1
|
Liu X, Niu S, Yang B, Liu J, Niu L, Wang X, Song D, Bi S. Fabrication of BSA-protected AgNPs modified MIL-53(Al) as SERS substrate for trace determination of diquat and dipterex. Talanta 2025; 292:128002. [PMID: 40154046 DOI: 10.1016/j.talanta.2025.128002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
Ultrasensitive Surface-enhanced Raman spectroscopy (SERS) method for the detection of diquat/dipterex was established using bovine serum albumin (BSA)-protected silver nanoparticles (AgNPs) modified MIL-53(Al) (named as BSA/MIL-53(Al)/AgNPs). Compared with unmodified AgNPs, BSA/MIL-53(Al)/AgNPs significantly enhanced the Raman signals of diquat and dipterex and the enhancement factors (EFs) were 1.58 × 107 and 2.34 × 107, respectively. The TEM, XRD, TGA, XPS, UV-vis and FT-IR were utilized to characterize BSA/MIL-53(Al)/AgNPs and the binding of the substrate with diquat/dipterex. The optimal measurement conditions were investigated in detail by single factor experiment and response surface model. The impacts of common pesticides and coexisting substances on the determination of diquat/dipterex were studied. Under optimum conditions, linear calibration curves for detecting diquat/dipterex were established with a limit of detection (LOD) of 0.17/0.89 pmol L-1 (3S0/S). The SERS approaches were used to detect diquat and dipterex in several fruits and vegetables. The recovery was 97.10 %-104.82 % with the relative standard deviation (RSD) of 1.04 %-4.15 % (n = 5).
Collapse
Affiliation(s)
- Xin Liu
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Shiyue Niu
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Bin Yang
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Jia Liu
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Liqian Niu
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Xian Wang
- College of Chemistry, Changchun Normal University, Changchun, 130032, China
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Shuyun Bi
- College of Chemistry, Changchun Normal University, Changchun, 130032, China.
| |
Collapse
|
2
|
Zhu K, Wang J, Wang Z, Chen Q, Song J, Chen X. Ultrasound-Activated Theranostic Materials and Their Bioapplications. Angew Chem Int Ed Engl 2025; 64:e202422278. [PMID: 40091509 DOI: 10.1002/anie.202422278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/01/2025] [Accepted: 03/16/2025] [Indexed: 03/19/2025]
Abstract
Ultrasound (US) is a promising external excitation modality for bioapplications, offering significant advantages over X-rays or lasers due to its low cost, high biosafety, and ideal tissue penetration depth. US-activated theranostic materials, comprising organic, inorganic, and hybrid-based compounds, hold particular value in synergistic cancer therapeutic and diagnostic applications. These materials exhibit excellent imaging properties, high drug delivery and release efficiency, and enhanced reactive oxygen species (ROS) production, making them suitable for clinical diagnostic imaging and therapeutic interventions. This review summarizes recent research on the design, performance, and optimization of US-mediated molecules/nanosystems for a wide range of biomedical applications. Additionally, the multifunctional use of these sonosensitizers in imaging, drug delivery, and sonodynamic therapy, especially in combination with other treatments, could pave the way for innovative strategies in disease therapy. Finally, an overview of this field's challenges and potential future directions is provided, highlighting pathways to promote clinical translation and application.
Collapse
Affiliation(s)
- Kang Zhu
- State Key Laboratory of Chemical Resource Engineering, Cellege of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Jimei Wang
- State Key Laboratory of Chemical Resource Engineering, Cellege of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Zhao Wang
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250000, P.R. China
| | - Qing Chen
- State Key Laboratory of Chemical Resource Engineering, Cellege of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, Cellege of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Xiaoyuan Chen
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore, 138667, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, Lower Kent Ridge Road, 4 Science Drive 2, Singapore, 117544, Singapore
| |
Collapse
|
3
|
Du Q, Jiang H, Wu D, Song C, Hu W, Lu Q, Sun C, Liu J, Wu G, Wang S. Radiation-Activated Cobalt-Based Zeolite Imidazolate Frameworks for Tumor Multitherapy. Biomater Res 2025; 29:0164. [PMID: 40236956 PMCID: PMC11997308 DOI: 10.34133/bmr.0164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 02/04/2025] [Accepted: 02/16/2025] [Indexed: 04/17/2025] Open
Abstract
Radiation dynamic therapy (RDT) is known to induce cancer apoptosis and death with minimal side effects and high accuracy. However, low efficiency of radiation sensitization and persistent hypoxic environment in tumors pose marked challenges for successful RDT. To address these challenges, a novel biodegradable drug delivery system was developed, using quercetin and sorafenib-loaded ZIF67 nanoparticles (QSZP NPs) coated with polydopamine. This system effectively controlled the tumor microenvironment (TME), overcame hypoxia, and was thus utilized for collaborative RDT and radiotherapy (RT). The QSZP NPs demonstrated great potential in x-ray sensitization and reactive oxygen species (ROS)-mediated effects in vitro. Furthermore, they continuously generated oxygen and increased ROS levels in the TME with x-ray irradiation to achieve RDT. In vivo studies showed that QSZP NPs had no apparent systemic toxicity and showed good therapeutic effect in a HepG2 tumor-bearing model. Due to its unique and outstanding combinational effect of RDT/RT/antiangiogenic cancer therapy, these synthesized NPs offer a promising method for radiation-based cancer treatment.
Collapse
Affiliation(s)
- Qijun Du
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610065, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Hongwei Jiang
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine,
Henan University of Science and Technology, Luoyang 471003, China
| | - Di Wu
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610065, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu 641400, China
| | - Changlong Song
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610065, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Wenqi Hu
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610065, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Qinrui Lu
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610065, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Chenwei Sun
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610065, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Jie Liu
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610065, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Guohua Wu
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610065, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine,
Henan University of Science and Technology, Luoyang 471003, China
| | - Shuqi Wang
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610065, China
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu 641400, China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| |
Collapse
|
4
|
Xia Q, Zhou S, Zhou J, Zhao X, Saif MS, Wang J, Hasan M, Zhao M, Liu Q. Recent Advances and Challenges for Biological Materials in Micro/Nanocarrier Synthesis for Bone Infection and Tissue Engineering. ACS Biomater Sci Eng 2025; 11:1945-1969. [PMID: 40067283 DOI: 10.1021/acsbiomaterials.4c02118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Roughly 1.71 billion people worldwide suffer from large bone abnormalities, which are the primary cause of disability. Traditional bone grafting procedures have several drawbacks that impair their therapeutic efficacy and restrict their use in clinical settings. A great deal of work has been done to create fresh, more potent strategies. Under these circumstances, a crucial technique for the regeneration of major lesions has emerged: bone tissue engineering (BTE). BTE involves the use of biomaterials that can imitate the natural design of bone. To yet, no biological material has been able to fully meet the parameters of the perfect implantable material, even though several varieties have been created and investigated for bone regeneration. Against this backdrop, researchers have focused a great deal of interest over the past few years on the subject of nanotechnology and the use of nanostructures in regenerative medicine. The ability to create nanoengineered particles that can overcome the current constraints in regenerative strategies─such as decreased cell proliferation and differentiation, insufficient mechanical strength in biological materials, and insufficient production of extrinsic factors required for effective osteogenesis has revolutionized the field of bone and tissue engineering. The effects of nanoparticles on cell characteristics and the application of biological materials for bone regeneration are the main topics of our review, which summarizes the most recent in vitro and in vivo research on the application of nanotechnology in the context of BTE.
Collapse
Affiliation(s)
- Qipeng Xia
- Yingtan People's Hospital, Nanchang University, Yingtan 335499, PR China
- Medical Faculty of Dalian University of Technology-Yingtan People's Hospital Joint Research Center, Yingtan 335499, PR China
| | - Shuyan Zhou
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Jingya Zhou
- Yingtan People's Hospital, Nanchang University, Yingtan 335499, PR China
- College of Acupuncture and Massage, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, PR China
| | - Xia Zhao
- Faculty of Medicine, Dalian University of Technology, Dalian 116024, PR China
| | - Muhammad Saqib Saif
- Department of Biochemistry, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Jianping Wang
- Yingtan People's Hospital, Nanchang University, Yingtan 335499, PR China
- Medical Faculty of Dalian University of Technology-Yingtan People's Hospital Joint Research Center, Yingtan 335499, PR China
| | - Murtaza Hasan
- Department of Biotechnology, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Min Zhao
- Yingtan People's Hospital, Nanchang University, Yingtan 335499, PR China
- Medical Faculty of Dalian University of Technology-Yingtan People's Hospital Joint Research Center, Yingtan 335499, PR China
| | - Qiang Liu
- Medical Faculty of Dalian University of Technology-Yingtan People's Hospital Joint Research Center, Yingtan 335499, PR China
- Faculty of Medicine, Dalian University of Technology, Dalian 116024, PR China
| |
Collapse
|
5
|
Khulood MT, Jijith US, Naseef PP, Kallungal SM, Geetha VS, Pramod K. Advances in metal-organic framework-based drug delivery systems. Int J Pharm 2025; 673:125380. [PMID: 39988215 DOI: 10.1016/j.ijpharm.2025.125380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/20/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
Metal-organic frameworks (MOFs) are emerging crystalline porous materials with significant potential in biomedical applications, particularly as drug delivery systems (DDS). MOFs, composed of metal ions or clusters linked by organic ligands, feature large surface areas, adjustable pores, and diverse functionalities. This review comprehensively examines MOFs as advanced DDS, detailing their structures, synthesis, and drug loading mechanisms. We highlight high drug loading capacity and controlled release capabilities of MOF. Developments of design strategies for MOF-based DDS, namely, surface functionalization for targeted delivery and stimuli-responsive MOFs for controlled release, have been discussed and explored. The use of MOFs for delivering therapeutic agents such as small molecules, peptides, proteins, nucleic acids, and cancer drugs is discussed. Challenges addressed include stability, degradation in biological environments, potential toxicity, and scalability. Advances in hybrid MOF-based DDS, integrating MOFs with polymers, lipids, or nanoparticles for improved delivery, are also examined.
Collapse
Affiliation(s)
- M T Khulood
- College of Pharmaceutical Sciences, Government Medical College, Kozhikode 673008 Kerala, India; Kerala University of Health Sciences, Medical College P.O., Thrissur 680596 Kerala, India
| | - U S Jijith
- College of Pharmaceutical Sciences, Government Medical College, Kozhikode 673008 Kerala, India
| | - P P Naseef
- Department of Pharmaceutics, Moulana College of Pharmacy, Perinthalmanna, Malappuram 679321 Kerala, India
| | - Sirajudheen M Kallungal
- Department of Pharmaceutics, Jamia Salafiya Pharmacy College, Pulikkal, Malappuram 673637 Kerala, India
| | - V S Geetha
- College of Pharmaceutical Sciences, Government Medical College, Kozhikode 673008 Kerala, India
| | - K Pramod
- College of Pharmaceutical Sciences, Government Medical College, Kozhikode 673008 Kerala, India.
| |
Collapse
|
6
|
Zhang G, Zhang X, Yue K, Zhong W. Mechanistic study of enhanced drug release in mixed pH-responsive peptide-loaded liposomes. J Biomol Struct Dyn 2025:1-15. [PMID: 40126078 DOI: 10.1080/07391102.2025.2481581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/06/2025] [Indexed: 03/25/2025]
Abstract
Liposomes serving as nanocarriers offer significant advantages in drug delivery for tumor treatment. There still exists challenges in controlling drug release by disintegrating the liposome membrane for the improvement of therapeutic efficiency. In this paper, a novel method involving the mixture of short peptides with pH-responsive characteristics into the cargo has been introduced. This approach facilitates the release of doxorubicin (DOX) in the acidic tumor tissue environment. The efficacy of this improvement was elucidated through molecular dynamics simulations and experiments. Liposomes incorporating a 1:1 ratio of peptides-DOX exhibited pronounced pH sensitivity and an enhanced drug release profile. The underlying mechanism is attributed to the peptides entering tumor tissues and undergoing protonation in acidic conditions, which increases the hydrophilicity of the peptide-DOX clusters and the internal surface tension of the liposomes. This alteration disrupts the balance between the inner and outer surface tensions of the nanocarrier, causing the liposomes to structurally disintegrate and thus enhancing drug release. The results from both thermodynamic analysis results and experimental data confirm the augmented drug release efficiency of this method, offering valuable theoretical insights for nanoparticle design and determining the optimal mixing ratio for therapeutic applications.
Collapse
Affiliation(s)
- Genpei Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
- Shunde Graduate School of University of Science and Technology Beijing, Shunde, Guangdong Province, China
| | - Xilong Zhang
- Shunde Graduate School of University of Science and Technology Beijing, Shunde, Guangdong Province, China
| | - Kai Yue
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
- Shunde Graduate School of University of Science and Technology Beijing, Shunde, Guangdong Province, China
| | - Weishen Zhong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
- Shunde Graduate School of University of Science and Technology Beijing, Shunde, Guangdong Province, China
| |
Collapse
|
7
|
Li J, Hou Y, Wu H, Chen C, Fu X, Liu J, Li L, Shang S, Deng G. A poly (vinyl alcohol) coated core-shell nanoparticle with a tunable surface for pH and glutathione dual-responsive drug delivery. Colloids Surf B Biointerfaces 2025; 247:114421. [PMID: 39637696 DOI: 10.1016/j.colsurfb.2024.114421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/21/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
The surface characteristics of nanoparticles play a pivotal role in modulating the efficiency and functionality of drug delivery systems, particularly when addressing the complex challenges of targeted therapeutics. This study presents the development of a core-shell nanoparticle system (PMAA@DOX-PVA), incorporating poly(vinyl alcohol) (PVA) as a dynamic shell component to establish dual responsiveness to pH and glutathione levels. The hydrophilic PVA shell is covalently conjugated to the poly (methylacrylic acid) (PMAA) core via a boronic ester bond, establishing a robust platform for controlled release with tunable surface properties. Notably, our findings demonstrate a remarkable enhancement in drug loading efficiency from a modest 8 % (PMAA@DOX) to an impressive 18 % (PMAA@DOX-PVA-0.2). Furthermore, under physiological conditions (pH 7.4), the drug leakage after 62 hours is significantly reduced, dropping from 37 % (PMAA@DOX) to 21 % (PMAA@DOX-PVA-0.2). This suggests a potential improvement in stability during blood circulation. Intriguingly, the PVA ratio was found to influence drug release profiles under different environments distinctly. The possible mechanism was proposed offering insight into this tunable behavior. In vitro cytotoxicity assays on A549 cancer cells reveal that the blank carriers exhibit excellent biocompatibility, while the PVA-coated nanoparticles significantly boost anti-tumor efficacy. Collectively, these results present a promising strategy for designing core-shell nanoparticles with customizable surface properties, paving the way for next-generation, multifunctional drug delivery systems in diverse biomedical applications.
Collapse
Affiliation(s)
- Jiagen Li
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu 611130, China.
| | - Yuhang Hou
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu 611130, China
| | - Hao Wu
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu 611130, China
| | - Chunxia Chen
- Joint National Laboratory for Antibody Drug Engineering, Clinical Laboratory of the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng 475004, China
| | - Xiaohong Fu
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu 611130, China
| | - Jun Liu
- School of Pharmacy and Institute of Pharmacy, North Sichuan Medical College, Sichuan, China
| | - Lu Li
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China; Shaanxi Collaborative Innovation Center of Industrial Auxiliary Chemistry and Technology, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Shuyong Shang
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu 611130, China; Sichuan Provincial Key Laboratory of Philosophy and Social Sciences for Monitoring and Evaluation of Rural Land Utilization, Chengdu Normal University, Chengdu 611130, China.
| | - Guowei Deng
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu 611130, China.
| |
Collapse
|
8
|
Sun Z, Sun Y, Wang S, Li M, Guo H, Xu Z, Gao M. Mini Review On: The Roles of DNA Nanomaterials in Phototherapy. Int J Nanomedicine 2025; 20:2021-2041. [PMID: 39975417 PMCID: PMC11835777 DOI: 10.2147/ijn.s501471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/05/2025] [Indexed: 02/21/2025] Open
Abstract
DNA-based functional nanomaterials are distinguished by their structural designability and functional controllability, making them particularly attractive in the biomedical field. Using DNA nanomaterials for cancer treatment through synergistic approaches combining photodynamic therapy and photothermal therapy has garnered significant attention. This growing interest has driven the active development of various DNA nanomaterials tailored for integrated strategies targeting cancer, including phototherapy, chemotherapy, etc. This review provides an overview of DNA nanoplatforms employed in phototherapy and synergistic therapy for cancer treatment. It highlights recent advances in DNA nanoplatforms that leverage multifaceted synergy to enhance phototherapeutic efficacy. It also offers a new perspectives and clinical application potential of DNA nanomaterials in synergistic phototherapy for malignant tumors, focusing on developments in recent years and potential directions for future research and applications.
Collapse
Affiliation(s)
- Zeqing Sun
- Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
| | - Yilai Sun
- Department of Hepatobiliary Pancreatic Surgery, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, People’s Republic of China
| | - Shuo Wang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
| | - Mengyao Li
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
| | - Haoran Guo
- Shandong Second Medical University, Weifang, Shandong, People’s Republic of China
| | - Zhijie Xu
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People’s Republic of China
| | - Ming Gao
- Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
9
|
Huang Z, Tian K, Xue Y, Luo F. A promising role of noble metal NPs@MOFs in chondrosarcoma management. NANOSCALE 2025; 17:2961-2984. [PMID: 39718125 DOI: 10.1039/d4nr03878a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Chondrosarcoma, a challenging and malignant neoplasm originating from cartilage cells, poses significant diagnostic and therapeutic hurdles due to its resistance to conventional treatments and the complexity of its diagnosis. Noble metal nanoparticle-embedded metal-organic frameworks (NPs@MOFs) stand out as a novel approach for the diagnosis and treatment of chondrosarcoma. This review delves into the properties and applications of NPs@MOFs, focusing on their classification by noble metal type and their role in enhancing photothermal therapy (PTT), photodynamic therapy (PDT), targeted drug delivery and chondrosarcoma diagnosis. Despite promising in vitro and in vivo results, challenges such as understanding the mechanisms of action and clinical translation remain, and the therapeutic effect of PTT and PDT on deep chondrosarcoma seems unsatisfactory. Future exploration, such as combined therapy and multiple MOF therapy, could unlock the full potential of noble metal NPs@MOFs in revolutionizing chondrosarcoma management, offering insights into the prospect of these materials in chondrosarcoma management.
Collapse
Affiliation(s)
- Ziheng Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Keyue Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yiyuan Xue
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Feng Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Department of General Dentistry, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu 610041, China.
| |
Collapse
|
10
|
Gu L, Li X, Chen G, Yang H, Qian H, Pan J, Miao Y, Li Y. A glutathione-activated bismuth-gallic acid metal-organic framework nano-prodrug for enhanced sonodynamic therapy of breast tumor. J Colloid Interface Sci 2025; 679:214-223. [PMID: 39362146 DOI: 10.1016/j.jcis.2024.09.233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
Sonodynamic therapy is a promising, noninvasive, and precise tumor treatment that leverages sonosensitizers to generate cytotoxic reactive oxygen species during ultrasound stimulation. Gallic acid (GA), a natural polyphenol, possesses certain anti-tumor properties, but exhibits significant toxicity toward normal cells, limiting its application in cancer treatment. To overcome this issue, we synthesized a bismuth-gallic acid (BGA), coordinated metal-organic framework (MOF) nano-prodrug. Upon encountering glutathione (GSH), BGA gradually dissociated and depleted GSH, releasing GA, which had anti-tumor effects. As an MOF with semiconductor properties, BGA primarily produced superoxide anion radical upon ultrasound excitation. After the release of GA, GA generated superoxide anion radical and further produced high toxic singlet oxygen under ultrasound stimulation, while further oxidizing and consuming GSH, enhancing sonocatalytic performance. Additionally, the released GA induced cell cycle arrest, ultimately leading to apoptosis. Our results revealed that BGA, as a GSH-activated, metal-polyphenol MOF nano-prodrug, showed potential for use in breast tumor sonodynamic therapy, providing a novel strategy for precise tumor treatment.
Collapse
Affiliation(s)
- Liping Gu
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xueyu Li
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Guobo Chen
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Han Yang
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Huihui Qian
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Junjie Pan
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuqing Miao
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuhao Li
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
11
|
Wu D, Lin H, Zhan T, Ren X, Yao Y, Ma N, Dai W. Boosting the Sustained Release Performance of Metronidazole and Ornidazole with MIL-53(Fe) Derived Spherical Porous Carbon. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:26696-26705. [PMID: 39642390 DOI: 10.1021/acs.langmuir.4c03833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
Metal-organic framework (MOF) derived spherical porous carbon (SPC) has potential application value in the field of adsorption and sustained release of nitroimidazole drugs. This work used MIL-53(Fe) as a precursor and prepared spherical 3-aminophenol-formaldehyde resin containing MIL-53(Fe) crystals using the advanced Stöber method, followed by the successful preparation of MIL-53(Fe) derived SPC (MSPC) with a structure containing both micropores and mesopores through high-temperature carbonization. The effects of the doping amount of MIL-53(Fe) on the sphericity and particle size of MSPC were investigated. The drug uptake capacity and sustained release performances of MSPC for metronidazole (MNZ) and ornidazole (ONZ) were assessed through batch tests, along with an investigation into the impact of varying pH levels on the sustained release performances. The experimental findings revealed that the drug loading of MNZ and ONZ onto MSPC achieved 111 and 120 mg/g, respectively, with a sustained release time of up to 24 h. The drug loading process adhered to the Langmuir isotherm adsorption model and conformed to the pseudo-second-order kinetics model, whereas the sustained release mechanism was consistent with the Korsmeyer-Peppas model. Furthermore, cytotoxicity and cyclic drug loading experiments indicated that MSPC exhibited good biocompatibility and stability. Therefore, this study provides new ideas for the development of SPC drug carriers.
Collapse
Affiliation(s)
- Danping Wu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Heng Lin
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Tingting Zhan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Xingfa Ren
- Welch Materials (Zhejiang), Inc., Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Yifan Yao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Na Ma
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Wei Dai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| |
Collapse
|
12
|
Rananaware P, Pandit P, Brahmkhatri V. Gold nanoparticle encapsulated hybrid MOF: synthesis, characterization, and co-drug delivery of 5-fluorouracil and curcumin. DISCOVER NANO 2024; 19:201. [PMID: 39661211 PMCID: PMC11635076 DOI: 10.1186/s11671-024-04152-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024]
Abstract
The unique features of Metal-Organic Frameworks (MOFs), including structural flexibility, high surface area, and variable pore size, have drawn attention in cancer therapy. However, despite advances in surface functionalization, engineering structural features, and porosity, achieving controlled release, stability, scalability, and toxicity remains a challenge. The current study reports gold nanoparticle (AuNP) encapsulated dual metal-organic frameworks (MOFs) comprising zeolitic imidazolate (ZIF8) and cobalt-imidazole (ZIF67) by a simple precipitation method for dual drug delivery applications. This combination associates the advantages of AuNPs and MOFs, creating a potent platform for cancer theranostics that combines diagnosis and treatment into one unit. The synthesized composite (AuNPs@ZIF-8/ZIF-67) is functionalized with Folic acid (FA) and loaded with the anticancer agents Curcumin (C) and 5-fluorouracil (5-FU) for co-drug delivery The synthesized composites, namely Au/ZIF8, Au/ZIF8/ZIF67/FA, Au/ZIF8/ZIF67/FA/5-FU, and Au/ZIF8/ZIF67/FA/5-FU/C were characterized using diverse analytical techniques such as FESEM, XRD, FTIR, TEM, and BET. The characterization methods showed that the hybrid MOF structure was stable and intact after AuNP encapsulation and drug loading. The dual MOF composite exhibits a better affinity for loading C and 5-FU with 60% and 40% drug loading capacity, respectively. The simultaneous drug release studies suggest that AuNPs@ZIF-8/ZIF-67 are more responsive to the acidic pH and show a higher cumulative drug release of 5FU and C at the lower value of pH 5. For further validation, the release kinetics data were fitted into the Korsmeyer-Peppas model in the current study. The observed value of n which is less than 0.5 suggests the pseudo-Fickian diffusion mechanism for drug release, demonstrating long-term release of 5FU and C from Au/ZIF8/ZIF67/FA/5-FU/C. The targeted drug delivery system is anticipated to display synergistic therapeutic efficacy from the combined effect of the two anticancer agents and the pH-responsive nature of ZIF systems.
Collapse
Affiliation(s)
- Pranita Rananaware
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru, Karnataka, 562112, India
| | - Parimal Pandit
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru, Karnataka, 562112, India
| | - Varsha Brahmkhatri
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru, Karnataka, 562112, India.
- Department of Chemistry, Centre of Excellence in Materials and Sensors, CMR Institute of Technology, Bengaluru, 560037, India.
| |
Collapse
|
13
|
Faghani G, Azarniya A. Emerging nanomaterials for novel wound dressings: From metallic nanoparticles and MXene nanosheets to metal-organic frameworks. Heliyon 2024; 10:e39611. [PMID: 39524817 PMCID: PMC11550055 DOI: 10.1016/j.heliyon.2024.e39611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/30/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
The growing need for developing reliable and efficient wound dressings has led to recent progress in designing novel materials and formulations for different kinds of wounds caused by traumas, burns, surgeries, and diabetes. In cases of extreme urgency, accelerating wound recovery is of high importance to prevent persistent infection and biofilm formation. The application of nanotechnology in this domain resulted in the creation of distinct nanoplatforms for highly advanced wound-healing therapeutic approaches. Recently developed nanomaterials have been used as antibacterial agents or drug carriers to control wound infection. In the present review, the authors aim to review the recently published research on the effects of incorporating emerging nanomaterials into novel wound dressings and investigate their distinct roles in the wound healing process. It was determined that the metallic nanoparticles (NPs) exhibit antimicrobial and regenerative properties, metal oxide NPs regulate inflammation and promote tissue regeneration, MXene NPs enhance cell adhesion and proliferation, while metal-organic frameworks (MOFs) offer controlled drug delivery capabilities. Further research is required to fully understand the mechanisms and optimize the applications of these NPs in wound healing.
Collapse
Affiliation(s)
- Gholamreza Faghani
- Department of Mechanical Engineering, Khatam-Ol-Anbia (PBU) University, Tehran, Iran
| | - Amir Azarniya
- Department of Materials Engineering, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
14
|
He L, Cheng W, Ren W, Chen J, Wu Z, Wei Y, Piao JG. In-situ activated arsenic-molybdenum dual-prodrug nanocomplexes for glutathione-depletion enhanced photothermal/chemotherapy against triple-negative breast cancer. CHEMICAL ENGINEERING JOURNAL 2024; 497:155075. [DOI: 10.1016/j.cej.2024.155075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
|
15
|
Khafaga DSR, El-Morsy MT, Faried H, Diab AH, Shehab S, Saleh AM, Ali GAM. Metal-organic frameworks in drug delivery: engineering versatile platforms for therapeutic applications. RSC Adv 2024; 14:30201-30229. [PMID: 39315019 PMCID: PMC11418013 DOI: 10.1039/d4ra04441j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024] Open
Abstract
Recently, metal-organic frameworks (MOFs) have attracted much attention as versatile materials for drug delivery and personalized medicine. MOFs are porous structures made up of metal ions coupled with organic ligands. This review highlights the synthesis techniques used to design MOFs with specific features such as surface area and pore size, and the drug encapsulation within MOFs not only improves their stability and solubility but also allows for controlled release kinetics, which improves therapeutic efficacy and minimizes adverse effects. Furthermore, it discusses the challenges and potential advantages of MOF-based drug delivery, such as MOF stability, biocompatibility, and scale-up production. With further advancements in MOF synthesis, functionalization techniques, and understanding of their interactions using biological systems, MOFs can have significant promise for expanding the area of personalized medicine and improving patient outcomes.
Collapse
Affiliation(s)
- Doaa S R Khafaga
- Health Sector, Faculty of Science, Galala University New Galala City 43511 Suez Egypt
| | - Manar T El-Morsy
- Bionanotechnology Department, Faculty of Nanotechnology, Cairo University Giza 12613 Egypt
| | - Habiba Faried
- Biotechnology Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Ayah H Diab
- Biotechnology Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Shaimaa Shehab
- Biotechnology Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Ahmed M Saleh
- Bionanotechnology Department, Faculty of Nanotechnology, Cairo University Giza 12613 Egypt
| | - Gomaa A M Ali
- College of Marine Science and Aquatic Biology, University of Khorfakkan 18119 Sharjah United Arab Emirates
- Faculty of Science, Galala University 43511 Suez Egypt
- Chemistry Department, Faculty of Science, Al-Azhar University Assiut 71524 Egypt
| |
Collapse
|
16
|
Hefayathullah M, Singh S, Ganesan V, Maduraiveeran G. Metal-organic frameworks for biomedical applications: A review. Adv Colloid Interface Sci 2024; 331:103210. [PMID: 38865745 DOI: 10.1016/j.cis.2024.103210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Metal-organic frameworks (MOFs) are emergent materials in diverse prospective biomedical uses, owing to their inherent features such as adjustable pore dimension and volume, well-defined active sites, high surface area, and hybrid structures. The multifunctionality and unique chemical and biological characteristics of MOFs allow them as ideal platforms for sensing numerous emergent biomolecules with real-time monitoring towards the point-of-care applications. This review objects to deliver key insights on the topical developments of MOFs for biomedical applications. The rational design, preparation of stable MOF architectures, chemical and biological properties, biocompatibility, enzyme-mimicking materials, fabrication of biosensor platforms, and the exploration in diagnostic and therapeutic systems are compiled. The state-of-the-art, major challenges, and the imminent perspectives to improve the progressions convoluted outside the proof-of-concept, especially for biosensor platforms, imaging, and photodynamic therapy in biomedical research are also described. The present review may excite the interdisciplinary studies at the juncture of MOFs and biomedicine.
Collapse
Affiliation(s)
- Mohamed Hefayathullah
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur - 603203, Chengalpattu District, Tamil Nadu, India
| | - Smita Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Vellaichamy Ganesan
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | - Govindhan Maduraiveeran
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur - 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
17
|
Lan Y, Li X, Liu B, Lu J, Zuo B, Wang Y, Cao S, Fu X, Yue Q, Luo X, Zhong X, Dong Y, Wang Z, Yang T, Xie X, Zeng T, Zhang M, Wang Y, Shen Y, Zuo H, Zhao Y, Zhang C, Guo H. Framework nucleic acid-based nanoparticles enhance temozolomide sensitivity in glioblastoma. Drug Resist Updat 2024; 76:101122. [PMID: 39079407 DOI: 10.1016/j.drup.2024.101122] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 08/17/2024]
Abstract
O6-methylguanine DNA methyltransferase (MGMT) is a crucial determinant of temozolomide (TMZ) sensitivity in patients with glioblastoma (GBM). The therapeutic potential of small interfering RNA (siRNA) targeting MGMT to enhance TMZ sensitivity has been hampered by serum nuclease degradation, off-target effects, poor accumulation at tumor sites, and low circulation in blood stream. In this study, we developed a framework nucleic acid-based nanoparticles (FNN), which is constructed from a six-helix DNA bundle, to encapsulate and protect siMGMT for improving TMZ sensitivity in GBM treatment. For better blood-brain barrier (BBB) penetration and GBM targeting, we conjugated Angiopep-2 (ANG) targeting modules to each end of the FNN. Nucleolin (NCL)-responsive locks were engineered along the sides of the six-helix DNA bundle, which safeguard siMGMT before tumor entry. Upon interaction with tumor-overexpressed NCL, these locks unlock, exposing siMGMT, this allows for effective suppression of MGMT, resulting in a significant improvement of TMZ therapeutic efficacy in GBM. This innovative strategy has the potential to transform the current treatment landscape for GBM.
Collapse
Affiliation(s)
- Yufei Lan
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Xiaodie Li
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Boyang Liu
- Department of Neurosurgery, Department of Neuro-oncological Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Jiankun Lu
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Boming Zuo
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yue Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
| | | | - Xin Fu
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Qu Yue
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Xin Luo
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Xiangyang Zhong
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yaoyuan Dong
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Zhao Wang
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Tao Yang
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Xinyun Xie
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Tianci Zeng
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Manqing Zhang
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yuankai Wang
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yixiong Shen
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Huaqin Zuo
- Department of Hematology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, Jiangsu 225001, China.
| | - Yan Zhao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| | - Chao Zhang
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Hongbo Guo
- Department of Neurosurgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
18
|
Ma C, Cheng Z, Tan H, Wang Y, Sun S, Zhang M, Wang J. Nanomaterials: leading immunogenic cell death-based cancer therapies. Front Immunol 2024; 15:1447817. [PMID: 39185425 PMCID: PMC11341423 DOI: 10.3389/fimmu.2024.1447817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
The field of oncology has transformed in recent years, with treatments shifting from traditional surgical resection and radiation therapy to more diverse and customized approaches, one of which is immunotherapy. ICD (immunogenic cell death) belongs to a class of regulatory cell death modalities that reactivate the immune response by facilitating the interaction between apoptotic cells and immune cells and releasing specific signaling molecules, and DAMPs (damage-associated molecular patterns). The inducers of ICD can elevate the expression of specific proteins to optimize the TME (tumor microenvironment). The use of nanotechnology has shown its unique potential. Nanomaterials, due to their tunability, targeting, and biocompatibility, have become powerful tools for drug delivery, immunomodulators, etc., and have shown significant efficacy in clinical trials. In particular, these nanomaterials can effectively activate the ICD, trigger a potent anti-tumor immune response, and maintain long-term tumor suppression. Different types of nanomaterials, such as biological cell membrane-modified nanoparticles, self-assembled nanostructures, metallic nanoparticles, mesoporous materials, and hydrogels, play their respective roles in ICD induction due to their unique structures and mechanisms of action. Therefore, this review will explore the latest advances in the application of these common nanomaterials in tumor ICD induction and discuss how they can provide new strategies and tools for cancer therapy. By gaining a deeper understanding of the mechanism of action of these nanomaterials, researchers can develop more precise and effective therapeutic approaches to improve the prognosis and quality of life of cancer patients. Moreover, these strategies hold the promise to overcome resistance to conventional therapies, minimize side effects, and lead to more personalized treatment regimens, ultimately benefiting cancer treatment.
Collapse
Affiliation(s)
- Changyu Ma
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Peking Union Medical College, Beijing, China
| | - Zhe Cheng
- Department of Forensic Medicine, Harbin Medical University, Harbin, China
| | - Haotian Tan
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Peking Union Medical College, Beijing, China
| | - Yihan Wang
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Clinical College, Peking University Health Science Center, Beijing, China
| | - Shuzhan Sun
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Clinical College, Peking University Health Science Center, Beijing, China
| | - Mingxiao Zhang
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
| | - Jianfeng Wang
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
19
|
Li J, Luo P, Liu S, Fu M, Lin A, Liu Y, He Z, Qiao K, Fang Y, Qu L, Yang K, Wang K, Wang L, Jiang A. Effective strategies to enhance the diagnosis and treatment of RCC: The application of biocompatible materials. Mater Today Bio 2024; 27:101149. [PMID: 39100279 PMCID: PMC11296058 DOI: 10.1016/j.mtbio.2024.101149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 08/06/2024] Open
Abstract
Renal cell carcinoma (RCC) is recognized as one of the three primary malignant tumors affecting the urinary system, posing a significant risk to human health and life. Despite advancements in understanding RCC, challenges persist in its diagnosis and treatment, particularly in early detection and diagnosis due to issues of low specificity and sensitivity. Consequently, there is an urgent need for the development of effective strategies to enhance diagnostic accuracy and treatment outcomes for RCC. In recent years, with the extensive research on materials for applications in the biomedical field, some materials have been identified as promising for clinical applications, e.g., in the diagnosis and treatment of many tumors, including RCC. Herein, we summarize the latest materials that are being studied and have been applied in the early diagnosis and treatment of RCC. While focusing on their adjuvant effects, we also discuss their technical principles and safety, thus highlighting the value and potential of their application. In addition, we also discuss the limitations of the application of these materials and possible future directions, providing new insights for improving RCC diagnosis and treatment.
Collapse
Affiliation(s)
- Jinxin Li
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Shiyang Liu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Meiling Fu
- Department of Urology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361101, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Ying Liu
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Ziwei He
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Kun Qiao
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Yu Fang
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Le Qu
- Department of Urology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, 305 East Zhongshan Road, Nanjing, 210000, China
| | - Kaidi Yang
- Department of Oncology, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, Hainan, 572000, China
- Department of Oncology, Chinese People's Liberation Army General Hospital, Beijing, 100853, China
| | - Kunpeng Wang
- Department of Urology, Lianyungang Clinical College of Nanjing Medical University, Lianyungang, 222061, China
- Department of Urology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The first People's Hospital of Lianyungang, 222061, China
| | - Linhui Wang
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| | - Aimin Jiang
- Department of Urology, Changhai Hospital, Naval Medical University, 168 Changhai Road, Shanghai, 200433, China
| |
Collapse
|
20
|
Zhao C, Tang X, Chen X, Jiang Z. Multifaceted Carbonized Metal-Organic Frameworks Synergize with Immune Checkpoint Inhibitors for Precision and Augmented Cuproptosis Cancer Therapy. ACS NANO 2024; 18:17852-17868. [PMID: 38939981 DOI: 10.1021/acsnano.4c04022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The discovery of cuproptosis, a copper-dependent mechanism of programmed cell death, has provided a way for cancer treatment. However, cuproptosis has inherent limitations, including potential cellular harm, the lack of targeting, and insufficient efficacy as a standalone treatment. Therefore, exogenously controlled combination treatments have emerged as key strategies for cuproptosis-based oncotherapy. In this study, a Cu2-xSe@cMOF nanoplatform was constructed for combined sonodynamic/cuproptosis/gas therapy. This platform enabled precise cancer cotreatment, with external control allowing the selective induction of cuproptosis in cancer cells. This approach effectively prevented cancer metastasis and recurrence. Furthermore, Cu2-xSe@cMOF was combined with the antiprogrammed cell death protein ligand-1 antibody (aPD-L1), and this combination maximized the advantages of cuproptosis and immune checkpoint therapy. Additionally, under ultrasound irradiation, the H2Se gas generated from Cu2-xSe@cMOF induced cytotoxicity in cancer cells. Further, it generated reactive oxygen species, which hindered cell survival and proliferation. This study reports an externally controlled system for cuproptosis induction that combines a carbonized metal-organic framework with aPD-L1 to enhance cancer treatment. This precision and reinforced cuproptosis cancer therapy platform could be valuable as an effective therapeutic agent to reduce cancer mortality and morbidity in the future.
Collapse
Affiliation(s)
- Chen Zhao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Xiaoying Tang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Zhenqi Jiang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
21
|
Pereira de Figueiredo J, Moreno Zapata MJ, Amorim LS, de Oliveira Neto JA, Miquita DR, Soares EA, Balzuweit K, Pinheiro CB. Morphological and Structural Characterization of (Pt, Au, and Ag) Nanoparticle/Zn-MOF-74 Composites. ACS OMEGA 2024; 9:21939-21947. [PMID: 38799305 PMCID: PMC11112587 DOI: 10.1021/acsomega.3c09973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 05/29/2024]
Abstract
Metallic nanoparticles (NPs) were decorated onto Zn-MOF-74 crystals by photoreducing different metal precursors (Pt, Au, and Ag) using ultraviolet (UV) light in an aqueous solution with different metal concentrations without using additional stabilizers. X-ray diffraction revealed the three-dimensional structural integrity and crystallinity conservation of Zn-MOF-74 crystals during the UV decoration process. Raman spectroscopy showed a minor rearrangement in the structure of the Zn-MOF-74 crystal surface after NP decoration. X-ray photoelectron spectroscopy confirmed the metal oxidation states of Zn and NPs. High-resolution transmission electron microscopy images proved the surface decoration of Zn-MOF-74 crystals with spherical metallic NPs with diameters between 2.4 and 9.8 nm.
Collapse
Affiliation(s)
| | | | - Laíse Serra Amorim
- Physics
Department, Universidade Federal de Minas
Gerais, Belo Horizonte 31270-901, Brazil
| | | | | | - Edmar Avellar Soares
- Physics
Department, Universidade Federal de Minas
Gerais, Belo Horizonte 31270-901, Brazil
| | - Karla Balzuweit
- Physics
Department, Universidade Federal de Minas
Gerais, Belo Horizonte 31270-901, Brazil
| | | |
Collapse
|
22
|
Zhang J, Li M, Liu M, Yu Q, Ge D, Zhang J. Metal-Organic Framework Nanomaterials as a Medicine for Catalytic Tumor Therapy: Recent Advances. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:797. [PMID: 38727391 PMCID: PMC11085591 DOI: 10.3390/nano14090797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/28/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024]
Abstract
Nanomaterials, with unique physical, chemical, and biocompatible properties, have attracted significant attention as an emerging active platform in cancer diagnosis and treatment. Amongst them, metal-organic framework (MOF) nanostructures are particularly promising as a nanomedicine due to their exceptional surface functionalities, adsorption properties, and organo-inorganic hybrid characteristics. Furthermore, when bioactive substances are integrated into the structure of MOFs, these materials can be used as anti-tumor agents with superior performance compared to traditional nanomaterials. In this review, we highlight the most recent advances in MOFs-based materials for tumor therapy, including their application in cancer treatment and the underlying mechanisms.
Collapse
Affiliation(s)
- Jiaojiao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Meiyu Li
- School of Life Science, Jiangsu University, Zhenjiang 212013, China;
| | - Maosong Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qian Yu
- School of Life Science, Jiangsu University, Zhenjiang 212013, China;
| | - Dengfeng Ge
- Shengli Oilfield Central Hospital, 31 Ji’nan Rd, Dongying 257034, China;
| | - Jianming Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
23
|
Zhang Z, Han W, Qing J, Meng T, Zhou W, Xu Z, Chen M, Wen L, Cheng Y, Ding L. Functionalized magnetic metal organic framework nanocomposites for high throughput automation extraction and sensitive detection of antipsychotic drugs in serum samples. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133189. [PMID: 38071772 DOI: 10.1016/j.jhazmat.2023.133189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 02/08/2024]
Abstract
Due to the complexity of biological sample matrix, the automated and high-throughput pretreatment technology is urgently needed for monitoring the antipsychotic drugs for mental patients. In this study, functionalized magnetic zirconium-based organic framework nanocomposites (Fe3O4@SiO2@Zr-MOFs) were successfully designed and synthesized by the layer-by-layer growth. Among them, Fe3O4@SiO2@UiO-67-COOH showed the best adsorption performance, and at the same time it exhibited excellent water dispersibility, high thermal stability, chemical stability and high hydrophobicity. Results of adsorption kinetics, isotherm and FT-IR showed that the adsorption process was dominated by chemical adsorption (hydrogen bond, electrostatic interaction, π-π interaction) and monolayer adsorption. Moreover, the smaller pore size improved the protein exclusion rate which reached 98.9-99.8%. Based on the above result, the synthesized magnetic nanoparticles were introduced to 96-well automatic extractor, antipsychotic drugs in 96 serum samples were automatically extracted within 9 min, which most greatly saved the time and labor costs and avoided artificial errors. By further integrating with ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), antipsychotic drugs can be detected in the range of 0.2-3.0 ng mL-1 with a quantitative limit of 0.06-0.9 ng mL-1. The recoveries of antipsychotic drugs and their metabolites in serum ranged from 95.7% to 112.3% within 1.4-6.5% of RSD. These features indicate that the proposed method is promising for high throughput and sensitively monitoring of drugs and other hazardous substances.
Collapse
Affiliation(s)
- Zelin Zhang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Wei Han
- Technical Center, Tianjin Customs, Tianjin 300041, PR China
| | - Jiang Qing
- Ningbo HEIGER Electrics Co., Ltd, Ningbo 315300, PR China
| | - Taoyu Meng
- Changsha Harmony Health Medical Laboratory Co., Ltd, Changsha 410000, PR China
| | - Wenli Zhou
- Changsha Harmony Health Medical Laboratory Co., Ltd, Changsha 410000, PR China
| | - Zhou Xu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Maolong Chen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Li Wen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Yunhui Cheng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Li Ding
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, PR China.
| |
Collapse
|