1
|
Tang Y, Tong W, Peng Y, Sun S. Targeting cholesterol-driven pyroptosis: a promising strategy for the prevention and treatment of atherosclerosis. Mol Biol Rep 2025; 52:459. [PMID: 40372511 DOI: 10.1007/s11033-025-10554-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Accepted: 04/28/2025] [Indexed: 05/16/2025]
Abstract
Funding Pyroptosis is a type of programmed cell death (PCD) pathway distinguished by inflammation. It is activated by specific inflammasomes. Once activated, it causes the physical breakdown of the cell, along with the discharge of pro-inflammatory cytokines, such as interleukin-1β (IL-1β) and interleukin-18 (IL-18). Abundant evidence has demonstrated the existence of pyroptotic cell death within atherosclerotic plaques, which has significance for the development of atherosclerosis (AS). As a result, pyroptosis has become a new and important topic in cardiovascular disease (CVD) research. Cholesterol, it is recognized to have a connection with inflammation, exerts a crucial function in the development process of AS, and has been linked to the initiation of pyroptosis. This review aims to briefly summarize the fundamental aspects of pyroptosis and the influence of cholesterol-related inflammation in AS. Additionally, this review will explore potential therapeutic approaches based on pyroptosis that could be utilized for the prevention and treatment of AS.
Collapse
Affiliation(s)
- Yuehong Tang
- Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wenjuan Tong
- Department of Gynecology and Obstetrics, First Affiliated Hospital, University of South China, Hengyang, Hunan, 421001, China
| | - Yujiao Peng
- Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Shaowei Sun
- Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
2
|
Karasawa T, Takahashi M. Inflammasome Activation and Neutrophil Extracellular Traps in Atherosclerosis. J Atheroscler Thromb 2025; 32:535-549. [PMID: 39828369 PMCID: PMC12055512 DOI: 10.5551/jat.rv22033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 01/22/2025] Open
Abstract
The deposition of cholesterol containing cholesterol crystals and the infiltration of immune cells are features of atherosclerosis. Although the role of cholesterol crystals in the progression of atherosclerosis have long remained unclear, recent studies have clarified the involvement of cholesterol crystals in inflammatory responses. Cholesterol crystals activate the NLRP3 inflammasome, a molecular complex involved in the innate immune system. Activation of NLRP3 inflammasomes in macrophages cause pyroptosis, which is accompanied by the release of inflammatory cytokines such as IL-1β and IL-1α. Furthermore, NLRP3 inflammasome activation drives neutrophil infiltration into atherosclerotic plaques. Cholesterol crystals trigger NETosis against infiltrated neutrophils, a form of cell death characterized by the formation of neutrophil extracellular traps (NETs), which, in turn, prime macrophages to enhance inflammasome-mediated inflammatory responses. Colchicine, an anti-inflammatory drug effective in cardiovascular disease, is expected to inhibit cholesterol crystal-induced NLRP3 inflammasome activation and neutrophil infiltration. In this review, we illustrate the reinforcing cycle of inflammation that is amplified by inflammasome activation and NETosis.
Collapse
Affiliation(s)
- Tadayoshi Karasawa
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
3
|
Saadh MJ, Muhammad FA, Albadr RJ, Sanghvi G, Jyothi SR, Kundlas M, Joshi KK, Rakhmatullaev A, Taher WM, Alwan M, Jawad MJ, Ali Al-Nuaimi AM. Inflammasomes and Cardiovascular Disease: Linking Inflammation to Cardiovascular Pathophysiology. Scand J Immunol 2025; 101:e70020. [PMID: 40170223 DOI: 10.1111/sji.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 03/15/2025] [Accepted: 03/22/2025] [Indexed: 04/03/2025]
Abstract
Cardiovascular diseases (CVDs) remain a leading cause of global mortality, driven by risk factors such as dyslipidemia, hypertension and diabetes. Recent research has highlighted the critical role of inflammasomes, particularly the NLRP3 inflammasome, in the pathogenesis of various CVDs, including hypertension, atherosclerosis, myocardial infarction and heart failure. Inflammasomes are intracellular protein complexes that activate inflammatory responses through the production of pro-inflammatory cytokines such as IL-1β and IL-18, contributing to endothelial dysfunction, plaque formation and myocardial injury. This review provides a comprehensive overview of the structure, activation mechanisms and pathways of inflammasomes, with a focus on their involvement in cardiovascular pathology. Key activation pathways include ion fluxes (K+ efflux and Ca2+ signalling), endoplasmic reticulum (ER) stress, mitochondrial dysfunction and lysosomal destabilisation. The review also explores the therapeutic potential of targeting inflammasomes to mitigate inflammation and improve outcomes in CVDs. Emerging strategies include small-molecule inhibitors, biologics and RNA-based therapeutics, with a particular emphasis on NLRP3 inhibition. Additionally, the integration of artificial intelligence (AI) in cardiovascular research offers promising avenues for identifying novel biomarkers, predicting disease risk and developing personalised treatment strategies. Future research directions should focus on understanding the interactions between inflammasomes and other immune components, as well as genetic regulators, to uncover new therapeutic targets. By elucidating the complex role of inflammasomes in CVDs, this review underscores the potential for innovative therapies to address inflammation-driven cardiovascular pathology, ultimately improving patient outcomes.
Collapse
Affiliation(s)
| | | | | | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology Faculty of Science, Marwadi University, Rajkot, Gujarat, India
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Mayank Kundlas
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - Kamal Kant Joshi
- Department of Allied Science, Graphic Era Hill University, Dehradun, Uttarakhand, India
- Graphic Era Deemed to Be University, Dehradun, Uttarakhand, India
| | - Akmal Rakhmatullaev
- Department of Faculty Pediatric Surgery, Tashkent Pediatric Medical Institute, Tashkent, Uzbekistan
| | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | - Mariem Alwan
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | | | |
Collapse
|
4
|
Mo B, Ding Y, Ji Q. NLRP3 inflammasome in cardiovascular diseases: an update. Front Immunol 2025; 16:1550226. [PMID: 40079000 PMCID: PMC11896874 DOI: 10.3389/fimmu.2025.1550226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
Cardiovascular disease (CVD) continues to be the leading cause of mortality worldwide. The nucleotide oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing protein 3 (NLRP3) inflammasome is involved in numerous types of CVD. As part of innate immunity, the NLRP3 inflammasome plays a vital role, requiring priming and activation signals to trigger inflammation. The NLRP3 inflammasome leads both to the release of IL-1 family cytokines and to a distinct form of programmed cell death called pyroptosis. Inflammation related to CVD has been extensively investigated in relation to the NLRP3 inflammasome. In this review, we describe the pathways triggering NLRP3 priming and activation and discuss its pathogenic effects on CVD. This study also provides an overview of potential therapeutic approaches targeting the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Binhai Mo
- People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yudi Ding
- First People’s Hospital of Nanning, Nanning, Guangxi, China
| | - Qingwei Ji
- People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
5
|
Zhang Y, Huang Y, Hu S, Liu G, Zeng T, Pan A, Liao Y. Associations between plasma caspase-1 levels and cardiovascular disease, with the mediating role of metabolic syndrome. Atherosclerosis 2025; 401:119090. [PMID: 39708635 DOI: 10.1016/j.atherosclerosis.2024.119090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/05/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
AIMS This study aimed to explore the association between plasma caspase-1 levels and cardiovascular disease (CVD), as well as the potential mediating role of metabolic syndrome (Mets) in the association. METHODS This study analyzed the UK Biobank Precision Proteomics Project (UKB-PPP), which detected plasma caspase-1 levels in participants. CVD was defined by ICD-9/ICD-10 codes. The Cox proportional hazards regression model was used to explore the hazard ratio (HR) of plasma caspase-1 levels with CVD. Mediation analysis was conducted to investigate the mediating effect of Mets and its components on this relationship. RESULTS This study included a total of 41,499 participants. Among them, 4869 (11.7 %) participants were documented to have developed CVD during a median follow-up of 13.6 years. In the fully adjusted model, compared with individuals in the lowest tertile of plasma caspase-1 levels, the highest tertile was significantly associated with an increased risk of CVD (HR = 1.11, 95 % CI, 1.04-1.19). Per one-unit Normalized Protein eXpression (NPX) increment in plasma caspase-1 concentrations was associated with a 6 % higher risk of CVD (p<0.001). The mediating effect of Mets was the largest, at 17.5 %, with its components hypertension, central obesity, hypertriglyceridemia, hyperglycemia and dyslipidemia mediated the effects by 13.52 %, 9.72 %, 7.35 %, 4.63 % and 2.74 %, respectively. CONCLUSIONS Higher plasma caspase-1 levels were associated with a higher risk of CVD. This association may be partially mediated by Mets and its components, suggesting that caspase-1 may increase the risk of CVD by increasing the occurrence of Mets.
Collapse
Affiliation(s)
- Yajuan Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Yumei Huang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Shaobo Hu
- Department of Liver Transplant Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianshu Zeng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yunfei Liao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China.
| |
Collapse
|
6
|
Svandova E, Vesela B, Janeckova E, Chai Y, Matalova E. Exploring caspase functions in mouse models. Apoptosis 2024; 29:938-966. [PMID: 38824481 PMCID: PMC11263464 DOI: 10.1007/s10495-024-01976-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 06/03/2024]
Abstract
Caspases are enzymes with protease activity. Despite being known for more than three decades, caspase investigation still yields surprising and fascinating information. Initially associated with cell death and inflammation, their functions have gradually been revealed to extend beyond, targeting pathways such as cell proliferation, migration, and differentiation. These processes are also associated with disease mechanisms, positioning caspases as potential targets for numerous pathologies including inflammatory, neurological, metabolic, or oncological conditions. While in vitro studies play a crucial role in elucidating molecular pathways, they lack the context of the body's complexity. Therefore, laboratory animals are an indispensable part of successfully understanding and applying caspase networks. This paper aims to summarize and discuss recent knowledge, understanding, and challenges in caspase knock-out mice.
Collapse
Affiliation(s)
- Eva Svandova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetic, Brno, Czech Republic.
| | - Barbora Vesela
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetic, Brno, Czech Republic
| | - Eva Janeckova
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, USA
| | - Eva Matalova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetic, Brno, Czech Republic
- Department of Physiology, University of Veterinary Sciences, Brno, Czech Republic
| |
Collapse
|
7
|
Fan J, Zhu T, Tian X, Liu S, Zhang SL. Exploration of ferroptosis and necroptosis-related genes and potential molecular mechanisms in psoriasis and atherosclerosis. Front Immunol 2024; 15:1372303. [PMID: 39072329 PMCID: PMC11272566 DOI: 10.3389/fimmu.2024.1372303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024] Open
Abstract
Objective Ferroptosis and necroptosis are two recently identified forms of non-apoptotic cell death. Their dysregulation plays a critical role in the development and progression of Psoriasis (PsD) and Atherosclerosis (AS). This study explores shared Ferroptosis and necroptosis-related genes and elucidates their molecular mechanisms in PsD and AS through the analysis of public databases. Methods Data sets for PsD (GSE30999) and AS (GSE28829) were retrieved from the GEO database. Differential gene expression (DEG) and weighted gene co-expression network analysis (WGCNA) were performed. Machine learning algorithms identified candidate biomarkers, whose diagnostic values were assessed using Receiver Operating Characteristic (ROC) curve analysis. Additionally, the expression levels of these biomarkers in cell models of AS and PsD were quantitatively measured using Western Blot (WB) and real-time quantitative PCR (RT-qPCR). Furthermore, CIBERSORT evaluated immune cell infiltration in PsD and AS tissues, highlighting the correlation between characteristic genes and immune cells. Predictive analysis for candidate drugs targeting characteristic genes was conducted using the DGIdb database, and an lncRNA-miRNA-mRNA network related to these genes was constructed. Results We identified 44 differentially expressed ferroptosis-related genes (DE-FRGs) and 30 differentially expressed necroptosis-related genes (DE-NRGs). GO and KEGG enrichment analyses revealed significant enrichment of these genes in immune-related and inflammatory pathways, especially in NOD-like receptor and TNF signaling pathways. Two ferroptosis-related genes (NAMPT, ZFP36) and eight necroptosis-related genes (C7, CARD6, CASP1, CTSD, HMOX1, NOD2, PYCARD, TNFRSF21) showed high sensitivity and specificity in ROC curve analysis. These findings were corroborated in external validation datasets and cell models. Immune infiltration analysis revealed increased levels of T cells gamma delta, Macrophages M0, and Macrophages M2 in PsD and AS samples. Additionally, we identified 43 drugs targeting 5 characteristic genes. Notably, the XIST-miR-93-5p-ZFP36/HMOX1 and NEAT1-miR-93-5p-ZFP36/HMOX1 pathways have been identified as promising RNA regulatory pathways in AS and PsD. Conclusion The two ferroptosis-related genes (NAMPT, ZFP36) and eight necroptosis-related genes (C7, CARD6, CASP1, CTSD, HMOX1, NOD2, PYCARD, TNFRSF21) are potential key biomarkers for PsD and AS. These genes significantly influence the pathogenesis of PsD and AS by modulating macrophage activity, participating in immune regulation, and mediating inflammatory responses.
Collapse
Affiliation(s)
- Jilin Fan
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tingting Zhu
- Department of Neurosurgery Ward 5, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Xiaoling Tian
- Department of Neurosurgery Ward 5, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Sijia Liu
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Shi-Liang Zhang
- Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
8
|
De Meyer GRY, Zurek M, Puylaert P, Martinet W. Programmed death of macrophages in atherosclerosis: mechanisms and therapeutic targets. Nat Rev Cardiol 2024; 21:312-325. [PMID: 38163815 DOI: 10.1038/s41569-023-00957-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 01/03/2024]
Abstract
Atherosclerosis is a progressive inflammatory disorder of the arterial vessel wall characterized by substantial infiltration of macrophages, which exert both favourable and detrimental functions. Early in atherogenesis, macrophages can clear cytotoxic lipoproteins and dead cells, preventing cytotoxicity. Efferocytosis - the efficient clearance of dead cells by macrophages - is crucial for preventing secondary necrosis and stimulating the release of anti-inflammatory cytokines. In addition, macrophages can promote tissue repair and proliferation of vascular smooth muscle cells, thereby increasing plaque stability. However, advanced atherosclerotic plaques contain large numbers of pro-inflammatory macrophages that secrete matrix-degrading enzymes, induce death in surrounding cells and contribute to plaque destabilization and rupture. Importantly, macrophages in the plaque can undergo apoptosis and several forms of regulated necrosis, including necroptosis, pyroptosis and ferroptosis. Regulated necrosis has an important role in the formation and expansion of the necrotic core during plaque progression, and several triggers for necrosis are present within atherosclerotic plaques. This Review focuses on the various forms of programmed macrophage death in atherosclerosis and the pharmacological interventions that target them as a potential means of stabilizing vulnerable plaques and improving the efficacy of currently available anti-atherosclerotic therapies.
Collapse
Affiliation(s)
- Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.
| | - Michelle Zurek
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Pauline Puylaert
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
9
|
Li Y, Du L, Meng L, Lv C, Tian X. High expression of CASP1 induces atherosclerosis. Medicine (Baltimore) 2024; 103:e37616. [PMID: 38640260 PMCID: PMC11030018 DOI: 10.1097/md.0000000000037616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/17/2024] [Accepted: 02/23/2024] [Indexed: 04/21/2024] Open
Abstract
Atherosclerosis is a chronic, progressive vascular disease. The relationship between CASP1 gene expression and atherosclerosis remains unclear. The atherosclerosis dataset GSE132651 and GSE202625 profiles were downloaded from gene expression omnibus. Differentially expressed genes (DEGs) were screened. The construction and analysis of protein-protein interaction network, functional enrichment analysis, gene set enrichment analysis, and Comparative Toxicogenomics Database analysis were performed. Gene expression heatmap was drawn. TargetScan was used to screen miRNAs that regulate central DEG. 47 DEGs were identified. According to gene ontology analysis, they were mainly enriched in the regulation of stimulus response, response to organic matter, extracellular region, extracellular region, and the same protein binding. Kyoto Encyclopedia of Gene and Genome analysis results showed that the target cells were mainly enriched in the PI3K-Akt signaling pathway, Ras signaling pathway, and PPAR signaling pathway. In the enrichment project of Metascape, vascular development, regulation of body fluid levels, and positive regulation of cell motility can be seen in the gene ontology enrichment project. Eleven core genes (CASP1, NLRP3, MRC1, IRS1, PPARG, APOE, IL13, FGF2, CCR2, ICAM1, HIF1A) were obtained. IRS1, PPARG, APOE, FGF2, CCR2, and HIF1A genes are identified as core genes. Gene expression heatmap showed that CASP1 was highly expressed in atherosclerosis samples and low expressed in normal samples. NLRP3, MRC1, IRS1, PPARG, APOE, IL13, FGF2, CCR2, ICAM1, HIF1A were low expressed in atherosclerosis samples. CTD analysis showed that 5 genes (CASP1, NLRP3, CCR2, ICAM1, HIF1A) were found to be associated with pneumonia, inflammation, cardiac enlargement, and tumor invasiveness. CASP1 gene is highly expressed in atherosclerosis. The higher the CASP1 gene, the worse the prognosis.
Collapse
Affiliation(s)
- Yongchao Li
- Department of Cardiac Surgery, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Lihong Du
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Lingbing Meng
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Chao Lv
- Department of neurology, Pizhou Hospital Affiliated to Xuzhou Medical University, Pizhou People's Hospital, Pizhou, Jiangsu Province, China
| | - Xinping Tian
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| |
Collapse
|
10
|
Shields CA, Tardo GA, Wang X, Peacock G, Robbins M, Glenn H, Wilson R, Williams JM, Cornelius DC. Inhibition of Caspase 1 Reduces Blood Pressure, Cytotoxic NK Cells, and Inflammatory T-Helper 17 Cells in Placental Ischemic Rats. Int J Mol Sci 2024; 25:863. [PMID: 38255935 PMCID: PMC10815407 DOI: 10.3390/ijms25020863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/31/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Preeclampsia (PE) is characterized by maternal hypertension, fetal growth restriction (FGR), and increased inflammation and populations of cytotoxic NK cells (cNKs) and inflammatory T-Helper 17 cells (TH17s). Both cytotoxic NK cells and TH17 cells are heavily influenced via IL-1β signaling. Caspase 1 activity leads to the release of the inflammatory cytokine IL-1β, which is increased in women with PE. Therefore, we tested the hypothesis that the inhibition of Caspase 1 with VX-765 in rats with reduced uterine perfusion pressure (RUPP) will attenuate PE pathophysiology. On gestation day (GD) 14, timed pregnant Sprague-Dawley rats underwent the RUPP or Sham procedure and were separated into groups that received either vehicle or VX-765 (50 mg/kg/day i.p.). On GD19, MAP was measured via carotid catheter and blood and tissues were collected. Bio-Plex and flow cytometry analysis were performed on placental tissues. Placental IL-1β was increased in the RUPP rats vs. the Sham rats and treatment with VX-765 reduced IL-1β in the RUPP rats. Caspase 1 inhibition reduced placental cNKs and TH17s in RUPP rats compared to vehicle-treated RUPP rats. Increased MAP was observed in RUPP rats compared with Sham rats and was reduced in RUPP + VX-765 rats. Placental reactive oxygen species (ROS) were elevated in RUPP rats compared to Sham rats. VX-765 administration reduced ROS in treated RUPP rats. Caspase 1 inhibition increased the number of live pups, yet had no effect on fetal weight or placental efficiency in the treated groups. In conclusion, Caspase 1 inhibition reduces placental IL-1β, inflammatory TH17 and cNK populations, and reduces MAP in RUPP rats. These data suggest that Caspase 1 is a key contributor to PE pathophysiology. This warrants further investigation of Caspase 1 as a potential therapeutic target to improve maternal outcomes in PE.
Collapse
Affiliation(s)
- Corbin A. Shields
- Department of Pharmacolocy and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (C.A.S.); (G.A.T.); (X.W.); (M.R.); (H.G.); (R.W.); (J.M.W.)
| | - Geilda A. Tardo
- Department of Pharmacolocy and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (C.A.S.); (G.A.T.); (X.W.); (M.R.); (H.G.); (R.W.); (J.M.W.)
| | - Xi Wang
- Department of Pharmacolocy and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (C.A.S.); (G.A.T.); (X.W.); (M.R.); (H.G.); (R.W.); (J.M.W.)
| | - Gregory Peacock
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA;
| | - Marcus Robbins
- Department of Pharmacolocy and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (C.A.S.); (G.A.T.); (X.W.); (M.R.); (H.G.); (R.W.); (J.M.W.)
| | - Hannah Glenn
- Department of Pharmacolocy and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (C.A.S.); (G.A.T.); (X.W.); (M.R.); (H.G.); (R.W.); (J.M.W.)
| | - Rachel Wilson
- Department of Pharmacolocy and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (C.A.S.); (G.A.T.); (X.W.); (M.R.); (H.G.); (R.W.); (J.M.W.)
| | - Jan M. Williams
- Department of Pharmacolocy and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (C.A.S.); (G.A.T.); (X.W.); (M.R.); (H.G.); (R.W.); (J.M.W.)
| | - Denise C. Cornelius
- Department of Pharmacolocy and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (C.A.S.); (G.A.T.); (X.W.); (M.R.); (H.G.); (R.W.); (J.M.W.)
- Department of Emergency Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA;
| |
Collapse
|
11
|
Liu JW, Zhang ZH, Lv XS, Xu MY, Ni B, He B, Wang F, Chen J, Zhang JB, Ye ZD, Liu P, Wen JY. Identification of key pyroptosis-related genes and microimmune environment among peripheral arterial beds in atherosclerotic arteries. Sci Rep 2024; 14:233. [PMID: 38167983 PMCID: PMC10761966 DOI: 10.1038/s41598-023-50689-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
Atherosclerosis is a chronic inflammatory disease characterized with innate and adaptive immunity but also involves pyroptosis. Few studies have explored the role of pyroptosis in advanced atherosclerotic plaques from different vascular beds. Here we try to identify the different underlying function of pyroptosis in the progression of atherosclerosis between carotid arteries and femoral. arteries. We extracted gene expression levels from 55 advanced carotid or femoral atherosclerotic plaques. The pyroptosis score of each sample was calculated by single-sample-gene-set enrichment analysis (ssGSEA). We then divided the samples into two clusters: high pyroptosis scores cluster (PyroptosisScoreH cluster) and low pyroptosis scores cluster (PyroptosisScoreL cluster), and assessed functional enrichment and immune cell infiltration in the two clusters. Key pyroptosis related genes were identified by the intersection between results of Cytoscape and LASSO (Least Absolute Shrinkage and Selection Operator) regression analysis. Finally, all key pyroptosis related genes were validated in vitro. We found all but one of the 29 carotid plaque samples belonged to the PyroptosisScoreH cluster and the majority (19 out of 26) of femoral plaques were part of the PyroptosisScoreL cluster. Atheromatous plaque samples in the PyroptosisScoreL cluster had higher proportions of gamma delta T cells, M2 macrophages, myeloid dendritic cells (DCs), and cytotoxic lymphocytes (CTLs), but lower proportions of endothelial cells (ECs). Immune full-activation pathways (e.g., NOD-like receptor signaling pathway and NF-kappa B signaling pathway) were highly enriched in the PyroptosisScoreH cluster. The key pyroptosis related genes GSDMD, CASP1, NLRC4, AIM2, and IL18 were upregulated in advanced carotid atherosclerotic plaques. We concluded that compared to advanced femoral atheromatous plaques, advanced carotid atheromatous plaques were of higher grade of pyroptosis. GSDMD, CASP1, NLRC4, AIM2, and IL18 were the key pyroptosis related genes, which might provide a new sight in the prevention of fatal strokes in advanced carotid atherosclerosis.
Collapse
Affiliation(s)
- Jing-Wen Liu
- Peking University China-Japan Friendship School of Clinical Medicine, NO. 2 Yinghua Eastern Road, Beijing, China
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, NO. 2 Yinghua Eastern Road, Beijing, 10029, China
| | - Zhao-Hua Zhang
- Peking University China-Japan Friendship School of Clinical Medicine, NO. 2 Yinghua Eastern Road, Beijing, China
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, NO. 2 Yinghua Eastern Road, Beijing, 10029, China
| | - Xiao-Shuo Lv
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, NO. 2 Yinghua Eastern Road, Beijing, 10029, China
- Graduate School of Peking, Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, China
| | - Ming-Yuan Xu
- Peking University China-Japan Friendship School of Clinical Medicine, NO. 2 Yinghua Eastern Road, Beijing, China
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, NO. 2 Yinghua Eastern Road, Beijing, 10029, China
| | - Bin Ni
- Peking University China-Japan Friendship School of Clinical Medicine, NO. 2 Yinghua Eastern Road, Beijing, China
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, NO. 2 Yinghua Eastern Road, Beijing, 10029, China
| | - Bin He
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, NO. 2 Yinghua Eastern Road, Beijing, 10029, China
| | - Feng Wang
- Graduate School of Peking, Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, China
| | - Jie Chen
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, NO. 2 Yinghua Eastern Road, Beijing, 10029, China
| | - Jian-Bin Zhang
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, NO. 2 Yinghua Eastern Road, Beijing, 10029, China
| | - Zhi-Dong Ye
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, NO. 2 Yinghua Eastern Road, Beijing, 10029, China
| | - Peng Liu
- Peking University China-Japan Friendship School of Clinical Medicine, NO. 2 Yinghua Eastern Road, Beijing, China.
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, NO. 2 Yinghua Eastern Road, Beijing, 10029, China.
| | - Jian-Yan Wen
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, NO. 2 Yinghua Eastern Road, Beijing, 10029, China.
| |
Collapse
|
12
|
Karasawa T, Komada T, Baatarjav C, Aizawa E, Mizushina Y, Fujimura K, Gunji Y, Komori S, Aizawa H, Jing Tao CB, Matsumura T, Takahashi M. Caspase-11 deficiency attenuates neutrophil recruitment into the atherosclerotic lesion in apolipoprotein E-deficient mice. Biochem Biophys Res Commun 2023; 686:149158. [PMID: 37922574 DOI: 10.1016/j.bbrc.2023.149158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
Caspase-11 is an inflammatory caspase that triggers an inflammatory response by regulating non-canonical NLRP3 inflammasome activation. Although the deficiency of both caspase-11 and caspase-1, another inflammatory caspase that functions as an executor of the inflammasome, prevents the development of atherosclerosis, the effect of caspase-11 deficiency alone on the development of atherosclerosis has not been fully evaluated. In the present study, we found that caspase-11 deficiency prevented the formation of the necrotic core, whereas it did not affect the development of atherosclerosis in Apoe-deficient mice. Notably, the infiltration of neutrophils into atherosclerotic lesions was attenuated by caspase-11 deficiency. RNA-seq analysis of stage-dependent expression of atherosclerotic lesions revealed that both upregulations of caspase-11 and neutrophil migration are common features of advanced atherosclerotic lesions. Furthermore, similar expression profiles were observed in unstable human plaque. These data suggest that caspase-11 regulates neutrophil recruitment and plaque destabilization in advanced atherosclerotic lesions.
Collapse
Affiliation(s)
- Tadayoshi Karasawa
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan.
| | - Takanori Komada
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Chintogtokh Baatarjav
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Emi Aizawa
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Yoshiko Mizushina
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Kenta Fujimura
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Yoshitaka Gunji
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Satoko Komori
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hidetoshi Aizawa
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Cantona Billton Jing Tao
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Takayoshi Matsumura
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan.
| |
Collapse
|
13
|
Hao W, Feng C. Research progress on pyroptosis and its effect on the central nervous system. Neurobiol Dis 2023; 188:106333. [PMID: 39491175 DOI: 10.1016/j.nbd.2023.106333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024] Open
Abstract
Pyroptosis is an inflammatory and lysis type of programmed cell death. In the canonical pyroptosis signaling pathway, the NLRP3 inflammasome activates inflammatory caspase-1, which then shears cut the executor protein GSDMD. The N domains of GSDMD move to heterogeneous membranes, form pores, and release inflammatory cytokines IL-1β and IL-18, causing cell membrane swelling and rupture. Pyroptosis is mainly regulated by the key proteins in the signaling pathway, including inflammasome, caspase-1, GSDMD, IL-1β, and IL-18, as well as their agonists and inhibitors. Appropriate pyroptosis can improve host defense mechanisms, while excessive pyroptosis would derive pathological effects on central nervous system, leding to neuroinflammatory response, blood-brain barrier damage, and cognitive disfunction.
Collapse
Affiliation(s)
- Wudi Hao
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang 110004, China
| | - Cong Feng
- Laboratory of Research in Parkinson's Disease and Related Disorders, Health Science Institute, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China.
| |
Collapse
|
14
|
Hao W, Zhu X, Liu Z, Song Y, Wu S, Lu X, Yang J, Jin C. Aluminum exposure induces central nervous system impairment via activating NLRP3-medicated pyroptosis pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115401. [PMID: 37634479 DOI: 10.1016/j.ecoenv.2023.115401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/18/2023] [Accepted: 08/20/2023] [Indexed: 08/29/2023]
Abstract
PURPOSE Aluminum is an environmental toxicant whose long-term exposure is closely associated with nervous system impairment. This study mainly investigated neurological impairment induced by subchronic aluminum exposure via activating NLRP3-medicated pyroptosis pathway. METHODS In vivo, Kunming mice were exposed to AlCl3 (30.3 mg/kg, 101 mg/kg and 303 mg/kg) via drinking water for 3 months, and administered with Rsv (100 mg/kg) by gavage for 1 month. Cognitive impairment was assessed by Morris water maze test, and pathological injury was detected via H&E staining. BBB integrity, pyroptosis and neuroinflammation were evaluated through western blotting and immunofluorescence methods. In vitro, BV2 microglia was treated with AlCl3 (0.5 mM, 1 mM and 2 mM) to sensitize pyroptosis pathway. The protein interaction was verified by co-immunoprecipitation, and neuronal damage was estimated via a conditioned medium co-culture system with BV2 and TH22 cells. RESULTS Our results showed that AlCl3 induced mice memory disorder, BBB destruction, and pathological injury. Besides, aluminum caused glial activation, sensitized DDX3X-NLRP3 pyroptosis pathway, released cytokines IL-1β and IL-18, initiating neuroinflammation. BV2 microglia treated with AlCl3 emerged hyperactivation and pyroptotic death, and Ddx3x knockdown inhibited pyroptosis signaling pathway. DDX3X acted as a live-or-die checkpoint in stressed cells by regulating NLRP3 inflammasome and G3BP1 stress granules. Furthermore, aluminum-activated microglia had an adverse effect on co-cultured neurons and destroyed nervous system homeostasis. CONCLUSION Aluminum exposure could induce pyroptosis and neurotoxicity. DDX3X determined live or die via selectively regulating pro-survival stress granules or pro-death NLRP3 inflammasome. Excessive activation of microglia might damage neurons and aggravate nerve injury.
Collapse
Affiliation(s)
- Wudi Hao
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, China; Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xiaoying Zhu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Ziyue Liu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Yushuai Song
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Shengwen Wu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Xiaobo Lu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Jinghua Yang
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, China
| | - Cuihong Jin
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, China.
| |
Collapse
|
15
|
Alam MA, Caocci M, Ren M, Chen Z, Liu F, Khatun MS, Kolls JK, Qin X, Burdo TH. Deficiency of Caspase-1 Attenuates HIV-1-Associated Atherogenesis in Mice. Int J Mol Sci 2023; 24:12871. [PMID: 37629052 PMCID: PMC10454548 DOI: 10.3390/ijms241612871] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Within arterial plaque, HIV infection creates a state of inflammation and immune activation, triggering NLRP3/caspase-1 inflammasome, tissue damage, and monocyte/macrophage infiltration. Previously, we documented that caspase-1 activation in myeloid cells was linked with HIV-associated atherosclerosis in mice and people with HIV. Here, we mechanistically examined the direct effect of caspase-1 on HIV-associated atherosclerosis. Caspase-1-deficient (Casp-1-/-) mice were crossed with HIV-1 transgenic (Tg26+/-) mice with an atherogenic ApoE-deficient (ApoE-/-) background to create global caspase-1-deficient mice (Tg26+/-/ApoE-/-/Casp-1-/-). Caspase-1-sufficient (Tg26+/-/ApoE-/-/Casp-1+/+) mice served as the controls. Next, we created chimeric hematopoietic cell-deficient mice by reconstituting irradiated ApoE-/- mice with bone marrow cells transplanted from Tg26+/-/ApoE-/-/Casp-1-/- (BMT Casp-1-/-) or Tg26+/-/ApoE-/-/Casp-1+/+ (BMT Casp-1+/+) mice. Global caspase-1 knockout in mice suppressed plaque deposition in the thoracic aorta, serum IL-18 levels, and ex vivo foam cell formation. The deficiency of caspase-1 in hematopoietic cells resulted in reduced atherosclerotic plaque burden in the whole aorta and aortic root, which was associated with reduced macrophage infiltration. Transcriptomic analyses of peripheral mononuclear cells and splenocytes indicated that caspase-1 deficiency inhibited caspase-1 pathway-related genes. These results document the critical atherogenic role of caspase-1 in chronic HIV infection and highlight the implication of this pathway and peripheral immune activation in HIV-associated atherosclerosis.
Collapse
Affiliation(s)
- Mohammad Afaque Alam
- Department of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA 70433, USA; (M.A.A.); (M.R.); (Z.C.); (F.L.)
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Maurizio Caocci
- Department of Microbiology, Immunology and Inflammation, Center for NeuroVirology and Gene Editing, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Mi Ren
- Department of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA 70433, USA; (M.A.A.); (M.R.); (Z.C.); (F.L.)
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Zheng Chen
- Department of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA 70433, USA; (M.A.A.); (M.R.); (Z.C.); (F.L.)
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Fengming Liu
- Department of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA 70433, USA; (M.A.A.); (M.R.); (Z.C.); (F.L.)
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Mst Shamima Khatun
- Departments of Pediatrics & Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA; (M.S.K.); (J.K.K.)
| | - Jay K. Kolls
- Departments of Pediatrics & Medicine, Center for Translational Research in Infection and Inflammation, Tulane University School of Medicine, New Orleans, LA 70112, USA; (M.S.K.); (J.K.K.)
- Department of Medicine, Section of Pulmonary Diseases, Critical Care and Environmental Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Xuebin Qin
- Department of Comparative Pathology, Tulane National Primate Research Center, Tulane University School of Medicine, Tulane University, 18703 Three Rivers Road, Covington, LA 70433, USA; (M.A.A.); (M.R.); (Z.C.); (F.L.)
- Department of Microbiology and Immunology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Tricia H. Burdo
- Department of Microbiology, Immunology and Inflammation, Center for NeuroVirology and Gene Editing, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| |
Collapse
|
16
|
Zhang BL, Yu P, Su EY, Zhang CY, Xie SY, Yang X, Zou YZ, Liu M, Jiang H. Inhibition of GSDMD activation by Z-LLSD-FMK or Z-YVAD-FMK reduces vascular inflammation and atherosclerotic lesion development in ApoE -/- mice. Front Pharmacol 2023; 14:1184588. [PMID: 37593179 PMCID: PMC10427923 DOI: 10.3389/fphar.2023.1184588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
Pyroptosis is a form of pro-inflammatory cell death that can be mediated by gasdermin D (GSDMD) activation induced by inflammatory caspases such as caspase-1. Emerging evidence suggests that targeting GSDMD activation or pyroptosis may facilitate the reduction of vascular inflammation and atherosclerotic lesion development. The current study investigated the therapeutic effects of inhibition of GSDMD activation by the novel GSDMD inhibitor N-Benzyloxycarbonyl-Leu-Leu-Ser-Asp(OMe)-fluoromethylketone (Z-LLSD-FMK), the specific caspase-1 inhibitor N-Benzyloxycarbonyl-Tyr-Val-Ala-Asp(OMe)-fluoromethylketone (Z-YVAD-FMK), and a combination of both on atherosclerosis in ApoE-/- mice fed a western diet at 5 weeks of age, and further determined the efficacy of these polypeptide inhibitors in bone marrow-derived macrophages (BMDMs). In vivo studies there was plaque formation, GSDMD activation, and caspase-1 activation in aortas, which increased gradually from 6 to 18 weeks of age, and increased markedly at 14 and 18 weeks of age. ApoE-/- mice were administered Z-LLSD-FMK (200 µg/day), Z-YVAD-FMK (200 µg/day), a combination of both, or vehicle control intraperitoneally from 14 to 18 weeks of age. Treatment significantly reduced lesion formation, macrophage infiltration in lesions, protein levels of vascular cell adhesion molecule-1 and monocyte chemoattractant protein-1, and pyroptosis-related proteins such as activated caspase-1, activated GSDMD, cleaved interleukin(IL)-1β, and high mobility group box 1 in aortas. No overt differences in plasma lipid contents were detected. In vitro treatment with these polypeptide inhibitors dramatically decreased the percentage of propidium iodide-positive BMDMs, the release of lactate dehydrogenase and IL-1β, and protein levels of pyroptosis-related proteins both in supernatants and cell lysates elevated by lipopolysaccharide + nigericin. Notably however, there were no significant differences in the above-mentioned results between the Z-LLSD-FMK group and the Z-YVAD-FMK group, and the combination of both did not yield enhanced effects. These findings indicate that suppression of GSDMD activation by Z-LLSD-FMK or Z-YVAD-FMK reduces vascular inflammation and lesion development in ApoE-/- mice.
Collapse
Affiliation(s)
- Bao-Li Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Peng Yu
- Department of Endocrinology and Metabolism, Fudan Institute of Metabolic Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - En-Yong Su
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chun-Yu Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shi-Yao Xie
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xue Yang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yun-Zeng Zou
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ming Liu
- Department of Health Management Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of AI Technology for Cardiopulmonary Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hong Jiang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of AI Technology for Cardiopulmonary Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Bauer S, Hezinger L, Rexhepi F, Ramanathan S, Kufer TA. NOD-like Receptors-Emerging Links to Obesity and Associated Morbidities. Int J Mol Sci 2023; 24:ijms24108595. [PMID: 37239938 DOI: 10.3390/ijms24108595] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Obesity and its associated metabolic morbidities have been and still are on the rise, posing a major challenge to health care systems worldwide. It has become evident over the last decades that a low-grade inflammatory response, primarily proceeding from the adipose tissue (AT), essentially contributes to adiposity-associated comorbidities, most prominently insulin resistance (IR), atherosclerosis and liver diseases. In mouse models, the release of pro-inflammatory cytokines such as TNF-alpha (TNF-α) and interleukin (IL)-1β and the imprinting of immune cells to a pro-inflammatory phenotype in AT play an important role. However, the underlying genetic and molecular determinants are not yet understood in detail. Recent evidence demonstrates that nucleotide-binding and oligomerization domain (NOD)-like receptor (NLR) family proteins, a group of cytosolic pattern recognition receptors (PRR), contribute to the development and control of obesity and obesity-associated inflammatory responses. In this article, we review the current state of research on the role of NLR proteins in obesity and discuss the possible mechanisms leading to and the outcomes of NLR activation in the obesity-associated morbidities IR, type 2 diabetes mellitus (T2DM), atherosclerosis and non-alcoholic fatty liver disease (NAFLD) and discuss emerging ideas about possibilities for NLR-based therapeutic interventions of metabolic diseases.
Collapse
Affiliation(s)
- Sarah Bauer
- Institute of Nutritional Medicine, Department of Immunology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Lucy Hezinger
- Institute of Nutritional Medicine, Department of Immunology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Fjolla Rexhepi
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Thomas A Kufer
- Institute of Nutritional Medicine, Department of Immunology, University of Hohenheim, 70593 Stuttgart, Germany
| |
Collapse
|
18
|
Tanase DM, Valasciuc E, Gosav EM, Ouatu A, Buliga-Finis ON, Floria M, Maranduca MA, Serban IL. Portrayal of NLRP3 Inflammasome in Atherosclerosis: Current Knowledge and Therapeutic Targets. Int J Mol Sci 2023; 24:ijms24098162. [PMID: 37175869 PMCID: PMC10179095 DOI: 10.3390/ijms24098162] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
We are witnessing the globalization of a specific type of arteriosclerosis with rising prevalence, incidence and an overall cardiovascular disease burden. Currently, atherosclerosis increasingly affects the younger generation as compared to previous decades. While early preventive medicine has seen improvements, research advances in laboratory and clinical investigation promise to provide us with novel diagnosis tools. Given the physio-pathological complexity and epigenetic patterns of atherosclerosis and the discovery of new molecules involved, the therapeutic field of atherosclerosis has room for substantial growth. Thus, the scientific community is currently investigating the role of nucleotide-binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, a crucial component of the innate immune system in different inflammatory disorders. NLRP3 is activated by distinct factors and numerous cellular and molecular events which trigger NLRP3 inflammasome assembly with subsequent cleavage of pro-interleukin (IL)-1β and pro-IL-18 pathways via caspase-1 activation, eliciting endothelial dysfunction, promotion of oxidative stress and the inflammation process of atherosclerosis. In this review, we introduce the basic cellular and molecular mechanisms of NLRP3 inflammasome activation and its role in atherosclerosis. We also emphasize its promising therapeutic pharmaceutical potential.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Emilia Valasciuc
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Anca Ouatu
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Oana Nicoleta Buliga-Finis
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Minela Aida Maranduca
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
- Department of Morpho-Functional Sciences II, Discipline of Physiology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionela Lacramioara Serban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
19
|
Markin AM, Markina YV, Bogatyreva AI, Tolstik TV, Chakal DA, Breshenkov DG, Charchyan ER. The Role of Cytokines in Cholesterol Accumulation in Cells and Atherosclerosis Progression. Int J Mol Sci 2023; 24:ijms24076426. [PMID: 37047399 PMCID: PMC10094347 DOI: 10.3390/ijms24076426] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Atherosclerosis is the most common cardiovascular disease and is the number one cause of death worldwide. Today, atherosclerosis is a multifactorial chronic inflammatory disease with an autoimmune component, accompanied by the accumulation of cholesterol in the vessel wall and the formation of atherosclerotic plaques, endothelial dysfunction, and chronic inflammation. In the process of accumulation of atherogenic lipids, cells of the immune system, such as monocytes, macrophages, dendritic cells, etc., play an important role, producing and/or activating the production of various cytokines—interferons, interleukins, chemokines. In this review, we have tried to summarize the most important cytokines involved in the processes of atherogenesis.
Collapse
|
20
|
Zhang Y, Tu J, Li Y, Wang Y, Lu L, Wu C, Yu XY, Li Y. Inflammation macrophages contribute to cardiac homeostasis. CARDIOLOGY PLUS 2023. [DOI: 10.1097/cp9.0000000000000035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
21
|
Ma C, Lu T, He Y, Guo D, Duan L, Jia R, Cai D, Gao T, Chen Z, Xue B, Li T, He Y. Comprehensive analysis of autophagy-related gene expression profiles identified five gene biomarkers associated with immune infiltration and advanced plaques in carotid atherosclerosis. Orphanet J Rare Dis 2023; 18:66. [PMID: 36959587 PMCID: PMC10037854 DOI: 10.1186/s13023-023-02660-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/11/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Autophagy plays an important role in the progression of carotid atherosclerosis (CAS). This study aimed to identify hub autophagy-related genes (ATGs) associated with CAS. METHODS GSE43292 and GSE28829 datasets of early and advanced CAS plaques were enrolled from the Gene Expression Omnibus (GEO) database. A comprehensive analysis of differentially expressed ATGs (DE-ATGs) was conducted. Functional enrichment assay was used to explore biological functions of DE-ATGs. The hub ATGs were identified by protein-protein interaction (PPI) network. Immunohistochemistry (IHC) and Real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were used to validate hub ATGs at the protein level and mRNA level. Correlation analysis of hub ATGs with immune cells was also conducted. In addition, a competitive endogenous RNA (ceRNA) network was constructed, and diagnostic value of hub ATGs was evaluated. RESULTS A total of 19 DE-ATGs were identified in early and advanced CAS plaques. Functional enrichment analysis of DE-ATGs suggested that they were closely correlated to autophagy, apoptosis, and lipid regulation. Moreover, 5 hub ATGs, including TNFSF10, ITGA6, CTSD, CCL2, and CASP1, were identified and further verified by IHC. The area under the curve (AUC) values of the 5 hub ATGs were 0.818, 0.732, 0.792, 0.814, and 0.812, respectively. Competing endogenous RNA (ceRNA) networks targeting the hub ATGs were also constructed. In addition, the 5 hub ATGs were found to be closely associated with immune cell infiltration in CAS. CONCLUSION In this study, we identified 5 hub ATGs including CASP1, CCL2, CTSD, ITGA6 and TNFSF10, which could serve as candidate diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Chi Ma
- Department of Cerebrovascular Disease, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
- Henan Provincial NeuroInterventional Engineering Research Center, Henan International Joint Laboratory of Cerebrovascular Disease, and Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, Henan, 450003, China
| | - Taoyuan Lu
- Department of Cerebrovascular Disease, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
- Henan Provincial NeuroInterventional Engineering Research Center, Henan International Joint Laboratory of Cerebrovascular Disease, and Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, Henan, 450003, China
| | - Yanyan He
- Department of Cerebrovascular Disease, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
- Henan Provincial NeuroInterventional Engineering Research Center, Henan International Joint Laboratory of Cerebrovascular Disease, and Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, Henan, 450003, China
- Department of Cerebrovascular Disease, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
| | - Dehua Guo
- Department of Cerebrovascular Disease, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
- Henan Provincial NeuroInterventional Engineering Research Center, Henan International Joint Laboratory of Cerebrovascular Disease, and Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, Henan, 450003, China
| | - Lin Duan
- Henan Provincial NeuroInterventional Engineering Research Center, Henan International Joint Laboratory of Cerebrovascular Disease, and Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, Henan, 450003, China
- Department of Cerebrovascular Disease, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
| | - Rufeng Jia
- Department of Cerebrovascular Disease, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
- Henan Provincial NeuroInterventional Engineering Research Center, Henan International Joint Laboratory of Cerebrovascular Disease, and Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, Henan, 450003, China
| | - Dongyang Cai
- Department of Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
| | - Tao Gao
- Department of Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
| | - Zhongcan Chen
- Department of Neurosurgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
| | - Binghua Xue
- Department of Endocrinology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
| | - Tianxiao Li
- Department of Cerebrovascular Disease, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China.
- Henan Provincial NeuroInterventional Engineering Research Center, Henan International Joint Laboratory of Cerebrovascular Disease, and Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, Henan, 450003, China.
- Department of Cerebrovascular Disease, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China.
| | - Yingkun He
- Department of Cerebrovascular Disease, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China.
- Henan Provincial NeuroInterventional Engineering Research Center, Henan International Joint Laboratory of Cerebrovascular Disease, and Henan Engineering Research Center of Cerebrovascular Intervention Innovation, Zhengzhou, Henan, 450003, China.
| |
Collapse
|
22
|
Ismailani US, Buchler A, MacMullin N, Abdirahman F, Adi M, Rotstein BH. Synthesis and Evaluation of [ 11C]MCC950 for Imaging NLRP3-Mediated Inflammation in Atherosclerosis. Mol Pharm 2023; 20:1709-1716. [PMID: 36735877 DOI: 10.1021/acs.molpharmaceut.2c00915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Overexpression of the NLRP3 inflammasome has been attributed to the progressive worsening of a multitude of cardiovascular inflammatory diseases such as myocardial infarction, pulmonary arterial hypertension, and atherosclerosis. The recently discovered potent and selective NLRP3 inhibitor MCC950 has shown promise in hindering disease progression, but NLRP3-selective cardiovascular positron emission tomography (PET) imaging has not yet been demonstrated. We synthesized [11C]MCC950 with no-carrier-added [11C]CO2 fixation chemistry using an iminophosphorane precursor (RCY 45 ± 4%, >99% RCP, 27 ± 2 GBq/μmol, 23 ± 3 min, n = 6) and determined its distribution both in vivo and ex vivo in C57BL/6 and atherogenic ApoE-/- mice. Small animal PET imaging was performed in both strains following intravenous administration via the lateral tail vein and revealed considerable uptake in the liver that stabilized by 20 min (7-8.5 SUV), coincident with secondary renal excretion. Plasma metabolite analysis uncovered excellent in vivo stability of [11C]MCC950 (94% intact). Ex vivo autoradiography performed on excised aortas revealed heterogeneous uptake in atherosclerotic plaques of ApoE-/- mice in comparison to C57BL/6 controls (48 ± 17 %ID/m2 vs 18 ± 8 %ID/m2, p = 0.002, n = 4-5). Treatment of ApoE-/- mice with nonradioactive MCC950 (5 mg/kg, iv) 10 min prior to radiotracer administration increased uptake in the intestine (5.3 ± 1.8 %ID/g vs 11.0 ± 3.7 %ID/g, p = 0.04, n = 4-6) and in aortic lesions (48 ± 17 %ID/m2 vs 104 ± 15 %ID/m2, p = 0.0002, n = 5) by 108% and 117%, respectively, without significantly increasing plasma free fraction (fp, 1.3 ± 0.4% vs 1.7 ± 0.8%, n = 2). These results suggest that [11C]MCC950 uptake demonstrates specific binding and may prove useful for in vivo NLRP3 imaging in atherosclerosis.
Collapse
Affiliation(s)
- Uzair S Ismailani
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | - Ariel Buchler
- University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada.,Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Nicole MacMullin
- University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | - Faduma Abdirahman
- University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada.,Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Myriam Adi
- University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada.,Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Benjamin H Rotstein
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada.,Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
23
|
Paraskevaidis I, Farmakis D, Papingiotis G, Tsougos E. Inflammation and Heart Failure: Searching for the Enemy-Reaching the Entelechy. J Cardiovasc Dev Dis 2023; 10:jcdd10010019. [PMID: 36661914 PMCID: PMC9866611 DOI: 10.3390/jcdd10010019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
The pivotal role of inflammation in the pathophysiology of heart-failure (HF) development and progression has long been recognized. High blood levels of pro-inflammatory and inflammatory markers are present and associated with adverse outcomes in patients with HF. In addition, there seems to be an interrelation between inflammation and neurohormonal activation, the cornerstone of HF pathophysiology and management. However, clinical trials involving anti-inflammatory agents have shown inconclusive or even contradictory results in improving HF outcomes. In the present review, we try to shed some light on the reciprocal relationship between inflammation and HF in an attempt to identify the central regulating factors, such as inflammatory cells and soluble mediators and the related inflammatory pathways as potential therapeutic targets.
Collapse
Affiliation(s)
- Ioannis Paraskevaidis
- Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- 6th Department of Cardiology, Hygeia Hospital, 15123 Athens, Greece
| | - Dimitrios Farmakis
- Medical School, University of Cyprus, 2029 Nicosia, Cyprus
- Correspondence: ; Tel.: +357-22-895235
| | - Georgios Papingiotis
- Department of Cardiology, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Elias Tsougos
- 6th Department of Cardiology, Hygeia Hospital, 15123 Athens, Greece
| |
Collapse
|
24
|
Wang Y, Fang D, Yang Q, You J, Wang L, Wu J, Zeng M, Luo M. Interactions between PCSK9 and NLRP3 inflammasome signaling in atherosclerosis. Front Immunol 2023; 14:1126823. [PMID: 36911736 PMCID: PMC9992811 DOI: 10.3389/fimmu.2023.1126823] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
Atherosclerosis is an early pathological basis of numerous cardiovascular events that result in death or disability. Recent studies have described PCSK9 as a novel target for the treatment of atherosclerosis; PCSK9 is capable of degrading LDLR on the surface of hepatocytes through the regulation of lipid metabolism, and it can function as a novel inflammatory modulator in atherosclerosis. Inflammasomes are important intracellular multiprotein complexes that promote the inflammatory response in atherosclerosis. Among inflammasomes, the NLRP3 inflammasome is particularly notable because of its important role in the development of atherosclerotic disease. After activation, NLRP3 forms a complex with ASC and pro-caspase-1, converting pro-caspase-1 into activated caspase-1, which may trigger the release of IL-1β and IL-18 and contribute to the inflammatory response. Several recent studies have indicated that there may be interactions between PCSK9 and the NLRP3 inflammasome, which may contribute to the inflammatory response that drives atherosclerosis development and progression. On the one hand, the NLRP3 inflammasome plays an important role via IL-1β in regulating PCSK9 secretion. On the other hand, PCSK9 regulates caspase-1-dependent pyroptosis by initiating mtDNA damage and activating NLRP3 inflammasome signaling. This paper reviews the mechanisms underlying PCSK9 and NLRP3 inflammasome activation in the context of atherosclerosis. Furthermore, we describe the current understanding of the specific molecular mechanism underlying the interactions between PCSK9 and NLRP3 inflammasome signaling as well as the drug repositioning events that influence vascular cells and exert beneficial antiatherosclerotic effects. This review may provide a new therapeutic direction for the effective prevention and treatment of atherosclerosis in the clinic.
Collapse
Affiliation(s)
- Yanan Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Dan Fang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Qinzhi Yang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Jingcan You
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Liqun Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Jianbo Wu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Min Zeng
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Mao Luo
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China.,Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.,Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China.,Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
25
|
Huang P, Yan L, Li Z, Zhao S, Feng Y, Zeng J, Chen L, Huang A, Chen Y, Lei S, Huang X, Deng Y, Xie D, Guan H, Peng W, Yu L, Chen B. Potential shared gene signatures and molecular mechanisms between atherosclerosis and depression: Evidence from transcriptome data. Comput Biol Med 2023; 152:106450. [PMID: 36565484 DOI: 10.1016/j.compbiomed.2022.106450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Atherosclerosis and depression contribute to each other; however, mechanisms linking them at the genetic level remain unexplored. This study aimed to identify shared gene signatures and related pathways between these comorbidities. METHODS Atherosclerosis-related datasets were downloaded from the Gene Expression Omnibus database. Differential and weighted gene co-expression network analyses were employed to identify atherosclerosis-related genes. Depression-related genes were downloaded from the DisGeNET database, and the overlaps between atherosclerosis-related genes and depression-related genes were characterized as crosstalk genes. The functional enrichment analysis and protein-protein interaction network were performed in these gene sets. Subsequently, the Boruta algorithm and Recursive Feature Elimination algorithm were performed to identify feature-selection genes. A support vector machine was constructed to measure the accuracy of calculations, and two external validation sets were included to verify the results. RESULTS Based on two atherosclerosis-related datasets (GSE28829 and GSE43292), 165 genes were determined as atherosclerosis-related genes. Meanwhile, 1478 depression-related genes were obtained. After intersecting, 24 crosstalk genes were identified, and two pathways, "lipid and atherosclerosis" and "tryptophan metabolism," were revealed as mutual pathways according to the enrichment analysis results. Through the protein-protein interaction network, Molecular Complex Detection plugin, and cytoHubba plugin, PTPRC and MMP9 were identified as the hub gene. Moreover, SLC22A3, CASP1, AMPD3, and PIK3CG were recognized as feature-selection genes. Based on two external validation sets, CASP1 and MMP9 were finally determined as the critical crosstalk genes. CONCLUSIONS "Lipid and atherosclerosis" and "tryptophan metabolism" were possibly the pathways of atherosclerosis secondary to depression and depression due to atherosclerosis, respectively. CASP1 and MMP9 were revealed as the most pivotal candidates linking atherosclerosis and depression by mediating these two pathways. Further experimentation is needed to confirm these conclusions.
Collapse
Affiliation(s)
- Peiying Huang
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Yan
- Department of Neurosurgery of Shenyang Second Hospital of Traditional Chinese Medicine, Shenyang, China
| | - Zhishang Li
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Shuai Zhao
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Yuchao Feng
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou, China
| | - Jing Zeng
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Li Chen
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Afang Huang
- Departments of Laboratory Medicine of Foshan Forth People's Hospital, Foshan, China
| | - Yan Chen
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Sisi Lei
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoyan Huang
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Yi Deng
- Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Dan Xie
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hansu Guan
- The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weihang Peng
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liyuan Yu
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bojun Chen
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China; Emergency Department of Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Clinical Research Team of Prevention and Treatment of Cardiac Emergencies with Traditional Chinese Medicine, Guangzhou, China.
| |
Collapse
|
26
|
Xu XD, Chen JX, Zhu L, Xu ST, Jiang J, Ren K. The emerging role of pyroptosis-related inflammasome pathway in atherosclerosis. Mol Med 2022; 28:160. [PMID: 36544112 PMCID: PMC9773468 DOI: 10.1186/s10020-022-00594-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis (AS), a chronic sterile inflammatory disorder, is one of the leading causes of mortality worldwide. The dysfunction and unnatural death of plaque cells, including vascular endothelial cells (VEC), macrophages, and vascular smooth muscle cells (VSMC), are crucial factors in the progression of AS. Pyroptosis was described as a form of cell death at least two decades ago. It is featured by plasma membrane swelling and rupture, cell lysis, and consequent robust release of cytosolic contents and pro-inflammatory mediators, including interleukin-1β (IL-1β), IL-18, and high mobility group box 1 (HMGB1). Pyroptosis of plaque cells is commonly observed in the initiation and development of AS, and the levels of pyroptosis-related proteins are positively correlated with plaque instability, indicating the crucial contribution of pyroptosis to atherogenesis. Furthermore, studies have also identified some candidate anti-atherogenic agents targeting plaque cell pyroptosis. Herein, we summarize the research progress in understating (1) the discovery and definition of pyroptosis; (2) the characterization and molecular mechanisms of pyroptosis; (3) the regulatory mechanisms of pyroptosis in VEC, macrophage, and VSMC, as well as their potential role in AS progression, aimed at providing therapeutic targets for the prevention and treatment of AS.
Collapse
Affiliation(s)
- Xiao-Dan Xu
- grid.412679.f0000 0004 1771 3402Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022 Anhui People’s Republic of China
| | - Jia-Xian Chen
- grid.443397.e0000 0004 0368 7493Department of Cardiology, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100 Hainan People’s Republic of China
| | - Lin Zhu
- grid.252251.30000 0004 1757 8247College of Nursing, Anhui University of Chinese Medicine, Hefei, 230012 Anhui People’s Republic of China
| | - Shu-Ting Xu
- grid.411971.b0000 0000 9558 1426Department of Nephrology, The Affiliated Hospital of Dalian Medical University, Dalian, 116044 Liaoning People’s Republic of China
| | - Jian Jiang
- grid.443397.e0000 0004 0368 7493Department of Organ Transplantation, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100 Hainan People’s Republic of China
| | - Kun Ren
- grid.252251.30000 0004 1757 8247College of Nursing, Anhui University of Chinese Medicine, Hefei, 230012 Anhui People’s Republic of China ,grid.443397.e0000 0004 0368 7493Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100 Hainan People’s Republic of China
| |
Collapse
|
27
|
González L, Rivera K, Andia ME, Martínez Rodriguez G. The IL-1 Family and Its Role in Atherosclerosis. Int J Mol Sci 2022; 24:17. [PMID: 36613465 PMCID: PMC9820551 DOI: 10.3390/ijms24010017] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The IL-1 superfamily of cytokines is a central regulator of immunity and inflammation. The family is composed of 11 cytokines (with agonist, antagonist, and anti-inflammatory properties) and 10 receptors, all tightly regulated through decoy receptor, receptor antagonists, and signaling inhibitors. Inflammation not only is an important physiological response against infection and injury but also plays a central role in atherosclerosis development. Several clinical association studies along with experimental studies have implicated the IL-1 superfamily of cytokines and its receptors in the pathogenesis of cardiovascular disease. Here, we summarize the key features of the IL-1 family, its role in immunity and disease, and how it helps shape the development of atherosclerosis.
Collapse
Affiliation(s)
- Leticia González
- Centro de Imágenes Biomédicas—Departamento de Radiología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 3580000, Chile
- Instituto Milenio de Ingeniería e Inteligencia Artificial Para la Salud, iHEALTH, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Katherine Rivera
- Centro de Imágenes Biomédicas—Departamento de Radiología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 3580000, Chile
- Programa de Doctorado en Ciencias Médicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 3580000, Chile
| | - Marcelo E. Andia
- Centro de Imágenes Biomédicas—Departamento de Radiología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 3580000, Chile
- Instituto Milenio de Ingeniería e Inteligencia Artificial Para la Salud, iHEALTH, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Gonzalo Martínez Rodriguez
- División de Enfermedades Cardiovasculares, Pontificia Universidad Católica de Chile, Santiago 3580000, Chile
| |
Collapse
|
28
|
Luo X, Weng X, Bao X, Bai X, Lv Y, Zhang S, Chen Y, Zhao C, Zeng M, Huang J, Xu B, Johnson TW, White SJ, Li J, Jia H, Yu B. A novel anti-atherosclerotic mechanism of quercetin: Competitive binding to KEAP1 via Arg483 to inhibit macrophage pyroptosis. Redox Biol 2022; 57:102511. [PMID: 36274522 PMCID: PMC9596875 DOI: 10.1016/j.redox.2022.102511] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/09/2022] [Accepted: 10/13/2022] [Indexed: 11/30/2022] Open
Abstract
Natural antioxidants represented by quercetin have been documented to be effective against atherosclerosis. However, the related mechanisms remain largely unclear. In this study, we identified a novel anti-atherosclerotic mechanism of quercetin inhibiting macrophage pyroptosis by activating NRF2 through binding to the Arg483 site of KEAP1 competitively. In ApoE-/- mice fed with high fat diet, quercetin administration attenuated atherosclerosis progression by reducing oxidative stress level and suppressing macrophage pyroptosis. At the cellular level, quercetin suppressed THP-1 macrophage pyroptosis induced by ox-LDL, demonstrated by inhibiting NLRP3 inflammasome activation and reducing ROS level, while these effects were reversed by the specific NRF2 inhibitor (ML385). Mechanistically, quercetin promoted NRF2 to dissociate from KEAP1, enhanced NRF2 nuclear translocation as well as transcription of downstream antioxidant protein. Molecular docking results suggested that quercetin could bind with KEAP1 at Arg415 and Arg483. In order to verify the binding sites, KEAP1 mutated at Arg415 and Arg483 to Ser (R415S and R483S) was transfected into THP-1 macrophages, and the anti-pyroptotic effect of quercetin was abrogated by Arg483 mutation, but not Arg415 mutation. Furthermore, after administration of adeno associated viral vector (AAV) with AAV-KEAP1-R483S, the anti-atherosclerotic effects of quercetin were almost abolished in ApoE-/- mice. These findings proved quercetins suppressed macrophage pyroptosis by targeting KEAP1/NRF2 interaction, and provided reliable data on the underlying mechanism of natural antioxidants to protect against atherosclerosis.
Collapse
Affiliation(s)
- Xing Luo
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, PR China
| | - Xiuzhu Weng
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, PR China
| | - Xiaoyi Bao
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, PR China
| | - Xiaoxuan Bai
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, PR China
| | - Ying Lv
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, PR China
| | - Shan Zhang
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, PR China
| | - Yuwu Chen
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, PR China
| | - Chen Zhao
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, PR China
| | - Ming Zeng
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, PR China
| | - Jianxin Huang
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, PR China
| | - Biyi Xu
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, PR China
| | - Thomas W Johnson
- Department of Cardiology, Bristol Heart Institute, Upper Maudlin St., Bristol, BS2 8HW, UK
| | - Stephen J White
- Department of Life Sciences, Manchester Metropolitan University, Manchester, M1 5GD, UK
| | - Ji Li
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, PR China.
| | - Haibo Jia
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, PR China.
| | - Bo Yu
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, PR China; Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, 150001, PR China
| |
Collapse
|
29
|
Zheng Y, Xu L, Dong N, Li F. NLRP3 inflammasome: The rising star in cardiovascular diseases. Front Cardiovasc Med 2022; 9:927061. [PMID: 36204568 PMCID: PMC9530053 DOI: 10.3389/fcvm.2022.927061] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the prevalent cause of mortality around the world. Activation of inflammasome contributes to the pathological progression of cardiovascular diseases, including atherosclerosis, abdominal aortic aneurysm, myocardial infarction, dilated cardiomyopathy, diabetic cardiomyopathy, heart failure, and calcific aortic valve disease. The nucleotide oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing protein 3 (NLRP3) inflammasome plays a critical role in the innate immune response, requiring priming and activation signals to provoke the inflammation. Evidence shows that NLRP3 inflammasome not only boosts the cleavage and release of IL-1 family cytokines, but also leads to a distinct cell programmed death: pyroptosis. The significance of NLRP3 inflammasome in the CVDs-related inflammation has been extensively explored. In this review, we summarized current understandings of the function of NLRP3 inflammasome in CVDs and discussed possible therapeutic options targeting the NLRP3 inflammasome.
Collapse
|
30
|
Shi L, Hu Q, Li L, Yang R, Xu X, Du J, Zou L, Li G, Liu S, Li G, Liang S. Beneficial Effects of lncRNA-UC.360+ shRNA on Diabetic Cardiac Sympathetic Damage via NLRP3 Inflammasome-Induced Pyroptosis in Stellate Ganglion. ACS OMEGA 2022; 7:27714-27721. [PMID: 35967043 PMCID: PMC9366958 DOI: 10.1021/acsomega.2c03619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Hyperglycemia is one of the common symptoms of diabetes, and it produces excessive reactive oxygen species (ROS). This study investigated whether the long noncoding RNA (lncRNA) UC.360+ is involved in diabetic cardiac autonomic neuropathy (DCAN) mediated by NLRP3 inflammasome-induced pyroptosis in the stellate ganglion (SG). Using a rat type 2 diabetes model, we found that lncRNA UC.360+ short hairpin RNA (shRNA) ameliorated the dyslipidaemia of type 2 diabetic rats and reduced serum adrenaline and ROS production in SG under hyperglycemia. In addition, UC.360+ shRNA also reduced the expression of nuclear factor kappa-B (NF-κB), NLRP3, ASC, caspase-1, interleukin-1β (IL-1β), and IL-18 in the SG of diabetic rats and inhibited the phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK). Therefore, lncRNA-UC.360+ shRNA may modulate the NLRP3 inflammasome/inflammatory pathway in the SG, which in turn alleviates diabetic heart sympathetic nerve damage.
Collapse
Affiliation(s)
- Liran Shi
- Neuropharmacology
Laboratory of Physiology Department, Basic
Medical School of Nanchang University, Nanchang 330006, PR China
- The
people’s hospital of Jiawang of Xuzhou, Xuzhou 221011, China
- Jiangxi
Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| | - Qixing Hu
- Neuropharmacology
Laboratory of Physiology Department, Basic
Medical School of Nanchang University, Nanchang 330006, PR China
- Jiangxi
Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| | - Lin Li
- Neuropharmacology
Laboratory of Physiology Department, Basic
Medical School of Nanchang University, Nanchang 330006, PR China
- Jiangxi
Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| | - Runan Yang
- Neuropharmacology
Laboratory of Physiology Department, Basic
Medical School of Nanchang University, Nanchang 330006, PR China
- Jiangxi
Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| | - Xiumei Xu
- Neuropharmacology
Laboratory of Physiology Department, Basic
Medical School of Nanchang University, Nanchang 330006, PR China
- Jiangxi
Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| | - Junpei Du
- Neuropharmacology
Laboratory of Physiology Department, Basic
Medical School of Nanchang University, Nanchang 330006, PR China
- Jiangxi
Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| | - Lifang Zou
- Neuropharmacology
Laboratory of Physiology Department, Basic
Medical School of Nanchang University, Nanchang 330006, PR China
- Department
of Haematology, The First Affiliated Hospital
of Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi
Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| | - Guilin Li
- Neuropharmacology
Laboratory of Physiology Department, Basic
Medical School of Nanchang University, Nanchang 330006, PR China
- Jiangxi
Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| | - Shuangmei Liu
- Neuropharmacology
Laboratory of Physiology Department, Basic
Medical School of Nanchang University, Nanchang 330006, PR China
- Jiangxi
Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| | - Guodong Li
- Neuropharmacology
Laboratory of Physiology Department, Basic
Medical School of Nanchang University, Nanchang 330006, PR China
- Jiangxi
Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| | - Shangdong Liang
- Neuropharmacology
Laboratory of Physiology Department, Basic
Medical School of Nanchang University, Nanchang 330006, PR China
- Jiangxi
Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| |
Collapse
|
31
|
González L, Bulnes JF, Orellana MP, Muñoz Venturelli P, Martínez Rodriguez G. The Role of Colchicine in Atherosclerosis: From Bench to Bedside. Pharmaceutics 2022; 14:pharmaceutics14071395. [PMID: 35890291 PMCID: PMC9323936 DOI: 10.3390/pharmaceutics14071395] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 02/06/2023] Open
Abstract
Inflammation is a key feature of atherosclerosis. The inflammatory process is involved in all stages of disease progression, from the early formation of plaque to its instability and disruption, leading to clinical events. This strongly suggests that the use of anti-inflammatory agents might improve both atherosclerosis progression and cardiovascular outcomes. Colchicine, an alkaloid derived from the flower Colchicum autumnale, has been used for years in the treatment of inflammatory pathologies, including Gout, Mediterranean Fever, and Pericarditis. Colchicine is known to act over microtubules, inducing depolymerization, and over the NLRP3 inflammasome, which might explain its known anti-inflammatory properties. Recent evidence has shown the therapeutic potential of colchicine in the management of atherosclerosis and its complications, with limited adverse effects. In this review, we summarize the current knowledge regarding colchicine mechanisms of action and pharmacokinetics, as well as the available evidence on the use of colchicine for the treatment of coronary artery disease, covering basic, translational, and clinical studies.
Collapse
Affiliation(s)
- Leticia González
- Centro de Imágenes Biomédicas, Departamento de Radiología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Instituto Milenio de Ingeniería e Inteligencia Artificial para la Salud, iHEALTH, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Juan Francisco Bulnes
- División de Enfermedades Cardiovasculares, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (J.F.B.); (M.P.O.)
| | - María Paz Orellana
- División de Enfermedades Cardiovasculares, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (J.F.B.); (M.P.O.)
| | - Paula Muñoz Venturelli
- Centro de Estudios Clínicos, Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina Clínica Alemana, Universidad de Desarrollo, Santiago 7610658, Chile;
- The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, NSW 2042, Australia
| | - Gonzalo Martínez Rodriguez
- División de Enfermedades Cardiovasculares, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile; (J.F.B.); (M.P.O.)
- Correspondence:
| |
Collapse
|
32
|
Novel role for caspase 1 inhibitor VX765 in suppressing NLRP3 inflammasome assembly and atherosclerosis via promoting mitophagy and efferocytosis. Cell Death Dis 2022; 13:512. [PMID: 35641492 PMCID: PMC9156694 DOI: 10.1038/s41419-022-04966-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 05/02/2022] [Accepted: 05/23/2022] [Indexed: 12/14/2022]
Abstract
Atherosclerosis is a maladaptive chronic inflammatory disease, which remains the leading cause of death worldwide. The NLRP3 inflammasome constitutes a major driver of atherosclerosis, yet the mechanism of action is poorly understood. Mitochondrial dysfunction is essential for NLRP3 inflammasome activation. However, whether activated NLRP3 inflammasome exacerbates mitochondrial dysfunction remains to be further elucidated. Herein, we sought to address these issues applying VX765, a well-established inhibitor of caspase 1. VX765 robustly restrains caspase 1-mediated interleukin-1β production and gasdermin D processing. Our study assigned VX765 a novel role in antagonizing NLRP3 inflammasome assembly and activation. VX765 mitigates mitochondrial damage induced by activated NLRP3 inflammasome, as evidenced by decreased mitochondrial ROS production and cytosolic release of mitochondrial DNA. VX765 blunts caspase 1-dependent cleavage and promotes mitochondrial recruitment and phosphorylation of Parkin, a key mitophagy regulator. Functionally, VX765 facilitates mitophagy, efferocytosis and M2 polarization of macrophages. It also impedes foam cell formation, migration and pyroptosis of macrophages. VX765 boosts autophagy, promotes efferocytosis, and alleviates vascular inflammation and atherosclerosis in both ApoE-/- and Ldlr-/- mice. However, these effects of VX765 were abrogated upon ablation of Nlrp3 in ApoE-/- mice. This work provides mechanistic insights into NLRP3 inflammasome assembly and this inflammasome in dictating atherosclerosis. This study highlights that manipulation of caspase 1 paves a new avenue to treatment of atherosclerotic cardiovascular disease.
Collapse
|
33
|
Puylaert P, Van Praet M, Vaes F, Neutel CHG, Roth L, Guns PJ, De Meyer GRY, Martinet W. Gasdermin D Deficiency Limits the Transition of Atherosclerotic Plaques to an Inflammatory Phenotype in ApoE Knock-Out Mice. Biomedicines 2022; 10:biomedicines10051171. [PMID: 35625908 PMCID: PMC9138554 DOI: 10.3390/biomedicines10051171] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Gasdermin D (GSDMD) is the key executor of pyroptotic cell death. Recent studies suggest that GSDMD-mediated pyroptosis is involved in atherosclerotic plaque destabilization. We report that cleaved GSDMD is expressed in macrophage- and smooth muscle cell-rich areas of human plaques. To determine the effects of GSDMD deficiency on atherogenesis, ApoE−/− Gsdmd−/− (n = 16) and ApoE−/−Gsdmd+/+ (n = 18) mice were fed a western-type diet for 16 weeks. Plaque initiation and formation of stable proximal aortic plaques were not altered. However, plaques in the brachiocephalic artery (representing more advanced lesions compared to aortic plaques) of ApoE−/− Gsdmd−/− mice were significantly smaller (115 ± 18 vs. 186 ± 16 × 103 µm2, p = 0.006) and showed features of increased stability, such as decreased necrotic core area (19 ± 4 vs. 37 ± 7 × 103 µm2, p = 0.03) and increased αSMA/MAC3 ratio (1.6 ± 0.3 vs. 0.7 ± 0.1, p = 0.01), which was also observed in proximal aortic plaques. Interestingly, a significant increase in TUNEL positive cells was observed in brachiocephalic artery plaques from ApoE−/− Gsdmd−/− mice (141 ± 25 vs. 62 ± 8 cells/mm2, p = 0.005), indicating a switch to apoptosis. This switch from pyroptosis to apoptosis was also observed in vitro in Gsdmd−/− macrophages. In conclusion, targeting GSDMD appears to be a promising approach for limiting the transition to an inflammatory, vulnerable plaque phenotype.
Collapse
|
34
|
Liao Y, Liu K, Zhu L. Emerging Roles of Inflammasomes in Cardiovascular Diseases. Front Immunol 2022; 13:834289. [PMID: 35464402 PMCID: PMC9021369 DOI: 10.3389/fimmu.2022.834289] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/07/2022] [Indexed: 01/12/2023] Open
Abstract
Cardiovascular diseases are known as the leading cause of morbidity and mortality worldwide. As an innate immune signaling complex, inflammasomes can be activated by various cardiovascular risk factors and regulate the activation of caspase-1 and the production and secretion of proinflammatory cytokines such as IL-1β and IL-18. Accumulating evidence supports that inflammasomes play a pivotal role in the progression of atherosclerosis, myocardial infarction, and heart failure. The best-known inflammasomes are NLRP1, NLRP3, NLRC4, and AIM2 inflammasomes, among which NLRP3 inflammasome is the most widely studied in the immune response and disease development. This review focuses on the activation and regulation mechanism of inflammasomes, the role of inflammasomes in cardiovascular diseases, and the research progress of targeting NLRP3 inflammasome and IL-1β for related disease intervention.
Collapse
Affiliation(s)
- Yingnan Liao
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Kui Liu
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, China
| | - Liyuan Zhu
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
35
|
Lin L, Zhang MX, Zhang L, Zhang D, Li C, Li YL. Autophagy, Pyroptosis, and Ferroptosis: New Regulatory Mechanisms for Atherosclerosis. Front Cell Dev Biol 2022; 9:809955. [PMID: 35096837 PMCID: PMC8793783 DOI: 10.3389/fcell.2021.809955] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/27/2021] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disorder characterized by the gradual buildup of plaques within the vessel wall of middle-sized and large arteries. The occurrence and development of atherosclerosis and the rupture of plaques are related to the injury of vascular cells, including endothelial cells, smooth muscle cells, and macrophages. Autophagy is a subcellular process that plays an important role in the degradation of proteins and damaged organelles, and the autophagy disorder of vascular cells is closely related to atherosclerosis. Pyroptosis is a proinflammatory form of regulated cell death, while ferroptosis is a form of regulated nonapoptotic cell death involving overwhelming iron-dependent lipid peroxidation. Both of them exhibit distinct features from apoptosis, necrosis, and autophagy in morphology, biochemistry, and genetics. However, a growing body of evidence suggests that pyroptosis and ferroptosis interact with autophagy and participate in the development of cancers, degenerative brain diseases and cardiovascular diseases. This review updated the current understanding of autophagy, pyroptosis, and ferroptosis, finding potential links and their effects on atherogenesis and plaque stability, thus providing ways to develop new pharmacological strategies to address atherosclerosis and stabilize vulnerable, ruptured plaques.
Collapse
Affiliation(s)
- Lin Lin
- Chinese Medicine Innovation Research Institute, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mu-Xin Zhang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dan Zhang
- Chinese Medicine Innovation Research Institute, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chao Li
- Chinese Medicine Innovation Research Institute, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yun-Lun Li
- Chinese Medicine Innovation Research Institute, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Cardiovascular, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
36
|
Olsen MB, Gregersen I, Sandanger Ø, Yang K, Sokolova M, Halvorsen BE, Gullestad L, Broch K, Aukrust P, Louwe MC. Targeting the Inflammasome in Cardiovascular Disease. JACC Basic Transl Sci 2022; 7:84-98. [PMID: 35128212 PMCID: PMC8807732 DOI: 10.1016/j.jacbts.2021.08.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/24/2021] [Accepted: 08/28/2021] [Indexed: 01/10/2023]
Abstract
The pathogenesis of cardiovascular disease (CVD) is complex and multifactorial, and inflammation plays a central role. Inflammasomes are multimeric protein complexes that are activated in a 2-step manner in response to infection or tissue damage. Upon activation the proinflammatory cytokines, interleukins-1β and -18 are released. In the last decade, the evidence that inflammasome activation plays an important role in CVD development became stronger. We discuss the role of different inflammasomes in the pathogenesis of CVD, focusing on atherosclerosis and heart failure. This review also provides an overview of existing experimental studies and clinical trials on inflammasome inhibition as a therapeutic target in these disorders.
Collapse
Key Words
- ACS, acute coronary syndrome
- AIM2, absent in melanoma 2
- ASC, apoptosis associated speck-like protein
- ATP, adenosine triphosphate
- CAD, coronary artery disease
- CRP, C-reactive protein
- CVD, cardiovascular disease
- DAMP, damage associated molecular pattern
- GSDMD, gasdermin-D
- GSDMD-NT, gasdermin-D N-terminal
- HF, heart failure
- HFpEF, HF with preserved ejection fraction
- HFrEF, HF with reduced ejection fraction
- IL, interleukin
- IL-1
- LDL, low-density lipoprotein
- LV, left ventricular
- LVEF, left ventricular ejection fraction
- MI, myocardial infarction
- NF-κB, nuclear factor κB
- NLR, NOD-like receptor
- NLRP3
- NLRP3, NOD-like receptor family pyrin domain containing 3
- NOD, nucleotide-binding oligomerization domain
- PRR, pattern recognition receptor
- STEMI, ST-elevation myocardial infarction
- TLR, toll-like receptor
- atherosclerosis
- cardiovascular disease
- heart failure
- inflammasome
Collapse
Affiliation(s)
- Maria Belland Olsen
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Ida Gregersen
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Øystein Sandanger
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Section of Dermatology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Kuan Yang
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Marina Sokolova
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Bente E. Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
| | - Lars Gullestad
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- K.G. Jebsen Cardiac Research Center, Center for Heart Failure Research, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kaspar Broch
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- K.G. Jebsen Cardiac Research Center, Center for Heart Failure Research, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Mieke C. Louwe
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
37
|
C/EBPβ is a key transcription factor of ox-LDL inducing THP-1 cells to release multiple pro-inflammatory cytokines. Inflamm Res 2021; 70:1191-1199. [PMID: 34605942 DOI: 10.1007/s00011-021-01509-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE CCAAT/enhancer binding protein β (C/EBPβ) plays an important role during atherogenesis. However, how C/EBPβ functions remains unclear. In this study, we explore the relationship between C/EBPβ and oxidized LDL-induced multiple pro-inflammatory cytokines released in monocytes. MATERIALS AND METHODS THP-1 cells (human monocyte cell line) were stimulated by ox-LDL, ChIP was used to detect the binding function of C/EBPβ to target genes, small interfering RNA was used to knock down the expression of C/EBPβ, Western Blot was used to detect protein expression, and ChIP-seq was used to detect different groups of C/EBPβ bound gene fragments. The integrative genomics viewer (IGV), model-based analysis of ChIP-seq (MACS) were used to visualize the results of ChIP-seq. GO (gene ontology), KEGG (Kyoto Encyclopedia of Genes and Genomes) and Reactome data bases enrichment analysis were performed by the ClusterProfiler software. Ingenuity pathway analysis (IPA) was used to analyze the results of ChIP-seq and to summarize the data within the database. RESULTS We identified C/EBPβ as a key protein that regulated IL-1β, IL-6 through database. Then our results confirmed that C/EBPβ could bind directly to the gene of IL-18 and C/EBPβ plays a role in the increased expression and secretion of IL-18 protein after ox-LDL stimulation of THP-1. Using ChIP-seq, we found that the enhanced transcriptional function of C/EBPβ after ox-LDL treatment triggered changes in C/EBPβ-regulated downstream pathways. In the ChIP-seq results, we extracted inflammatory cytokines with significant expression differences, and by comparing them with the database of inflammatory cytokines that C/EBPβ directly regulated, we screened five inflammatory cytokines, CXCL8, IL17B, TNFSF11, CSF3, and CCL2, and the results showed that knockdown of C/EBPβ expression inhibited ox-LDL-induced secretion of CXCL8, TNFSF11, CSF3, and CCL2 by THP-1. CONCLUSION Our results suggest that ox-LDL stimulation enhances C/EBPβ-regulated transcription in THP-1 and C/EBPβ upregulate the release of multiple pro-inflammatory cytokines including IL-18, IL-1β, and IL-6 through direct binding to genes.
Collapse
|
38
|
Li T, Tu P, Bi J, Sun Y, Yu D, Wang J, Zhao B. LncRNA Miat knockdown alleviates endothelial cell injury through regulation of miR-214-3p/Caspase-1 signalling during atherogenesis. Clin Exp Pharmacol Physiol 2021; 48:1231-1238. [PMID: 34137063 DOI: 10.1111/1440-1681.13538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 01/23/2023]
Abstract
Atherosclerosis is a common problem in healthy people around the world. Long noncoding RNAs (lncRNAs) play important roles in atherosclerosis. Myocardial infarction-associated transcript (Miat) is a cardiovascular disease-associated lncRNA. Its role and mechanism in atherosclerosis is still not fully clarified. Our study aims to explore the role and mechanism of lncRNA Miat in atherosclerosis. The atherosclerosis models were established both in vitro and in vivo. Real-time PCR was used to measure the expression of lncRNA Miat, miR-214, Caspase-1 and IL-1β. Western blot was performed to detect the protein expression of Caspase-1. CCK-8 assay, Tunel staining, and flow cytometry analysis were conducted to detect proliferation and apoptosis of human aortic endothelial cells (HAECs), respectively. Oil red O staining and HE staining were used to evaluated the histological changes of the aorta. The results found that lncRNA Miat was upregulated in ox-LDL-induced atherosclerosis model in vitro. The inhibition of lncRNA Miat protects against ox-LDL-induced HAEC injury, presented as increased cell viability and decreased apoptosis. LncRNA Miat and miR-214 has binding site, and CASP1, which encodes Caspase-1, is a target of miR-214. The downregulation of lncRNA Miat increased the expression of miR-214-3p and decreased the expression of Caspase-1, as well as its downstream molecule IL-1β in HAECs. However, the inhibition of miR-214-3p attenuated the effect of lncRNA Miat downregulation on HAECs. Furthermore, the downregulation of lncRNA Miat alleviated atherosclerosis in ApoE-deficient mice. Correspondingly, the expression of miR-214-3p was upregulated and Caspase-1 was downregulated after knockdown of lncRNA Miat. In conclusion, downregulation of lncRNA Miat exerts a protective effect against atherosclerosis through the regulation miR-214-3p/Caspase-1 signalling pathway. Therefore, the inhibition of lncRNA Miat expression may be an effective strategy in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Tao Li
- Department of Cardiology, The Fourth Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Peiyang Tu
- The College of Clinical Medicine, Hubei University of Science and Technology, Hubei, China
| | - Jianbo Bi
- Department of cardiology, The Second Affiliated Hospital of Mudanjiang Medical College, Mudanjiang, China
| | - Yanling Sun
- The Fifth Affiliated Hospital of Harbin Medical University, Daqing, China
| | - Dejun Yu
- The Fifth Affiliated Hospital of Harbin Medical University, Daqing, China
| | - Jinghao Wang
- Department of Pharmacy, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Baoshan Zhao
- Department of Pathology and Pathophysiology, College of Basic Medical Sciences, Harbin Medical University-Daqing, Daqing, China
| |
Collapse
|
39
|
Liu S, Xu DS, Ma JL, Huang P, Wu D, Ren LQ. LncRNA H19 Mitigates Oxidized Low-Density Lipoprotein Induced Pyroptosis via Caspase-1 in Raw 264.7 Cells. Inflammation 2021; 44:2407-2418. [PMID: 34341910 DOI: 10.1007/s10753-021-01511-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
Atherosclerosis (AS) is mainly characterized by the activation of inflammatory cells and chronic inflammatory responses after cell injury. Pyroptosis is a form of programmed cell death (PCD) accompanied by the release of inflammatory factors. Many studies have shown that pyroptosis plays an important role in AS. Increasing evidence also indicates that long non-coding RNA H19 (lncRNA H19) involved in AS. However, whether the role of lncRNA H19 in AS is related to pyroptosis and the underlying mechanisms are largely unknown. In this study, we found that oxidized low-density lipoprotein (ox-LDL) induced pyroptosis and decreased the expression of lncRNA H19 in Raw 264.7 cells. Besides, silencing endogenous lncRNA H19 increased inflammatory responses and pyroptosis while exogenous overexpression of lncRNA H19 reversed this effect. Notably, we identified that the inhibitor of caspase-1 (XV-765) completely abrogated the silencing endogenous lncRNA H19 mediated pyroptosis. In addition, we found that lncRNA H19 inhibited ox-LDL-induced activation of nuclear factor-kappa B (NF-κB), mitochondrial dysfunction, and reduced the production of reactive oxygen species (ROS). Moreover, VX-765 impaired the silencing endogenous lncRNA H19 mediated pyroptosis. Overall, these findings indicated that lncRNA H19 may play an important role in pyroptosis and may serve as a potential therapeutic target for AS.
Collapse
Affiliation(s)
- Shan Liu
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, China
| | - Dong-Sheng Xu
- Cancer Center, the First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Jiu-Long Ma
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, China
| | - Peng Huang
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, China
| | - Di Wu
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, China
| | - Li-Qun Ren
- Department of Experimental Pharmacology and Toxicology, School of Pharmaceutical Sciences, Jilin University, Changchun, Jilin, 130021, China.
| |
Collapse
|
40
|
Gaul S, Schaeffer KM, Opitz L, Maeder C, Kogel A, Uhlmann L, Kalwa H, Wagner U, Haas J, Behzadi A, Pelegrin P, Boeckel JN, Laufs U. Extracellular NLRP3 inflammasome particles are internalized by human coronary artery smooth muscle cells and induce pro-atherogenic effects. Sci Rep 2021; 11:15156. [PMID: 34312415 PMCID: PMC8313534 DOI: 10.1038/s41598-021-94314-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/11/2021] [Indexed: 12/13/2022] Open
Abstract
Inflammation driven by intracellular activation of the NLRP3 inflammasome is involved in the pathogenesis of a variety of diseases including vascular pathologies. Inflammasome specks are released into the extracellular compartment from disrupting pyroptotic cells. The potential uptake and function of extracellular NLRP3 inflammasomes in human coronary artery smooth muscle cells (HCASMC) are unknown. Fluorescently labeled NLRP3 inflammasome particles were isolated from a mutant NLRP3-YFP cell line and used to treat primary HCASMC for 4 and 24 h. Fluorescent and expressional analyses showed that extracellular NLRP3-YFP particles are internalized into HCASMC, where they remain active and stimulate intracellular caspase-1 (1.9-fold) and IL-1β (1.5-fold) activation without inducing pyroptotic cell death. Transcriptomic analysis revealed increased expression level of pro-inflammatory adhesion molecules (ICAM1, CADM1), NLRP3 and genes involved in cytoskleleton organization. The NLRP3-YFP particle-induced gene expression was not dependent on NLRP3 and caspase-1 activation. Instead, the effects were partly abrogated by blocking NFκB activation. Genes, upregulated by extracellular NLRP3 were validated in human carotid artery atheromatous plaques. Extracellular NLRP3-YFP inflammasome particles promoted the secretion of pro-atherogenic and inflammatory cytokines such as CCL2/MCP1, CXCL1 and IL-17E, and increased HCASMC migration (1.8-fold) and extracellular matrix production, such as fibronectin (5.8-fold) which was dependent on NFκB and NLRP3 activation. Extracellular NLRP3 inflammasome particles are internalized into human coronary artery smooth muscle cells where they induce pro-inflammatory and pro-atherogenic effects representing a novel mechanism of cell-cell communication and perpetuation of inflammation in atherosclerosis. Therefore, extracellular NLRP3 inflammasomes may be useful to improve the diagnosis of inflammatory diseases and the development of novel anti-inflammatory therapeutic strategies.
Collapse
Affiliation(s)
- Susanne Gaul
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany.
| | - Karen Marie Schaeffer
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| | - Lena Opitz
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| | - Christina Maeder
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| | - Alexander Kogel
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| | - Luisa Uhlmann
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| | - Hermann Kalwa
- Medical Faculty, Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Leipzig University, Leipzig, Germany
| | - Ulf Wagner
- Klinik für Gastroenterologie, Hepatologie, Infektionsmedizin, Rheumatologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Jan Haas
- Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Heidelberg/Mannheim, Germany
| | - Amirhossein Behzadi
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| | - Pablo Pelegrin
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Clinical University Hospital Virgen de La Arrixaca, Murcia, Spain
| | - Jes-Niels Boeckel
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie, Universitätsklinikum Leipzig, Leipzig University, Johannisallee 30, 04103, Leipzig, Germany
| |
Collapse
|
41
|
Yu Y, Yan Y, Niu F, Wang Y, Chen X, Su G, Liu Y, Zhao X, Qian L, Liu P, Xiong Y. Ferroptosis: a cell death connecting oxidative stress, inflammation and cardiovascular diseases. Cell Death Discov 2021; 7:193. [PMID: 34312370 PMCID: PMC8313570 DOI: 10.1038/s41420-021-00579-w] [Citation(s) in RCA: 401] [Impact Index Per Article: 100.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/06/2021] [Accepted: 07/11/2021] [Indexed: 12/12/2022] Open
Abstract
Ferroptosis, a recently identified and iron-dependent cell death, differs from other cell death such as apoptosis, necroptosis, pyroptosis, and autophagy-dependent cell death. This form of cell death does not exhibit typical morphological and biochemical characteristics, including cell shrinkage, mitochondrial fragmentation, nuclear condensation. The dysfunction of lipid peroxide clearance, the presence of redox-active iron as well as oxidation of polyunsaturated fatty acid (PUFA)-containing phospholipids are three essential features of ferroptosis. Iron metabolism and lipid peroxidation signaling are increasingly recognized as central mediators of ferroptosis. Ferroptosis plays an important role in the regulation of oxidative stress and inflammatory responses. Accumulating evidence suggests that ferroptosis is implicated in a variety of cardiovascular diseases such as atherosclerosis, stroke, ischemia-reperfusion injury, and heart failure, indicating that targeting ferroptosis will present a novel therapeutic approach against cardiovascular diseases. Here, we provide an overview of the features, process, function, and mechanisms of ferroptosis, and its increasingly connected relevance to oxidative stress, inflammation, and cardiovascular diseases.
Collapse
Affiliation(s)
- Yi Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Yuan Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Fanglin Niu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Yajun Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Xueyi Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Guodong Su
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Yuru Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Xiling Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Lu Qian
- Department of Endocrinology, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, 710018, P. R. China.
| | - Ping Liu
- Department of Endocrinology, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, 710018, P. R. China.
| | - Yuyan Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an, 710069, Shaanxi, China.
| |
Collapse
|
42
|
Abstract
Atherosclerosis and abdominal aortic aneurysm (AAA) are multifactorial diseases characterized by inflammatory cell infiltration, matrix degradation, and thrombosis in the arterial wall. Although there are some differences between atherosclerosis and AAA, inflammation is a prominent common feature of these disorders. The nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is a cytosolic multiprotein complex that activates caspase-1 and regulates the release of proinflammatory cytokines interleukin (IL)-1β and IL-18, as well as the induction of lytic cell death, termed pyroptosis, thereby leading to inflammation. Previous experimental and clinical studies have demonstrated that inflammation in atherosclerosis and AAA is mediated primarily through the NLRP3 inflammasome. Furthermore, recent results of the Canakinumab Anti-inflammatory Thrombosis and Outcome Study (CANTOS) showed that IL-1β inhibition reduces systemic inflammation and prevents atherothrombotic events; this supports the concept that the NLRP3 inflammasome is a promising therapeutic target for cardiovascular diseases, including atherosclerosis and AAA. This review summarizes current knowledge with a focus on the role of the NLRP3 inflammasome in atherosclerosis and AAA, and discusses the prospects of NLRP3 inflammasome-targeted therapy.
Collapse
Affiliation(s)
- Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University
| |
Collapse
|
43
|
From Mitochondria to Atherosclerosis: The Inflammation Path. Biomedicines 2021; 9:biomedicines9030258. [PMID: 33807807 PMCID: PMC8000234 DOI: 10.3390/biomedicines9030258] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 12/11/2022] Open
Abstract
Inflammation is a key process in metazoan organisms due to its relevance for innate defense against infections and tissue damage. However, inflammation is also implicated in pathological processes such as atherosclerosis. Atherosclerosis is a chronic inflammatory disease of the arterial wall where unstable atherosclerotic plaque rupture causing platelet aggregation and thrombosis may compromise the arterial lumen, leading to acute or chronic ischemic syndromes. In this review, we will focus on the role of mitochondria in atherosclerosis while keeping inflammation as a link. Mitochondria are the main source of cellular energy. Under stress, mitochondria are also capable of controlling inflammation through the production of reactive oxygen species (ROS) and the release of mitochondrial components, such as mitochondrial DNA (mtDNA), into the cytoplasm or into the extracellular matrix, where they act as danger signals when recognized by innate immune receptors. Primary or secondary mitochondrial dysfunctions are associated with the initiation and progression of atherosclerosis by elevating the production of ROS, altering mitochondrial dynamics and energy supply, as well as promoting inflammation. Knowing and understanding the pathways behind mitochondrial-based inflammation in atheroma progression is essential to discovering alternative or complementary treatments.
Collapse
|
44
|
Liu B, Yu J. Anti-NLRP3 Inflammasome Natural Compounds: An Update. Biomedicines 2021; 9:136. [PMID: 33535473 PMCID: PMC7912743 DOI: 10.3390/biomedicines9020136] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/08/2021] [Accepted: 01/23/2021] [Indexed: 01/14/2023] Open
Abstract
The nucleotide-binding domain and leucine-rich repeat related (NLR) family, pyrin domain containing 3 (NLRP3) inflammasome is a multimeric protein complex that recognizes various danger or stress signals from pathogens, the host, and the environment, leading to activation of caspase-1 and inducing inflammatory responses. This pro-inflammatory protein complex plays critical roles in pathogenesis of a wide range of diseases including neurodegenerative diseases, autoinflammatory diseases, and metabolic disorders. Therefore, intensive efforts have been devoted to understanding its activation mechanisms and to searching for its specific inhibitors. Approximately forty natural compounds with anti-NLRP3 inflammasome properties have been identified. Here, we provide an update about new natural compounds that have been identified within the last three years to inhibit the NLRP3 inflammasome and offer an overview of the underlying molecular mechanisms of their anti-NLRP3 inflammasome activities.
Collapse
Affiliation(s)
| | - Jiujiu Yu
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| |
Collapse
|
45
|
Silvis MJM, Demkes EJ, Fiolet ATL, Dekker M, Bosch L, van Hout GPJ, Timmers L, de Kleijn DPV. Immunomodulation of the NLRP3 Inflammasome in Atherosclerosis, Coronary Artery Disease, and Acute Myocardial Infarction. J Cardiovasc Transl Res 2021; 14:23-34. [PMID: 32648087 PMCID: PMC7892681 DOI: 10.1007/s12265-020-10049-w] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease (CVD) remains the leading cause of mortality and morbidity worldwide. Atherosclerosis is responsible for the majority of cardiovascular disorders with inflammation as one of its driving processes. The nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome, responsible for the release of the pro-inflammatory cytokines, interleukin-1β (IL-1β), and interleukin-18 (IL-18), has been studied extensively and showed to play a pivotal role in the progression of atherosclerosis, coronary artery disease (CAD), and myocardial ischemia reperfusion (I/R) injury. Both the NLRP3 inflammasome and its downstream cytokines, IL-1ß and IL-18, could therefore be promising targets in cardiovascular disease. This review summarizes the role of the NLRP3 inflammasome in atherosclerosis, CAD, and myocardial I/R injury. Furthermore, the current therapeutic approaches targeting the NLRP3 inflammasome and its downstream signaling cascade in atherosclerosis, CAD, and myocardial I/R injury are discussed.
Collapse
Affiliation(s)
- Max J M Silvis
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3508, GA, Utrecht, The Netherlands.
| | - Evelyne J Demkes
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Aernoud T L Fiolet
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3508, GA, Utrecht, The Netherlands
| | - Mirthe Dekker
- Department of Vascular Surgery, University Medical Centre Utrecht, Utrecht, The Netherlands
- Department of Cardiology, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Lena Bosch
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3508, GA, Utrecht, The Netherlands
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gerardus P J van Hout
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3508, GA, Utrecht, The Netherlands
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leo Timmers
- Department of Cardiology, St. Antonius Hospital, Nieuwegein, The Netherlands
| | | |
Collapse
|
46
|
Takahashi M. NLRP3 inflammasome as a key driver of vascular disease. Cardiovasc Res 2021; 118:372-385. [PMID: 33483732 DOI: 10.1093/cvr/cvab010] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/12/2020] [Accepted: 01/16/2021] [Indexed: 12/12/2022] Open
Abstract
NLRP3 (nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3) is an intracellular innate immune receptor that recognizes a diverse range of stimuli derived from pathogens, damaged or dead cells, and irritants. NLRP3 activation causes the assembly of a large multiprotein complex termed the NLRP3 inflammasome, and leads to the secretion of bioactive interleukin (IL)-1β and IL-18 as well as the induction of inflammatory cell death termed pyroptosis. Accumulating evidence indicates that NLRP3 inflammasome plays a key role in the pathogenesis of sterile inflammatory diseases, including atherosclerosis and other vascular diseases. Indeed, the results of the Canakinumab Anti-inflammatory Thrombosis Outcome Study (CANTOS) trial demonstrated that IL-1β-mediated inflammation plays an important role in atherothrombotic events and suggested that NLRP3 inflammasome is a key driver of atherosclerosis. In this review, we will summarize the current state of knowledge regarding the role of NLRP3 inflammasome in vascular diseases, in particular in atherosclerosis, vascular injury, aortic aneurysm, and Kawasaki disease vasculitis, and discuss NLRP3 inflammasome as a therapeutic target for these disorders.
Collapse
Affiliation(s)
- Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
47
|
Pellegrini C, Martelli A, Antonioli L, Fornai M, Blandizzi C, Calderone V. NLRP3 inflammasome in cardiovascular diseases: Pathophysiological and pharmacological implications. Med Res Rev 2021; 41:1890-1926. [PMID: 33460162 DOI: 10.1002/med.21781] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/30/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022]
Abstract
Growing evidence points out the importance of nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) inflammasome in the pathogenesis of cardiovascular diseases (CVDs), including hypertension, myocardial infarct (MI), ischemia, cardiomyopathies (CMs), heart failure (HF), and atherosclerosis. In this regard, intensive research efforts both in humans and in animal models of CVDs are being focused on the characterization of the pathophysiological role of NLRP3 inflammasome signaling in CVDs. In addition, clinical and preclinical evidence is coming to light that the pharmacological blockade of NLRP3 pathways with drugs, including novel chemical entities as well as drugs currently employed in the clinical practice, biologics and phytochemicals, could represent a suitable therapeutic approach for prevention and management of CVDs. On these bases, the present review article provides a comprehensive overview of clinical and preclinical studies about the role of NLRP3 inflammasome in the pathophysiology of CVDs, including hypertension, MI, ischemic injury, CMs, HF and atherosclerosis. In addition, particular attention has been focused on current evidence on the effects of drugs, biologics, and phytochemicals, targeting different steps of inflammasome signaling, in CVDs.
Collapse
Affiliation(s)
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, Unit of Pharmacology and Pharmacovigilance, University of Pisa, Pisa, Italy
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, Unit of Pharmacology and Pharmacovigilance, University of Pisa, Pisa, Italy
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, Unit of Pharmacology and Pharmacovigilance, University of Pisa, Pisa, Italy
| | | |
Collapse
|
48
|
Stitham J, Rodriguez-Velez A, Zhang X, Jeong SJ, Razani B. Inflammasomes: a preclinical assessment of targeting in atherosclerosis. Expert Opin Ther Targets 2020; 24:825-844. [PMID: 32757967 PMCID: PMC7554266 DOI: 10.1080/14728222.2020.1795831] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/12/2020] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Inflammasomes are central to atherosclerotic vascular dysfunction with regulatory effects on inflammation, immune modulation, and lipid metabolism. The NLRP3 inflammasome is a critical catalyst for atherogenesis thus highlighting its importance in understanding the pathophysiology of atherosclerosis and for the identification of novel therapeutic targets and biomarkers for the treatment of cardiovascular disease. AREAS COVERED This review includes an overview of macrophage lipid metabolism and the role of NLRP3 inflammasome activity in cardiovascular inflammation and atherosclerosis. We highlight key activators, signal transducers and major regulatory components that are being considered as putative therapeutic targets for inhibition of NLRP3-mediated cardiovascular inflammation and atherosclerosis. EXPERT OPINION NLRP3 inflammasome activity lies at the nexus between inflammation and cholesterol metabolism; it offers unique opportunities for understanding atherosclerotic pathophysiology and identifying novel modes of treatment. As such, a host of NLRP3 signaling cascade components have been identified as putative targets for drug development. We catalog these current discoveries in therapeutic targeting of the NLRP3 inflammasome and, utilizing the CANTOS trial as the translational (bench-to-bedside) archetype, we examine the complexities, challenges, and ultimate goals facing the field of atherosclerosis research.
Collapse
Affiliation(s)
- Jeremiah Stitham
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO
| | - Astrid Rodriguez-Velez
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO
| | - Xiangyu Zhang
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO
- John Cochran VA Medical Center, St. Louis, MO
| | - Se-Jin Jeong
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO
- John Cochran VA Medical Center, St. Louis, MO
| | - Babak Razani
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO
- John Cochran VA Medical Center, St. Louis, MO
| |
Collapse
|
49
|
Jiang S, Xiao H, Wu Z, Yang Z, Ding B, Jin Z, Yang Y. NLRP3 sparks the Greek fire in the war against lipid-related diseases. Obes Rev 2020; 21:e13045. [PMID: 32390276 DOI: 10.1111/obr.13045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 03/30/2020] [Indexed: 12/11/2022]
Abstract
In recent years, the obesity rate worldwide has reached epidemic proportions and contributed to the growing prevalence of lipid-related diseases. A strong link between inflammation and metabolism is becoming increasingly evident. Compelling evidence has indicated the activation of the nucleotide-binding and oligomerization domain-like receptor, leucine-rich repeat and pyrin domain-containing 3 (NLRP3) inflammasome, a cytoplasmic complex containing multiple proteins, in a variety of lipid-related diseases including obesity, atherosclerosis, liver diseases, and type 2 diabetes. Recent studies have further clarified the regulatory mechanisms and the optional therapeutic agents that target NLRP3 inflammasomes. In this study, we review the recent progress in the research on NLRP3 inflammasomes and discuss their implications for a better understanding of inflammation in lipid-related disease and the prospects of targeting the NLRP3 inflammasome for therapeutic intervention.
Collapse
Affiliation(s)
- Shuai Jiang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Life of Sciences, Northwest University, Xi'an, China
| | - Haoxiang Xiao
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhen Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Life of Sciences, Northwest University, Xi'an, China
| | - Zhi Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Life of Sciences, Northwest University, Xi'an, China
| | - Baoping Ding
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Life of Sciences, Northwest University, Xi'an, China
| | - Zhenxiao Jin
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Life of Sciences, Northwest University, Xi'an, China
| |
Collapse
|
50
|
MLKL Aggravates Ox-LDL-Induced Cell Pyroptosis via Activation of NLRP3 Inflammasome in Human Umbilical Vein Endothelial Cells. Inflammation 2020; 43:2222-2231. [DOI: 10.1007/s10753-020-01289-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|