- Chen Tan
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University (BTBU), Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University (BTBU), Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Baoguo Sun
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
19
|
Naringenin Nano-Delivery Systems and Their Therapeutic Applications. Pharmaceutics 2021; 13:pharmaceutics13020291. [PMID: 33672366 PMCID: PMC7926828 DOI: 10.3390/pharmaceutics13020291] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 12/18/2022] Open
Abstract
Naringenin (NRG) is a polyphenolic phytochemical belonging to the class of flavanones and is widely distributed in citrus fruits and some other fruits such as bergamot, tomatoes, cocoa, and cherries. NRG presents several interesting pharmacological properties, such as anti-cancer, anti-oxidant, and anti-inflammatory activities. However, the therapeutic potential of NRG is hampered due to its hydrophobic nature, which leads to poor bioavailability. Here, we review a wide range of nanocarriers that have been used as delivery systems for NRG, including polymeric nanoparticles, micelles, liposomes, solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), nanosuspensions, and nanoemulsions. These nanomedicine formulations of NRG have been applied as a potential treatment for several diseases, using a wide range of in vitro, ex vivo, and in vivo models and different routes of administration. From this review, it can be concluded that NRG is a potential therapeutic option for the treatment of various diseases such as cancer, neurological disorders, liver diseases, ocular disorders, inflammatory diseases, skin diseases, and diabetes when formulated in the appropriate nanocarriers.
Collapse
|
20
|
Peng F, Chen Y, Liu J, Xing Z, Fan J, Zhang W, Qiu F. Facile design of gemini surfactant-like peptide for hydrophobic drug delivery and antimicrobial activity. J Colloid Interface Sci 2021; 591:314-325. [PMID: 33621783 DOI: 10.1016/j.jcis.2021.02.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 02/08/2023]
Abstract
Recently, many kinds of gemini-type amphiphilic peptides have been designed and shown their advantage as self-assembling nanomaterials. In this study, we proposed a simple strategy to design gemini surfactant-like peptides, which are only composed of natural amino acids and can be easily obtained by conventional peptide sythnesis. Taking two prolines as the turn-forming units, a peptide named APK was designed. The petide has a linear sequence but naturally takes the conformation like a gemini surfactant. Compared with a single-tailed surfactant-like peptide A6K, APK showed much stronger ability to undergo self-assembly and to encapsulate hydrophobic pyrene. Several hydrophobic drugs including paclitaxel, doxorubicin, etomidate and propofol were encapsulated by APK, and the corresponding formulations showed anti-tumor or anesthetic efficacy comparable to their respective clinical formulations. Furthermore, APK could inhibit the growth of different microorganisms including E. coli, S. aureus and C. albicans. Etomidate and propofol formulations encapsulated by APK also showed strong antimicrobial activity. Taking APK as an example, our study indicated a straightforward strategy to design gemini surfactant-like peptides, which could be potential nanomaterials for exploring hydrophobic drug formulations with efficacy, safety and self-antimicrobial activity.
Collapse
Affiliation(s)
- Fei Peng
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, China; National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yongzhu Chen
- Periodical Press of West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Liu
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, China; National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhihua Xing
- Laboratory of Ethnopharmacology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Fan
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, China; National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wensheng Zhang
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, China; National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Feng Qiu
- Laboratory of Anesthesia and Critical Care Medicine, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, China; National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
21
|
Mehryab F, Rabbani S, Shahhosseini S, Shekari F, Fatahi Y, Baharvand H, Haeri A. Exosomes as a next-generation drug delivery system: An update on drug loading approaches, characterization, and clinical application challenges. Acta Biomater 2020; 113:42-62. [PMID: 32622055 DOI: 10.1016/j.actbio.2020.06.036] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
Exosomes are small nanoparticles secreted by almost all cells and have a well-known role in intercellular communication. They are found in different body fluids and can also be isolated from cell culture media. They contain a natural cargo including various protein and nucleic acid molecules originated from their donor cells. In recent years, exosomes have emerged as a desired drug delivery system. They are believed to provide a targeted delivery of drug molecules, supplemented with their natural function. Furthermore, they have a membranous structure similar to liposomes, and that motivated researchers to apply their previous experience of drug loading into liposomes for exosomes. Herein, we discuss applied methods for the encapsulation of different drugs into exosomes, parameters affecting the incorporation of drug molecules into exosomes, characterization techniques, recent achievements, commercialization challenges and the potential future developments of exosomal drugs. Overall, while the application of exosomes as a drug delivery system is still in its infancy, they are considered to be a new class of natural nanocarriers with great potential for clinical application. Understanding of their key formulation parameters, pharmaceutical properties, in vivo behavior and applicable scale-up production will pave their way to the market. STATEMENT OF SIGNIFICANCE: Details of loading methods, characterization and biopharmaceutical properties of drug-incorporated exosomes are presented. Most parameters affecting encapsulation of drugs into exosomes are mentioned to serve as a guide for future studies in this field. Moreover, challenges on the way of exosomes to the market and clinic are described.
Collapse
|
22
|
Caramazza L, Nardoni M, De Angelis A, Paolicelli P, Liberti M, Apollonio F, Petralito S. Proof-of-Concept of Electrical Activation of Liposome Nanocarriers: From Dry to Wet Experiments. Front Bioeng Biotechnol 2020; 8:819. [PMID: 32793572 PMCID: PMC7390969 DOI: 10.3389/fbioe.2020.00819] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/26/2020] [Indexed: 12/19/2022] Open
Abstract
The increasing interest toward biocompatible nanotechnologies in medicine, combined with electric fields stimulation, is leading to the development of electro-sensitive smart systems for drug delivery applications. To this regard, recently the use of pulsed electric fields to trigger release across phospholipid membranes of liposomes has been numerically studied, for a deeper understanding of the phenomena at the molecular scale. Aim of this work is to give an experimental validation of the feasibility to control the release from liposome vesicles, using nanosecond pulsed electric fields characterized by a 10 ns duration and intensity in the order of MV/m. The results are supported by multiphysics simulations which consider the coupling of three physics (electromagnetics, thermal and pore kinetics) in order to explain the occurring physical interactions at the microscopic level and provide useful information on the characteristics of the train of pulses needed to obtain quantitative results in terms of liposome electropermeabilization. Finally, a complete characterization of the exposure system is also provided to support the reliability and validity of the study.
Collapse
Affiliation(s)
- Laura Caramazza
- ICEmB at DIET, Sapienza University of Rome, Rome, Italy.,Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Martina Nardoni
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Annalisa De Angelis
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Patrizia Paolicelli
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| | - Micaela Liberti
- ICEmB at DIET, Sapienza University of Rome, Rome, Italy.,Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Francesca Apollonio
- ICEmB at DIET, Sapienza University of Rome, Rome, Italy.,Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Stefania Petralito
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy
| |
Collapse
|