1
|
Dong Z, Wen G, Kafetzi M, Pispas S, Zhang Q. Interfacial Aggregation Behavior of Double Hydrophilic Block Copolymer of PDMAEMA- b-POEGMA. J Phys Chem B 2025; 129:5082-5088. [PMID: 40356288 DOI: 10.1021/acs.jpcb.5c02102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
The detailed micelle/aggregate structures of double hydrophilic diblock copolymers (DHBCs) at the air/water interface are not well understood and need to be further explored. The Langmuir film balance technique and atomic force microscopy were used to study the effects of subphase pH and temperature on the interfacial aggregation behavior of one DHBC of poly[2-(dimethylamino)ethyl methacrylate]-b-poly[oligo(ethylene glycol) methyl ether methacrylate] (PDMAEMA-b-POEGMA) and the structures of its Langmuir-Blodgett (LB) films, respectively. At the air/water interface, the PDMAEMA-b-POEGMA copolymer forms a dense network structure of circular micelles with the hydrophobic carbon backbones of PDMAEMA and POEGMA blocks as the tiny cores and their hydrophilic side chains as the short shells, and each copolymer molecule forms two connected micelles/cores. This ultrafine core-shell micelle structure is successfully identified by using our newly proposed relative aggregation number method, which is different from the isolated core-shell-petal and core-shell-corona structures presented in our previous DHBC systems. With the increase of subphase pH, the isotherms of the copolymer first move toward smaller mean molecular areas (mmA) and then move toward larger ones. Under alkaline conditions, the monolayer exhibits the largest hysteresis degree, whereas that under neutral conditions exhibits the smallest one. As the temperature rises, the isotherms under acidic conditions move to larger mmA due to the increased thermal mobility of the OEGMA side chains. Under neutral and alkaline conditions, the isotherms at 20 °C appear at the left of those at 10 °C due to the collapse of the OEGMA side chains above 15 °C.
Collapse
Affiliation(s)
- Zhixiu Dong
- Department of Polymer Material and Engineering, College of Material Science and Chemical Engineering, Harbin University of Science and Technology, 4 Linyuan Road, Harbin 150040, P R China
| | - Gangyao Wen
- Department of Polymer Material and Engineering, College of Material Science and Chemical Engineering, Harbin University of Science and Technology, 4 Linyuan Road, Harbin 150040, P R China
| | - Martha Kafetzi
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Qi Zhang
- Department of Polymer Material and Engineering, College of Material Science and Chemical Engineering, Harbin University of Science and Technology, 4 Linyuan Road, Harbin 150040, P R China
| |
Collapse
|
2
|
Kaga E, Kaga S, Altunbas K, Okumus N. Inhalable Nano Formulation of Cabazitaxel: A Comparative Study with Intravenous Route. Macromol Biosci 2025; 25:e2400567. [PMID: 39888152 PMCID: PMC12080303 DOI: 10.1002/mabi.202400567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/25/2024] [Indexed: 02/01/2025]
Abstract
Chemotherapy is generally given by intravenous (IV) administration which provides higher bioavailability than other systemic routes. However, in the case of lung cancer, the pulmonary (INH) route is the other choice for inhalable formulations. In the study, biochemical and histological parameters of Cabazitaxel (CBZ) free (2 mg kg-1) and nanoparticle (NP) (2 mg kg-1 CBZ equivalent) formulations are investigated after IV and INH administration in rats. The nanoformulation of CBZ is obtained using PEGylated polystyrene (PEG-PST) nanoparticles obtained by PISA. While a nose and head-only device is used for INH administration, a jugular vein is used as the IV route. Blood samples (blank, 24 h, and 48 h) are collected via carotid artery cannulas without handling in metabolism cages. According to biochemical parameters, free CBZ formulation applied via IV or INH route shows higher systemic toxicity. On the other hand, the nanoformulation of CBZ showed no signs of toxicity in both IV or INH routes. Higher and longer retention is observed in the case of inhaled nanoformulation. Histological analysis showed higher alveolar macrophage migration for inhaled nanoformulation due to enhanced retention. Results showed that nanotechnology and the lung defense system gave the advantage to end up with an inhalable nanomedicine formulation for lung cancer.
Collapse
Affiliation(s)
- Elif Kaga
- Department of Medical Services and TechniquesAfyonkarahisar Health Sciences UniversityAfyonkarahisar03030Türkiye
| | - Sadik Kaga
- Department of Biomedical EngineeringAfyon Kocatepe UniversityAfyonkarahisar03200Türkiye
| | - Korhan Altunbas
- Department of Histology and EmbryologyAfyon Kocatepe UniversityAfyonkarahisar03200Türkiye
| | - Nurullah Okumus
- Department of PediatricsAfyonkarahisar Health Sciences UniversityAfyonkarahisar03030Türkiye
| |
Collapse
|
3
|
Mondal A, Dey A, Kumbhakar K, De P, Biswas R. Dynamical signature of the onset of sol-gel phase transition in aqueous solutions of hydrophobically modified poly(acrylic acid)-based copolymers. J Chem Phys 2025; 162:164903. [PMID: 40260820 DOI: 10.1063/5.0260194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 04/02/2025] [Indexed: 04/24/2025] Open
Abstract
Sol-gel transition-driven relaxation dynamics of aqueous solutions of rationally designed polyacrylic acid (PAA)-based copolymers with hydrophobic modifications were explored by employing time-resolved fluorescence and MHz-GHz dielectric relaxation (DR) measurements. This sol-gel transition driven dynamics was monitored over an incubation period of 30 days, as these systems were found to undergo gelation after a few weeks. The designed PAA-based homo (P0), hydrophobically modified (∼4%) copolymers (P4, P6), and their coumarin 343 (C343) attached analogous copolymers (P4', P6') were synthesized by reversible addition-fragmentation chain transfer polymerization and characterized by 1H NMR spectroscopy and size exclusion chromatography (SEC). Dynamic light scattering experiments of aqueous copolymer solutions showed a gradual increment of hydrodynamic diameter (Dh) up to ∼4000 nm, and the onset of sol-gel transition was estimated by locating the intersection of two distinct slopes produced by the plots of average Dh as a function of incubation time. The sol-gel transition for these copolymer solutions (aqueous) was clearly demonstrated by the progressive slowing down of DR times and the rotational fluorescence anisotropy times tracked over the entire incubation period. Interestingly, the onset time for the sol-gel transition was found to be insensitive to the chemical binding of the fluorescent probe to these polymers. A comparison between the steady state UV-VIS absorption and fluorescence spectral characteristics of aqueous solutions of these copolymers with chemically bound and externally added C343 suggested that the sol-gel transition involved polymer aggregation. This study may be useful for designing supramolecular polymer gels for biomedical applications.
Collapse
Affiliation(s)
- Amrita Mondal
- Chemical and Biological Sciences (CBS), S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, West Bengal, India
| | - Asmita Dey
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 Nadia, West Bengal, India
| | - Kajal Kumbhakar
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), Seoul 02841, Republic of Korea
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246 Nadia, West Bengal, India
| | - Ranjit Biswas
- Chemical and Biological Sciences (CBS), S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, West Bengal, India
| |
Collapse
|
4
|
Peng L, Odnoroh M, Destarac M, Coppel Y, Delmas C, Benoit-Marquié F, Mingotaud C, Marty JD. How tailor-made copolymers can control the structure and properties of hybrid nanomaterials: the case of polyionic complexes. NANOSCALE 2025; 17:4636-4648. [PMID: 39812163 DOI: 10.1039/d4nr04332d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Hybrid polyionic complexes (HPICs) are colloidal structures with a charged core rich in metal ions and a neutral hydrophilic corona. Their properties, whether as reservoirs or catalysts, depend on the accessibility and environment of the metal ions. This study demonstrates that modifying the coordination sphere of these ions can tune the properties of HPICs by altering the composition of the complexing block or varying formulation conditions. Hence, double hydrophilic block copolymers were synthesized using RAFT polymerization, with polyethylene glycol as the neutral block and different ratios of acrylic acid (AA) and vinylphosphonic acid (VPA) as the functional block and further complexed with Fe(III) ions. The resulting iron-based HPICs with higher VPA content were more stable at low pH due to stronger VPA-iron interactions, but their catalytic efficiency in the photo-Fenton process decreased at higher pH. In nanoparticle synthesis, polymers with higher VPA content produced smaller, less-defined Prussian blue nanoparticles, while a 50/50 AA/VPA ratio resulted in uniform nanoparticles and optimal reactivity. Multivariate analysis revealed that not only composition but also local structural organization impacts HPIC properties, influenced by changes in the complexing block structure (e.g., statistical, block) or formulation conditions.
Collapse
Affiliation(s)
- Liming Peng
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, 118 route de Narbonne, 31062 Toulouse Cedex 9, France.
| | - Maksym Odnoroh
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, 118 route de Narbonne, 31062 Toulouse Cedex 9, France.
| | - Mathias Destarac
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, 118 route de Narbonne, 31062 Toulouse Cedex 9, France.
| | - Yannick Coppel
- Laboratoire de Chimie de Coordination, Université de Toulouse, CNRS UPR 8241, 205 route de Narbonne, 31062 Toulouse, France
| | - Céline Delmas
- MIAT UR 875, INRAE, Université de Toulouse, F-31326 Castanet-Tolosan, France
| | - Florence Benoit-Marquié
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, 118 route de Narbonne, 31062 Toulouse Cedex 9, France.
| | - Christophe Mingotaud
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, 118 route de Narbonne, 31062 Toulouse Cedex 9, France.
| | - Jean-Daniel Marty
- Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, 118 route de Narbonne, 31062 Toulouse Cedex 9, France.
| |
Collapse
|
5
|
Ball L, Smith MP, Pfukwa R, Klumperman B. An Exploration of the Universal and Switchable RAFT-Mediated Synthesis of Poly(styrene- alt-maleic acid)- b-poly( N-vinylpyrrolidone) Block Copolymers. Macromolecules 2025; 58:1060-1076. [PMID: 39897052 PMCID: PMC11781032 DOI: 10.1021/acs.macromol.4c02741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 02/04/2025]
Abstract
The synthesis of poly(styrene-alt-maleic anhydride) (SMAnh) and poly(4-tert-butylstyrene-alt-maleic anhydride) (tBuSMAnh) macro-RAFT agents was investigated using universal 3,5-dimethylpyrazole dithiocarbamate and stimuli-responsive N-(4-pyridinyl)-N-methyldithiocarbamate RAFT agents. SMAnh/tBuSMAnh macro-RAFT agents of targeted molecular weight and narrow molecular weight distribution could be synthesized with intentional variation of the terminal monomer unit, allowing for the assessment of two distinctive macro-R-groups. SMAnh macro-RAFT agents were utilized to mediate the thermally initiated polymerization of N-vinylpyrrolidone (NVP), yielding SMAnh-b-PVP, but with significant thermolysis and hydrolysis of dithiocarbamate ω-chain ends. Alternatively, the redox-initiated RAFT-mediated polymerization of NVP at ambient temperatures using hydrolyzed macro-RAFT agents, i.e., poly(styrene-alt-maleic acid) (SMA) and poly(4-tert-butylstyrene-alt-maleic acid) (tBuSMA), was explored. Double hydrophilic SMA-b-PVP and tBuSMA-b-PVP block copolymers could be synthesized but with significant broadening of the molecular weight distribution. This is a result of the formation of dead chains derived from the alkaline hydrolysis of macro-RAFT agents prepolymerization and hydrolysis of dithiocarbamate chain ends throughout the polymerization. The latter is exacerbated by the insertion of NVP at the ω-chain end, which was subsequently investigated via the kinetic analysis of the xanthate- and dithiocarbamate-mediated aqueous homopolymerization of NVP.
Collapse
Affiliation(s)
- Lauren
E. Ball
- Department of Chemistry and
Polymer Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - Michael-Phillip Smith
- Department of Chemistry and
Polymer Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - Rueben Pfukwa
- Department of Chemistry and
Polymer Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - Bert Klumperman
- Department of Chemistry and
Polymer Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
6
|
Raza MA, Sharma MK, Nagori K, Jain P, Ghosh V, Gupta U, Ajazuddin. Recent trends on polycaprolactone as sustainable polymer-based drug delivery system in the treatment of cancer: Biomedical applications and nanomedicine. Int J Pharm 2024; 666:124734. [PMID: 39343332 DOI: 10.1016/j.ijpharm.2024.124734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/05/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
The unique properties-such as biocompatibility, biodegradability, bio-absorbability, low cost, easy fabrication, and high versatility-have made polycaprolactone (PCL) the center of attraction for researchers. The derived introduction in this manuscript gives a pretty detailed overview of PCL, so you can first brush up on it. Discussion on the various PCL-based derivatives involves, but is not limited to, poly(ε-caprolactone-co-lactide) (PCL-co-LA), PCL-g-PEG, PCL-g-PMMA, PCL-g-chitosan, PCL-b-PEO, and PCL-g-PU specific properties and their probable applications in biomedicine. This paper has considered examining the differences in the diverse disease subtypes and the therapeutic value of using PCL. Advanced strategies for PCL in delivery systems are also considered. In addition, this review discusses recently patented products to provide a snapshot of recent updates in this field. Furthermore, the text probes into recent advances in PCL-based DDS, for example, nanoparticles, liposomes, hydrogels, and microparticles, while giving special attention to comparing the esters in the delivery of bioactive compounds such as anticancer drugs. Finally, we review future perspectives on using PCL in biomedical applications and the hurdles of PCL-based drug delivery, including fine-tuning mechanical strength/degradation rate, biocompatibility, and long-term effects in living systems.
Collapse
Affiliation(s)
- Mohammad Adnan Raza
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India
| | - Mukesh Kumar Sharma
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India
| | - Kushagra Nagori
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India
| | - Parag Jain
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India
| | - Vijayalakshmi Ghosh
- Department of Biotechnology, GD Rungta College of Science & Technology, Bhilai 490024, Chhattisgarh, India
| | - Umesh Gupta
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer 305817, Rajasthan, India
| | - Ajazuddin
- Department of Pharmaceutics, Rungta College of Pharmaceutical Science and Research, Bhilai 490024, Chhattisgarh, India; Rungta College of Engineering and Technology, Bhilai 490024, Chhattisgarh, India.
| |
Collapse
|
7
|
Gerardos AM, Pispas S. Double Hydrophilic Hyperbranched Copolymer-Based Lipomer Nanoparticles: Copolymer Synthesis and Co-Assembly Studies. Polymers (Basel) 2024; 16:3129. [PMID: 39599220 PMCID: PMC11598649 DOI: 10.3390/polym16223129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Double hydrophilic, random, hyperbranched copolymers were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization of oligo(ethylene glycol) methyl ether methacrylate (OEGMA) and 2-(dimethylamino)ethyl methacrylate (DMAEMA) utilizing ethylene glycol dimethacrylate (EGDMA) as the branching agent. The resulting copolymers were characterized in terms of their molecular weight and dispersity using size exclusion chromatography (SEC), and their chemical structure was confirmed using FT-IR and 1H-NMR spectroscopy techniques. The choice of the two hydrophilic blocks and the design of the macromolecular structure allowed the formation of self-assembled nanoparticles, partially due to the pH-responsive character of the DMAEMA segments and their interaction with -COOH end groups remaining from the chain transfer agent. The copolymers showed pH-responsive properties, mainly due to the protonation-deprotonation equilibria of the DMAEMA segments. Subsequently, a nanoscopic polymer-lipid (lipomer) mixed system was formulated by complexing the synthesized copolymers with cosmetic amphiphilic emulsifiers, specifically glyceryl stearate (GS) and glyceryl stearate citrate (GSC). This study aims to show that developing lipid-polymer hybrid nanoparticles can effectively address the limitations of both liposomes and polymeric nanoparticles. The effects of varying the ionic strength and pH on stimuli-sensitive polymeric and mixed polymer-lipid nanostructures were thoroughly investigated. To achieve this, the structural properties of the hybrid nanoparticles were comprehensively characterized using physicochemical techniques providing insights into their size distribution and stability.
Collapse
Affiliation(s)
- Angelica Maria Gerardos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece;
- Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece;
| |
Collapse
|
8
|
Vashishtha A, Phimphachanh A, Gaillard T, Schmitt J, Gerardin C, Rydzek G, Aubert T. Hybrid Silica Cage-Type Nanostructures Made from Triply Hydrophilic Block Copolymers Single Micelles. ACS NANO 2024; 18:29008-29020. [PMID: 39396244 DOI: 10.1021/acsnano.4c09887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Controlling the structure and functionality of porous silica nanoparticles has been a continuous source of innovation with important potential for advanced biomedical applications. Their synthesis, however, usually involves passive surfactants or amphiphilic copolymers that do not add value to the material after synthesis. In contrast, polyion complex (PIC) micelles based on hydrophilic block copolymers allow for the direct synthesis of intrinsically functional hybrid materials. While most previous studies have focused on bulk materials made from double-hydrophilic block copolymers (DHBC), in this work we have synthesized a triple-hydrophilic block copolymer (THBC) and demonstrated both its PIC micellization and its potential for hybrid mesoporous silica nanomaterials. Introducing this THBC has allowed to direct the transition from bulk three-dimensional (3D) materials to zero-dimensional (0D) nanomaterials with cage-type structures. The stabilization and isolation of these nanostructures formed around discrete individual micelles has been made possible by the careful design of the three different blocks that each play a key role. These nanostructures could also be synthesized from hybrid PIC micelles based on THBC-multivalent metal ions complexes, offering a direct route to metal/silica composite nanoparticles. This class of THBC polymers therefore creates significant opportunities for the synthesis of nanostructures with complex and functional architectures.
Collapse
Affiliation(s)
- Anu Vashishtha
- ICGM, Univ Montpellier, CNRS, ENSCM, 34000 Montpellier, France
| | | | - Thomas Gaillard
- ICGM, Univ Montpellier, CNRS, ENSCM, 34000 Montpellier, France
| | - Julien Schmitt
- ICGM, Univ Montpellier, CNRS, ENSCM, 34000 Montpellier, France
- Saint-Gobain Research Provence, LSFC, CNRS, 84300 Cavaillon, France
| | - Corine Gerardin
- ICGM, Univ Montpellier, CNRS, ENSCM, 34000 Montpellier, France
| | | | - Tangi Aubert
- ICGM, Univ Montpellier, CNRS, ENSCM, 34000 Montpellier, France
| |
Collapse
|
9
|
Desai N, Pande S, Salave S, Singh TRR, Vora LK. Antitoxin nanoparticles: design considerations, functional mechanisms, and applications in toxin neutralization. Drug Discov Today 2024; 29:104060. [PMID: 38866357 DOI: 10.1016/j.drudis.2024.104060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/21/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
The application of nanotechnology has significantly advanced the development of novel platforms that enhance disease treatment and diagnosis. A key innovation in this field is the creation of antitoxin nanoparticles (ATNs), designed to address toxin exposure. These precision-engineered nanosystems have unique physicochemical properties and selective binding capabilities, allowing them to effectively capture and neutralize toxins from various biological, chemical, and environmental sources. In this review, we thoroughly examine their therapeutic and diagnostic potential for managing toxin-related challenges. We also explore recent advancements and offer critical insights into the design and clinical implementation of ATNs.
Collapse
Affiliation(s)
- Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi, Telangana, India
| | - Shreya Pande
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi, Telangana, India
| | - Sagar Salave
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Gujarat, India
| | | | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| |
Collapse
|
10
|
Kalinova R, Videv P, Petrova S, Doumanov J, Dimitrov I. Poly(2-(dimethylamino)ethyl methacrylate)-Grafted Amphiphilic Block Copolymer Micelles Co-Loaded with Quercetin and DNA. Molecules 2024; 29:2540. [PMID: 38893415 PMCID: PMC11173910 DOI: 10.3390/molecules29112540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/17/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
The synergistic effect of drug and gene delivery is expected to significantly improve cancer therapy. However, it is still challenging to design suitable nanocarriers that are able to load simultaneously anticancer drugs and nucleic acids due to their different physico-chemical properties. In the present work, an amphiphilic block copolymer comprising a biocompatible poly(ethylene glycol) (PEG) block and a multi-alkyne-functional biodegradable polycarbonate (PC) block was modified with a number of poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) side chains applying the highly efficient azide-alkyne "click" chemistry reaction. The resulting cationic amphiphilic copolymer with block and graft architecture (MPEG-b-(PC-g-PDMAEMA)) self-associated in aqueous media into nanosized micelles which were loaded with the antioxidant, anti-inflammatory, and anticancer drug quercetin. The drug-loaded nanoparticles were further used to form micelleplexes in aqueous media through electrostatic interactions with DNA. The obtained nanoaggregates-empty and drug-loaded micelles as well as the micelleplexes intended for simultaneous DNA and drug codelivery-were physico-chemically characterized. Additionally, initial in vitro evaluations were performed, indicating the potential application of the novel polymer nanocarriers as drug delivery systems.
Collapse
Affiliation(s)
- Radostina Kalinova
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St., Bl. 103-A, 1113 Sofia, Bulgaria
| | - Pavel Videv
- Department of Biochemistry, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (P.V.); (S.P.); (J.D.)
| | - Svetla Petrova
- Department of Biochemistry, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (P.V.); (S.P.); (J.D.)
| | - Jordan Doumanov
- Department of Biochemistry, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (P.V.); (S.P.); (J.D.)
| | - Ivaylo Dimitrov
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St., Bl. 103-A, 1113 Sofia, Bulgaria
| |
Collapse
|
11
|
Jayan JS, Deeraj B, Joseph K, Saritha A. Designed and tailor-made double hydrophilic block copolymer-graphene nanoplatelet hybrids for reinforcing epoxy thermosets. Sci Rep 2024; 14:8812. [PMID: 38627569 PMCID: PMC11021408 DOI: 10.1038/s41598-024-59322-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
Because of their propensity to build micellar nanostructures, amphiphilic block copolymers (ABCs) are an appropriate and unique toughening agent for epoxy systems individually on their own and in grafted form. The presence of epoxiphilic and phobic ends in ABCs is responsible for the self-assembly and the micellar structure. Nanofiller-grafted ABCs can effectively enhance the toughness of epoxy via the synergistic interaction of nanofillers and the ABCs. Even though there is sound literature supporting the effect of ABCs in epoxy, the action of double hydrophilic block copolymers (DHBC) in the epoxy matrix is less handled. Hence, the grafting of nanofillers in DHBCs and their subsequent role in tuning the properties of epoxy is a new concept. Hence this paper tries to bridge the gap via studying the effect of grafted fillers based on DHBCs in epoxy matrix. As a result, the current study focuses on the synthesis of double hydrophilic graphene nanoplatelets (rGO-g-DHBC) via nitrogen oxide-mediated polymerization for epoxy toughening application. The prepared rGO-g-DHBC was effectively utilized for epoxy toughening applications, resulting in a 457% improvement in toughness without compromising its inherent tensile strength. The mechanism behind the improved toughness was elucidated with the help of a scanning electron microscope, and the thermal, and rheological characteristics were studied.
Collapse
Affiliation(s)
- Jitha S Jayan
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala, India.
| | - Bds Deeraj
- Department of Chemistry, Indian Institute of Space Science and Technology Valiyamala, Thiruvananthapuram, Kerala, India
| | - Kuruvilla Joseph
- Department of Chemistry, Indian Institute of Space Science and Technology Valiyamala, Thiruvananthapuram, Kerala, India.
| | - Appukuttan Saritha
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala, India.
| |
Collapse
|
12
|
Yoon J, Kim BS. Coordinative Double Hydrophilic All-Polyether Micelles for pH-Responsive Delivery of Cisplatin. Biomacromolecules 2024; 25:1861-1870. [PMID: 38344950 DOI: 10.1021/acs.biomac.3c01301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Despite its widespread use in the treatment of numerous cancers, the use of cisplatin still raises concerns about its high toxicity and limited selectivity. Consequently, the necessity arises for the development of an effective drug delivery system. Here, we present an effective approach that introduces a double hydrophilic block copolyether for the controlled delivery of cisplatin. Specifically, poly(ethylene glycol)-block-poly(glycidoxy acetic acid) (mPEG-b-PGA) was synthesized via anionic ring-opening polymerization using the oxazoline-based epoxide monomer 4,4-dimethyl-2-oxazoline glycidyl ether, followed by subsequent acidic deprotection. The coordinative metal-ligand interaction between cisplatin and the carboxylate group within the PGA block facilitated the formation of micelles from the double hydrophilic mPEG-b-PGA copolyether. Cisplatin-loaded polymeric micelles had a high loading capacity, controlled pH-responsive release kinetics, and high cell viability. Furthermore, in vitro biological assays revealed cellular apoptosis induced by the cisplatin-loaded micelles. This study thus successfully demonstrates the potential use of double hydrophilic block copolyethers as a versatile platform for biomedical applications.
Collapse
Affiliation(s)
- Jiwoo Yoon
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
13
|
Liu P. Molecular Design and Controlled Self-Assembly of Copolymers as Core-Shell-Corona Nanoparticles for Smarter Tumor Treatment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1143-1149. [PMID: 38166440 DOI: 10.1021/acs.langmuir.3c02032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Copolymer-based core-shell-corona nanoparticles have attracted more interest for tumor chemotherapy, owing to their unique multifunctionality benefiting from their unique multilevel topological structure in comparison with the conventional core-shell ones. Here, the recent progress in such core-shell-corona nanoparticle-based drug delivery systems (DDSs) in tumor chemotherapy was reviewed, focusing on additive functionality of the shell layer for controlled drug release performance from the viewpoints of the molecular design and controlled self-assembly, such as stimuli-responsive gatekeepers, independent loading of active substances, and so on. Moreover, future perspectives have been prospected for smarter tumor treatment.
Collapse
Affiliation(s)
- Peng Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou730000, China
| |
Collapse
|
14
|
Kalinova R, Mladenova K, Petrova S, Doumanov J, Dimitrov I. Solvent-Free Synthesis of Multifunctional Block Copolymer and Formation of DNA and Drug Nanocarriers. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2936. [PMID: 37999289 PMCID: PMC10675335 DOI: 10.3390/nano13222936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/25/2023]
Abstract
The synthesis of well-defined multifunctional polymers is of great importance for the development of complex materials for biomedical applications. In the current work, novel and multi-amino-functional diblock copolymer for potential gene and drug delivery applications was successfully synthesized. A highly efficient one-step and quantitative modification of an alkyne-functional polycarbonate-based precursor was performed, yielding double hydrophilic block copolymer with densely grafted primary amine side groups. The obtained positively charged block copolymer co-associated with DNA, forming stable and biocompatible nanosized polyplexes. Furthermore, polyion complex (PIC) micelles with tunable surface charge and decorated with cell targeting moieties were obtained as a result of direct mixing in aqueous media of the multi-amino-functional block copolymer and a previously synthesized oppositely charged block copolymer bearing disaccharide end-group. The obtained well-defined nanosized PIC-micelles were loaded with the hydrophobic drug curcumin. Both types of nanoaggregates (polyplexes and PIC-micelles) were physico-chemically characterized. Moreover, initial in vitro evaluations were performed to assess the nanocarriers' potential for biomedical applications.
Collapse
Affiliation(s)
- Radostina Kalinova
- Institute of Polymers, Bulgarian Academy of Sciences, Academician Georgi Bonchev St., bl. 103-A, 1113 Sofia, Bulgaria
| | - Kirilka Mladenova
- Department of Biochemistry, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (K.M.); (S.P.); (J.D.)
| | - Svetla Petrova
- Department of Biochemistry, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (K.M.); (S.P.); (J.D.)
| | - Jordan Doumanov
- Department of Biochemistry, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (K.M.); (S.P.); (J.D.)
| | - Ivaylo Dimitrov
- Institute of Polymers, Bulgarian Academy of Sciences, Academician Georgi Bonchev St., bl. 103-A, 1113 Sofia, Bulgaria
| |
Collapse
|
15
|
Feng X, Yan N, Jin J, Jiang W. Disassembly of Amphiphilic AB Block Copolymer Vesicles in Selective Solvents: A Molecular Dynamics Simulation Study. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
- Xuan Feng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Nan Yan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jing Jin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Wei Jiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
16
|
Yon M, Gibot L, Gineste S, Laborie P, Bijani C, Mingotaud C, Coutelier O, Desmoulin F, Pestourie C, Destarac M, Ciuculescu-Pradines D, Marty JD. Assemblies of poly( N-vinyl-2-pyrrolidone)-based double hydrophilic block copolymers triggered by lanthanide ions: characterization and evaluation of their properties as MRI contrast agents. NANOSCALE 2023; 15:3893-3906. [PMID: 36723163 DOI: 10.1039/d2nr04691a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Because of the formation of specific antibodies to poly(ethylene glycol) (PEG) leading to life-threatening side effects, there is an increasing need to develop alternatives to treatments and diagnostic methods based on PEGylated copolymers. Block copolymers comprising a poly(N-vinyl-2-pyrrolidone) (PVP) segment can be used for the design of such vectors without any PEG block. As an example, a poly(acrylic acid)-block-poly(N-vinyl-2-pyrrolidone) (PAA-b-PVP) copolymer with controlled composition and molar mass is synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. Mixing this copolymer with lanthanide cations (Gd3+, Eu3+, Y3+) leads to the formation of hybrid polyion complexes with increased stability, preventing the lanthanide cytotoxicity and in vitro cell penetration. These new nanocarriers exhibit enhanced T1 MRI contrast, when intravenously administered into mice. No leaching of gadolinium ions is detected from such hybrid complexes.
Collapse
Affiliation(s)
- Marjorie Yon
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, France.
| | - Laure Gibot
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, France.
| | - Stéphane Gineste
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, France.
| | - Pascale Laborie
- Plateforme scientifique et technique Institut de Chimie de Toulouse ICT - UAR 2599, Université de Toulouse, CNRS, Toulouse, France
| | | | - Christophe Mingotaud
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, France.
| | - Olivier Coutelier
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, France.
| | - Franck Desmoulin
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse-Paul Sabatier, Toulouse, France
- CREFRE-Anexplo, Université de Toulouse, Inserm, UT3, ENVT, Toulouse, France
| | - Carine Pestourie
- CREFRE-Anexplo, Université de Toulouse, Inserm, UT3, ENVT, Toulouse, France
| | - Mathias Destarac
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, France.
| | - Diana Ciuculescu-Pradines
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, France.
| | - Jean-Daniel Marty
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, France.
| |
Collapse
|
17
|
Xu G, Li M, Wang Q, Feng F, Lou Q, Hou Y, Hui J, Zhang P, Wang L, Yao L, Qin S, Ouyang X, Wu D, Ling D, Wang X. A Dual-Kinetic Control Strategy for Designing Nano-Metamaterials: Novel Class of Metamaterials with Both Characteristic and Whole Sizes of Nanoscale. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205595. [PMID: 36377475 PMCID: PMC9896071 DOI: 10.1002/advs.202205595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Increasingly intricate in their multilevel multiscale microarchitecture, metamaterials with unique physical properties are challenging the inherent constraints of natural materials. Their applicability in the nanomedicine field still suffers because nanomedicine requires a maximum size of tens to hundreds of nanometers; however, this size scale has not been achieved in metamaterials. Therefore, "nano-metamaterials," a novel class of metamaterials, are introduced, which are rationally designed materials with multilevel microarchitectures and both characteristic sizes and whole sizes at the nanoscale, investing in themselves remarkably unique and significantly enhanced material properties as compared with conventional nanomaterials. Microarchitectural regulation through conventional thermodynamic strategy is limited since the thermodynamic process relies on the frequency-dependent effective temperature, Teff (ω), which limits the architectural regulation freedom degree. Here, a novel dual-kinetic control strategy is designed to fabricate nano-metamaterials by freezing a high-free energy state in a Teff (ω)-constant system, where two independent dynamic processes, non-solvent induced block copolymer (BCP) self-assembly and osmotically driven self-emulsification, are regulated simultaneously. Fe3+ -"onion-like core@porous corona" (Fe3+ -OCPCs) nanoparticles (the products) have not only architectural complexity, porous corona and an onion-like core but also compositional complexity, Fe3+ chelating BCP assemblies. Furthermore, by using Fe3+ -OCPCs as a model material, a microstructure-biological performance relationship is manifested in nano-metamaterials.
Collapse
Affiliation(s)
- Guanhua Xu
- Institute of Process EquipmentCollege of Energy EngineeringZhejiang UniversityHangzhou310027P. R. China
| | - Mengmeng Li
- Institute of Process EquipmentCollege of Energy EngineeringZhejiang UniversityHangzhou310027P. R. China
| | - Qiyue Wang
- Frontiers Science Center for Transformative MoleculesSchool of Chemistry and Chemical EngineeringNational Center for Translational MedicineShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Feng Feng
- Institute of Process EquipmentCollege of Energy EngineeringZhejiang UniversityHangzhou310027P. R. China
| | - Qi Lou
- Institute of Process EquipmentCollege of Energy EngineeringZhejiang UniversityHangzhou310027P. R. China
| | - Yi Hou
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Junfeng Hui
- Shaanxi Key Laboratory of Degradable Biomedical MaterialsSchool of Chemical EngineeringNorthwest UniversityXi'anShaanxi710069P. R. China
| | - Peisen Zhang
- College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Li Wang
- Beijing National Laboratory for Molecular SciencesState Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesInstitute of Chemistry Chinese Academy of ScienceBeijing100190P. R. China
| | - Li Yao
- Beijing National Laboratory for Molecular SciencesState Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesInstitute of Chemistry Chinese Academy of ScienceBeijing100190P. R. China
- School of Chemistry and Chemical EngineeringUniversity of Chinese Academy of ScienceBeijing100049P. R. China
| | - Shijie Qin
- Institute of Process EquipmentCollege of Energy EngineeringZhejiang UniversityHangzhou310027P. R. China
| | - Xiaoping Ouyang
- Institute of Process EquipmentCollege of Energy EngineeringZhejiang UniversityHangzhou310027P. R. China
| | - Dazhuan Wu
- Institute of Process EquipmentCollege of Energy EngineeringZhejiang UniversityHangzhou310027P. R. China
| | - Daishun Ling
- Frontiers Science Center for Transformative MoleculesSchool of Chemistry and Chemical EngineeringNational Center for Translational MedicineShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Xiuyu Wang
- Institute of Process EquipmentCollege of Energy EngineeringZhejiang UniversityHangzhou310027P. R. China
| |
Collapse
|
18
|
Gineste S, Mingotaud C. Double-hydrophilic block copolymer-metal ion associations: Structures, properties and applications. Adv Colloid Interface Sci 2023; 311:102808. [PMID: 36442323 DOI: 10.1016/j.cis.2022.102808] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/17/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
Hybrid polyionic complexes (HPICs), constructed from double-hydrophilic block copolymers and metal ions, have been largely developed with increasing interest in the past decade in the fields of catalysis, materials science and biological applications. The chemical natures of both blocks are very versatile, but one block should be able to interact with ions, and the second one should be neutral. Many metals have been used to form HPICs, which have, in their simplest architectural form, a core-shell structure of a few tens of nanometers in radius with an external shell made of the neutral block of the copolymer. In this review, we focus our discussion on the stability, shape, size and inner structure of these hybrid micelles. We then describe the most recent applications of HPICs, as reported in the literature, and point out the current challenges, missing structural information and future perspectives for this class of organized structures.
Collapse
Affiliation(s)
- Stéphane Gineste
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Christophe Mingotaud
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex 9, France.
| |
Collapse
|
19
|
Kuperkar K, Patel D, Atanase LI, Bahadur P. Amphiphilic Block Copolymers: Their Structures, and Self-Assembly to Polymeric Micelles and Polymersomes as Drug Delivery Vehicles. Polymers (Basel) 2022; 14:4702. [PMID: 36365696 PMCID: PMC9657626 DOI: 10.3390/polym14214702] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 07/26/2023] Open
Abstract
Self-assembly of amphiphilic block copolymers display a multiplicity of nanoscale periodic patterns proposed as a dominant tool for the 'bottom-up' fabrication of nanomaterials with different levels of ordering. The present review article focuses on the recent updates to the self-association of amphiphilic block copolymers in aqueous media into varied core-shell morphologies. We briefly describe the block copolymers, their types, microdomain formation in bulk and micellization in selective solvents. We also discuss the characteristic features of block copolymers nanoaggregates viz., polymer micelles (PMs) and polymersomes. Amphiphilic block copolymers (with a variety of hydrophobic blocks and hydrophilic blocks; often polyethylene oxide) self-assemble in water to micelles/niosomes similar to conventional nonionic surfactants with high drug loading capacity. Double hydrophilic block copolymers (DHBCs) made of neutral block-neutral block or neutral block-charged block can transform one block to become hydrophobic under the influence of a stimulus (physical/chemical/biological), and thus induced amphiphilicity and display self-assembly are discussed. Different kinds of polymer micelles (viz. shell and core-cross-linked, core-shell-corona, schizophrenic, crew cut, Janus) are presented in detail. Updates on polymerization-induced self-assembly (PISA) and crystallization-driven self-assembly (CDSA) are also provided. Polyion complexes (PICs) and polyion complex micelles (PICMs) are discussed. Applications of these block copolymeric micelles and polymersomes as nanocarriers in drug delivery systems are described.
Collapse
Affiliation(s)
- Ketan Kuperkar
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Surat 395 007, Gujarat, India
| | - Dhruvi Patel
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Surat 395 007, Gujarat, India
| | - Leonard Ionut Atanase
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University (VNSGU), Surat 395 007, Gujarat, India
| |
Collapse
|
20
|
Hawthorne D, Pannala A, Sandeman S, Lloyd A. Sustained and targeted delivery of hydrophilic drug compounds: A review of existing and novel technologies from bench to bedside. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Synthesis and thermoresponsive behavior of double hydrophilic graft copolymer based on poly(2-methyl-2-oxazoline) and poly(2-ethyl-2-oxazoline). Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Synthesis, characterization and application of dual thermo- and solvent-responsive double-hydrophilic diblock copolymers of N-acryloylmorpholine and N-isopropylacrylamide. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
23
|
Zenati A. Triblock Azo copolymers: RAFT synthesis, properties, thin film self-assembly and applications. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2021.2015779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Athmen Zenati
- Refining and Petrochemistry, Division of Method and Operation, Sonatrach, Arzew, Algeria
- Central Directorate of Research and Development, Sonatrach, Boumerdes, Algeria
| |
Collapse
|
24
|
Cheng Y, Sun R, He M, Zhang M, Hou X, Sun Y, Wang J, Xu J, He H, Wang H, Lan M, Zhao Y, Yang Y, Chen X, Gao F. Light-switchable diphtherin transgene system combined with losartan for triple negtative breast cancer therapy based on nano drug delivery system. Int J Pharm 2022; 618:121613. [PMID: 35217071 DOI: 10.1016/j.ijpharm.2022.121613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/10/2022] [Accepted: 02/20/2022] [Indexed: 10/19/2022]
Abstract
Breast cancer is a common malignancy in women. The abnormally dense collagen network in breast cancer forms a therapeutic barrier that hinders the penetration and anti-tumor effect of drugs. To overcome this hurdle, we adopted a therapeutic strategy to treat breast cancer which combined a light-switchable transgene system and losartan. The light-switchable transgene system could regulate expression of the diphtheria toxin A fragment (DTA) gene with a high on/off ratio under blue light and had great potential for spatiotemporally controllable gene expression. We developed a nanoparticle drug delivery system to achieve tumor microenvironment-responsive and targeted delivery of DTA-encoded plasmids (pDTA) to tumor sites via dual targeting to cluster of differentiation-44 and αvβ3 receptors. In vivo studies indicated that the combination of pDTA and losartan reduce the concentration of collagen type I from 5.9 to 1.9 µg/g and decreased the level of active transforming growth factor-β by 75.0% in tumor tissues. Moreover, deeper tumor penetration was achieved, tumor growth was inhibited, and the survival rate was increased. Our combination strategy provides a novel and practical method for clinical treatment of breast cancer.
Collapse
Affiliation(s)
- Yi Cheng
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China; Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Rui Sun
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Muye He
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Miao Zhang
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xinyu Hou
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yuji Sun
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jie Wang
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Jiajun Xu
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Hai He
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Hongtao Wang
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuzheng Zhao
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China; Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, China
| | - Yi Yang
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China; Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, China
| | - Xianjun Chen
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China; Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, China.
| | - Feng Gao
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China; Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China; Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
25
|
Vardaxi A, Kafetzi M, Pispas S. Polymeric Nanostructures Containing Proteins and Peptides for Pharmaceutical Applications. Polymers (Basel) 2022; 14:777. [PMID: 35215689 PMCID: PMC8877994 DOI: 10.3390/polym14040777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
Over the last three decades, proteins and peptides have attracted great interest as drugs of choice for combating a broad spectrum of diseases, including diabetes mellitus, cancer, and infectious and neurological diseases. However, the delivery of therapeutic proteins to target sites should take into account the obstacles and limitations related to their intrinsic sensitivity to different environmental conditions, fragile tertiary structures, and short half-life. Polymeric nanostructures have emerged as competent vehicles for protein delivery, as they are multifunctional and can be tailored according to their peculiarities. Thus, the enhanced bioavailability and biocompatibility, the adjustable control of physicochemical features, and the colloidal stability of polymer-based nanostructures further enable either the embedding or conjugation of hydrophobic or hydrophilic bioactive molecules, which are some of the features of paramount importance that they possess and which contribute to their selection as vehicles. The present review aims to discuss the prevalent nanostructures composed of block copolymers from the viewpoint of efficient protein hospitality and administration, as well as the up-to-date scientific publications and anticipated applications of polymeric nanovehicles containing proteins and peptides.
Collapse
Affiliation(s)
| | | | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (A.V.); (M.K.)
| |
Collapse
|
26
|
Nabiyan A, Max JB, Schacher FH. Double hydrophilic copolymers - synthetic approaches, architectural variety, and current application fields. Chem Soc Rev 2022; 51:995-1044. [PMID: 35005750 DOI: 10.1039/d1cs00086a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Solubility and functionality of polymeric materials are essential properties determining their role in any application. In that regard, double hydrophilic copolymers (DHC) are typically constructed from two chemically dissimilar but water-soluble building blocks. During the past decades, these materials have been intensely developed and utilised as, e.g., matrices for the design of multifunctional hybrid materials, in drug carriers and gene delivery, as nanoreactors, or as sensors. This is predominantly due to almost unlimited possibilities to precisely tune DHC composition and topology, their solution behavior, e.g., stimuli-response, and potential interactions with small molecules, ions and (nanoparticle) surfaces. In this contribution we want to highlight that this class of polymers has experienced tremendous progress regarding synthesis, architectural variety, and the possibility to combine response to different stimuli within one material. Especially the implementation of DHCs as versatile building blocks in hybrid materials expanded the range of water-based applications during the last two decades, which now includes also photocatalysis, sensing, and 3D inkjet printing of hydrogels, definitely going beyond already well-established utilisation in biomedicine or as templates.
Collapse
Affiliation(s)
- Afshin Nabiyan
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Lessingstraße 8, D-07743 Jena, Germany. .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC Jena), Philosophenweg 7a, 07743 Jena, Germany
| | - Johannes B Max
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Lessingstraße 8, D-07743 Jena, Germany. .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC Jena), Philosophenweg 7a, 07743 Jena, Germany
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Lessingstraße 8, D-07743 Jena, Germany. .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC Jena), Philosophenweg 7a, 07743 Jena, Germany
| |
Collapse
|
27
|
Gineste S, Lonetti B, Yon M, Giermanska J, Di Cola E, Sztucki M, Coppel Y, Mingotaud AF, Chapel JP, Marty JD, Mingotaud C. Hybrid polymeric micelles stabilized by gallium ions: Structural investigation. J Colloid Interface Sci 2021; 609:698-706. [PMID: 34862046 DOI: 10.1016/j.jcis.2021.11.077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/02/2021] [Accepted: 11/14/2021] [Indexed: 10/19/2022]
Abstract
The addition of gallium ions to a solution of a double-hydrophilic block copolymer, i.e. poly(ethylene oxide)-block-poly(acrylic acid), leads to the spontaneous formation of highly monodisperse micelles with a Hybrid PolyIon Complexes (HPICs) core. By combining several techniques, a precise description of the HPIC architecture was achieved. In particular and for the first time, NMR and anomalous small angle X-ray scattering (ASAXS) enable tracking of the inorganic ions in solution and highlighting the co-localization of the gallium and the poly(acrylic acid) blocks in a rigid structure at the core of the micelle. Such a core has a radius of ca 4.3 nm while the complete nano-object with its poly(ethylene oxide) shell has a total radius of ca 11 nm. The aggregation number was also estimated using the ASAXS results. This comprehensive structural characterization of the Ga HPICs corroborates the assumptions made for HPICs based on other inorganic ions and demonstrates the universality of the HPIC structure leading, for example, to new families of contrast agents in medical imaging.
Collapse
Affiliation(s)
- Stéphane Gineste
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier, 118, route de Narbonne 31062 Toulouse Cedex 9, France
| | - Barbara Lonetti
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier, 118, route de Narbonne 31062 Toulouse Cedex 9, France
| | - Marjorie Yon
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier, 118, route de Narbonne 31062 Toulouse Cedex 9, France
| | - Joanna Giermanska
- Centre de Recherche Paul Pascal, CNRS UMR 5031, University of Bordeaux,115, Avenue du Dr Albert Schweitzer 33600 Pessac, France
| | | | - Michael Sztucki
- European Synchrotron Radiation Facility, 71, avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | - Yannick Coppel
- Laboratory of Coordination Chemistry, CNRS UPR 8241, University of Toulouse, 205 route de Narbonne, 31077 Toulouse, France
| | - Anne-Françoise Mingotaud
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier, 118, route de Narbonne 31062 Toulouse Cedex 9, France
| | - Jean-Paul Chapel
- Centre de Recherche Paul Pascal, CNRS UMR 5031, University of Bordeaux,115, Avenue du Dr Albert Schweitzer 33600 Pessac, France
| | - Jean-Daniel Marty
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier, 118, route de Narbonne 31062 Toulouse Cedex 9, France.
| | - Christophe Mingotaud
- Laboratoire des IMRCP, CNRS UMR 5623, University of Toulouse, Université Toulouse III - Paul Sabatier, 118, route de Narbonne 31062 Toulouse Cedex 9, France.
| |
Collapse
|
28
|
Leer K, Cinar G, Solomun JI, Martin L, Nischang I, Traeger A. Core-crosslinked, temperature- and pH-responsive micelles: design, physicochemical characterization, and gene delivery application. NANOSCALE 2021; 13:19412-19429. [PMID: 34591061 DOI: 10.1039/d1nr04223h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stimuli-responsive block copolymer micelles can provide tailored properties for the efficient delivery of genetic material. In particular, temperature- and pH-responsive materials are of interest, since their physicochemical properties can be easily tailored to meet the requirements for successful gene delivery. Within this study, a stimuli-responsive micelle system for gene delivery was designed based on a diblock copolymer consisting of poly(N,N-diethylacrylamide) (PDEAm) as a temperature-responsive segment combined with poly(aminoethyl acrylamide) (PAEAm) as a pH-responsive, cationic segment. Upon temperature increase, the PDEAm block becomes hydrophobic due to its lower critical solution temperature (LCST), leading to micelle formation. Furthermore, the monomer 2-(pyridin-2-yldisulfanyl)ethyl acrylate (PDSAc) was incorporated into the temperature-responsive PDEAm building block enabling disulfide crosslinking of the formed micelle core to stabilize its structure regardless of temperature and dilution. The cloud points of the PDEAm block and the diblock copolymer were investigated by turbidimetry and fluorescence spectroscopy. The temperature-dependent formation of micelles was analyzed by dynamic light scattering (DLS) and elucidated in detail by an analytical ultracentrifuge (AUC), which provided detailed insights into the solution dynamics between polymers and assembled micelles as a function of temperature. Finally, the micelles were investigated for their applicability as gene delivery vectors by evaluation of cytotoxicity, pDNA binding, and transfection efficiency using HEK293T cells. The investigations showed that core-crosslinking resulted in a 13-fold increase in observed transfection efficiency. Our study presents a comprehensive investigation from polymer synthesis to an in-depth physicochemical characterization and biological application of a crosslinked micelle system including stimuli-responsive behavior.
Collapse
Affiliation(s)
- Katharina Leer
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Gizem Cinar
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Jana I Solomun
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Liam Martin
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ivo Nischang
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Anja Traeger
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
29
|
Karayianni M, Pispas S. Block copolymer solution self‐assembly: Recent advances, emerging trends, and applications. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210430] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Maria Karayianni
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation Athens Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute National Hellenic Research Foundation Athens Greece
| |
Collapse
|
30
|
Flieger J, Flieger W, Baj J, Maciejewski R. Antioxidants: Classification, Natural Sources, Activity/Capacity Measurements, and Usefulness for the Synthesis of Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4135. [PMID: 34361329 PMCID: PMC8347950 DOI: 10.3390/ma14154135] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023]
Abstract
Natural extracts are the source of many antioxidant substances. They have proven useful not only as supplements preventing diseases caused by oxidative stress and food additives preventing oxidation but also as system components for the production of metallic nanoparticles by the so-called green synthesis. This is important given the drastically increased demand for nanomaterials in biomedical fields. The source of ecological technology for producing nanoparticles can be plants or microorganisms (yeast, algae, cyanobacteria, fungi, and bacteria). This review presents recently published research on the green synthesis of nanoparticles. The conditions of biosynthesis and possible mechanisms of nanoparticle formation with the participation of bacteria are presented. The potential of natural extracts for biogenic synthesis depends on the content of reducing substances. The assessment of the antioxidant activity of extracts as multicomponent mixtures is still a challenge for analytical chemistry. There is still no universal test for measuring total antioxidant capacity (TAC). There are many in vitro chemical tests that quantify the antioxidant scavenging activity of free radicals and their ability to chelate metals and that reduce free radical damage. This paper presents the classification of antioxidants and non-enzymatic methods of testing antioxidant capacity in vitro, with particular emphasis on methods based on nanoparticles. Examples of recent studies on the antioxidant activity of natural extracts obtained from different species such as plants, fungi, bacteria, algae, lichens, actinomycetes were collected, giving evaluation methods, reference antioxidants, and details on the preparation of extracts.
Collapse
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Wojciech Flieger
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (W.F.); (J.B.); (R.M.)
| | - Jacek Baj
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (W.F.); (J.B.); (R.M.)
| | - Ryszard Maciejewski
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (W.F.); (J.B.); (R.M.)
| |
Collapse
|
31
|
Vagias A, Papagiannopoulos A, Kreuzer LP, Giaouzi D, Busch S, Pispas S, Müller-Buschbaum P. Effects of Polymer Block Length Asymmetry and Temperature on the Nanoscale Morphology of Thermoresponsive Double Hydrophilic Block Copolymers in Aqueous Solutions. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Apostolos Vagias
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Aristeidis Papagiannopoulos
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Lucas P. Kreuzer
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | - Despoina Giaouzi
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Sebastian Busch
- German Engineering Materials Science Centre (GEMS) at Heinz Maier-Leibnitz Zentrum (MLZ), Helmholtz-Zentrum Hereon, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Peter Müller-Buschbaum
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, 85748 Garching, Germany
- Physik-Department, Lehrstuhl für Funktionelle Materialien, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| |
Collapse
|
32
|
Marková P, Uchman M. Synthesis and self-assembly of polyzwitterionic phenylboronic acid-containing double hydrophilic block copolymers. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Sarkar J, Chan KBJ, Goto A. Reduction-responsive double hydrophilic block copolymer nano-capsule synthesized via RCMP-PISA. Polym Chem 2021. [DOI: 10.1039/d0py01764g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Double hydrophilic block copolymer vesicles synthesized via RCMP-PISA are degradable under a reductive conditions.
Collapse
Affiliation(s)
- Jit Sarkar
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore
| | - Kai Bin Jonathan Chan
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore
| | - Atsushi Goto
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore
| |
Collapse
|
34
|
Xiao LL, Zhou X, Yue K, Guo ZH. Synthesis and Self-Assembly of Conjugated Block Copolymers. Polymers (Basel) 2020; 13:E110. [PMID: 33383927 PMCID: PMC7796117 DOI: 10.3390/polym13010110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 12/11/2022] Open
Abstract
In the past two decades, conjugated polymers (CPs) have drawn great attention due to their excellent conductivity and charge mobility, rendering them broad applications in organic electronics. Controlling over the morphologies and nanostructures of CPs is very important to improve the performance of CP-based devices, which is still a tremendously difficult task. Conjugated block copolymers (cBCPs), composed of different CP blocks or CP coupled with coiled polymeric blocks, not only maintain the advantages of high conductivity and mobility but also demonstrate features of morphological versatility and tunability. Due to the strong π-π interaction and crystallinity of the conjugated backbones, the self-assembly behaviors of cBCPs are very complicated and largely remain to be explored. In this tutorial review, we first summarize the general synthetic methods for different types of cBCPs. Then, recent studies on the self-assembly behaviors of cBCPs are discussed, with an emphasis on the structural factors that affect the morphologies of cBCPs both in bulk and thin film states. Finally, we briefly provide our outlook on the future research of the self-assembly of cBCPs.
Collapse
Affiliation(s)
- Lin-Lin Xiao
- School of Molecular Science and Engineering, South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, China; (L.-L.X.); (X.Z.); (K.Y.)
| | - Xu Zhou
- School of Molecular Science and Engineering, South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, China; (L.-L.X.); (X.Z.); (K.Y.)
| | - Kan Yue
- School of Molecular Science and Engineering, South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, China; (L.-L.X.); (X.Z.); (K.Y.)
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Zi-Hao Guo
- School of Molecular Science and Engineering, South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, China; (L.-L.X.); (X.Z.); (K.Y.)
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|