1
|
Wu X, Zhang J, Wang M, Sun Z, Chang C, Ying Y, Li D, Zheng H. Effect of emulsifier type on camellia oil-based nanostructured lipid carriers for delivery of curcumin. Food Chem 2025; 482:144193. [PMID: 40209370 DOI: 10.1016/j.foodchem.2025.144193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/12/2025]
Abstract
In this study, a camellia oil-based nanostructured lipid carrier (NLC) was developed for the delivery of curcumin (Cur). To identify suitable natural emulsifiers, the effects of three different types, including tea saponin (TS), sodium caseinate (SC), and soy lecithin (SL), on the structure, stability, and digestibility of Cur-NLCs were investigated, with Tween 80 (T80) serving as a positive control. The results showed that the absolute zeta potential of NLCs prepared with natural emulsifiers exceeded 30 mV, and their encapsulation efficiency was above 85 %. Among them, TS-Cur-NLC demonstrated good uniformity and stability after 30 days of storage at 25 °C. Meanwhile, the bioavailability of SC-Cur-NLC reached 67.48 %, showing no significant difference from that of T80-Cur-NLC (p > 0.05). This study broadens the application scope of camellia oil and provides a theoretical foundation for utilizing natural emulsifiers in the development of delivery systems for fat-soluble active substances.
Collapse
Affiliation(s)
- Xinghui Wu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jiaxin Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Mengqi Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zhouliang Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Chengfu Chang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - YunXin Ying
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Dan Li
- Heilongjiang Green Food Science Research Institute, Harbin, Heilongjiang 150028, China.
| | - Huanyu Zheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Green Food Science Research Institute, Harbin, Heilongjiang 150028, China.
| |
Collapse
|
2
|
Jin Z, Wei Z, Li Y, Jin Z, Xue C. Effects of colloidal delivery systems for curcumin encapsulation and delivery. Food Chem 2025; 488:144859. [PMID: 40412203 DOI: 10.1016/j.foodchem.2025.144859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 04/23/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025]
Abstract
The types of colloidal delivery systems impact curcumin encapsulation properties, including stability, spray-dried powder properties, business-concerned properties, and loading capacity. Therefore, it is crucial to comprehensively compare the curcumin encapsulation properties of different colloidal delivery systems. Four systems (sodium caseinate, β-cyclodextrin, liposome, soy protein isolate) were used to encapsulate curcumin. Powder characterization revealed that curcumin-loaded sodium caseinate exhibited high curcumin loading capacity (5.10 %), free radical scavenging rate (89.8 %), re-dispersibility, and transmittance of re-dispersed solution (92 %), while curcumin-loaded β-cyclodextrin demonstrated satisfactory hygroscopicity (5.3 %) and D90 particle size (215.5 nm). Stability tests indicated that curcumin-loaded sodium caseinate exhibited superior physicochemical stability except for photo stability, whereas curcumin-loaded β-cyclodextrin exhibited good photo stability. Physicochemical stability of the other two systems was unsatisfactory. In summary, curcumin encapsulation performance varied significantly among systems, with sodium caseinate emerging as a high-performance curcumin nanocarrier with potential for beverage industry applications.
Collapse
Affiliation(s)
- Zihan Jin
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Zihao Wei
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| | - Yujin Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Ziheng Jin
- Henan Zhongda Hengyuan Biotechnology Stock Co.,Ltd, Luohe 462600, China
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| |
Collapse
|
3
|
Cheng Z, Wang H, Zhang Y, Ren B, Fu Z, Li Z, Tu C. Deciphering the role of liquid-liquid phase separation in sarcoma: Implications for pathogenesis and treatment. Cancer Lett 2025; 616:217585. [PMID: 39999920 DOI: 10.1016/j.canlet.2025.217585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/04/2025] [Accepted: 02/21/2025] [Indexed: 02/27/2025]
Abstract
Liquid-liquid phase separation (LLPS) is a significant reversible and dynamic process in organisms. Cells form droplets that are distinct from membrane-bound cell organelles by phase separation to keep biochemical processes in order. Nevertheless, the pathological state of LLPS contributes to the progression of a variety of tumor-related pathogenic issues. Sarcoma is one kind of highly malignant tumor characterized by aggressive metastatic potential and resistance to conventional therapeutic agents. Despite the significant clinical relevance, research on phase separation in sarcomas currently faces several major challenges. These include the limited availability of sarcoma samples, insufficient attention from the research community, and the complex genetic heterogeneity of sarcomas. Recently, emerging evidence have elaborated the specific effects and pathways of phase separation on different sarcoma subtypes, including the effect of sarcoma fusion proteins and other physicochemical factors on phase separation. This review aims to summarize the multiple roles of phase separation in sarcoma and novel molecular inhibitors that target phase separation. These insights will broaden the understanding of the mechanisms concerning sarcoma and offer new perspectives for future therapeutic strategies.
Collapse
Affiliation(s)
- Zehao Cheng
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, 410011, China
| | - Hua Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yibo Zhang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Xiangya School of Medicine, Central South University, Changsha, Hunan, 410011, China
| | - Bolin Ren
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Zheng Fu
- Shanghai Xinyi Biomedical Technology Co., Ltd, Shanghai, 201306, China
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China; Changsha Medical University, Changsha, Hunan, 410219, China.
| |
Collapse
|
4
|
Jangra N, Singla A, Puri V, Dheer D, Chopra H, Malik T, Sharma A. Herbal bioactive-loaded biopolymeric formulations for wound healing applications. RSC Adv 2025; 15:12402-12442. [PMID: 40248229 PMCID: PMC12005159 DOI: 10.1039/d4ra08604j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/01/2025] [Indexed: 04/19/2025] Open
Abstract
Recent advancements in wound healing technologies focus on incorporating herbal bioactives into biopolymeric formulations. A biocompatible matrix that promotes healing is provided by biopolymeric wound dressings. These dressings use components such as ulvan, hyaluronic acid, starch, cellulose, chitosan, alginate, gelatin, and pectin. These natural polymers assist in three crucial processes, namely, cell adhesion, proliferation, and moisture retention, all of which are necessary for effective wound repair. Curcumin, quercetin, Aloe vera, Vinca alkaloids, and Centella asiatica are some of the herbal bioactives that are included in biopolymeric formulations. They have powerful anti-inflammatory, antibacterial, and antioxidant activities. Chitosan, cellulose, collagen, alginate, and hyaluronic acid are some of the biopolymers that have shown promise in clinical trials for wound healing. These trials have also confirmed the safety and functional performance of these materials. Their recent advancements in wound care can be understood by the increasing number of patents linked to these formulations. These innovative dressings improve healing outcomes in acute and chronic wounds while minimizing adverse effects by incorporating biopolymers with herbal bioactives in an efficient manner. This review emphasizes that the development of next-generation wound care products can be facilitated via the integration of natural materials and bioactive substances.
Collapse
Affiliation(s)
- Nitin Jangra
- Chitkara University School of Pharmacy, Chitkara University Baddi 174103 Himachal Pradesh India
| | - Aakanksha Singla
- Chitkara University School of Pharmacy, Chitkara University Baddi 174103 Himachal Pradesh India
| | - Vivek Puri
- Chitkara University School of Pharmacy, Chitkara University Baddi 174103 Himachal Pradesh India
| | - Divya Dheer
- Chitkara University School of Pharmacy, Chitkara University Baddi 174103 Himachal Pradesh India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences Chennai - 602105 Tamil Nadu India
| | - Tabarak Malik
- Department of Biomedical Sciences, Jimma University Jimma Oromia Ethiopia
- Division of Research & Development, Lovely Professional University Phagwara Punjab 144401 India
| | - Ameya Sharma
- Chitkara University School of Pharmacy, Chitkara University Baddi 174103 Himachal Pradesh India
| |
Collapse
|
5
|
Zhang D, Tian W, Chen LH, Chen T, Wu D, Du Y, Hu J. Synergistic effects of oleanolic acid and curcumin nanoparticles in gastric ulcer prevention. Int J Pharm 2025; 674:125465. [PMID: 40089040 DOI: 10.1016/j.ijpharm.2025.125465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/16/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025]
Abstract
Gastric ulcers (GC) are prevalent gastrointestinal disorders with complex etiologies, including Helicobacter pylori infection and prolonged use of non-steroidal anti-inflammatory drugs (NSAIDs). Curcumin (CUR), with its established anti-inflammatory and antioxidant properties, is limited in clinical application due to poor bioavailability. This study developed oleanolic acid-coated CUR nanoparticles (OC NPs) to enhance the efficacy of CUR in GC prevention. OC NPs were characterized by a spherical shape, demonstrating remarkable improvements in solubility and stability, maintaining structural integrity within biological systems and exhibiting excellent biocompatibility. In vitro studies showed OC NPs reduced inflammation and oxidative stress in GES-1 cells. In vivo, OC NPs effectively prevented ethanol-induced GC in mice by lowering inflammatory cytokines, while increasing antioxidant levels. Histological analysis confirmed enhanced gastric mucosal protection and reduced fibrosis and apoptosis. OC NPs demonstrated prolonged retention in the stomach, offering a targeted drug delivery system. These findings suggested OC NPs as a promising low-toxicity alternative for preventing GC.
Collapse
Affiliation(s)
- Dan Zhang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Wei Tian
- Institute of Cash Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China
| | - Li-Hang Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Tao Chen
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Di Wu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Yinan Du
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Jiangning Hu
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
6
|
Li S, Zhang Y, Ding S, Chang J, Liu G, Hu S. Curcumin Ameliorated Glucocorticoid-Induced Osteoporosis While Modulating the Gut Microbiota and Serum Metabolome. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8254-8276. [PMID: 40139762 DOI: 10.1021/acs.jafc.4c06689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Glucocorticoid-induced osteoporosis (GIOP) is the leading cause of secondary osteoporosis. Recently, the "bone-gut axis" theory has linked bone development with gut microbial diversity, community composition, and metabolites. Curcumin, a well-studied polyphenol, shows potential in mitigating bone loss and osteoporosis. Alendronate, a standard therapeutic agent for osteoporosis, serves as a positive control in this investigation. The study demonstrates the potency of curcumin in reducing bone loss and restoring bone mineral density, enhancing trabecular parameters notably through increased trabecular number, volume, and thickness and reduced bone marrow cavity size. Gut microbiome sequencing revealed that both curcumin and alendronate treatments similarly enhanced gut microbial diversity and altered microbiota composition, increasing beneficial bacteria (Akkermansia_muciniphila, Dubosiella_sp910585105, and Ruminococcus_sp910584195) while reducing harmful bacteria (Treponema_D_sp910584475 and Duncaniella_sp910584825). Furthermore, significant changes in serum levels of metabolites including raffinose, ursolic acid, spermidine, inosine, hypoxanthine, thiamine, and pantothenic acid were observed post-treatment with curcumin or alendronate. Importantly, these beneficial metabolites and microorganisms were negatively correlated with inflammatory cytokines. In conclusion, curcumin holds promise for use against GIOP by modulating the gut microbiome and serum metabolome as well as reducing systemic inflammation.
Collapse
Affiliation(s)
- Siying Li
- The Orthopaedic Center, The First People' s Hospital of Wenling, Wenling Hospital of Wenzhou Medical University, Wenling 317500, Zhejiang Province, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yating Zhang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Sujuan Ding
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jiang Chang
- The Orthopaedic Center, The First People' s Hospital of Wenling, Wenling Hospital of Wenzhou Medical University, Wenling 317500, Zhejiang Province, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan 410128, China
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Siwang Hu
- The Orthopaedic Center, The First People' s Hospital of Wenling, Wenling Hospital of Wenzhou Medical University, Wenling 317500, Zhejiang Province, China
| |
Collapse
|
7
|
Cui J, Li H, Zhang T, Lin F, Chen M, Zhang G, Feng Z. Research progress on the mechanism of curcumin anti-oxidative stress based on signaling pathway. Front Pharmacol 2025; 16:1548073. [PMID: 40260389 PMCID: PMC12009910 DOI: 10.3389/fphar.2025.1548073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/24/2025] [Indexed: 04/23/2025] Open
Abstract
Oxidative stress refers to an imbalance between oxidative capacity and antioxidant capacity, leading to oxidative damage to proteins, lipids, and DNA, which can result in cell senescence or death. It is closely associated with the occurrence and development of various diseases, including cardiovascular diseases, nephropathy, malignant tumors, neurodegenerative diseases, hypertension, diabetes, and inflammatory diseases. Curcumin is a natural polyphenol compound of β-diketone, which has a wide range of pharmacological activities such as anti-inflammatory, antibacterial, anti-oxidative stress, anti-tumor, anti-fibrosis, and hypolipidemic, demonstrating broad research and development value. It has a wide range of biological targets and can bind to various endogenous biomolecules. Additionally, it maintains the redox balance primarily by scavenging ROS, enhancing the activity of antioxidant enzymes, inhibiting lipid peroxidation, and chelating metal ions. This paper systematically describes the antioxidative stress mechanisms of curcumin from the perspective of signaling pathways, focusing on the Keap1-Nrf2/ARE, NF-κB, NOX, MAPK and other pathways. The study also discusses potential pathway targets and the complex crosstalk among these pathways, aiming to provide insights for further research on curcumin's antioxidant mechanisms and its clinical applications.
Collapse
Affiliation(s)
- Jie Cui
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haonan Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tianyi Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fengli Lin
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Meiyun Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Guimin Zhang
- Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Zhong Feng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
- Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| |
Collapse
|
8
|
Liu Y, Fan X, Yu X, Liu T, Guo X, Zhang J. Enhancing curcumin stability and bioavailability through chickpea protein isolate-citrus pectin conjugate emulsions: Targeted delivery and gut microecology modulation. Int J Biol Macromol 2025; 300:140295. [PMID: 39863193 DOI: 10.1016/j.ijbiomac.2025.140295] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/13/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
The limited solubility, rapid metabolism, and poor bioavailability of curcumin restrict its application. In this study, we synthesized chickpea protein isolate (CPI)-citrus pectin (CP) conjugates to prepare an emulsion delivery system that enhances the stability and bioavailability of curcumin. The CPI-CP emulsion achieved a curcumin encapsulation efficiency of 86.15 %. Additionally, the stability of curcumin within CPI-CP emulsion was enhanced under conditions of thermal, UV irradiation, and oxidation. In vitro digestion demonstrated that the CPI-CP conjugates effectively preserved the interfacial film integrity during gastric digestion, facilitating targeted delivery of curcumin to the small intestine. This resulted in a substantial increase in curcumin bioavailability, from 50.60 % to 85.60 %. In vivo, the emulsion alleviated liver oxidative stress by improving antioxidant enzyme activity and promoted gut health through increased short-chain fatty acid production and modulation of gut microbiota. This research presents an effective strategy for enhancing the stability and bioavailability of curcumin and demonstrates the potential application of CPI-CP conjugates in delivery systems for bioactive substances.
Collapse
Affiliation(s)
- Yibo Liu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Xuemei Fan
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Xiyu Yu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Ting Liu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Xiaobing Guo
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832000, China.
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shihezi University, Shihezi, Xinjiang 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang 832000, China.
| |
Collapse
|
9
|
Zhang B, Guo W, Chen Z, Chen Y, Zhang R, Liu M, Yang J, Zhang J. Physicochemical Characterization and Oral Bioavailability of Curcumin-Phospholipid Complex Nanosuspensions Prepared Based on Microfluidic System. Pharmaceutics 2025; 17:395. [PMID: 40143058 PMCID: PMC11946702 DOI: 10.3390/pharmaceutics17030395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Curcumin has been proved to have promising prospects in the fields of anti-inflammation, antibacterial, anti-oxidation, and neuroprotection. However, its poor water solubility and stability in strong acid, as well as fast metabolism, lead to low bioavailability, making it difficult to develop further. This study aimed to improve the bioavailability of curcumin by using microfluidic preparation technology. Methods: Using a self-built microfluidic system, polyvinylpyrrolidone K30 and sodium dodecyl sulfate were used as stabilizers to further prepare curcumin-phospholipid complex nanoparticles (CPC-NPs) on the basis of curcumin-phospholipid complex (CPC). The CPC-NPs were characterized and evaluated by X-ray powder diffraction (XRD), differential scanning caborimetry (DSC), dynamic light scattering, and transmission electron microscopy (TEM). Blood samples were collected from rats after oral administration of curcumin, CPC, curcumin nanoparticles (CUR-NPs), and CPC-NPs, respectively. The pharmacokinetics were analyzed by enzymatic digestion and HPLC. Results: The optimized CPC-NPs had a particle size of 71.19 ± 1.37 nm, a PDI of 0.226 ± 0.047, and a zeta potential of -38.23 ± 0.89 mV, which showed a spherical structure under TEM and good stability within 5 days at 4 °C and 25 °C. It was successfully characterized by XRD combined with DSC, indicating the integrational state of curcumin-soy lecithin and conversion to an amorphous form. The results of the pharmacokinetic study showed that the Cmax of curcumin, CUR-NPs, CPC, and CPC-NPs were 133.60 ± 28.10, 270.23 ± 125.42, 1894.43 ± 672.65, and 2163.87 ± 777.36 ng/mL, respectively; the AUC0-t of curcumin, CUR-NPs, CPC, and CPC-NPs were 936.99 ± 201.83, 1155.46 ± 340.38, 5888.79 ± 1073.32, and 9494.28 ± 1863.64 ng/mL/h. Conclusions: CPC-NPs prepared by microfluidic technology had more controllable quality than that of traditional preparation and showed superior bioavailability compared with free drug, CPC, and CUR-NPs. Pharmacodynamic evaluation of anti-inflammatory, anti-oxidation, and neuroprotection needs to be confirmed in follow-up studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jian Yang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (B.Z.); (W.G.); (Z.C.); (Y.C.); (R.Z.); (M.L.)
| | - Jiquan Zhang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (B.Z.); (W.G.); (Z.C.); (Y.C.); (R.Z.); (M.L.)
| |
Collapse
|
10
|
Guo J, Qiu Y, Zhang J, Xue C, Zhu J. A review on polysaccharide-based delivery systems for edible bioactives: pH responsive, controlled release, and emerging applications. Int J Biol Macromol 2025; 291:139178. [PMID: 39730044 DOI: 10.1016/j.ijbiomac.2024.139178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/17/2024] [Accepted: 12/23/2024] [Indexed: 12/29/2024]
Abstract
pH changes occur during bodily lesions, presenting an opportunity for leveraging pH-responsive delivery systems as signals for a targeted response. This review explores the design and application of pH-responsive delivery systems based on natural polysaccharides for the controlled release of bioactives. The article examines the development of diverse delivery carriers, including nanoparticles, nanofibers, nanogels, core-shell carriers, hydrogels, emulsions as well as liposomes and their capacity to respond to pH variations, enabling the precise and targeted delivery of bioactives within the human body. These polysaccharide-based delivery systems can be made pH-responsive by modulating the charge of polybasic or polyacidic polysaccharides, inducing swelling of the carrier and subsequent release of the encapsulated bioactives. These pH-responsive systems show promise in stabilizing under acidic conditions for enhanced retention in the stomach during oral delivery while also enabling targeted release at low pH sites such as tumors and wounds, thereby accelerating wound healing and aiding in cancer therapy and inflammation treatment. pH can co-respond with a variety of stimuli, including temperature, enzymes and reactive oxygen species, enabling more precise responses to the microenvironment for targeted delivery. It provides solid theoretical foundations for the advancement of personalized nutrition and therapeutics through controlled and responsive release technologies.
Collapse
Affiliation(s)
- Jiaxin Guo
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yang Qiu
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhang
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China
| | - Chenxu Xue
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jiajin Zhu
- College of Biosystems Engineering & Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
11
|
Chen Q, Di X, Zhai Y, Zhao Q, Song X. Influence of oil phases on the digestibility and curcumin delivery properties of Pickering emulsions. Food Chem X 2025; 26:102270. [PMID: 40027116 PMCID: PMC11870223 DOI: 10.1016/j.fochx.2025.102270] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/16/2025] [Accepted: 02/07/2025] [Indexed: 03/05/2025] Open
Abstract
Starch-based Pickering emulsions with four types of oil phases (coconut, corn, olive, and sunflower oils) were fabricated to compare their delivery properties for curcumin. The release rates of free fatty acids and the bioavailability of curcumin were investigated using an oral-gastric-intestinal in vitro digestion model. The results revealed that the emulsions prepared with corn oil exhibited the highest zero-shear viscosity (η 0 ) and infinite-shear viscosity (η ∞ ) values, indicating its superior physical stability. After 108 h of ultraviolet light irradiation at 254 nm, the emulsion with corn oil showed the highest loading rate of curcumin. In the simulated small intestinal digestion, FFA release rates for emulsions with different oil phases were: coconut (30.74 %) > sunflower (15.06 %) > corn (12.67 %) > olive (12.38 %) oils. The curcumin bioavailability was: sunflower (78.01 %) > coconut (64.56 %) > corn (54.58 %) > olive (52.51 %) oils. The curcumin bioavailability increased significantly with the increase of starch concentrations.
Collapse
Affiliation(s)
- Qing Chen
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Institute of Rice Industry Technology Research, College of Agronomy, Guizhou University, Guiyang 550025, Guizhou, China
| | - Xin Di
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Yuge Zhai
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Quanzhi Zhao
- Institute of Rice Industry Technology Research, College of Agronomy, Guizhou University, Guiyang 550025, Guizhou, China
| | - Xiaoyan Song
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
- Institute of Rice Industry Technology Research, College of Agronomy, Guizhou University, Guiyang 550025, Guizhou, China
| |
Collapse
|
12
|
Can Karaca A, Rezaei A, Qamar M, Assadpour E, Esatbeyoglu T, Jafari SM. Lipid-based nanodelivery systems of curcumin: Recent advances, approaches, and applications. Food Chem 2025; 463:141193. [PMID: 39276542 DOI: 10.1016/j.foodchem.2024.141193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Despite its many beneficial effects, pharmaceutical applications of curcumin (CUR) are limited due to its chemical instability, low solubility/absorption and weak bioavailability. Recent advances in nanotechnology have enabled the development of CUR-loaded nanodelivery systems to tackle those issues. Within many different nanocarriers developed for CUR up to date, lipid-based nanocarriers (LBNs) are among the most extensively studied systems. LBNs such as nanoemulsions, solid lipid carriers, nanostructured phospholipid/surfactant carriers are shown to be potential delivery systems capable of improving the solubility, bioavailability, and chemical stability of CUR. The particle characteristics, stability, bioavailability, and release properties of CUR-loaded LBNs can be tailored via optimizing the formulation and processing parameters. This paper reviews the most recent studies on the development of various CUR-loaded LBNs. Approaches to the improvement of CUR bioavailability and release characteristics of LBNs are discussed. Furthermore, challenges in the development of CUR-loaded LBNs and their potential applications are presented.
Collapse
Affiliation(s)
- Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey.
| | - Atefe Rezaei
- Department of Food Science and Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran; Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Muhammad Qamar
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Tuba Esatbeyoglu
- Department of Molecular Food Chemistry and Food Development, Institute of Food and One Health, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
13
|
Guo Z, Zheng H, Wang T, Han N, Zhang H, Li J, Cheng X, Ye J, Du S, Li P. Combination Nanodrug Delivery Systems Facilitate the Syncretism of Chemotherapy with Immunotherapy to Promote Cancer Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405752. [PMID: 39544164 DOI: 10.1002/smll.202405752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/12/2024] [Indexed: 11/17/2024]
Abstract
Cancer has emerged as a significant threat that gravely endanger human health. Anti-tumor immunotherapy has now emerged as an important treatment for cancer. However, immunosuppressive tumor microenvironment limits the antitumor immunity. The importance of the immune system in the cancer treatment process must be emphasized. Herein, two precision-targeted nanoparticles PD-L1@Cur-NPs and PD-1@AS-NPs are constructed for cancer treatment. PD-L1@Cur-NPs can precisely target tumor cells in vivo to eradicate tumor cells or induce them apoptosis. PD-1@AS-NPs can precisely target T cells in vivo to activate the T cell-mediated immune system and induce antitumor immune responses. Furthermore, these two nanoparticles have good synergistic effect and show stronger antitumor effect after combination. After treatment with the combination of two nanoparticles, the tumor volumes of C57BL/6 tumor-bearing mice are significantly reduced. Moreover, the percentage of CD8+T cells and CD4+T cells in the tumor significantly increased, and the percentage of regulatory T cells significantly decreased. The percentage of memory T cells and memory effector T cells in the spleen also significantly increased after treatment, suggesting that the antitumor immunity is activated after treatment. This study provides a new antitumor treatment strategy combining chemotherapy and immunotherapy, which has good application prospect.
Collapse
Affiliation(s)
- Zishuo Guo
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Haocheng Zheng
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Tieshan Wang
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Ning Han
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Haitong Zhang
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jialing Li
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Xuehao Cheng
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jinhong Ye
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Shouying Du
- Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Pengyue Li
- Beijing University of Chinese Medicine, Beijing, 102488, China
| |
Collapse
|
14
|
Törős G, Béni Á, Peles F, Gulyás G, Prokisch J. Comparative Analysis of Freeze-Dried Pleurotus ostreatus Mushroom Powders on Probiotic and Harmful Bacteria and Its Bioactive Compounds. J Fungi (Basel) 2024; 11:1. [PMID: 39852421 PMCID: PMC11766104 DOI: 10.3390/jof11010001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/07/2024] [Accepted: 12/20/2024] [Indexed: 01/26/2025] Open
Abstract
Pleurotus ostreatus (oyster mushroom) holds excellent promise worldwide, bringing several opportunities and augmenting the tool sets used in the biotechnology field, the food industry, and medicine. Our study explores the antimicrobial and probiotic growth stimulation benefits of freeze-dried P. ostreatus powders (OMP-TF, oyster mushroom powder from the total fresh sample; OMP-CSR, oyster mushroom powder from the cooked solid residue; OMP-CL, oyster mushroom powder from the cooked liquid), focusing on their bioactive compounds and associated activities. Our research examined polysaccharide fractions-specifically total glucans and α- and β-glucans-alongside secondary metabolites, including polyphenols and flavonoids, from freeze-dried mushroom powders. Additionally, carbon nanodots (CNDs) were also characterized. The growth inhibition was tested against Escherichia coli and Staphylococcus epidermidis, while the capacity for stimulating probiotic growth was evaluated using Lactobacillus plantarum and Lactobacillus casei. Evidence indicates that OMP-CL and OMP-CSR exhibit significant antimicrobial properties against S. epidermidis Gram-positive bacteria. OMP-CL notably promoted the growth of L. casei. OMP-CL, containing the most significant number of CNDs, has shown to be a valuable source for gut microbiota modulation, with its antimicrobial and probiotic-stimulating efficacy. However, further in vitro and in vivo studies should be performed to explore CNDs and their behavior in different biological systems.
Collapse
Affiliation(s)
- Gréta Törős
- Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary; (G.G.); (J.P.)
- Doctoral School of Animal Husbandry, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary
| | - Áron Béni
- Institute of Agricultural Chemistry and Soil Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary;
| | - Ferenc Peles
- Institute of Food Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary;
| | - Gabriella Gulyás
- Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary; (G.G.); (J.P.)
| | - József Prokisch
- Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, 4032 Debrecen, Hungary; (G.G.); (J.P.)
| |
Collapse
|
15
|
Zhou J, Ren Y, Yu J, Zeng Y, Ren J, Wu Y, Zhang Q, Xiao X. The effect of maternal dietary polyphenol consumption on offspring metabolism. Crit Rev Food Sci Nutr 2024:1-18. [PMID: 39698806 DOI: 10.1080/10408398.2024.2442539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The early intrauterine environment of mothers during pregnancy significantly affects the metabolic health of their offspring. Existing studies suggest that poor maternal nutrition during pregnancy increases the risk of obesity or diabetes in offspring, so it is highly important to intervene during pregnancy to prevent metabolic disorders in mothers and their offspring. Polyphenols with anti-inflammatory and antioxidant properties are found in many foods and have protective effects on obesity, diabetes, cancer, and cardiovascular disease. Furthermore, recent evidence indicates that maternal dietary polyphenols could be a potential therapy for improving pregnancy outcomes and offspring metabolism. In this review, we discuss the studies and mechanisms of different kinds of maternal dietary polyphenols during pregnancy and lactation in improving the metabolism of offspring, analyze the limitations of the current studies, and propose possible directions of further research, which provide new ideas and directions for reducing metabolic diseases in offspring.
Collapse
Affiliation(s)
- Jing Zhou
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yaolin Ren
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jie Yu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan Zeng
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Ren
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yifan Wu
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Qian Zhang
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinhua Xiao
- Key Laboratory of Endocrinology of National Health Commission, Diabetes Research Center of Chinese Academy of Medical Sciences, Department of Endocrinology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Zhou Y, Gong J, Deng X, Shen L, Wu S, Fan H, Liu L. Curcumin and nanodelivery systems: New directions for targeted therapy and diagnosis of breast cancer. Biomed Pharmacother 2024; 180:117404. [PMID: 39307117 DOI: 10.1016/j.biopha.2024.117404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/17/2024] [Accepted: 09/02/2024] [Indexed: 11/14/2024] Open
Abstract
As the global incidence of breast cancer continues to surge, the pursuit of novel, low-toxicity, and highly efficacious therapeutic strategies has emerged as a pivotal research focus. Curcumin (CUR), an active constituent of traditional Chinese medicine (TCM) renowned for its antimicrobial, anti-inflammatory, antioxidant, and antitumor properties, exhibits immense potential in breast cancer therapy. Nevertheless, CUR's poor water solubility, chemical instability, and unfavorable pharmacokinetics have impeded its clinical utilization. To address these challenges, nano-delivery systems have been extensively exploited for CUR administration, enhancing its in vivo stability and bioavailability, and facilitating precise targeting of breast cancer lesions. Therefore, we elaborate on CUR's chemical foundations, drug metabolism, and safety profile, and elucidate its potential mechanisms in breast cancer therapy, encompassing inducing apoptosis and autophagy, blocking cell cycle, inhibiting breast cancer metastasis, regulating tumor microenvironment and reversing chemotherapy resistance. The review primarily emphasizes recent advancements in CUR-based nano-delivery systems for the treatment and diagnosis of breast cancer. Liposomes, nanoparticles (encompassing polymer nanoparticles, solid lipid nanoparticles, mesoporous silica particles, metal/metal oxide nanoparticles, graphene nanomaterials, albumin nanoparticles, etc.), nanogels, and nanomicelles can serve as delivery carriers for CUR, exhibiting promising anti-breast cancer effects in both in vivo and in vitro experiments. Furthermore, nano-CUR can be integrated with fluorescence imaging, magnetic resonance imaging, computed tomography imaging, ultrasound, and other techniques to achieve precise localization and diagnosis of breast cancer masses. While this article has summarized the clinical studies of nano-curcumin, it is noteworthy that the research literature on nano-CUR applied to breast cancer diagnosis and the translation of nano-CUR clinical studies in BC patients remain limited. Therefore, future research should intensify exploration in this direction.
Collapse
Affiliation(s)
- Yao Zhou
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China; Graduate School of Hunan University of Chinese Medicine, Xueshi Road, Changsha, Hunan 410208, China
| | - Jie Gong
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China; Graduate School of Hunan University of Chinese Medicine, Xueshi Road, Changsha, Hunan 410208, China
| | - Xianguang Deng
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China; Graduate School of Hunan University of Chinese Medicine, Xueshi Road, Changsha, Hunan 410208, China
| | - Lele Shen
- Graduate School of Hunan University of Chinese Medicine, Xueshi Road, Changsha, Hunan 410208, China
| | - Shiting Wu
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China
| | - Hongqiao Fan
- Department of Aesthetic Plastic Surgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China.
| | - Lifang Liu
- Department of Galactophore, The First Affiliated Hospital of Hunan University of Chinese Medicine, Shaoshan Road, Changsha, Hunan 410007, China.
| |
Collapse
|
17
|
Pan Y, Zhang H, Zhu L, Tan J, Wang B, Li M. The role of gut microbiota in MP/NP-induced toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124742. [PMID: 39153541 DOI: 10.1016/j.envpol.2024.124742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Microplastics (MPs) and nanoplastics (NPs) are globally recognized as emerging environmental pollutants in various environmental media, posing potential threats to ecosystems and human health. MPs/NPs are unavoidably ingested by humans, mainly through contaminated food and drinks, impairing the gastrointestinal ecology and seriously impacting the human body. The specific role of gut microbiota in the gastrointestinal tract upon MP/NP exposure remains unknown. Given the importance of gut microbiota in metabolism, immunity, and homeostasis, this review aims to enhance our current understanding of the role of gut microbiota in MP/NP-induced toxicity. First, it discusses human exposure to MPs/NPs through the diet and MP/NP-induced adverse effects on the respiratory, digestive, neural, urinary, reproductive, and immune systems. Second, it elucidates the complex interactions between the gut microbiota and MPs/NPs. MPs/NPs can disrupt gut microbiota homeostasis, while the gut microbiota can degrade MPs/NPs. Third, it reveals the role of the gut microbiota in MP/NP-mediated systematic toxicity. MPs/NPs cause direct intestinal toxicity and indirect toxicity in other organs via regulating the gut-brain, gut-liver, and gut-lung axes. Finally, novel approaches such as dietary interventions, prebiotics, probiotics, polyphenols, engineered bacteria, microalgae, and micro/nanorobots are recommended to reduce MP/NP toxicity in humans. Overall, this review provides a theoretical basis for targeting the gut microbiota to study MP/NP toxicity and develop novel strategies for its mitigation.
Collapse
Affiliation(s)
- Yinping Pan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China
| | - Haojie Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China
| | - Liancai Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China.
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological & Chemical engineering, Chongqing University of Education, Chongqing, 400067, PR China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China
| | - Minghui Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, PR China; Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China.
| |
Collapse
|
18
|
Hu Y, Miao Y, Zhang Y, Wang X, Liu X, Zhang W, Deng D. Co-Assembled Binary Polyphenol Natural Products for the Prevention and Treatment of Radiation-Induced Skin Injury. ACS NANO 2024; 18:27557-27569. [PMID: 39329362 DOI: 10.1021/acsnano.4c08508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Radiation therapy, a fundamental treatment for tumors, is often accompanied by radiation-induced skin injury (RISI). Excessive production of reactive oxygen species (ROS) and subsequent inflammation are two key factors in RISI development that will cause skin injury and affect radiotherapy. Herein, the co-assembled binary polyphenol natural products inspired the development of a dual-functional cascade microneedle system for prevention and treatment of RISI. Specifically, epigallocatechin gallate (EGCG) and curcumin (CUR) were co-assembled into nanoparticles (CEPG) by intermolecular interactions and then incorporated with catalase (CAT) to achieve a cascade system in the microneedles (this microneedle system was conducive to penetrate into the epidermal keratinocytes where RISI had the greatest impact). When using microneedles, the tip dissolved rapidly and delivered CEPG and CAT into the dermis, where CEPG NPs were able to respond to ROS and decompose into EGCG and CUR. More importantly, EGCG and CAT formed a cascade that converts superoxide anions into water step-by-step, which can reduce cell damage caused by free radicals in the early stages of radiation for prevention; meanwhile, CUR inhibited inflammatory pathways, achieving the treatment of skin inflammation in the post-radiotherapy period. These explorations broaden the strategy for the application of natural products in RISI.
Collapse
Affiliation(s)
- Yanwei Hu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yuhang Miao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yan Zhang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Xin Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Xin Liu
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Wei Zhang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Dawei Deng
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
19
|
Chen Y, Zhou Q, Jia Z, Cheng N, Zhang S, Chen W, Wang L. Enhancing cancer immunotherapy: Nanotechnology-mediated immunotherapy overcoming immunosuppression. Acta Pharm Sin B 2024; 14:3834-3854. [PMID: 39309502 PMCID: PMC11413684 DOI: 10.1016/j.apsb.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/12/2024] [Accepted: 05/24/2024] [Indexed: 09/25/2024] Open
Abstract
Immunotherapy is an important cancer treatment method that offers hope for curing cancer patients. While immunotherapy has achieved initial success, a major obstacle to its widespread adoption is the inability to benefit the majority of patients. The success or failure of immunotherapy is closely linked to the tumor's immune microenvironment. Recently, there has been significant attention on strategies to regulate the tumor immune microenvironment in order to stimulate anti-tumor immune responses in cancer immunotherapy. The distinctive physical properties and design flexibility of nanomedicines have been extensively utilized to target immune cells (including tumor-associated macrophages (TAMs), T cells, myeloid-derived suppressor cells (MDSCs), and tumor-associated fibroblasts (TAFs)), offering promising advancements in cancer immunotherapy. In this article, we have reviewed treatment strategies aimed at targeting various immune cells to regulate the tumor immune microenvironment. The focus is on cancer immunotherapy models that are based on nanomedicines, with the goal of inducing or enhancing anti-tumor immune responses to improve immunotherapy. It is worth noting that combining cancer immunotherapy with other treatments, such as chemotherapy, radiotherapy, and photodynamic therapy, can maximize the therapeutic effects. Finally, we have identified the challenges that nanotechnology-mediated immunotherapy needs to overcome in order to design more effective nanosystems.
Collapse
Affiliation(s)
- Yunna Chen
- Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Qianqian Zhou
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Zongfang Jia
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Nuo Cheng
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Sheng Zhang
- Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei 230012, China
| | - Weidong Chen
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| | - Lei Wang
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China
| |
Collapse
|
20
|
Rana A, Matiyani M, Negi PB, Tiwari H, Garwal K, Basak S, Sahoo NG. Polyvinylpyrrolidone‐functionalized graphene oxide as a nanocarrier for dual‐drug delivery of quercetin and curcumin against HeLa cancer cells. JOURNAL OF VINYL AND ADDITIVE TECHNOLOGY 2024; 30:1241-1253. [DOI: 10.1002/vnl.22115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/30/2024] [Indexed: 01/06/2025]
Abstract
AbstractThis study is to develop a nanocarrier based on polyvinylpyrrolidone (PVP)‐functionalized graphene oxide (GO–PVP), loaded with both curcumin (CUR) and quercetin (QSR), and then its performance compared with nanocarriers carrying the drugs separately. The study also aimed to investigate the cytotoxic effects of these nanocarriers on HeLa cancer cells. To achieve this, GO was synthesized using a modified version of Hummer's method and subsequently functionalized with PVP. Drug loading onto the GO and GO–PVP nanocarriers was achieved through hydrophobic interactions. Furthermore, the ability of the nanocarriers to accommodate a single drug or a combination of drugs was examined. In our study, combined system shows higher drug loading, that is, 28.1% of QSR and 24.34% of CUR onto GO–PVP–QSR–CUR nanocarrier in comparison to single drug nanocarrier systems GO–PVP–QSR and GO–PVP–CUR which loaded 22.5% of QSR and 18.73% of CUR, respectively. Notably, the synthesized nanocarrier exhibited a pH‐sensitive drug release pattern. These results collectively suggest that GO–PVP–CUR–QSR displayed significantly higher cytotoxicity against HeLa cancer cells compared to both single‐drug nanocarrier systems at the specified concentrations. In addition, future pre‐clinical and clinical studies to evaluate the safety and efficacy of GO–PVP–CUR–QSR for cancer treatment are strongly recommended.Highlights
Developed nanocarrier based on polyvinylpyrrolidone functionalized GO (GO–PVP).
The GO–PVP nanocarrier was loaded with both curcumin (CUR) and quercetin (QSR).
GO–PVP displays a higher loading capacity for both QSR and CUR compared to GO.
QSR‐ and CUR‐loaded GO–PVP nanocarriers exhibited higher cytotoxic effects.
Collapse
Affiliation(s)
- Anita Rana
- Prof. Rajendra Singh Nanoscience and Nanotechnology Centre, Department of Chemistry, D.S.B. Campus Kumaun University Nainital India
- Institute of Macromolecular Chemistry Academy of Science of the Czech Republic Prague 6 Czech Republic
| | - Monika Matiyani
- Prof. Rajendra Singh Nanoscience and Nanotechnology Centre, Department of Chemistry, D.S.B. Campus Kumaun University Nainital India
- Institute of Macromolecular Chemistry Academy of Science of the Czech Republic Prague 6 Czech Republic
| | - Pushpa Bhakuni Negi
- Department of Chemistry Graphic Era Hill University, Bhimtal Campus Nainital India
| | - Himani Tiwari
- Prof. Rajendra Singh Nanoscience and Nanotechnology Centre, Department of Chemistry, D.S.B. Campus Kumaun University Nainital India
| | - Kamal Garwal
- Prof. Rajendra Singh Nanoscience and Nanotechnology Centre, Department of Chemistry, D.S.B. Campus Kumaun University Nainital India
| | - Souvik Basak
- Department of Pharmaceutical Chemistry Dr. B.C. Roy College of Pharmacy & Allied Health Sciences Durgapur India
| | - Nanda Gopal Sahoo
- Prof. Rajendra Singh Nanoscience and Nanotechnology Centre, Department of Chemistry, D.S.B. Campus Kumaun University Nainital India
| |
Collapse
|
21
|
Yuan D, Qin L, Niu Z, Zhou F, Zhao M. Maintained particulate integrity of soy protein nanoparticles during gastrointestinal digestion via genipin crosslinking enhancing stability and bioavailability of curcumin. Int J Biol Macromol 2024; 274:133213. [PMID: 38889834 DOI: 10.1016/j.ijbiomac.2024.133213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/20/2024]
Abstract
Poor stability during gastrointestinal digestion is a major challenge for the applications of protein-based nanoparticles as oral delivery systems. In this work, genipin was used to crosslink the partially enzymatic hydrolyzed soy protein nanoparticles, aiming to improve their performance in gastrointestinal tract as delivery carrier. Results showed that the obtained genipin-crosslinked soy protein nanoparticles (GSPNPs) were still spherically monodisperse with a diameter around 60 nm. Encapsulation with GSPNPs significantly improved the solubility of curcumin (Cur) and its stability against UV light as well as long-term storage. Compared to those un-crosslinked nanoparticles, particles crosslinked by genipin had a more compact structure less sensitive to ionic effect and digestive enzymes, showing enhanced digestion stability. The well-maintained nanoparticulate structure of GSPNPs further contributed to the enhanced bioaccessibility and facilitated absorption by epithelial cells. Furthermore, in vivo experiment on rats showed that Cur encapsulated in GSPNPs exhibited a slowed down and sustained absorption manner with an 8.11-fold improvement in its bioavailability. These suggested that GSPNPs could be a promising nanocarrier to enhance the bioavailability of functional factors.
Collapse
Affiliation(s)
- Dan Yuan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China
| | - Ling Qin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhicheng Niu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China
| | - Feibai Zhou
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China.
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510640, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.
| |
Collapse
|
22
|
Yashmi F, Fakhri S, Shiri Varnamkhasti B, Amin MN, Khirehgesh MR, Mohammadi-Noori E, Hosseini M, Khan H. Defining the mechanisms behind the hepatoprotective properties of curcumin. Arch Toxicol 2024; 98:2331-2351. [PMID: 38837048 DOI: 10.1007/s00204-024-03758-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/09/2024] [Indexed: 06/06/2024]
Abstract
As a critical cause of human dysfunctionality, hepatic failure leads to approximately two million deaths per year and is on the rise. Considering multiple inflammatory, oxidative, and apoptotic mechanisms behind hepatotoxicity, it urges the need for finding novel multi-targeting agents. Curcumin is a phenolic compound with anti-inflammatory, antioxidant, and anti-apoptotic roles. Curcumin possesses auspicious health benefits and protects against several diseases with exceptional safety and tolerability. This review focused on the hepatoprotective mechanisms of curcumin. The need to develop novel delivery systems of curcumin (e.g., nanoparticles, self-micro emulsifying, lipid-based colloids, solid lipid nanoparticles, cyclodextrin inclusion, phospholipid complexes, and nanoemulsions) is also considered.
Collapse
Affiliation(s)
- Farinam Yashmi
- Department of Pharmacy, Acibadem University, Istanbul, Turkey
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Behrang Shiri Varnamkhasti
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammed Namiq Amin
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Khirehgesh
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Mohammadi-Noori
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahsa Hosseini
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| |
Collapse
|
23
|
Zhang Z, Chang R, Yue Q, Liu B, Li Z, Yuan Y, Liang S, Li Y. Nanoparticle delivery systems of functional substances for precision nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 112:51-88. [PMID: 39218508 DOI: 10.1016/bs.afnr.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Foodborne functional substances have received much attention for their functional benefits in health and disease. However, these substances are easily affected by the adverse environment during production, transportation, or storage. They will also be damaged by the gastric environment and limited by the mucosal barrier after entering the human body, thus affecting the bioavailability of functional substances in the body. The construction of nanoparticle delivery systems is helpful to protect the biological activity of functional substances and improve their solubility, stability, and absorption of substances. Responsive delivery systems help control the release of functional substances in specific environments and targeted sites to achieve nutritional intervention, disease prevention, and treatment. In this chapter, the main types of foodborne functional substances and their commonly used delivery systems were reviewed, and the application of delivery systems in precision nutrition was described from the aspects of environmental stimuli-responsive delivery systems, site-specific delivery systems, and disease-targeted delivery systems.
Collapse
Affiliation(s)
- Ziyi Zhang
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Ruxin Chang
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Qing Yue
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Bin Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, P.R. China
| | - Zekun Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Yu Yuan
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Shuang Liang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, P.R. China
| | - Yuan Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China.
| |
Collapse
|
24
|
Sanmugam A, Sellappan LK, Sridharan A, Manoharan S, Sairam AB, Almansour AI, Veerasundaram S, Kim HS, Vikraman D. Chitosan-Integrated Curcumin-Graphene Oxide/Copper Oxide Hybrid Nanocomposites for Antibacterial and Cytotoxicity Applications. Antibiotics (Basel) 2024; 13:620. [PMID: 39061302 PMCID: PMC11273410 DOI: 10.3390/antibiotics13070620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
This study deals with the facile synthesis of a single-pot chemical technique for chitosan-curcumin (CUR)-based hybrid nanocomposites with nanostructured graphene oxide (GO) and copper oxide (CuO) as the antibacterial and cytotoxic drugs. The physicochemical properties of synthesized hybrid nanocomposites such as CS-GO, CS-CuO, CS-CUR-GO, and CS-CUR-GO/CuO were confirmed with various advanced tools. Moreover, the in vitro drug release profile of the CS-CUR-GO/CuO nanocomposite exhibited sustained and controlled release during different time intervals. Also, the antibacterial activity of the CS-CUR-GO/CuO hybrid nanocomposite presented the maximum bactericidal effect against Staphylococcus aureus and Escherichia coli pathogens. The hybrid nanocomposites revealed improved cytotoxicity behaviour against cultured mouse fibroblast cells (L929) via cell adhesion, DNA damage, and proliferation. Thus, the chitosan-based hybrid nanocomposites offer rich surface area, biocompatibility, high oxidative stress, and bacterial cell disruption functionalities as a potential candidate for antibacterial and cytotoxicity applications.
Collapse
Affiliation(s)
- Anandhavelu Sanmugam
- Department of Applied Chemistry, Sri Venkateswara College of Engineering, Sriperumbudur 602117, India; (A.S.); (A.B.S.)
| | - Logesh Kumar Sellappan
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, India;
| | | | - Swathy Manoharan
- Department of Biomedical Engineering, KPR Institute of Engineering and Technology, Coimbatore 641407, India;
| | - Ananda Babu Sairam
- Department of Applied Chemistry, Sri Venkateswara College of Engineering, Sriperumbudur 602117, India; (A.S.); (A.B.S.)
| | - Abdulrahman I. Almansour
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Subha Veerasundaram
- Department of Chemistry, R.M.D. Engineering College, Tiruvallur 601206, India;
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea;
| | - Dhanasekaran Vikraman
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea;
| |
Collapse
|
25
|
Liu M, Sun Y, Zhou Y, Chen Y, Yu M, Li L, Yan L, Yuan Y, Chen J, Zhou K, Shan H, Peng X. A Novel Coacervate Embolic Agent for Tumor Chemoembolization. Adv Healthc Mater 2024; 13:e2304488. [PMID: 38588047 DOI: 10.1002/adhm.202304488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/23/2024] [Indexed: 04/10/2024]
Abstract
Transcatheter arterial chemoembolization (TACE) has proven effective in blocking tumor-supplied arteries and delivering localized chemotherapeutic treatment to combat tumors. However, traditional embolic TACE agents exhibit certain limitations, including insufficient chemotherapeutic drug-loading and sustained-release capabilities, non-biodegradability, susceptibility to aggregation, and unstable mechanical properties. This study introduces a novel approach to address these shortcomings by utilizing a complex coacervate as a liquid embolic agent for tumor chemoembolization. By mixing oppositely charged quaternized chitosan (QCS) and gum arabic (GA), a QCS/GA polymer complex coacervate with shear-thinning property is obtained. Furthermore, the incorporation of the contrast agent Iohexol (I) and the chemotherapeutic doxorubicin (DOX) into the coacervate leads to the development of an X-ray-opaque QCS/GA/I/DOX coacervate embolic agent capable of carrying drugs. This innovative formulation effectively embolizes the renal arteries without recanalization. More importantly, the QCS/GA/I/DOX coacervate can successfully embolize the supplying arteries of the VX2 tumors in rabbit ear and liver. Coacervates can locally release DOX to enhance its therapeutic effects, resulting in excellent antitumor efficacy. This coacervate embolic agent exhibits substantial potential for tumor chemoembolization due to its shear-thinning performance, excellent drug-loading and sustained-release capabilities, good biocompatibility, thrombogenicity, biodegradability, safe and effective embolic performance, and user-friendly application.
Collapse
Affiliation(s)
- Menghui Liu
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
- Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Yang Sun
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
- Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Yitong Zhou
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Yanlv Chen
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Meng Yu
- Department of Neonatology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Liujun Li
- Department of Ultrasound, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Leye Yan
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
- Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Yajun Yuan
- Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Jiayao Chen
- Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Kaixiang Zhou
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai, 519087, China
| | - Hong Shan
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
- Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| | - Xin Peng
- Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, China
| |
Collapse
|
26
|
Zhang Y, Zhang Y, Ding R, Zhang K, Guo H, Lin Y. Self-Assembled Nanocarrier Delivery Systems for Bioactive Compounds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310838. [PMID: 38214694 DOI: 10.1002/smll.202310838] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/25/2023] [Indexed: 01/13/2024]
Abstract
Although bioactive compounds (BCs) have many important functions, their applications are greatly limited due to their own defects. The development of nanocarriers (NCs) technology has gradually overcome the defects of BCs. NCs are equally important as BCs to some extent. Self-assembly (SA) methods to build NCs have many advantages than chemical methods, and SA has significant impact on the structure and function of NCs. However, the relationship among SA mechanism, structure, and function has not been given enough attention. Therefore, from the perspective of bottom-up building mechanism, the concept of SA-structure-function of NCs is emphasized to promote the development of SA-based NCs. First, the conditions and forces for occurring SA are introduced, and then the SA basis and molecular mechanism of protein, polysaccharide, and lipid are summarized. Then, varieties of the structures formed based on SA are introduced in detail. Finally, facing the defects of BCs and how to be well solved by NCs are also elaborated. This review attempts to describe the great significance of constructing artificial NCs to deliver BCs from the aspects of SA-structure-function, so as to promote the development of SA-based NCs and the wide application of BCs.
Collapse
Affiliation(s)
- Yafei Zhang
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yuning Zhang
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Rui Ding
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100089, China
| | - Kai Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Huiyuan Guo
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100089, China
| | - Yingying Lin
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100089, China
- Food Laboratory of Zhongyuan, Luohe, 462300, China
| |
Collapse
|
27
|
Tao H, Shen L. RESEARCH PROGRESS OF CURCUMIN IN THE TREATMENT OF SEPSIS. Shock 2024; 61:805-816. [PMID: 38664750 DOI: 10.1097/shk.0000000000002342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
ABSTRACT Sepsis is a life-threatening organ dysfunction caused by an unregulated host response to infection. It is an important clinical problem in acute and critical care. In recent years, with the increasing research on the epidemiology, and pathogenesis, diagnostic and therapeutic strategies of sepsis, great progress has been made in clinical practice, but there is still a lack of specific and effective treatment plans. Curcuma longa , a leafy plant of the ginger family, which is a common and safe compound, has multiple pharmacological actions, including, but not limited to, scavenging of oxygen free radicals, attenuation of inflammatory response, and antifibrotic effects. Great progress has been made in the study of sepsis-associated rodent models and in vitro cellular models. However, the evidence of curcumin in the clinical management practice of sepsis is still insufficient; hence, it is very important to systematically summarize the study of curcumin and sepsis pathogenesis.
Collapse
|
28
|
Zhuang D, Wang Y, Wang S, Li R, Ahmad HN, Zhu J. Enhanced environmental stress resistance and functional properties of the curcumin-shellac nano-delivery system: Anti-flocculation of poly-γ-glutamic acid. Int J Biol Macromol 2024; 268:131607. [PMID: 38631573 DOI: 10.1016/j.ijbiomac.2024.131607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
Curcumin was widely designed as nanoparticles to remove application restrictions. The occurrence of flocculation is a primary factor limiting the application of the curcumin nano-delivery system. To enhance the environmental stress resistance and functional properties of shellac-curcumin nanoparticles (S-Cur-NPs), γ-polyglutamic acid (γ-PGA) was utilized as an anti-flocculant. The encapsulation efficiency and loading capacity of S-Cur-NPs were also improved with γ-PGA incorporation. FTIR and XRD analysis confirmed the presence of amorphous characteristics in S-Cur-NPs and the combination of γ-PGA and shellac was driven by hydrogen bonding. The hydrophilic, thermodynamic, and surface potential of S-Cur-NPs was improved by the incorporation of γ-PGA. This contribution of γ-PGA on S-Cur-NPs effectively mitigated the flocculation occurrence during heating, storage, and in-vitro digestive treatment. Furthermore, it was revealed that γ-PGA enhanced the antibacterial and antioxidant properties of S-Cur-NPs and effectively protected the functional activity against heating, storage, and in-vitro digestion. Release studies conducted in simulated gastrointestinal fluids revealed that S-Cur-NPs have targeted intestinal release properties. Overall, the design of shellac with γ-PGA was a promising strategy to relieve the application stress of shellac and curcumin in the food industry.
Collapse
Affiliation(s)
- Di Zhuang
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yafang Wang
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shancan Wang
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui Li
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hafiz Nabeel Ahmad
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jie Zhu
- Laboratory of Agricultural and Food Biophysics, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
29
|
Wang H, Zheng C, Tian F, Xiao Z, Sun Z, Lu L, Dai W, Zhang Q, Mei X. Improving the Dissolution Rate and Bioavailability of Curcumin via Co-Crystallization. Pharmaceuticals (Basel) 2024; 17:489. [PMID: 38675449 PMCID: PMC11053631 DOI: 10.3390/ph17040489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Curcumin (CUR) is a natural polyphenolic compound with various pharmacological activities. Low water solubility and bioavailability limit its clinical application. In this work, to improve the bioavailability of CUR, we prepared a new co-crystal of curcumin and L-carnitine (CUR-L-CN) via liquid-assisted grinding. Both CUR and L-CN have high safe dosages and have a wide range of applications in liver protection and animal nutrition. The co-crystal was fully characterized and the crystal structure was disclosed. Dissolution experiments were conducted in simulated gastric fluids (SGF) and simulated intestinal fluids (SIF). CUR-L-CN exhibited significantly faster dissolution rates than those of pure CUR. Hirshfeld surface analysis and wettability testing indicate that CUR-L-CN has a higher affinity for water and thus exhibits faster dissolution rates. Pharmacokinetic studies were performed in rats and the results showed that compared to pure CUR, CUR-L-CN exhibited 6.3-times-higher AUC0-t and 10.7-times-higher Cmax.
Collapse
Affiliation(s)
- Hao Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; (H.W.); (F.T.); (Z.X.)
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (C.Z.); (Z.S.); (L.L.); (W.D.)
| | - Chenxuan Zheng
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (C.Z.); (Z.S.); (L.L.); (W.D.)
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Fanyu Tian
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; (H.W.); (F.T.); (Z.X.)
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (C.Z.); (Z.S.); (L.L.); (W.D.)
| | - Ziyao Xiao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; (H.W.); (F.T.); (Z.X.)
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (C.Z.); (Z.S.); (L.L.); (W.D.)
| | - Zhixiong Sun
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (C.Z.); (Z.S.); (L.L.); (W.D.)
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Liye Lu
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (C.Z.); (Z.S.); (L.L.); (W.D.)
| | - Wenjuan Dai
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (C.Z.); (Z.S.); (L.L.); (W.D.)
| | - Qi Zhang
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (C.Z.); (Z.S.); (L.L.); (W.D.)
| | - Xuefeng Mei
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China; (H.W.); (F.T.); (Z.X.)
- Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (C.Z.); (Z.S.); (L.L.); (W.D.)
| |
Collapse
|
30
|
Jin J, Ye X, Huang Z, Jiang S, Lin D. Curcumin@Fe/Tannic Acid Complex Nanoparticles for Inflammatory Bowel Disease Treatment. ACS OMEGA 2024; 9:14316-14322. [PMID: 38559927 PMCID: PMC10976392 DOI: 10.1021/acsomega.3c10214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/25/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024]
Abstract
Inflammatory bowel disease (IBD) is a serious public health issue because of its chronic and incurable nature. Common IBD drugs have limited efficacy and produce adverse effects, leading to an urgent need to develop new drugs and drug delivery systems. Curcumin (Cur) is a natural and nontoxic drug that is increasingly used in the treatment of IBD owing to its anti-inflammatory and antioxidant effects. Metal-polyphenol networks constructed from metal ions and polyphenols exhibit biological functionality while acting as an adhesive nanomaterial to encapsulate nano-Cur, thereby improving its solubility and drug release behavior. In this study, we prepared a Cur@Fe&TA nanodrug delivery system by constructing an Fe3+/tannic acid (TA) metal-polyphenol network with encapsulated Cur. The Cur@Fe&TA nanodrug exhibited good stability, drug release behavior, and biocompatibility. Based on the anti-inflammatory and antioxidant effects of Cur@Fe&TA, the gastrointestinal cytopathology in an IBD mouse model was effectively improved. The proposed Cur@Fe&TA nanomedicine delivery system has promising application and research value for the treatment of IBD by regulating levels of antioxidants and inflammatory cytokines.
Collapse
Affiliation(s)
- Jiman Jin
- The Third Affiliated Hospital
of Wenzhou Medical University, Wenzhou 325200, China
| | - Xiuzhi Ye
- The Third Affiliated Hospital
of Wenzhou Medical University, Wenzhou 325200, China
| | - Zhenfeng Huang
- The Third Affiliated Hospital
of Wenzhou Medical University, Wenzhou 325200, China
| | - Shicui Jiang
- The Third Affiliated Hospital
of Wenzhou Medical University, Wenzhou 325200, China
| | - Dini Lin
- The Third Affiliated Hospital
of Wenzhou Medical University, Wenzhou 325200, China
| |
Collapse
|
31
|
Du H, Yang J, Li M, Xia Y, Li Y, Zhu J, Zhang L, Tao J. Microneedle-assisted percutaneous delivery of methotrexate-loaded nanoparticles enabling sustained anti-inflammatory effects in psoriasis therapy. J Mater Chem B 2024; 12:2618-2627. [PMID: 38376394 DOI: 10.1039/d3tb02643d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Methotrexate (MTX) is one of the first-line drugs used for the treatment of moderate to severe psoriasis. However, low bioavailability and systemic side effects of traditional oral and injectable MTX greatly limit its clinical application. Delivering MTX using dissolving microneedles (MNs) into psoriasis-like skin lesion could improve the in situ therapeutic effects with higher bioavailability and less side effects. Here, we propose a novel therapeutic approach for psoriasis involving MN-assisted percutaneous delivery of chitosan-coated hollow mesoporous silica nanoparticles containing MTX (MTX@HMSN/CS). The MTX@HMSN/CS-loaded MNs were strong enough to successfully penetrate the psoriasiform thickened epidermis, allowing MTX@HMSN/CS to be accurately delivered to the site of skin lesion following the rapid dissolution of MNs. MTX was then released continuously from HMSN/CS for at least one week to maintain effective therapeutic drug concentration for skin lesion with long-term anti-proliferative and anti-inflammatory effects. Incubation with MTX@HMSN/CS not only inhibited the proliferation of human immortalized keratinocytes (HaCaT cells), but also significantly reduced the expression of proinflammatory cytokines and chemokines. In addition, MTX@HMSN/CS-loaded MNs showed better efficacy in alleviating psoriasis-like skin inflammation than MTX-loaded MNs at the same dose. Compared to psoriasiform mice treated with 15.8 μg MTX-loaded MNs every day, 47.4 μg MTX@HMSN/CS-loaded MNs reduce the frequency of treatment to once every 3 days and achieve comparable amelioration. Therefore, MTX@HMSN/CS loaded MNs are a promising treatment strategy for psoriasis due to their durability, efficacy, convenience, and safety in relieving psoriasis-like skin inflammation.
Collapse
Affiliation(s)
- Hongyao Du
- Hubei Engineering Research Center for Skin Repair and Theranostics, Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China.
| | - Jing Yang
- Hubei Engineering Research Center for Skin Repair and Theranostics, Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China.
| | - Mo Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (HUST), Ministry of Education, School of Chemistry and Chemical Engineering, HUST, Wuhan 430074, China.
| | - Yuting Xia
- Hubei Engineering Research Center for Skin Repair and Theranostics, Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China.
| | - Yan Li
- Hubei Engineering Research Center for Skin Repair and Theranostics, Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China.
| | - Jintao Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (HUST), Ministry of Education, School of Chemistry and Chemical Engineering, HUST, Wuhan 430074, China.
| | - Lianbin Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (HUST), Ministry of Education, School of Chemistry and Chemical Engineering, HUST, Wuhan 430074, China.
| | - Juan Tao
- Hubei Engineering Research Center for Skin Repair and Theranostics, Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China.
| |
Collapse
|
32
|
Wang L, Mao J, Zhou Q, Deng Q, Zheng L, Shi J. A curcumin oral delivery system based on sodium caseinate and carboxymethylpachymaran nanocomposites. Int J Biol Macromol 2023; 253:126698. [PMID: 37678690 DOI: 10.1016/j.ijbiomac.2023.126698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/09/2023]
Abstract
The food industry has paid lots of attentions to curcumin because of its potential bioactive qualities. However, its use is severely constrained by its low bioavailability, stability and water solubility. Herein, we created sodium caseinate and carboxymethylpachymaran (CMP) nanoparticles (SMCNPs) that were loaded with curcumin. The composite nanoparticles were spherical, as characterized by SEM and TEM, the fluorescence spectroscopy, FTIR and XRD research revealed that hydrogen bonding, hydrophobic interaction and electrostatic interaction were the main drivers behind the creation of the nanoparticles. The SMCNPs exhibited lower particle size, greater dispersion and higher encapsulation rate when the mass ratio of sodium caseinate to CMP was 3:5 (particle size of 166.8 nm, PDI of 0.15, and encapsulation efficiency of 88.07 %). The composite nanoparticles had good antioxidant activity, physical stability and sustained release effect on intestinal tract during the in vitro simulation experiments, successfully preventing the early release of curcumin into gastric fluid. Finally, cytotoxicity studies told that the prepared composite nanoparticles have good biocompatibility and can inhibit the growth of tumor cells (HT-29). In conclusion, using CMP and sodium caseinate as carriers in this study may open up a fresh, environmentally friendly, and long-lasting way to construct a bioactive material delivery system.
Collapse
Affiliation(s)
- Lan Wang
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jin Mao
- Key Laboratory of Biology and Genetic Improvement of Oil Crop, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Qi Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crop, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Qianchun Deng
- Key Laboratory of Biology and Genetic Improvement of Oil Crop, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Lei Zheng
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jie Shi
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
33
|
Kushram P, Majumdar U, Bose S. Hydroxyapatite coated titanium with curcumin and epigallocatechin gallate for orthopedic and dental applications. BIOMATERIALS ADVANCES 2023; 155:213667. [PMID: 37979438 PMCID: PMC11132588 DOI: 10.1016/j.bioadv.2023.213667] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 11/20/2023]
Abstract
Titanium and its alloy are clinically used as an implant material for load-bearing applications to treat bone defects. However, the lack of biological interaction between bone tissue and implant and the risk of infection are still critical challenges in clinical orthopedics. In the current work, we have developed a novel approach by first 1) modifying the implant surface using hydroxyapatite (HA) coating to enhance bioactivity and 2) integrating curcumin and epigallocatechin gallate (EGCG) in the coating that would induce chemopreventive and osteogenic potential and impart antibacterial properties to the implant. The study shows that curcumin and EGCG exhibit controlled and sustained release profiles in acidic and physiological environments. Curcumin and EGCG also show in vitro cytotoxicity toward osteosarcoma cells after 11 days, and the dual system shows a ~94 % reduction in bacterial growth, indicating their in vitro chemopreventive potential and antibacterial efficacy. The release of both curcumin and EGCG was found to be compatible with osteoblast cells and further promotes their growth. It shows a 3-fold enhancement in cellular viability in the dual drug-loaded implant compared to the untreated samples. These findings suggest that multifunctional HA-coated Ti6Al4V implants integrated with curcumin and EGCG could be a promising strategy for osteosarcoma inhibition and osteoblast cell growth while preventing infection.
Collapse
Affiliation(s)
- Priya Kushram
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Ujjayan Majumdar
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States.
| |
Collapse
|
34
|
Kalinova R, Mladenova K, Petrova S, Doumanov J, Dimitrov I. Solvent-Free Synthesis of Multifunctional Block Copolymer and Formation of DNA and Drug Nanocarriers. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2936. [PMID: 37999289 PMCID: PMC10675335 DOI: 10.3390/nano13222936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/25/2023]
Abstract
The synthesis of well-defined multifunctional polymers is of great importance for the development of complex materials for biomedical applications. In the current work, novel and multi-amino-functional diblock copolymer for potential gene and drug delivery applications was successfully synthesized. A highly efficient one-step and quantitative modification of an alkyne-functional polycarbonate-based precursor was performed, yielding double hydrophilic block copolymer with densely grafted primary amine side groups. The obtained positively charged block copolymer co-associated with DNA, forming stable and biocompatible nanosized polyplexes. Furthermore, polyion complex (PIC) micelles with tunable surface charge and decorated with cell targeting moieties were obtained as a result of direct mixing in aqueous media of the multi-amino-functional block copolymer and a previously synthesized oppositely charged block copolymer bearing disaccharide end-group. The obtained well-defined nanosized PIC-micelles were loaded with the hydrophobic drug curcumin. Both types of nanoaggregates (polyplexes and PIC-micelles) were physico-chemically characterized. Moreover, initial in vitro evaluations were performed to assess the nanocarriers' potential for biomedical applications.
Collapse
Affiliation(s)
- Radostina Kalinova
- Institute of Polymers, Bulgarian Academy of Sciences, Academician Georgi Bonchev St., bl. 103-A, 1113 Sofia, Bulgaria
| | - Kirilka Mladenova
- Department of Biochemistry, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (K.M.); (S.P.); (J.D.)
| | - Svetla Petrova
- Department of Biochemistry, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (K.M.); (S.P.); (J.D.)
| | - Jordan Doumanov
- Department of Biochemistry, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (K.M.); (S.P.); (J.D.)
| | - Ivaylo Dimitrov
- Institute of Polymers, Bulgarian Academy of Sciences, Academician Georgi Bonchev St., bl. 103-A, 1113 Sofia, Bulgaria
| |
Collapse
|
35
|
Bērziņa L, Mieriņa I. Antiradical and Antioxidant Activity of Compounds Containing 1,3-Dicarbonyl Moiety: An Overview. Molecules 2023; 28:6203. [PMID: 37687032 PMCID: PMC10488980 DOI: 10.3390/molecules28176203] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/12/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Free radicals and oxidants may cause various damages both to the lifeworld and different products. A typical solution for the prophylaxis of oxidation-caused conditions is the usage of various antioxidants. Among them, various classes are found-polyphenols, conjugated polyalkenes, and some sulfur and nitrogen derivatives. Regarding the active site in the molecules, a widely discussed group of compounds are 1,3-dicarbonyl compounds. Among them are natural (e.g., curcumin and pulvinic acids) and synthetic (e.g., 4-hydroxy coumarins, substituted Meldrum's acids) compounds. Herein, information about various compounds containing the 1,3-dicarbonyl moiety is covered, and their antiradical and antioxidant activity, depending on the structure, is discussed.
Collapse
Affiliation(s)
| | - Inese Mieriņa
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV-1048 Riga, Latvia;
| |
Collapse
|