1
|
Gong Z, Chen L, Zhou X, Zhang C, Matičić D, Vnuk D, You Z, Li L, Li H. MXene-Based Photothermal-Responsive Injectable Hydrogel Microsphere Modulates Physicochemical Microenvironment to Alleviate Osteoarthritis. SMART MEDICINE 2025; 4:e70006. [PMID: 40303871 PMCID: PMC11994158 DOI: 10.1002/smmd.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/14/2025] [Accepted: 03/22/2025] [Indexed: 05/02/2025]
Abstract
Osteoarthritis (OA) is a physical lubrication microenvironment-inadequate disease accompanied by a sustained chronic chemical inflammation microenvironment and the progression of articular cartilage destruction. Despite the promising OA treatment outcomes observed in the enhancement of lubrication inspired by ball bearings to reduce friction and support loads, the therapeutic effect of near-infrared (NIR) irradiation-based photothermal-responsive controlled release "smart hydrogel microspheres" on OA remains unclear. Here, we prepared MXene/NIPIAM-based photothermal-responsive injectable hydrogel microspheres encapsulating diclofenac sodium using a microfluidic system. Consequently, NIR irradiation-based photothermal-responsive controlled release "smart hydrogel microspheres" demonstrate beneficial therapeutic effects in the treatment of OA by modulating the physical lubrication and chemical chronic inflammation microenvironment, laying the foundation for the application of smart hydrogel microsphere delivery systems loaded with bioactive factors (including agents, cells, and factors) to regulate multiple pathological microenvironments in regenerative medicine.
Collapse
Affiliation(s)
- Zehua Gong
- Joint Research Centre on MedicineXiangshan Hospital of Wenzhou Medical UniversityNingboChina
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouChina
- The Fifth Hospital of JinhuaJinhuaChina
| | - Linjie Chen
- Department of OrthopaedicsKey Laboratory of Orthopaedics of Zhejiang ProvinceThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xiaolei Zhou
- Jiangxi Provincial Key Laboratory of Tissue EngineeringSchool of Rehabilitation MedicineGannan Medical UniversityGanzhouChina
| | - Chunwu Zhang
- Joint Centre of Translational MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Dražen Matičić
- Clinic for Surgery, Orthopaedics and OphthalmologyFaculty of Veterinary MedicineUniversity of ZagrebZagrebCroatia
| | - Dražen Vnuk
- Clinic for Surgery, Orthopaedics and OphthalmologyFaculty of Veterinary MedicineUniversity of ZagrebZagrebCroatia
| | - Zhifeng You
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouChina
| | - Linjin Li
- Department of UrologyThe Third Clinical Institute Affiliated to Wenzhou Medical University, The Third Affiliated Hospital of Shanghai UniversityWenzhou People's HospitalWenzhouChina
| | - Huaqiong Li
- Joint Research Centre on MedicineXiangshan Hospital of Wenzhou Medical UniversityNingboChina
- Zhejiang Engineering Research Center for Tissue Repair MaterialsWenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouChina
| |
Collapse
|
2
|
Wang D, Li J, Niu C, Wu Y, Gong S, Liu Z, Liu J, Gong P, Liu W. Biomimetic lubricating COFs with donor-acceptor structure for osteoarthritis therapy. J Colloid Interface Sci 2025; 687:85-94. [PMID: 39946971 DOI: 10.1016/j.jcis.2025.01.238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/11/2025] [Accepted: 01/26/2025] [Indexed: 03/16/2025]
Abstract
Covalent organic framework (COF) possesses special chemical bonds and unique structure and holds great promise in osteoarthritis (OA) therapy. However, non-dispersion in water and single function heavily hinder its further applications. Herein, a donor-acceptor structured biomimetic COF with long-term water dispersing stability, high phototerhmal responsiveness and on-demand drug release for joint lubrication is developed. The designed D-A structure provides effective carrier transport pathways and channels to change near-infrared (NIR) light into heat, and fine control over covalent bonds and reaction conditions endows well-aligned porous structure for drug loading. Biomimetic function with polydopamine provides enriched hydrophilic chemical groups for robust water-dispersity and adhesion, and constructs a hard-soft lubricating system that greatly reduce friction and wear under various conditions for more than 10,800 times without failure. The lubricating system possesses benign cytocompatibility, can be readily taken up into chondrocyte and shows responsively sustained drug release, which achieves anti-inflammatory effects by upregulating the expression levels of Col2α, Aggrecan and downregulating MMP1 and TAC1 mRNA in chondrocytes. We also demonstrate its first experimental example of promoting cell proliferation and migration. Our research suggests an encouraging biomimetic method for combining COF with distinctive structure and multiple functionalities, aiming at an efficient synergistic management of OA.
Collapse
Affiliation(s)
- Dandan Wang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Key Laboratory of Advanced Lubrication and Energy Materials of Jining City, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China; State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Junyao Li
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Key Laboratory of Advanced Lubrication and Energy Materials of Jining City, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Chenxu Niu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Key Laboratory of Advanced Lubrication and Energy Materials of Jining City, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Yanhua Wu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Key Laboratory of Advanced Lubrication and Energy Materials of Jining City, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Shengjian Gong
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Key Laboratory of Advanced Lubrication and Energy Materials of Jining City, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China
| | - Zhe Liu
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Key Laboratory of Advanced Lubrication and Energy Materials of Jining City, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China.
| | - Jianxi Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Peiwei Gong
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, Key Laboratory of Advanced Lubrication and Energy Materials of Jining City, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, China; State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Weimin Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
3
|
Lawson TB, Joenathan A, DeMoya CD, Zheng L, Zhong Y, Xu J, Duan C, Snyder BD, Grinstaff MW. Nanoparticle Lubricant and Imaging Agent: Preventing and Assessing Cartilage Tissue Damage. ACS APPLIED MATERIALS & INTERFACES 2025; 17:22352-22361. [PMID: 40178347 DOI: 10.1021/acsami.5c00775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Introducing additives to industrial lubricants reduces friction and wear between articulating metal surfaces by mechanistically impeding interfacial adhesion, heat dissipation, and abrasion. With this inspiration, we report the synthesis and use of tantalum oxide (Ta2O5) nanoparticles as a nanolubricant and tribosupplement (i.e., tribology-augmenting agent) for articular cartilage. Further, as tantalum oxide absorbs X-rays, the nanolubricant is also a contrast-agent for computed tomography (CT). These dual purpose nanoparticles, decorated with a short poly (ethylene glycol) and cationic trimethylammonium silane coating, suspend in aqueous fluid to form a CT active nanolubricant. In an ex vivo cartilage-on-cartilage model, the nanolubricant outperforms the clinical standard, Synvisc-One, as a viscosupplement during high load, low velocity sliding associated with low Hersey numbers and high static friction. Differential diffusion of the nanolubricants into healthy and degraded cartilage demonstrates the diagnostic capability of the nanolubricant to also distinguish disease state by μCT.
Collapse
Affiliation(s)
- Taylor B Lawson
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Anisha Joenathan
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
- Department of Material Science, Boston University, Boston, Massachusetts 02215, United States
| | - Christian D DeMoya
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Liangwei Zheng
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Yiding Zhong
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Jiayi Xu
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Chuanhua Duan
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Department of Material Science, Boston University, Boston, Massachusetts 02215, United States
| | - Brian D Snyder
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, United States
- Department of Orthopaedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Mark W Grinstaff
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Department of Material Science, Boston University, Boston, Massachusetts 02215, United States
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Department of Medicine, Boston University, Boston, Massachusetts 02215, United States
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
4
|
Xu Y, Yang Y, Song H, Li M, Shi W, Yu T, Lin J, Yu Y. The Role of Exerkines in the Treatment of Knee Osteoarthritis: From Mechanisms to Exercise Strategies. Orthop Surg 2025; 17:1021-1035. [PMID: 39854050 PMCID: PMC11962297 DOI: 10.1111/os.14365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/25/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025] Open
Abstract
With the increasing prevalence of knee osteoarthritis (KOA), the limitations of traditional treatments, such as their limited efficacy in halting disease progression and their potential side effects, are becoming more evident. This situation has prompted scientists to seek more effective strategies. In recent years, exercise therapy has gained prominence in KOA treatment due to its safety, efficacy, and cost-effectiveness, which are underpinned by the molecular actions of exerkines. Unlike conventional therapies, exerkines offer specific advantages by targeting inflammatory responses, enhancing chondrocyte proliferation, and slowing cartilage degradation at the molecular level. This review explores the potential mechanisms involved in and application prospects of exerkines in KOA treatment and provides a comprehensive analysis of their role. Studies show that appropriate exercise not only promotes overall health, but also positively impacts KOA by stimulating exerkine production. The effectiveness of exerkines, however, is influenced by exercise modality, intensity, and duration of exercise, making the development of personalized exercise plans crucial for KOA patients. Based on these insights, this paper proposes targeted exercise strategies designed to maximize exerkine benefits, aiming to provide novel perspectives for KOA prevention and treatment.
Collapse
Affiliation(s)
- Yuxiong Xu
- Sports & Medicine Integration Research CenterCapital University of Physical Education and SportsBeijingChina
| | - Yizhuo Yang
- Sports & Medicine Integration Research CenterCapital University of Physical Education and SportsBeijingChina
| | - Hanan Song
- Sports & Medicine Integration Research CenterCapital University of Physical Education and SportsBeijingChina
| | - Ming Li
- Sports & Medicine Integration Research CenterCapital University of Physical Education and SportsBeijingChina
| | - Weihao Shi
- Sports & Medicine Integration Research CenterCapital University of Physical Education and SportsBeijingChina
| | - Tongwu Yu
- Sports & Medicine Integration Research CenterCapital University of Physical Education and SportsBeijingChina
| | - Jianhao Lin
- Arthritis Clinic & Research CenterPeking University People's HospitalBeijingChina
| | - Yanli Yu
- Sports & Medicine Integration Research CenterCapital University of Physical Education and SportsBeijingChina
| |
Collapse
|
5
|
Wang J, Guo P, Wu D, Yi J, Jiang Q, Hu J, Ouyang H. Rejuvenating Hyaline Cartilage with Senescence-Targeting Si-ADAM19 Delivery for Osteoarthritis Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414419. [PMID: 39927476 PMCID: PMC11967805 DOI: 10.1002/advs.202414419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/23/2025] [Indexed: 02/11/2025]
Abstract
Osteoarthritis (OA) is one of the most common joint degenerative diseases without effective treatment, whose pathology is related to the local accumulation of senescent cells (SnCs). However, existing SnCs-scavenging drugs "senolytics" may lead to the exhaustion of stem and progenitor cells, impairing chondrocyte proliferation and cartilage regeneration. Here, ADAM19, a kind of endopeptidases from the ADAM (a disintegrin and metalloproteinase) family, is identified as a novel target for senescent chondrocyte rejuvenation. ADAM19 is elevated in senescent chondrocytes in both mice and human osteoarthritic joints, as well as in cellular senescence model in vitro. ADAM19 knockdown not only significantly attenuated senescent phenotype of chondrocytes, but also promoted cell proliferation and extracellular matrix synthesis. RNA sequencing revealed ADAM19 may regulate chondrocyte senescence mainly through the PI3K/AKT signal axis. In addition, a senescence-targeting small interfering RNA (siRNA) delivery system is developed for in vivo delivery of therapeutic siRNA. The complex selectively released ADAM19 siRNA in SnCs and performed high silencing effect on target gene. Furthermore, intra-articular (IA) injection of the complex once every two weeks in OA mice effectively reduced SnCs accumulation and promoted hyaline cartilage regeneration. This study provides a promising strategy for the development of regenerative RNA interference therapy.
Collapse
Affiliation(s)
- Jiasheng Wang
- Department of Sports Medicine of the Second Affiliated Hospitaland Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310058China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative MedicineZhejiang University School of MedicineHangzhou310058China
| | - Peng Guo
- Department of Sports Medicine of the Second Affiliated Hospitaland Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310058China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative MedicineZhejiang University School of MedicineHangzhou310058China
| | - Dongmei Wu
- Department of Sports Medicine of the Second Affiliated Hospitaland Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310058China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative MedicineZhejiang University School of MedicineHangzhou310058China
| | - Junzhi Yi
- Department of Sports Medicine of the Second Affiliated Hospitaland Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310058China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative MedicineZhejiang University School of MedicineHangzhou310058China
| | - Qi Jiang
- Department of Sports Medicine of the Second Affiliated Hospitaland Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310058China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative MedicineZhejiang University School of MedicineHangzhou310058China
| | - Jiajie Hu
- Department of Sports Medicine of the Second Affiliated Hospitaland Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310058China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative MedicineZhejiang University School of MedicineHangzhou310058China
- China Orthopedic Regenerative Medicine Group (CORMed)HangzhouChina
| | - Hongwei Ouyang
- Department of Sports Medicine of the Second Affiliated Hospitaland Liangzhu LaboratoryZhejiang University School of MedicineHangzhou310058China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative MedicineZhejiang University School of MedicineHangzhou310058China
- Zhejiang University‐University of Edinburgh InstituteZhejiang University School of MedicineHaining310058China
- China Orthopedic Regenerative Medicine Group (CORMed)HangzhouChina
| |
Collapse
|
6
|
Chen W, Ye Q, Zhang M, Xie R, Xu C. Lubrication for Osteoarthritis: From Single-Function to Multifunctional Lubricants. Int J Mol Sci 2025; 26:1856. [PMID: 40076486 PMCID: PMC11900089 DOI: 10.3390/ijms26051856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease that progressively destroys articular cartilage, leading to increased joint friction and severe pain. Therefore, OA can be treated by restoring the lubricating properties of cartilage. In this study, recent advances in lubricants for the treatment of OA are reviewed for both single-function and multifunctional lubricants. Single-function lubricants mainly include glycosaminoglycans, lubricin, and phospholipids, whereas multifunctional lubricants are composed of lubricating and anti-inflammatory bifunctional hydrogels, stem cell-loaded lubricating hydrogels, and drug-loaded lubricating nanoparticles. This review emphasizes the importance of restoring joint lubrication capacity for the treatment of OA and explores the structural features, lubrication properties, and role of these lubricants in modulating intracellular inflammatory responses and metabolism. Current challenges and future research directions in this field are also discussed, with the aim of providing a scientific basis and new ideas for the clinical treatment of OA.
Collapse
Affiliation(s)
- Wen Chen
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou 341000, China;
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China; (Q.Y.); (M.Z.)
| | - Qianwen Ye
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China; (Q.Y.); (M.Z.)
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Mingshuo Zhang
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China; (Q.Y.); (M.Z.)
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Renjian Xie
- Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), Gannan Medical University, Ganzhou 341000, China; (Q.Y.); (M.Z.)
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases (Ministry of Education), Gannan Medical University, Ganzhou 341000, China
| | - Chunming Xu
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
7
|
Qin C, Yang H, Lu Y, Li B, Ma S, Ma Y, Zhou F. Tribology in Nature: Inspirations for Advanced Lubrication Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2420626. [PMID: 39972641 DOI: 10.1002/adma.202420626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/06/2025] [Indexed: 02/21/2025]
Abstract
Friction-induced energy consumption is a significant global concern, driving researchers to explore advanced lubrication materials. In nature, lubrication is vital for the life cycle of animals, plants, and humans, playing key roles in movement, predation, and decomposition. After billions of years of evolution, natural lubrication exhibits remarkable professionalism, high efficiency, durability, and intelligence, offering valuable insights for designing advanced lubrication materials. This review focuses on the lubrication mechanisms of natural organisms and significant advancements in biomimetic soft matter lubrication materials. It begins by summarizing common biological lubrication behaviors and their underlying mechanisms, followed by current design strategies for biomimetic soft matter lubrication materials. The review then outlines the development and performance of these materials based on different mechanisms and strategies. Finally, it discusses potential research directions and prospects for soft matter lubrication materials. This review will be a valuable resource for advancing research in biomimetic lubrication materials.
Collapse
Affiliation(s)
- Chenxi Qin
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Hao Yang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaqiong Lu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shuanhong Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Yanfei Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
8
|
Tian L, Han S, Wu W, Li Z, He Z, Liu C, Xue H, Zhou F, Liu W, Liu J. Dose-effect relationship of copolymer on enhancing aqueous lubrication of a hybrid osteoarthritis drug delivery nanocarrier. J Colloid Interface Sci 2025; 679:788-797. [PMID: 39481353 DOI: 10.1016/j.jcis.2024.10.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
Developing stimulus-responsive properties of drug delivery nanocarriers combined with enhanced joint lubrication is an effective synergistic strategy for treating osteoarthritis. Poly(N-isopropylacrylamide) (PNIPAm) is a typical thermo-responsive polymer, which can achieve drug delivery by transition from swollen state to collapsed state. However, undesired transition temperature, limited drug loading capacity, and weakened mechanical properties in joint present obstacles to use as drug delivery nanocarriers. In this work, we demonstrate dose-effect relationship between the PNIPAm-based copolymer and nanoscale metal-organic frameworks on enhancing both aqueous lubrication and drug delivery performance of a hybrid osteoarthritis (OA) nanocarrier. A series of NIPAm and poly(ethylene glycol)methacrylate (PEGMa) copolymer microgels with different feeding content are optimized to grow on the surface of MIL-101(Cr) nanoparticles via one-pot soap-free emulsion copolymerization method. By changing the feeding mass ratio of NIPAm and PEGMa, MIL-101(Cr)@P(NIPAm-g-PEGMax) (x = 0, 1, 2, 3, and 4, named MPNPx) hybrids can ameliorate the lower critical solution temperature to match with OA and enhance the aqueous lubrication performance. Among the as-synthesized hybrids, MPNP3 hybrids manifested the notable enhanced thermo-responsive tribological performance due to the synergistic effect of "hydration lubrication" and "ball-bearing" function of the optimized copolymer microgel layer on the surface of metal-organic frameworks (MOFs). Anti-inflammatory drug loading is enabled by the high surface area and porosity of the MOFs, and the MPNP3 drug delivery nanocarriers achieve thermo-responsive release in vitro. Our work establishes the dose-effect relationship between thermo-responsive NIPAm and hydrophilic PEGMa of the copolymer grown on the surface of MOFs, providing valuable insights for improving the versatility of stimuli-responsive for biomedical application.
Collapse
Affiliation(s)
- Lejie Tian
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Sirui Han
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Wei Wu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Zhihuan Li
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Zhengze He
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Chen Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Huidan Xue
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Weimin Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Jianxi Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| |
Collapse
|
9
|
Chen J, Tan Y, Chen Z, Yang H, Li X, Long X, Han Y, Yang J. Exosomes derived from primary cartilage stem/progenitor cells promote the repair of osteoarthritic chondrocytes by modulating immune responses. Int Immunopharmacol 2024; 143:113397. [PMID: 39461237 DOI: 10.1016/j.intimp.2024.113397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Exosomes derived from primary chondrogenic stem/progenitor cells (CSPCs-EXOs) show promise in cartilage repair due to their immunomodulatory and regenerative properties. However, their specific therapeutic potential in osteoarthritis (OA), especially in modulating immune responses and enhancing chondrocyte function, requires further exploration. This study aims to clarify CSPCs-EXOs' effects on OA by investigating their role in chondrocyte proliferation, migration, inflammation inhibition, and cartilage regeneration. METHODS A rat model of osteoarthritis was established using monosodium iodoacetate (MIA). CSPCs-EXOs were isolated and characterized before being administered to the OA rats. Comprehensive transcriptomic analysis was conducted to identify differentially expressed genes (DEGs) and signaling pathways influenced by CSPCs-EXOs. Histopathological evaluation of cartilage tissue, immunohistochemistry, and in vitro assays were performed to assess chondrocyte proliferation, migration, inflammation, and intracellular environmental changes. RESULTS CSPCs-EXOs treatment significantly reduced OA-induced cartilage damage, shown by improved histopathological features, increased chondrocyte proliferation, migration, and enhanced cartilage matrix integrity. CSPCs-EXOs uniquely modulated immune pathways and enhanced cellular repair, setting them apart from traditional treatments. Transcriptomic analysis revealed regulation of immune response, inflammation, oxidative stress, and DNA repair pathways. CSPCs-EXOs downregulated inflammatory cytokines (TNF, IL-17) and upregulated pathways for cellular proliferation, migration, and metabolism. They also altered splicing patterns of DNA repair enzymes, indicating a role in boosting repair mechanisms. CONCLUSIONS CSPCs-EXOs promote cartilage repair in osteoarthritis by modulating immune responses, inhibiting inflammation, and improving the intracellular environment. These findings emphasize their innovative therapeutic potential and offer key insights into their regenerative mechanisms, positioning CSPCs-EXOs as a promising strategy for OA treatment and a foundation for future clinical applications in cartilage tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Jing Chen
- Department of Neurosurgery, People's Hospital of Deyang City, Sichuan Clinical Research Center for Neurological Diseases, Deyang; Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Ya Tan
- Department of Neurosurgery, People's Hospital of Deyang City, Sichuan Clinical Research Center for Neurological Diseases, Deyang; Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Zhifeng Chen
- Department of Neurosurgery, People's Hospital of Deyang City, Sichuan Clinical Research Center for Neurological Diseases, Deyang; Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Hongwei Yang
- Affiliated Nantong Hospital 3 of Nantong University, Nantong Third People's Hospital, Nantong University, Nantong, China
| | - Xiaodi Li
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaodong Long
- Department of Neurosurgery, People's Hospital of Deyang City, Sichuan Clinical Research Center for Neurological Diseases, Deyang; Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong University, Nantong, China.
| | - Yangyun Han
- Department of Neurosurgery, People's Hospital of Deyang City, Sichuan Clinical Research Center for Neurological Diseases, Deyang; Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong University, Nantong, China.
| | - Jian Yang
- Department of Neurosurgery, People's Hospital of Deyang City, Sichuan Clinical Research Center for Neurological Diseases, Deyang; Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong University, Nantong, China.
| |
Collapse
|
10
|
Terlinden A, Jacquet S, Manivong S, Cullier A, Cassé F, Legendre F, Garcia AA, Roullin G, Moldovan F, Sirois P, Banquy X, Galéra P, Audigié F, Demoor M, Bertoni L. Double-blinded, randomized tolerance study of a biologically enhanced Nanogel with endothelin-1 and bradykinin receptor antagonist peptides via intra-articular injection for osteoarthritis treatment in horses. BMC Vet Res 2024; 20:547. [PMID: 39633332 PMCID: PMC11616385 DOI: 10.1186/s12917-024-04352-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Osteoarthritis is a leading cause of pain and retirement in athletic horses. Hydro-expansive functionalized nanogels, acting as Drug Delivery Systems, constitute one of the current therapeutic prospects. These nanogels have the potential to combine mechanical benefits through polymers with the biological effect of prolonged release of bioactive molecules. The purpose of this double-blinded randomized tolerance study versus negative control was to evaluate the response of healthy joints to a single injection of the expected efficient dose (further referred to as the trial dose) and overdose of nanogels composed of chitosan and hyaluronic acid and featuring a type A endothelin receptor antagonist and a type B1 bradykinin receptor antagonist. The metacarpophalangeal joints of 8 healthy horses were randomly injected with 2.4 mL of functionalized nanogels and 2.4 mL of saline as control on the contralateral limb. Injections were repeated twice at one-week intervals, followed by injection of a triple dose of nanogel on week four. Clinical, ultrasonographic and synovial fluid cellular and biochemical follow-ups were performed up to three months following the first injection. RESULTS No change in general clinical parameters, lameness or sensitivity to passive flexion of the fetlocks was noted. Mild to moderate synovitis was noted on the day following injection in the treated group, with a significant difference (p < 0.05) compared to the control group. It spontaneously resolved on day 3 following the injections and did not increase with repeated injections. Similar effects were noted after injection of the triple dose but lasted for a week. Synovial fluid markers of inflammation also showed a transient significant increase in the treated group one week after each injection, but no differences were detected at the end of the study. CONCLUSIONS Injections of the expected therapeutic dose of functionalized nanogel in healthy joints induced a mild transient inflammatory response in the joint. Three injections of the trial dose at one-week intervals and injection of thrice the trial dose induce a mildly greater inflammation without harmful effects on joints. Functionalized nanogels are well tolerated prospects for the treatment of osteoarthritis in horses. Their beneficial effects on arthritic joints have yet to be evaluated to determine their therapeutic potential.
Collapse
Affiliation(s)
- Antoinette Terlinden
- CIRALE, USC 957, BPLC, Ecole Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Sandrine Jacquet
- CIRALE, USC 957, BPLC, Ecole Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Seng Manivong
- Research Center Azrieli, CHU Sainte Justine, Montréal, QC, H3T 1C5, Canada
- Faculty of Dentistry, Université de Montréal, Montréal, QC, H3T 1J4, Canada
- Faculty of Pharmacy, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Aurélie Cullier
- Université de Caen Normandie, BIOTARGEN UR 7450, Normandie Univ, 14000, Caen, France
| | - Frédéric Cassé
- Université de Caen Normandie, BIOTARGEN UR 7450, Normandie Univ, 14000, Caen, France
| | - Florence Legendre
- Université de Caen Normandie, BIOTARGEN UR 7450, Normandie Univ, 14000, Caen, France
| | - Araceli Ac Garcia
- Faculty of Pharmacy, Université de Montréal, Montréal, QC, H3T 1J4, Canada
- TransMedTech Institute (NanoBio Technology Platform), Montréal, QC, H3T 1J4, Canada
| | - Gaëlle Roullin
- Faculty of Pharmacy, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Florina Moldovan
- Research Center Azrieli, CHU Sainte Justine, Montréal, QC, H3T 1C5, Canada
- Faculty of Dentistry, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Pierre Sirois
- Department of Microbiology and Immunology, Faculty of Medicine, Université Laval, Quebec City, QC, G1V 4G2, Canada
| | - Xavier Banquy
- Faculty of Pharmacy, Université de Montréal, Montréal, QC, H3T 1J4, Canada
| | - Philippe Galéra
- Université de Caen Normandie, BIOTARGEN UR 7450, Normandie Univ, 14000, Caen, France
| | - Fabrice Audigié
- CIRALE, USC 957, BPLC, Ecole Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Magali Demoor
- Université de Caen Normandie, BIOTARGEN UR 7450, Normandie Univ, 14000, Caen, France.
| | - Lélia Bertoni
- CIRALE, USC 957, BPLC, Ecole Nationale Vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| |
Collapse
|
11
|
Yu P, Peng X, Sun H, Xin Q, Kang H, Wang P, Zhao Y, Xu X, Zhou G, Xie J, Li J. Inspired by lubricin: a tailored cartilage-armor with durable lubricity and autophagy-activated antioxidation for targeted therapy of osteoarthritis. MATERIALS HORIZONS 2024; 11:5352-5365. [PMID: 39143938 DOI: 10.1039/d4mh00812j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Osteoarthritis (OA), which disables articular cartilage, affects millions of people. The self-healing capacity is inhibited by internal oxidative stress and external lubrication deficiency and enzymatic degradation. To overcome these challenges, a tailored cartilage-armor is designed to ameliorate the inflamed cartilage, which is implemented by a novel collagen type II (Col II)-binding peptide conjugated zwitterionic polymer (PSB-b-PColBP, PSP). By mimicking natural lubricin, PSP specifically targets the cartilage surface and forms an in situ hydration armor. This engineered cartilage-armor can prevent enzymatic cartilage degradation (nearly 100% resistance to catabolic enzymes) and provide durable lubrication properties (COF < 0.013 for 500 cycles). An autophagy-activation process, absent in previous biomimetic lubricants, enhances the enzymatic activity of the tailored cartilage-armor, offering effective anti-oxidant properties to suppress oxidative stress. By inhibiting the PI3K-Akt/NF-κB signaling pathway, chondrocytes protected by the tailored armor can secrete a cartilage matrix even in inflammatory microenvironments. In OA rat models, osteophyte formation and the inflammatory response have been inhibited by the cartilage-armor, demonstrating a therapeutic effect comparable to most drug-loaded systems. This study underscores the potential of tailoring cartilage-armor with the cartilage targeting and autophagy-activating properties in integrating offensive-defensive mechanisms for cartilage remodeling. This represents an alternative strategy for clinical OA therapy.
Collapse
Affiliation(s)
- Peng Yu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, P. R. China.
| | - Xu Peng
- Experimental and Research Animal Institute, Sichuan University, Chengdu 610207, P. R. China
| | - Hui Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, P. R. China.
| | - Qiangwei Xin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, P. R. China.
| | - Han Kang
- Life Science Core Facilities, College of Life Sciences, Sichuan University, Chengdu 610065, P. R. China
| | - Peng Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, P. R. China.
| | - Yao Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, P. R. China.
| | - Xinyuan Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, P. R. China.
| | - Guangwu Zhou
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610207, P. R. China
| | - Jing Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, P. R. China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, P. R. China.
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China
| |
Collapse
|
12
|
Chen K, Wang J, Cao J, Liu F, Fang J, Zheng W, Liu S, Zhao Y, Shuai X, Huang J, Chen B. Enzyme-responsive microgel with controlled drug release, lubrication and adhesion capability for osteoarthritis attenuation. Acta Biomater 2024:S1742-7061(24)00618-4. [PMID: 39427765 DOI: 10.1016/j.actbio.2024.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
The treatment of osteoarthritis (OA) remains challenging due to the narrow therapeutic window and rapid clearance of therapeutic agents, even with intra-articular administration, resulting in a low treatment index. Recent advancements in local drug delivery systems have yet to overcome the issues of uncontrolled burst release and short retention time, leading to suboptimal OA treatment outcome. Herein, we developed a methacrylate-crosslinking hyaluronic acid (HA) microgel (abbreviated as CXB-HA-CBP) that covalently conjugates the anti-inflammatory drug celecoxib (CXB) via a metalloproteinase-2 (MMP-2)-responsive peptide linker (GGPLGLAGGC) and a collagen II binding peptide (WYRGRLC). The GGPLGLAGGC linker is specifically cleaved by the overexpressed MMP-2 enzyme within the OA joint, enabling the sustained and on-demand release of CXB entity. The synergistic action of CXB and HA effectively inhibited macrophage activation and reduced the production of pro-inflammatory cytokines, protecting chondrocytes from damage. Furthermore, the collagen II peptide introduced on the microgel surface enabled a cartilage-binding function to form an artificial lubrication microgel layer on the cartilage surface to reduce cartilage wear. The CXB-HA-CBP microgel showed an extended retention time of up to 18 days in the affected joint, leading to an effective OA treatment in rats. This sophistically designed microgel, characterized by the prolonged retention time, sustained drug delivery, and enhanced lubrication, presents a promising biomedicine for OA treatment. STATEMENT OF SIGNIFICANCE: A new methacrylate-crosslinking hyaluronic acid (HA) microgel, covalently conjugated with the celecoxib (CXB)-GGPLGLAGGC and the collagen II binding peptide (CBP, peptide sequence: WYRGRLC), was developed. The overexpressed MMP-2 in OA joint cleaved the GGPLGLAGGC linker to trigger the CXB moiety release. Besides, the CBP on the surface of microgels enabled a cartilage-attaching ability, resulting in a prolonged retention time and an improved lubrication property in joint. This advanced drug-loading microgel remarkably reduced macrophage activation and pro-inflammation cytokine production, while protecting the chondrocytes via a dual action of CXB and HA. This study demonstrated that the enzyme-responsive drug-loading microgel could serve as an platform to efficiently attenuate osteoarthritis.
Collapse
Affiliation(s)
- Keyu Chen
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiachen Wang
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jue Cao
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Fei Liu
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jintao Fang
- Department of Microsurgery, Trauma and Hand Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Weixin Zheng
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shubo Liu
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuexin Zhao
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xintao Shuai
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China; PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Jinsheng Huang
- Department of Urology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China.
| | - Bin Chen
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
13
|
Du C, Chen Z, Liu S, Liu J, Zhan J, Zou J, Liao J, Huang W, Lei Y. Lubricin-Inspired Nanozymes Reconstruct Cartilage Lubrication System with an "In-Out" Strategy. SMALL METHODS 2024; 8:e2400757. [PMID: 38962862 DOI: 10.1002/smtd.202400757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Lubricin, secreted primarily by chondrocytes, plays a critical role in maintaining the function of the cartilage lubrication system. However, both external factors such as friction and internal factors like oxidative stress can disrupt this system, leading to osteoarthritis. Inspired by lubricin, a lubricating nanozyme, that is, Poly-2-acrylamide-2-methylpropanesulfonic acid sodium salt-grafted aminofullerene, is developed to restore the cartilage lubrication system using an "In-Out" strategy. The "Out" aspect involves reducing friction through a combination of hydration lubrication and ball-bearing lubrication. Simultaneously, the "In" aspect aims to mitigate oxidative stress by reducing free radical, increasing autophagy, and improving the mitochondrial respiratory chain. This results in reduced chondrocyte senescence and increased lubricin production, enhancing the natural lubrication ability of cartilage. Transcriptome sequencing and Western blot results demonstrate that it enhances the functionality of mitochondrial respiratory chain complexes I, III, and V, thereby improving mitochondrial function in chondrocytes. In vitro and in vivo experiments show that the lubricating nanozymes reduce cartilage wear, improve chondrocyte senescence, and mitigate oxidative stress damage, thereby mitigating the progression of osteoarthritis. These findings provide novel insights into treating diseases associated with oxidative stress and frictional damage, such as osteoarthritis, and set the stage for future research and development of therapeutic interventions.
Collapse
Affiliation(s)
- Chengcheng Du
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhuolin Chen
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Senrui Liu
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jiacheng Liu
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jingdi Zhan
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jing Zou
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Junyi Liao
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wei Huang
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yiting Lei
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
14
|
Fragassi A, Greco A, Palomba R. Lubricant Strategies in Osteoarthritis Treatment: Transitioning from Natural Lubricants to Drug Delivery Particles with Lubricant Properties. J Xenobiot 2024; 14:1268-1292. [PMID: 39311151 PMCID: PMC11417909 DOI: 10.3390/jox14030072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024] Open
Abstract
Osteoarthritis (OA) is a debilitating joint disease characterized by cartilage degradation, leading to pain and functional impairment. A key contributor to OA progression is the decline in cartilage lubrication. In physiological conditions, synovial fluid (SF) macromolecules like hyaluronic acid (HA), phospholipids, and lubricin play a crucial role in the boundary lubrication of articular cartilage. In early OA, cartilage damage triggers inflammation, altering SF composition and compromising the lubrication layer. This increases friction between mating interfaces, worsening cartilage degradation and local inflammation. Therefore, early-stage restoration of lubrication (by injecting in the joint different classes of compounds and formulations) could alleviate, and potentially reverse, OA progression. In the light of this, a broad variety of lubricants have been investigated for their ability to reduce friction in OA joints and promote cartilage repair in clinical and preclinical studies. This review examines recent advancements in lubricant-based therapy for OA, focusing on natural, bioinspired, and alternative products. Starting from the currently applied therapy, mainly based on natural lubricants as HA, we will present their modified versions, either in hydrogel form or with specific biomimetic moieties with the aim of reducing their clearance from the joint and of enhancing their lubricating properties. Finally, the most advanced and recent formulation, represented by alternative strategies, will be proposed. Particular emphasis will be placed on those ones involving new types of hydrogels, microparticles, nanoparticles, and liposomes, which are currently under investigation in preclinical studies. The potential application of particles and liposomes could foster the transition from natural lubricants to Drug Delivery Systems (DDSs) with lubricant features; transition which could provide more complete OA treatments, by simultaneously providing lubrication replacement and sustained release of different payloads and active agents directly at the joint level. Within each category, we will examine relevant preclinical studies, highlighting challenges and future prospects.
Collapse
Affiliation(s)
- Agnese Fragassi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy
| | - Antonietta Greco
- Department of Medicine and Surgery, NanoMedicine Center (NANOMIB), University of Milano-Bicocca, Via Follereau 3, 20854 Vedano al Lambro, Italy
| | - Roberto Palomba
- Laboratory of Nanotechnology for Precision Medicine, Italian Institute of Technology, Via Morego 30, 16163 Genova, Italy
| |
Collapse
|
15
|
Enayati M, Liu W, Madry H, Neisiany RE, Cucchiarini M. Functionalized hydrogels as smart gene delivery systems to treat musculoskeletal disorders. Adv Colloid Interface Sci 2024; 331:103232. [PMID: 38889626 DOI: 10.1016/j.cis.2024.103232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/10/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Despite critical advances in regenerative medicine, the generation of definitive, reliable treatments for musculoskeletal diseases remains challenging. Gene therapy based on the delivery of therapeutic genetic sequences has strong value to offer effective, durable options to decisively manage such disorders. Furthermore, scaffold-mediated gene therapy provides powerful alternatives to overcome hurdles associated with classical gene therapy, allowing for the spatiotemporal delivery of candidate genes to sites of injury. Among the many scaffolds for musculoskeletal research, hydrogels raised increasing attention in addition to other potent systems (solid, hybrid scaffolds) due to their versatility and competence as drug and cell carriers in tissue engineering and wound dressing. Attractive functionalities of hydrogels for musculoskeletal therapy include their injectability, stimuli-responsiveness, self-healing, and nanocomposition that may further allow to upgrade of them as "intelligently" efficient and mechanically strong platforms, rather than as just inert vehicles. Such functionalized hydrogels may also be tuned to successfully transfer therapeutic genes in a minimally invasive manner in order to protect their cargos and allow for their long-term effects. In light of such features, this review focuses on functionalized hydrogels and demonstrates their competence for the treatment of musculoskeletal disorders using gene therapy procedures, from gene therapy principles to hydrogel functionalization methods and applications of hydrogel-mediated gene therapy for musculoskeletal disorders, while remaining challenges are being discussed in the perspective of translation in patients. STATEMENT OF SIGNIFICANCE: Despite advances in regenerative medicine, the generation of definitive, reliable treatments for musculoskeletal diseases remains challenging. Gene therapy has strong value in offering effective, durable options to decisively manage such disorders. Scaffold-mediated gene therapy provides powerful alternatives to overcome hurdles associated with classical gene therapy. Among many scaffolds for musculoskeletal research, hydrogels raised increasing attention. Functionalities including injectability, stimuli-responsiveness, and self-healing, tune them as "intelligently" efficient and mechanically strong platforms, rather than as just inert vehicles. This review introduces functionalized hydrogels for musculoskeletal disorder treatment using gene therapy procedures, from gene therapy principles to functionalized hydrogels and applications of hydrogel-mediated gene therapy for musculoskeletal disorders, while remaining challenges are discussed from the perspective of translation in patients.
Collapse
Affiliation(s)
- Mohammadsaeid Enayati
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Wei Liu
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Rasoul Esmaeely Neisiany
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland; Department of Polymer Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany.
| |
Collapse
|
16
|
Sun Y, Ding SL, Zhao X, Sun D, Yang Y, Chen M, Zhu C, Jiang B, Gu Q, Liu H, Zhang M. Self-Reinforced MOF-Based Nanogel Alleviates Osteoarthritis by Long-Acting Drug Release. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401094. [PMID: 38684182 DOI: 10.1002/adma.202401094] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/31/2024] [Indexed: 05/02/2024]
Abstract
Intra-articular injection of drugs is an effective strategy for osteoarthritis (OA) treatment. However, the complex microenvironment and limited joint space result in rapid clearance of drugs. Herein, a nanogel-based strategy is proposed for prolonged drug delivery and microenvironment remodeling. Nanogel is constructed through the functionalization of hyaluronic acid (HA) by amide reaction on the surface of Kartogenin (KGN)-loaded zeolitic imidazolate framework-8 (denoted as KZIF@HA). Leveraging the inherent hydrophilicity of HA, KZIF@HA spontaneously forms nanogels, ensuring extended drug release in the OA microenvironment. KZIF@HA exhibits sustained drug release over one month, with low leakage risk from the joint cavity compared to KZIF, enhanced cartilage penetration, and reparative effects on chondrocytes. Notably, KGN released from KZIF@HA serves to promote extracellular matrix (ECM) secretion for hyaline cartilage regeneration. Zn2+ release reverses OA progression by promoting M2 macrophage polarization to establish an anti-inflammatory microenvironment. Ultimately, KZIF@HA facilitates cartilage regeneration and OA alleviation within three months. Transcriptome sequencing validates that KZIF@HA stimulates the polarization of M2 macrophages and secretes IL-10 to inhibit the JNK and ERK pathways, promoting chondrocytes recovery and enhancing ECM remodeling. This pioneering nanogel system offers new therapeutic opportunities for sustained drug release, presenting a significant stride in OA treatment strategies.
Collapse
Affiliation(s)
- Yun Sun
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Sheng-Long Ding
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Xiyuan Zhao
- State Key Laboratory of Membrane Biology, Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
| | - Dadi Sun
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Yuhan Yang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Min Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chunlin Zhu
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Bingyin Jiang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China
| | - Qi Gu
- State Key Laboratory of Membrane Biology, Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, China
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Mingzhu Zhang
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| |
Collapse
|
17
|
Turczyńska K, Rahimi M, Charmi G, Pham DA, Murata H, Kozanecki M, Filipczak P, Ulański J, Diem T, Matyjaszewski K, Banquy X, Pietrasik J. Bottlebrush Polymers for Articular Joint Lubrication: Influence of Anchoring Group Chemistry on Lubrication Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38550-38563. [PMID: 38980156 DOI: 10.1021/acsami.4c07282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The role of carboxylic, aldehyde, or epoxide groups incorporated into bottlebrush macromolecules as anchoring blocks (or cartilage-binding blocks) is investigated by measuring their lubricating properties and cartilage-binding effectiveness. Mica modified with amine groups is used to mimic the cartilage surface, while bottlebrush polymers functionalized with carboxylic, aldehyde, or epoxide groups played the role of the lubricant interacting with the cartilage surface. We demonstrate that bottlebrushes with anchoring blocks effectively reduce the friction coefficient on modified surfaces by 75-95% compared to unmodified mica. The most efficient polymer appears to be the one with epoxide groups, which can react spontaneously with amines at room temperature. In this case, the value of the friction coefficient is the lowest and equals 0.009 ± 0.001, representing a 95% reduction compared to measurements on nonmodified mica. These results show that the presence of the functional groups within the anchoring blocks has a significant influence on interactions between the bottlebrush polymer and cartilage surface. All synthesized bottlebrush polymers are also used in the preliminary lubrication tests carried out on animal cartilage surfaces. The developed materials are very promising for future in vivo studies to be used in osteoarthritis treatment.
Collapse
Affiliation(s)
- Karolina Turczyńska
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Mahdi Rahimi
- Orthopedic Research Laboratory, Hôpital du Sacré-Coeur de Montréal, Université de Montréal, H4J 1C5 Montréal, QC, Canada
| | - Gholamreza Charmi
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| | - Duy Anh Pham
- Canada Research Chair in Bio-inspired Materials and Interfaces, Faculty of Pharmacy, Université de Montréal, C.P. 6128, succursale Centre Ville, Montréal Qc H3T1J4, QC, Canada
| | - Hironobu Murata
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, 15213 Pittsburgh, Pennsylvania, United States
| | - Marcin Kozanecki
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Paulina Filipczak
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Jacek Ulański
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Tadeusz Diem
- Collegium Civitas, Plac Defilad 1, 00-901 Warsaw, Poland
| | - Krzysztof Matyjaszewski
- Department of Molecular Physics, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, 15213 Pittsburgh, Pennsylvania, United States
| | - Xavier Banquy
- Canada Research Chair in Bio-inspired Materials and Interfaces, Faculty of Pharmacy, Université de Montréal, C.P. 6128, succursale Centre Ville, Montréal Qc H3T1J4, QC, Canada
| | - Joanna Pietrasik
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| |
Collapse
|
18
|
Li S, Cao S, Lu H, He B, Gao B. Kirigami triboelectric spider fibroin microneedle patches for comprehensive joint management. Mater Today Bio 2024; 26:101044. [PMID: 38600920 PMCID: PMC11004194 DOI: 10.1016/j.mtbio.2024.101044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
Joint injuries are among the leading causes of disability. Present concentrations were focused on oral drugs and surgical treatment, which brings severe and unnecessary difficulties for patients. Smart patches with high flexibility and intelligent drug control-release capacity are greatly desirable for efficient joint management. Herein, we present a novel kirigami spider fibroin-based microneedle triboelectric nanogenerator (KSM-TENG) patch with distinctive features for comprehensive joint management. The microneedle patch consists of two parts: the superfine tips and the flexible backing base, which endow it with great mechanical strength to penetrate the skin and enough flexibility to fit different bends. Besides, the spider fibroin-based MNs served as a positive triboelectric material to generate electrical stimulation, thereby forcing drug release from needles within 720 min. Especially, kirigami structures could also transform the flat patch into three dimensions, which could impart the patch with flexible properties to accommodate the complicated processes produced by joint motion. Benefiting from these traits, the KSM-TENG patch presents excellent performance in inhibiting the inflammatory response and promoting wound healing in mice models. The results indicated that the mice possessed only 2% wound area and the paw thickness was reduced from 10.5 mm to 6.2 mm after treatment with the KSM-TENG patch, which further demonstrates the therapeutic effect of joints in vivo. Thus, it is believed that the proposed novel KSM-TENG patch is valuable in the field of comprehensive treatments and personalized clinical applications.
Collapse
Affiliation(s)
- Shuhuan Li
- College of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Suwen Cao
- College of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Huihui Lu
- College of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Bingfang He
- College of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Bingbing Gao
- College of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
19
|
Rajankunte Mahadeshwara M, Al-Jawad M, Hall RM, Pandit H, El-Gendy R, Bryant M. How Do Cartilage Lubrication Mechanisms Fail in Osteoarthritis? A Comprehensive Review. Bioengineering (Basel) 2024; 11:541. [PMID: 38927777 PMCID: PMC11200606 DOI: 10.3390/bioengineering11060541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/02/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Cartilage degeneration is a characteristic of osteoarthritis (OA), which is often observed in aging populations. This degeneration is due to the breakdown of articular cartilage (AC) mechanical and tribological properties primarily attributed to lubrication failure. Understanding the reasons behind these failures and identifying potential solutions could have significant economic and societal implications, ultimately enhancing quality of life. This review provides an overview of developments in the field of AC, focusing on its mechanical and tribological properties. The emphasis is on the role of lubrication in degraded AC, offering insights into its structure and function relationship. Further, it explores the fundamental connection between AC mechano-tribological properties and the advancement of its degradation and puts forth recommendations for strategies to boost its lubrication efficiency.
Collapse
Affiliation(s)
- Manoj Rajankunte Mahadeshwara
- Institute of Functional Surfaces, Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK
- Department of Oral Biology, Faculty of Dentistry, University of Leeds, Leeds LS2 9JT, UK; (M.A.-J.); (R.E.-G.)
| | - Maisoon Al-Jawad
- Department of Oral Biology, Faculty of Dentistry, University of Leeds, Leeds LS2 9JT, UK; (M.A.-J.); (R.E.-G.)
| | - Richard M. Hall
- School of Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| | - Hemant Pandit
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Chapel Allerton Hospital, Leeds LS7 4SA, UK;
| | - Reem El-Gendy
- Department of Oral Biology, Faculty of Dentistry, University of Leeds, Leeds LS2 9JT, UK; (M.A.-J.); (R.E.-G.)
- Department of Oral Pathology, Faculty of Dentistry, Suez Canal University, Ismailia 3, Ismailia Governorate 8366004, Egypt
| | - Michael Bryant
- Institute of Functional Surfaces, Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK
- School of Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| |
Collapse
|
20
|
Zhao X, Yang L, Zhang L, Ji L, Ma S, Zhou F. Novel biomimetic macromolecules system for highly efficient lubrication, ROS scavenging and osteoarthritis treatment. Colloids Surf B Biointerfaces 2024; 239:113956. [PMID: 38733647 DOI: 10.1016/j.colsurfb.2024.113956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/08/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
The early stages of osteoarthritis (OA) in the joints are typically characterized by two key factors: the dysfunction of articular cartilage lubrication and inflammation resulting from the excessive production of reactive oxygen species (ROS). Synthetic injectable macromolecular materials present great potential for preventing the progression of early OA. In this study, to mimic the excellent lubricity of brush-like aggregates found in natural synovial fluid, we develop a novel macromolecular biolubricant (CS-PS-DA) by integrating adhesion and hydration groups onto backbone of natural biomacromolecules. CS-PS-DA exhibits a strong affinity for cartilage surfaces, enabling the formation of a stable lubrication layer at the sliding interface of degraded cartilages to restore joint lubrication performance. In vitro results from ROS scavenging and anti-inflammatory experiments indicate the great advantage of CS-PS-DA to decrease the levels of proinflammatory cytokines by inhibiting ROS overproduction. Finally, in vivo rats OA model demonstrates that intra-cavitary injection of CS-PS-DA could effectively resist cartilage wear and mitigated inflammation in the joints. This novel biolubricant provides a new and timely strategy for the treatment of OA.
Collapse
Affiliation(s)
- Xiaoduo Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Shandong Laboratory of Yantai Advanced Materials and Green Manufacture, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264006, China
| | - Lumin Yang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Licheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing 100853, China
| | - Le Ji
- Department of Orthopaedic Surgery, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Shuanhong Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Shandong Laboratory of Yantai Advanced Materials and Green Manufacture, Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264006, China.
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
21
|
An X, Zhou F, Li G, Wei Y, Huang B, Li M, Zhang Q, Xu K, Zhao RC, Su J. Cyaonoside A-loaded composite hydrogel microspheres to treat osteoarthritis by relieving chondrocyte inflammation. J Mater Chem B 2024; 12:4148-4161. [PMID: 38591180 DOI: 10.1039/d4tb00294f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Cyaonoside A (CyA), derived from the natural Chinese medicine, Cyathula officinalis Kuan, which was for a long time used to treat knee injuries and relieve joint pain in traditional Chinese medicine, showed an unclear mechanism for protecting cartilage. In addition, CyA was poorly hydrosoluble and incapable of being injected directly into the joint cavity, which limited its clinical application. This study reveals that CyA resisted IL-1β-mediated chondrogenic inflammation and apoptosis. Next, transcriptome sequencing is used to explore the potential mechanisms underlying CyA regulation of MSC chondrogenic differentiation. Based on these findings, CyA-loaded composite hydrogel microspheres (HLC) were developed and they possessed satisfactory loading efficiency, a suitable degradation rate and good biocompatibility. HLC increased chondrogenic anabolic gene (Acan, COL2A, and SOX9) expression, while downregulating the expression of the catabolic marker MMP13 in vitro. In the osteoarthritis mouse model, HLC demonstrated promising therapeutic capabilities by protecting the integrity of articular cartilage. In conclusion, this study provides insights into the regulatory mechanisms of CyA for chondrocytes and proposes a composite hydrogel microsphere-based advanced therapeutic strategy for osteoarthritis.
Collapse
Affiliation(s)
- Xingyan An
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
| | - Fengjin Zhou
- Department of Orthopedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Guangfeng Li
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
| | - Yan Wei
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
| | - Biaotong Huang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Wenzhou Institute of Shanghai University, Wenzhou 325000, China
| | - Mengmeng Li
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
| | - Qin Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
| | - Ke Xu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Wenzhou Institute of Shanghai University, Wenzhou 325000, China
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100190, China.
- Center for Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing, 100730, China
- Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, 100730, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, 100005, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China.
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| |
Collapse
|
22
|
Deng J, Wei R, Qiu H, Wu X, Yang Y, Huang Z, Miao J, Liu A, Chai H, Cen X, Wang R. Biomimetic zwitterionic copolymerized chitosan as an articular lubricant. Carbohydr Polym 2024; 330:121821. [PMID: 38368102 DOI: 10.1016/j.carbpol.2024.121821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/22/2023] [Accepted: 01/11/2024] [Indexed: 02/19/2024]
Abstract
Restoration of the lubrication functions of articular cartilage is an effective treatment to alleviate the progression of osteoarthritis (OA). Herein, we fabricated chitosan-block-poly(sulfobetaine methacrylate) (CS-b-pSBMA) copolymer via a free radical polymerization of sulfobetaine methacrylate onto activated chitosan segment, structurally mimicking the lubricating biomolecules on cartilage. The successful copolymerization of CS-b-pSBMA was verified by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and 1H nuclear magnetic resonance. Friction test confirmed that the CS-b-pSBMA copolymer could achieve an excellent lubrication effect on artificial joint materials such as Ti6Al4V alloy with a coefficient of friction as low as 0.008, and on OA-simulated cartilage, better than the conventional lubricant hyaluronic acid, and the adsorption effect of lubricant on cartilage surface was proved by a fluorescence labeling experiment. In addition, CS-b-pSBMA lubricant possessed an outstanding stability, which can withstand enzymatic degradation and even a long-term storage up to 4 weeks. In vitro studies showed that CS-b-pSBMA lubricant had a favorable antibacterial activity and good biocompatibility. In vivo studies confirmed that the CS-b-pSBMA lubricant was stable and could alleviate the degradation process of cartilage in OA mice. This biomimetic lubricant is a promising articular joint lubricant for the treatment of OA and cartilage restoration.
Collapse
Affiliation(s)
- Junjie Deng
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, PR China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China
| | - Rufang Wei
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, PR China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China
| | - Haofeng Qiu
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China; School of Materials Science and Engineering, Nanjing University of Science & Technology, Nanjing 210094, PR China
| | - Xiang Wu
- Ningbo Medical Center Li Huili Hospital; Health Science Center, Ningbo University, Ningbo 315000, PR China
| | - Yanyu Yang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, PR China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China
| | - Zhimao Huang
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China
| | - Jiru Miao
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China
| | - Ashuang Liu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, PR China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China
| | - Haiyang Chai
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, PR China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China
| | - Xiao Cen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, Sichuan, PR China; Department of Temporomandibular Joint, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu, 610041, Sichuan, PR China.
| | - Rong Wang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang 315300, PR China; Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China; Ningbo Cixi Institute of Biomedical Engineering, Ningbo 315300, PR China.
| |
Collapse
|
23
|
Bordon G, Berenbaum F, Distler O, Luciani P. Harnessing the multifunctionality of lipid-based drug delivery systems for the local treatment of osteoarthritis. Biomed Pharmacother 2023; 168:115819. [PMID: 37939613 DOI: 10.1016/j.biopha.2023.115819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023] Open
Abstract
Osteoarthritis (OA) is a widespread joint condition affecting millions globally, presenting a growing socioeconomic burden thus making the development of more effective therapeutic strategies crucial. This review emphasizes recent advancements in lipid-based drug delivery systems (DDSs) for intra-articular administration of OA therapeutics, encompassing non-steroidal anti-inflammatory drugs, corticosteroids, small molecule disease-modifying OA drugs, and RNA therapeutics. Liposomes, lipid nanoparticles, lipidic mesophases, extracellular vesicles and composite systems exhibit enhanced stability, targeted delivery, and extended joint retention, which contribute to improved therapeutic outcomes and minimized systemic drug exposure. Although active targeting strategies hold promise, further research is needed to assess their targeting efficiency in physiologically relevant conditions. Simultaneously, multifunctional DDSs capable of delivering combinations of distinct therapeutic classes offer synergistic effects and superior OA treatment outcomes. The development of such long-acting systems that resist rapid clearance from the joint space is crucial, where particle size and targeting capabilities emerge as vital factors. Additionally, combining cartilage lubrication properties with sustained drug delivery has demonstrated potential in animal models, meriting further investigation in human clinical trials. This review highlights the crucial need for direct, head-to-head comparisons of novel DDSs with standard treatments, particularly within the same drug class. These comparisons are essential in accurately evaluating their effectiveness, safety, and clinical applicability, and are set to significantly shape the future of OA therapy.
Collapse
Affiliation(s)
- Gregor Bordon
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Francis Berenbaum
- Sorbonne University, INSERM CRSA, AP-HP Saint-Antoine Hospital, Paris, France
| | - Oliver Distler
- Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Paola Luciani
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
24
|
Atwal A, Dale TP, Snow M, Forsyth NR, Davoodi P. Injectable hydrogels: An emerging therapeutic strategy for cartilage regeneration. Adv Colloid Interface Sci 2023; 321:103030. [PMID: 37907031 DOI: 10.1016/j.cis.2023.103030] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023]
Abstract
The impairment of articular cartilage due to traumatic incidents or osteoarthritis has posed significant challenges for healthcare practitioners, researchers, and individuals suffering from these conditions. Due to the absence of an approved treatment strategy for the complete restoration of cartilage defects to their native state, the tissue condition often deteriorates over time, leading to osteoarthritic (OA). However, recent advancements in the field of regenerative medicine have unveiled promising prospects through the utilization of injectable hydrogels. This versatile class of biomaterials, characterized by their ability to emulate the characteristics of native articular cartilage, offers the distinct advantage of minimally invasive administration directly to the site of damage. These hydrogels can also serve as ideal delivery vehicles for a diverse range of bioactive agents, including growth factors, anti-inflammatory drugs, steroids, and cells. The controlled release of such biologically active molecules from hydrogel scaffolds can accelerate cartilage healing, stimulate chondrogenesis, and modulate the inflammatory microenvironment to halt osteoarthritic progression. The present review aims to describe the methods used to design injectable hydrogels, expound upon their applications as delivery vehicles of biologically active molecules, and provide an update on recent advances in leveraging these delivery systems to foster articular cartilage regeneration.
Collapse
Affiliation(s)
- Arjan Atwal
- School of Pharmacy and Bioengineering, Hornbeam building, Keele University, Staffordshire ST5 5BG, United Kingdom; Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Staffordshire ST4 7QB, United Kingdom
| | - Tina P Dale
- School of Pharmacy and Bioengineering, Hornbeam building, Keele University, Staffordshire ST5 5BG, United Kingdom; Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Staffordshire ST4 7QB, United Kingdom
| | - Martyn Snow
- Department of Arthroscopy, Royal Orthopaedic Hospital NHS Foundation Trust, Birmingham B31 2AP, United Kingdom; The Robert Jones and Agnes Hunt Hospital, Oswestry, Shropshire SY10 7AG, United Kingdom
| | - Nicholas R Forsyth
- School of Pharmacy and Bioengineering, Hornbeam building, Keele University, Staffordshire ST5 5BG, United Kingdom; Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Staffordshire ST4 7QB, United Kingdom; Vice Principals' Office, University of Aberdeen, Kings College, Aberdeen AB24 3FX, United Kingdom
| | - Pooya Davoodi
- School of Pharmacy and Bioengineering, Hornbeam building, Keele University, Staffordshire ST5 5BG, United Kingdom; Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Staffordshire ST4 7QB, United Kingdom.
| |
Collapse
|
25
|
Porcello A, Hadjab F, Ajouaou M, Philippe V, Martin R, Abdel-Sayed P, Hirt-Burri N, Scaletta C, Raffoul W, Applegate LA, Allémann E, Jordan O, Laurent A. Ex Vivo Functional Benchmarking of Hyaluronan-Based Osteoarthritis Viscosupplement Products: Comprehensive Assessment of Rheological, Lubricative, Adhesive, and Stability Attributes. Gels 2023; 9:808. [PMID: 37888381 PMCID: PMC10606320 DOI: 10.3390/gels9100808] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/30/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
While many injectable viscosupplementation products are available for osteoarthritis (OA) management, multiple hydrogel functional attributes may be further optimized for efficacy enhancement. The objective of this study was to functionally benchmark four commercially available hyaluronan-based viscosupplements (Ostenil, Ostenil Plus, Synvisc, and Innoryos), focusing on critical (rheological, lubricative, adhesive, and stability) attributes. Therefore, in vitro and ex vivo quantitative characterization panels (oscillatory rheology, rotational tribology, and texture analysis with bovine cartilage) were used for hydrogel product functional benchmarking, using equine synovial fluid as a biological control. Specifically, the retained experimental methodology enabled the authors to robustly assess and discuss various functional enhancement options for hyaluronan-based hydrogels (chemical cross-linking and addition of antioxidant stabilizing agents). The results showed that the Innoryos product, a niacinamide-augmented linear hyaluronan-based hydrogel, presented the best overall functional behavior in the retained experimental settings (high adhesivity and lubricity and substantial resistance to oxidative degradation). The Ostenil product was conversely shown to present less desirable functional properties for viscosupplementation compared to the other investigated products. Generally, this study confirmed the high importance of formulation development and control methodology optimization, aiming for the enhancement of novel OA-targeting product critical functional attributes and the probability of their clinical success. Overall, this work confirmed the tangible need for a comprehensive approach to hyaluronan-based viscosupplementation product functional benchmarking (product development and product selection by orthopedists) to maximize the chances of effective clinical OA management.
Collapse
Affiliation(s)
- Alexandre Porcello
- School of Pharmaceutical Sciences, University of Geneva, CH-1206 Geneva, Switzerland; (M.A.); (E.A.); (O.J.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CH-1206 Geneva, Switzerland
| | - Farid Hadjab
- Development Department, Albomed GmbH, D-90592 Schwarzenbruck, Germany;
| | - Maryam Ajouaou
- School of Pharmaceutical Sciences, University of Geneva, CH-1206 Geneva, Switzerland; (M.A.); (E.A.); (O.J.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CH-1206 Geneva, Switzerland
| | - Virginie Philippe
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (V.P.); (P.A.-S.); (N.H.-B.); (C.S.); (W.R.); (L.A.A.)
- Orthopedics and Traumatology Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland;
| | - Robin Martin
- Orthopedics and Traumatology Service, Lausanne University Hospital, University of Lausanne, CH-1011 Lausanne, Switzerland;
| | - Philippe Abdel-Sayed
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (V.P.); (P.A.-S.); (N.H.-B.); (C.S.); (W.R.); (L.A.A.)
- STI School of Engineering, Federal Polytechnic School of Lausanne, CH-1015 Lausanne, Switzerland
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (V.P.); (P.A.-S.); (N.H.-B.); (C.S.); (W.R.); (L.A.A.)
| | - Corinne Scaletta
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (V.P.); (P.A.-S.); (N.H.-B.); (C.S.); (W.R.); (L.A.A.)
| | - Wassim Raffoul
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (V.P.); (P.A.-S.); (N.H.-B.); (C.S.); (W.R.); (L.A.A.)
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (V.P.); (P.A.-S.); (N.H.-B.); (C.S.); (W.R.); (L.A.A.)
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
- Oxford OSCAR Suzhou Center, Oxford University, Suzhou 215123, China
| | - Eric Allémann
- School of Pharmaceutical Sciences, University of Geneva, CH-1206 Geneva, Switzerland; (M.A.); (E.A.); (O.J.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CH-1206 Geneva, Switzerland
| | - Olivier Jordan
- School of Pharmaceutical Sciences, University of Geneva, CH-1206 Geneva, Switzerland; (M.A.); (E.A.); (O.J.)
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CH-1206 Geneva, Switzerland
| | - Alexis Laurent
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (V.P.); (P.A.-S.); (N.H.-B.); (C.S.); (W.R.); (L.A.A.)
- Manufacturing Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland
| |
Collapse
|
26
|
Fan X, Xie R, Song W, Ouyang K, Ren L. Biomimetic Hyaluronic Acid-Based Brush Polymers Modulate Chondrocyte Homeostasis via ROS/Ca 2+/TRPV4. Biomacromolecules 2023; 24:4240-4252. [PMID: 37585281 DOI: 10.1021/acs.biomac.3c00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Bionic mimics using natural cartilage matrix molecules can modulate the corresponding metabolic activity by improving the microenvironment of chondrocytes. A bionic brush polymer, HA/PX, has been found to reverse the loss of cartilage extracellular matrix (ECM) and has promising applications in the clinical treatment of osteoarthritis (OA). However, the unknown bioremediation mechanism of HA/PX severely hinders its clinical translation. In OA, the massive loss of the ECM may be attributed to a decrease in transient receptor potential vanilloid 4 (TRPV4) activity, which affects reactive oxygen species (ROS) clearance and [Ca2+]i signaling, initiating downstream catabolic pathways. In this study, we investigated the bioremediation mechanism of HA/PX in a model of interleukin 1β (IL-1β)-induced inflammation. Through TRPV4, HA/PX reduced ROS accumulation in chondrocytes and enhanced [Ca2+]i signaling, reflecting a short-term protection capacity for chondrocytes. In addition, HA/PX balanced the metabolic homeostasis of chondrocytes via TRPV4, including promoting the secretion of type II collagen (Col-II) and aggrecan, the major components of the ECM, and reducing the expression of matrix metal-degrading enzyme (MMP-13), exerting long-term protective effects on chondrocytes. Molecular dynamics (MD) simulations showed that HA/PX could act as a TRPV4 activator. Our results suggest that HA/PX can regulate chondrocyte homeostasis via ROS/Ca2+/TRPV4, thereby improving cartilage regeneration. Because the ECM is a prevalent feature of various cell types, HA/PX holds promising potential for improving regeneration and disease modification for not only cartilage-related healthcare but many other tissues and diseases.
Collapse
Affiliation(s)
- Xiaopeng Fan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, PR China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Renjian Xie
- School of Medical Information Engineering, Gannan Medical University, Ganzhou 341000, China
| | - Wenjing Song
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, PR China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Li Ren
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, PR China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, PR China
- Sino-Singapore International Joint Research Institute, Guangzhou 510555, China
| |
Collapse
|
27
|
Melrose J. Emergence of proteoglycan-4, (lubricin) as a multifunctional, cell instructive, anti-inflammatory boundary lubricant. Bioessays 2023; 45:e2300090. [PMID: 37318319 DOI: 10.1002/bies.202300090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/16/2023]
Affiliation(s)
- James Melrose
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Northern Sydney Local Health District, St. Leonards, NSW, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia
- Sydney Medical School, Northern, The University of Sydney, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Royal North Shore Hospital, St. Leonards, NSW, Australia
| |
Collapse
|
28
|
Gong P, Li C, Bai X, Qi C, Li J, Wang D, Liu J, Cai M, Liu W. A snowboard-inspired lubricating nanosystem with responsive drug release for osteoarthritis therapy. J Colloid Interface Sci 2023; 646:331-341. [PMID: 37201461 DOI: 10.1016/j.jcis.2023.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/03/2023] [Accepted: 05/04/2023] [Indexed: 05/20/2023]
Abstract
Most of present works of osteoarthritis (OA) therapy are focusing on reducing friction and improving drug loading capacity, while little attention is paid to realizing long-time lubrication and on-demand drug release. In this study, inspired by snowboards with good solid-liquid interface lubrication, a fluorinated graphene based nanosystem with dual functions of long-time lubrication and thermal-responsive drug release was constructed for OA synergetic therapy. An aminated polyethylene glycol bridging strategy was developed to enable covalent grafting of hyaluronic acid on fluorinated graphene. This design not only greatly increased the nanosystem's biocompatibility, but also reduced the coefficient of friction (COF) by 83.3 % compared to H2O. The nanosystem showed long-time and steady aqueous lubrication behavior even after more than 24,000 times of friction tests, and a low COF of 0.13 was obtained with over 90% wear volume reduction. Diclofenac sodium was controllably loaded and sustained drug release was tuned by near-infrared light. Moreover, anti-inflammation results showed that the nanosystem had good protective effect on inhibiting OA deterioration, which could up-regulate cartilage anabolic genes of Col2α and aggrecan while down-regulating catabolic proteases genes of TAC1 and MMP1. This work constructs a novel dual-functional nanosystem that realizes friction and wear reduction with long lubrication life, and shows thermal-responsive on-demand drug release with good synergistic therapeutic effect of OA.
Collapse
Affiliation(s)
- Peiwei Gong
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China; State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| | - Cheng Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Xiao Bai
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Changmin Qi
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Juan Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Dandan Wang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China.
| | - Jianxi Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Meirong Cai
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Weimin Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| |
Collapse
|
29
|
Li Z, Lu J. CircRNAs in osteoarthritis: research status and prospect. Front Genet 2023; 14:1173812. [PMID: 37229197 PMCID: PMC10203419 DOI: 10.3389/fgene.2023.1173812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/18/2023] [Indexed: 05/27/2023] Open
Abstract
Osteoarthritis (OA) is the most common joint disease globally, and its progression is irreversible. The mechanism of osteoarthritis is not fully understood. Research on the molecular biological mechanism of OA is deepening, among which epigenetics, especially noncoding RNA, is an emerging hotspot. CircRNA is a unique circular noncoding RNA not degraded by RNase R, so it is a possible clinical target and biomarker. Many studies have found that circRNAs play an essential role in the progression of OA, including extracellular matrix metabolism, autophagy, apoptosis, the proliferation of chondrocytes, inflammation, oxidative stress, cartilage development, and chondrogenic differentiation. Differential expression of circRNAs was also observed in the synovium and subchondral bone in the OA joint. In terms of mechanism, existing studies have mainly found that circRNA adsorbs miRNA through the ceRNA mechanism, and a few studies have found that circRNA can serve as a scaffold for protein reactions. In terms of clinical transformation, circRNAs are considered promising biomarkers, but no large cohort has tested their diagnostic value. Meanwhile, some studies have used circRNAs loaded in extracellular vesicles for OA precision medicine. However, there are still many problems to be solved in the research, such as the role of circRNA in different OA stages or OA subtypes, the construction of animal models of circRNA knockout, and more research on the mechanism of circRNA. In general, circRNAs have a regulatory role in OA and have particular clinical potential, but further studies are needed in the future.
Collapse
Affiliation(s)
- Zhuang Li
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Jun Lu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
30
|
Li C, Gong P, Chao M, Li J, Yang L, Huang Y, Wang D, Liu J, Liu Z. A Biomimetic Lubricating Nanosystem with Responsive Drug Release for Osteoarthritis Synergistic Therapy. Adv Healthc Mater 2023; 12:e2203245. [PMID: 36708271 DOI: 10.1002/adhm.202203245] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/15/2023] [Indexed: 01/29/2023]
Abstract
Osteoarthritis (OA) is associated with lubrication failure of articular cartilage and severe inflammatory response of joint capsule. Synergistic therapy combining joint lubrication and anti-inflammation emerges as a novel treatment of OA. In this study, bioinspired by ultralow friction of natural articular synovial fluid and mussel adhesion chemistry, a biomimetic nanosystem with dual functions of enhanced lubrication and stimuli-responsive drug release is developed. A dopamine mediated strategy realizes one step biomimetic grafting of hyaluronic acid (HA) on fluorinated graphene. The polymer modified sheets exhibit highly efficient near-infrared absorption, and show steady lubrication with a long time under various working conditions, in which the coefficient of friction is reduced by 75% compared to H2 O. Diclofenac sodium (DS) with a high loading capacity of 29.2% is controllably loaded, and responsive and sustained drug release is adjusted by near-infrared light. Cell experiments reveal that the lubricating nanosystem is taken up by endocytosis, and anti-inflammation results confirm that the nanosystem inhibits osteoarthritis deterioration by upregulating cartilage anabolic gene and downregulating catabolic proteases and pain-related gene. This work proposes a promising biomimetic approach to integrate polymer modified fluorinated graphene as a dual-functional nanosystem for effective synergistic therapy of OA.
Collapse
Affiliation(s)
- Cheng Li
- The Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, P. R. China
| | - Peiwei Gong
- The Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, P. R. China.,State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Mianran Chao
- The Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, P. R. China
| | - Juan Li
- The Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, P. R. China
| | - Liyan Yang
- The Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, P. R. China
| | - Yan Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Dandan Wang
- The Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, P. R. China
| | - Jianxi Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Zhe Liu
- The Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, P. R. China
| |
Collapse
|