1
|
Montastier É, Ye RZ, Noll C, Amrani M, Frisch F, Fortin M, Bouffard L, Phoenix S, Sarrhini O, Cunnane SC, Guérin B, Turcotte EE, Carpentier AC. Nicotinic acid increases adipose tissue dietary fatty acid trapping and reduces postprandial hepatic and cardiac fatty acid uptake in prediabetes. Eur J Pharmacol 2025; 998:177563. [PMID: 40157702 DOI: 10.1016/j.ejphar.2025.177563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/12/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Increased adipose tissue (AT) dietary fatty acids (DFA) trapping limits fatty acid exposure to lean organs in the face of elevated postprandial nonesterified fatty acid (NEFA) flux from excess AT intracellular lipolysis in prediabetes. We hypothesized that pharmacological inhibition of postprandial AT intracellular lipolysis using short-acting nicotinic acid (NA) would increase AT DFA trapping and limit AT NEFA spillover to lean organs in subjects with prediabetes. Twenty subjects with impaired glucose tolerance and 19 individuals with normal glucose tolerance underwent four postprandial studies with positron emission tomography/computed tomography with radio-labeled fatty acid tracers and stable isotopic palmitate tracers. Over the 6-h postprandial period, NA increased AT DFA partitioning with reciprocal reduction in liver and in muscle. NA also robustly reduced cardiac and liver total (DFA + NEFA) postprandial fatty acid uptake. Short-acting NA administered postprandially thus enhances AT DFA trapping and markedly reduces postprandial hepatic and cardiac fatty acid uptake. (clinicaltrials.gov NCT02808182).
Collapse
Affiliation(s)
- Émilie Montastier
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Run Zhou Ye
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Christophe Noll
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Mehdi Amrani
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Frédérique Frisch
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Mélanie Fortin
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Lucie Bouffard
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Serge Phoenix
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du CHUS, Université de Sherbrooke, Quebec, Canada
| | - Otman Sarrhini
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du CHUS, Université de Sherbrooke, Quebec, Canada
| | - Stephen C Cunnane
- Research Center on Aging, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Brigitte Guérin
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du CHUS, Université de Sherbrooke, Quebec, Canada
| | - Eric E Turcotte
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du CHUS, Université de Sherbrooke, Quebec, Canada
| | - André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada; Department of Nuclear Medicine and Radiobiology, Centre de Recherche du CHUS, Université de Sherbrooke, Quebec, Canada.
| |
Collapse
|
2
|
Benedetti R, Chianese U, Papulino C, Scisciola L, Cortese M, Formisano P, Del Gaudio N, Cabaro S, D'Esposito V, Pesapane A, Conte M, Signoriello G, Barbieri M, Altucci L, Paolisso G. Unlocking the power of empagliflozin: Rescuing inflammation in hyperglycaemia- exposed human cardiomyocytes through comprehensive multi-level analysis. Eur J Heart Fail 2025. [PMID: 39809551 DOI: 10.1002/ejhf.3566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 01/16/2025] Open
Abstract
AIMS Hyperglycaemic conditions increase cardiac stress, a common phenomenon associated with inflammation, aging, and metabolic imbalance. Sodium-glucose cotransporter 2 inhibitors, a class of anti-diabetic drugs, showed to improve cardiovascular functions although their mechanism of action has not yet been fully established. This study investigated the effects of empagliflozin on cardiomyocytes following high glucose exposure, specifically focusing on inflammatory and metabolic responses. METHODS AND RESULTS A three-part strategy was formulated: (i) a meta-analysis of selected randomized clinical trials was carried out to assess the anti-inflammatory effects of empagliflozin in diabetic patients; (ii) the impact of empagliflozin on human cardiomyocyte AC16 cells exposed to normal (5 mM) and high (33 mM) glucose concentrations for 2 and 7 days was explored by evaluating gene expression and protein levels of pivotal markers associated with cardiac inflammation, stress, endoplasmic reticulum damage, and calcium modulation; (iii) in silico data from bioinformatic analyses were exploited to construct an interaction map delineating the potential mechanism of action of empagliflozin on cardiac tissue. Empagliflozin reversed high-glucose mediated alterations at the transcriptional level, decreasing inflammatory, metabolic, and aging signatures. Specifically, in vitro experiments on human cardiomyocytes, meta-analyses of clinical data on inflammatory biomarkers from diabetic peripheral blood samples, and sequencing of pathological human heart tissues, all support that empagliflozin exerts anti-inflammatory effects both systemically and directly in cardiac tissue, on cardiomyocytes. CONCLUSION Our study provides insights based on robust mechanistic data for optimizing heart failure management and highlights the intricate interplay between diabetes, inflammation, aging, and cardiovascular health.
Collapse
Affiliation(s)
- Rosaria Benedetti
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
- Program of Medical Epigenetics, Vanvitelli Hospital, Naples, Italy
| | - Ugo Chianese
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Chiara Papulino
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mirko Cortese
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Pietro Formisano
- Department of Translational Medicine, University of Naples "Federico II", Naples, Italy
| | - Nunzio Del Gaudio
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Serena Cabaro
- Department of Translational Medicine, University of Naples "Federico II", Naples, Italy
| | - Vittoria D'Esposito
- Institute of Endocrinology and Oncology "Gaetano Salvatore" (IEOS), Naples, Italy
| | - Ada Pesapane
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mariarosaria Conte
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Giuseppe Signoriello
- Department of Mental and Physical Health and Preventive Medicine, Section of Medical Statistics, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
- Program of Medical Epigenetics, Vanvitelli Hospital, Naples, Italy
- Biogem Institute of Molecular and Genetic Biology, Ariano Irpino, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
3
|
Gu Z, Pan L, Tan H, Wang X, Wang J, Zheng X, Weng J, Luo S, Yue T, Ding Y. Gut microbiota, serum metabolites, and lipids related to blood glucose control and type 1 diabetes. J Diabetes 2024; 16:e70021. [PMID: 39463013 PMCID: PMC11513438 DOI: 10.1111/1753-0407.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/09/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND The composition and function of gut microbiota, lipids, and metabolites in patients with type 1 diabetes (T1D) or its association with glycemic control remains unknown. We aimed to use multi-omics sequencing technology and machine learning (ML) approaches to investigate potential function and relationships among the gut microbiota, lipids, and metabolites in T1D patients at varied glycemic levels. METHODS We conducted a multi-omics analysis of the gut microbiome from fecal samples, metabolites, and lipids obtained from serum samples, collected from a cohort of 72 T1D patients. The patients were divided into two groups based on their hemoglobin A1c (HbA1c) levels. 16S rRNA sequencing, and metabolomics methods were applied to analyze changes in composition and function of gut microbiota, metabolites, and lipids. RESULTS The linear discriminant analysis, Shapley additive explanations (SHAP) algorithm, and ML algorithms revealed the enrichment of Bacteroides_nordii, Bacteroides_cellulosilyticus in the glycemic control (GC) group, while Bacteroides_coprocola and Sutterella_wadsworthensis were enriched in the poor glycemic control (PGC) group. Several metabolic enrichment sets like fatty acid biosynthesis and glycerol phosphate shuttle metabolism were different between two groups. Bacteroides_nordii exhibited a negative association with D-fructose, a component involved in the starch and sucrose metabolism pathway, as well as with monoglycerides (16:0) involved in the glycerolipid metabolism pathway. CONCLUSIONS We identified distinct characteristics of gut microbiota, metabolites, and lipids in T1D patients exhibiting different levels of glycemic control. Through comprehensive analysis, microbiota (Bacteroides_nordii, Bacteroides_coprocola), metabolites (D-fructose), and lipids (Monoglycerides) may serve as potential mediators that communicated the interaction between the gut, circulatory systems, and glucose fluctuations in T1D patients.
Collapse
Affiliation(s)
- Zhaohe Gu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei)University of Science and Technology of ChinaHefeiChina
| | - Lanxin Pan
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei)University of Science and Technology of ChinaHefeiChina
| | - Huiling Tan
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei)University of Science and Technology of ChinaHefeiChina
| | - Xulin Wang
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei)University of Science and Technology of ChinaHefeiChina
| | - Jing Wang
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei)University of Science and Technology of ChinaHefeiChina
| | - Xueying Zheng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei)University of Science and Technology of ChinaHefeiChina
| | - Jianping Weng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei)University of Science and Technology of ChinaHefeiChina
| | - Sihui Luo
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei)University of Science and Technology of ChinaHefeiChina
| | - Tong Yue
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei)University of Science and Technology of ChinaHefeiChina
| | - Yu Ding
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei)University of Science and Technology of ChinaHefeiChina
| |
Collapse
|
4
|
Wu M, Tan J, Cao Z, Cai Y, Huang Z, Chen Z, He W, Liu X, Jiang Y, Gao Q, Deng B, Wang J, Yuan W, Zhang H, Chen Y. Sirt5 improves cardiomyocytes fatty acid metabolism and ameliorates cardiac lipotoxicity in diabetic cardiomyopathy via CPT2 de-succinylation. Redox Biol 2024; 73:103184. [PMID: 38718533 PMCID: PMC11091707 DOI: 10.1016/j.redox.2024.103184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/24/2024] [Accepted: 05/04/2024] [Indexed: 06/14/2024] Open
Abstract
RATIONALE The disruption of the balance between fatty acid (FA) uptake and oxidation (FAO) leads to cardiac lipotoxicity, serving as the driving force behind diabetic cardiomyopathy (DbCM). Sirtuin 5 (Sirt5), a lysine de-succinylase, could impact diverse metabolic pathways, including FA metabolism. Nevertheless, the precise roles of Sirt5 in cardiac lipotoxicity and DbCM remain unknown. OBJECTIVE This study aims to elucidate the role and underlying mechanism of Sirt5 in the context of cardiac lipotoxicity and DbCM. METHODS AND RESULTS The expression of myocardial Sirt5 was found to be modestly elevated in diabetic heart failure patients and mice. Cardiac dysfunction, hypertrophy and lipotoxicity were exacerbated by ablation of Sirt5 but improved by forced expression of Sirt5 in diabetic mice. Notably, Sirt5 deficiency impaired FAO without affecting the capacity of FA uptake in the diabetic heart, leading to accumulation of FA intermediate metabolites, which mainly included medium- and long-chain fatty acyl-carnitines. Mechanistically, succinylomics analyses identified carnitine palmitoyltransferase 2 (CPT2), a crucial enzyme involved in the reconversion of fatty acyl-carnitines to fatty acyl-CoA and facilitating FAO, as the functional succinylated substrate mediator of Sirt5. Succinylation of Lys424 in CPT2 was significantly increased by Sirt5 deficiency, leading to the inactivation of its enzymatic activity and the subsequent accumulation of fatty acyl-carnitines. CPT2 K424R mutation, which mitigated succinylation modification, counteracted the reduction of enzymatic activity in CPT2 mediated by Sirt5 deficiency, thereby attenuating Sirt5 knockout-induced FAO impairment and lipid deposition. CONCLUSIONS Sirt5 deficiency impairs FAO, leading to cardiac lipotoxicity in the diabetic heart through the succinylation of Lys424 in CPT2. This underscores the potential roles of Sirt5 and CPT2 as therapeutic targets for addressing DbCM.
Collapse
Affiliation(s)
- Maoxiong Wu
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangzhou Key Laboratory of Molecular Mechanisms of Major Cardiovascular Disease, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
| | - Jing Tan
- Laboratory Animal Center and Department of Biochemistry, Institute of Guangdong Engineering and Technology Research Center for Disease-Model Animals, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhengyu Cao
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangzhou Key Laboratory of Molecular Mechanisms of Major Cardiovascular Disease, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
| | - Yangwei Cai
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangzhou Key Laboratory of Molecular Mechanisms of Major Cardiovascular Disease, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
| | - Zhaoqi Huang
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangzhou Key Laboratory of Molecular Mechanisms of Major Cardiovascular Disease, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
| | - Zhiteng Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangzhou Key Laboratory of Molecular Mechanisms of Major Cardiovascular Disease, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
| | - Wanbing He
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangzhou Key Laboratory of Molecular Mechanisms of Major Cardiovascular Disease, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
| | - Xiao Liu
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangzhou Key Laboratory of Molecular Mechanisms of Major Cardiovascular Disease, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
| | - Yuan Jiang
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangzhou Key Laboratory of Molecular Mechanisms of Major Cardiovascular Disease, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
| | - Qingyuan Gao
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangzhou Key Laboratory of Molecular Mechanisms of Major Cardiovascular Disease, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
| | - Bingqing Deng
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangzhou Key Laboratory of Molecular Mechanisms of Major Cardiovascular Disease, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
| | - Jingfeng Wang
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangzhou Key Laboratory of Molecular Mechanisms of Major Cardiovascular Disease, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China.
| | - Woliang Yuan
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangzhou Key Laboratory of Molecular Mechanisms of Major Cardiovascular Disease, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China.
| | - Haifeng Zhang
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangzhou Key Laboratory of Molecular Mechanisms of Major Cardiovascular Disease, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China.
| | - Yangxin Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangzhou Key Laboratory of Molecular Mechanisms of Major Cardiovascular Disease, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
5
|
Wu Y, Zhang J, Wang W, Wu D, Kang Y, Fu L. MARK4 aggravates cardiac dysfunction in mice with STZ-induced diabetic cardiomyopathy by regulating ACSL4-mediated myocardial lipid metabolism. Sci Rep 2024; 14:12978. [PMID: 38839927 PMCID: PMC11153581 DOI: 10.1038/s41598-024-64006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024] Open
Abstract
Diabetic cardiomyopathy is a specific type of cardiomyopathy. In DCM, glucose uptake and utilization are impaired due to insulin deficiency or resistance, and the heart relies more heavily on fatty acid oxidation for energy, resulting in myocardial lipid toxicity-related injury. MARK4 is a member of the AMPK-related kinase family, and improves ischaemic heart failure through microtubule detyrosination. However, the role of MARK4 in cardiac regulation of metabolism is unclear. In this study, after successful establishment of a diabetic cardiomyopathy model induced by streptozotocin and a high-fat diet, MARK4 expression was found to be significantly increased in STZ-induced DCM mice. After AAV9-shMARK4 was administered through the tail vein, decreased expression of MARK4 alleviated diabetic myocardial damage, reduced oxidative stress and apoptosis, and facilitated cardiomyocyte mitochondrial fusion, and promoted myocardial lipid oxidation metabolism. In addition, through the RNA-seq analysis of differentially expressed genes, we found that MARK4 deficiency promoted lipid decomposition and oxidative metabolism by downregulating the expression of ACSL4, thus reducing myocardial lipid accumulation in the STZ-induced DCM model.
Collapse
Affiliation(s)
- Yi Wu
- Laboratory of Cardiovascular Internal Medicine Department, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Jingqi Zhang
- Laboratory of Cardiovascular Internal Medicine Department, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Weiyi Wang
- Laboratory of Cardiovascular Internal Medicine Department, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Dongdong Wu
- The First Affiliated Hospital of Jinzhou Medical University, 157 Renmin Street, Guta District, Jinzhou, 121000, China
| | - Yang Kang
- Laboratory of Cardiovascular Internal Medicine Department, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Lu Fu
- Laboratory of Cardiovascular Internal Medicine Department, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
6
|
Zeng Y, Li Y, Jiang W, Hou N. Molecular mechanisms of metabolic dysregulation in diabetic cardiomyopathy. Front Cardiovasc Med 2024; 11:1375400. [PMID: 38596692 PMCID: PMC11003275 DOI: 10.3389/fcvm.2024.1375400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/08/2024] [Indexed: 04/11/2024] Open
Abstract
Diabetic cardiomyopathy (DCM), one of the most serious complications of diabetes mellitus, has become recognized as a cardiometabolic disease. In normoxic conditions, the majority of the ATP production (>95%) required for heart beating comes from mitochondrial oxidative phosphorylation of fatty acids (FAs) and glucose, with the remaining portion coming from a variety of sources, including fructose, lactate, ketone bodies (KB) and branched chain amino acids (BCAA). Increased FA intake and decreased utilization of glucose and lactic acid were observed in the diabetic hearts of animal models and diabetic patients. Moreover, the polyol pathway is activated, and fructose metabolism is enhanced. The use of ketones as energy sources in human diabetic hearts also increases significantly. Furthermore, elevated BCAA levels and impaired BCAA metabolism were observed in the hearts of diabetic mice and patients. The shift in energy substrate preference in diabetic hearts results in increased oxygen consumption and impaired oxidative phosphorylation, leading to diabetic cardiomyopathy. However, the precise mechanisms by which impaired myocardial metabolic alterations result in diabetes mellitus cardiac disease are not fully understood. Therefore, this review focuses on the molecular mechanisms involved in alterations of myocardial energy metabolism. It not only adds more molecular targets for the diagnosis and treatment, but also provides an experimental foundation for screening novel therapeutic agents for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Yue Zeng
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Pharmacy, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Yilang Li
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Pharmacy, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Wenyue Jiang
- Department of Pharmacy, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Ning Hou
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Pharmacy, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| |
Collapse
|
7
|
Carpentier AC. Tracers and Imaging of Fatty Acid and Energy Metabolism of Human Adipose Tissues. Physiology (Bethesda) 2024; 39:0. [PMID: 38113392 PMCID: PMC11283904 DOI: 10.1152/physiol.00012.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/22/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023] Open
Abstract
White adipose tissue and brown adipose tissue (WAT and BAT) regulate fatty acid metabolism and control lipid fluxes to other organs. Dysfunction of these key metabolic processes contributes to organ insulin resistance and inflammation leading to chronic diseases such as type 2 diabetes, metabolic dysfunction-associated steatohepatitis, and cardiovascular diseases. Metabolic tracers combined with molecular imaging methods are powerful tools for the investigation of these pathogenic mechanisms. Herein, I review some of the positron emission tomography and magnetic resonance imaging methods combined with stable isotopic metabolic tracers to investigate fatty acid and energy metabolism, focusing on human WAT and BAT metabolism. I will discuss the complementary strengths offered by these methods for human investigations and current gaps in the field.
Collapse
Affiliation(s)
- André C Carpentier
- Department of Medicine, Division of Endocrinology, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
8
|
Lin S, Chen S, Lin Q, Xiao T, Hou C, Xie L. Transcriptome analysis of effects of Tecrl deficiency on cardiometabolic and calcium regulation in cardiac tissue. Open Med (Wars) 2024; 19:20230880. [PMID: 38283583 PMCID: PMC10811529 DOI: 10.1515/med-2023-0880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/30/2024] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a hereditary heart disease characterized by bidirectional or polymorphic ventricular tachycardia and an increased risk of sudden cardiac death. Although trans-2,3-enoyl-CoA reductase like (TECRL) is a newly reported pathogenic gene leading to CPVT that can influence intracellular calcium regulation, the unidentified mechanism underlying the pathogenesis of TECRL deficiency-mediated CPVT remains mainly elusive. In the present study, Tecrl knockout (KO) mice were established and the differentially expressed genes (DEGs) were investigated by RNA-sequencing from the heart tissues. In addition, 857 DEGs were identified in Tecrl KO mice. Subsequently, a weighted gene co-expression network analysis was conducted to discern the pivotal pathways implicated in the Tecrl-mediated regulatory network. Moreover, pathway mapping analyses demonstrated that essential metabolism-related pathways were significantly enriched, notably the fatty acid metabolic process and calcium regulation. Collectively, the data suggested a synergistic relationship between Tecrl deficiency and cardiometabolic and calcium regulation during the development of CPVT. Therefore, further studies on the potential function of TECRL in cardiac tissues would be beneficial to elucidate the pathogenesis of CPVT.
Collapse
Affiliation(s)
- Shujia Lin
- Department of Cardiology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200062, China
| | - Shun Chen
- Department of Cardiology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200062, China
| | - Qiuping Lin
- Department of Cardiology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200062, China
| | - Tingting Xiao
- Department of Cardiology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200062, China
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, 200040, China
| | - Cuilan Hou
- Department of Cardiology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200062, China
- NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, 200040, China
| | - Lijian Xie
- Department of Cardiology, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200062, China
- Department of Pediatrics, Jinshan Hospital, Fudan University,
Shanghai, 201508, China
| |
Collapse
|
9
|
Kopp EL, Deussen DN, Cuomo R, Lorenz R, Roth DM, Mahata SK, Patel HH. Modeling and Phenotyping Acute and Chronic Type 2 Diabetes Mellitus In Vitro in Rodent Heart and Skeletal Muscle Cells. Cells 2023; 12:2786. [PMID: 38132105 PMCID: PMC10741513 DOI: 10.3390/cells12242786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Type 2 diabetes (T2D) has a complex pathophysiology which makes modeling the disease difficult. We aimed to develop a novel model for simulating T2D in vitro, including hyperglycemia, hyperlipidemia, and variably elevated insulin levels targeting muscle cells. We investigated insulin resistance (IR), cellular respiration, mitochondrial morphometry, and the associated function in different T2D-mimicking conditions in rodent skeletal (C2C12) and cardiac (H9C2) myotubes. The physiological controls included 5 mM of glucose with 20 mM of mannitol as osmotic controls. To mimic hyperglycemia, cells were exposed to 25 mM of glucose. Further treatments included insulin, palmitate, or both. After short-term (24 h) or long-term (96 h) exposure, we performed radioactive glucose uptake and mitochondrial function assays. The mitochondrial size and relative frequencies were assessed with morphometric analyses using electron micrographs. C2C12 and H9C2 cells that were treated short- or long-term with insulin and/or palmitate and HG showed IR. C2C12 myotubes exposed to T2D-mimicking conditions showed significantly decreased ATP-linked respiration and spare respiratory capacity and less cytoplasmic area occupied by mitochondria, implying mitochondrial dysfunction. In contrast, the H9C2 myotubes showed elevated ATP-linked and maximal respiration and increased cytoplasmic area occupied by mitochondria, indicating a better adaptation to stress and compensatory lipid oxidation in a T2D environment. Both cell lines displayed elevated fractions of swollen/vacuolated mitochondria after T2D-mimicking treatments. Our stable and reproducible in vitro model of T2D rapidly induced IR, changes in the ATP-linked respiration, shifts in energetic phenotypes, and mitochondrial morphology, which are comparable to the muscles of patients suffering from T2D. Thus, our model should allow for the study of disease mechanisms and potential new targets and allow for the screening of candidate therapeutic compounds.
Collapse
Affiliation(s)
- Elena L. Kopp
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
- Faculty of Medicine, University of Munich (LMU Munich), 80539 Munich, Germany
| | - Daniel N. Deussen
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
- Faculty of Medicine, University of Munich (LMU Munich), 80539 Munich, Germany
| | - Raphael Cuomo
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
| | - Reinhard Lorenz
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, 80539 Munich, Germany
| | - David M. Roth
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
- VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Sushil K. Mahata
- VA San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Medicine, University of California, San Diego, CA 92093, USA
| | - Hemal H. Patel
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161, USA
- VA San Diego Healthcare System, San Diego, CA 92161, USA
| |
Collapse
|
10
|
Song MW, Cui W, Lee CG, Cui R, Son YH, Kim YH, Kim Y, Kim HJ, Choi SE, Kang Y, Kim TH, Jeon JY, Lee KW. Protective effect of empagliflozin against palmitate-induced lipotoxicity through AMPK in H9c2 cells. Front Pharmacol 2023; 14:1228646. [PMID: 38116084 PMCID: PMC10728651 DOI: 10.3389/fphar.2023.1228646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023] Open
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors have recently emerged as novel cardioprotective agents. However, their direct impact on cardiomyocyte injury is yet to be studied. In this work, we investigate the underlying molecular mechanisms of empagliflozin (EMPA), an SGLT2 inhibitor, in mitigating palmitate (PA)-induced cardiomyocyte injury in H9c2 cells. We found that EMPA significantly attenuated PA-induced impairments in insulin sensitivity, ER stress, inflammatory cytokine gene expression, and cellular apoptosis. Additionally, EMPA elevated AMP levels, activated the AMPK pathway, and increased carnitine palmitoyl transferase1 (CPT1) gene expression, which collectively enhanced fatty acid oxidation and reduced stress signals. This study reveals a novel mechanism of EMPA's protective effects against PA-induced cardiomyocyte injury, providing new therapeutic insights into EMPA as a cardioprotective agent.
Collapse
Affiliation(s)
- Min-Woo Song
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Wenhao Cui
- Department of Hematology, Yanbian University Hospital, Yanji, Jilin, China
| | - Chang-Gun Lee
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University MIRAE Campus, Wonju, Republic of Korea
| | - Rihua Cui
- Department of Hematology, Yanbian University Hospital, Yanji, Jilin, China
| | - Young Ho Son
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Young Ha Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Yujin Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hae Jin Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Sung-E. Choi
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Yup Kang
- Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Tae Ho Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul Medical Center, Seoul, Republic of Korea
| | - Ja Young Jeon
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Kwan-Woo Lee
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
11
|
Li AL, Lian L, Chen XN, Cai WH, Fan XB, Fan YJ, Li TT, Xie YY, Zhang JP. The role of mitochondria in myocardial damage caused by energy metabolism disorders: From mechanisms to therapeutics. Free Radic Biol Med 2023; 208:236-251. [PMID: 37567516 DOI: 10.1016/j.freeradbiomed.2023.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
Myocardial damage is the most serious pathological consequence of cardiovascular diseases and an important reason for their high mortality. In recent years, because of the high prevalence of systemic energy metabolism disorders (e.g., obesity, diabetes mellitus, and metabolic syndrome), complications of myocardial damage caused by these disorders have attracted widespread attention. Energy metabolism disorders are independent of traditional injury-related risk factors, such as ischemia, hypoxia, trauma, and infection. An imbalance of myocardial metabolic flexibility and myocardial energy depletion are usually the initial changes of myocardial injury caused by energy metabolism disorders, and abnormal morphology and functional destruction of the mitochondria are their important features. Specifically, mitochondria are the centers of energy metabolism, and recent evidence has shown that decreased mitochondrial function, caused by an imbalance in mitochondrial quality control, may play a key role in myocardial injury caused by energy metabolism disorders. Under chronic energy stress, mitochondria undergo pathological fission, while mitophagy, mitochondrial fusion, and biogenesis are inhibited, and mitochondrial protein balance and transfer are disturbed, resulting in the accumulation of nonfunctional and damaged mitochondria. Consequently, damaged mitochondria lead to myocardial energy depletion and the accumulation of large amounts of reactive oxygen species, further aggravating the imbalance in mitochondrial quality control and forming a vicious cycle. In addition, impaired mitochondria coordinate calcium homeostasis imbalance, and epigenetic alterations participate in the pathogenesis of myocardial damage. These pathological changes induce rapid progression of myocardial damage, eventually leading to heart failure or sudden cardiac death. To intervene more specifically in the myocardial damage caused by metabolic disorders, we need to understand the specific role of mitochondria in this context in detail. Accordingly, promising therapeutic strategies have been proposed. We also summarize the existing therapeutic strategies to provide a reference for clinical treatment and developing new therapies.
Collapse
Affiliation(s)
- Ao-Lin Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Lu Lian
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Xin-Nong Chen
- Department of Traditional Chinese Medicine, Tianjin First Central Hospital, Tianjin, 300190, China
| | - Wen-Hui Cai
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Xin-Biao Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Ya-Jie Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Ting-Ting Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Ying-Yu Xie
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Jun-Ping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China.
| |
Collapse
|
12
|
Liu X, Xu X, Zhang T, Xu L, Tao H, Liu Y, Zhang Y, Meng X. Fatty acid metabolism disorders and potential therapeutic traditional Chinese medicines in cardiovascular diseases. Phytother Res 2023; 37:4976-4998. [PMID: 37533230 DOI: 10.1002/ptr.7965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/13/2023] [Accepted: 07/07/2023] [Indexed: 08/04/2023]
Abstract
Cardiovascular diseases are currently the primary cause of mortality in the whole world. Growing evidence indicated that the disturbances in cardiac fatty acid metabolism are crucial contributors in the development of cardiovascular diseases. The abnormal cardiac fatty acid metabolism usually leads to energy deficit, oxidative stress, excessive apoptosis, and inflammation. Targeting fatty acid metabolism has been regarded as a novel approach to the treatment of cardiovascular diseases. However, there are currently no specific drugs that regulate fatty acid metabolism to treat cardiovascular diseases. Many traditional Chinese medicines have been widely used to treat cardiovascular diseases in clinics. And modern studies have shown that they exert a cardioprotective effect by regulating the expression of key proteins involved in fatty acid metabolism, such as peroxisome proliferator-activated receptor α and carnitine palmitoyl transferase 1. Hence, we systematically reviewed the relationship between fatty acid metabolism disorders and four types of cardiovascular diseases including heart failure, coronary artery disease, cardiac hypertrophy, and diabetic cardiomyopathy. In addition, 18 extracts and eight monomer components from traditional Chinese medicines showed cardioprotective effects by restoring cardiac fatty acid metabolism. This work aims to provide a reference for the finding of novel cardioprotective agents targeting fatty acid metabolism.
Collapse
Affiliation(s)
- Xianfeng Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Xinmei Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Tao Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Lei Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Honglin Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Yue Liu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, People's Republic of China
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, Sichuan, People's Republic of China
| |
Collapse
|
13
|
Rodrigues EA, Rosa CM, Campos DHS, Damatto FC, Murata GM, Souza LM, Pagan LU, Gatto M, Brosler JY, Souza HOA, Martins MM, Bastos LM, Tanni SE, Okoshi K, Okoshi MP. The influence of dapagliflozin on cardiac remodeling, myocardial function and metabolomics in type 1 diabetes mellitus rats. Diabetol Metab Syndr 2023; 15:223. [PMID: 37908006 PMCID: PMC10617150 DOI: 10.1186/s13098-023-01196-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/21/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND Sodium-glucose cotransporter (SGLT)2 inhibitors have displayed beneficial effects on the cardiovascular system in diabetes mellitus (DM) patients. As most clinical trials were performed in Type 2 DM, their effects in Type 1 DM have not been established. OBJECTIVE To evaluate the influence of long-term treatment with SGLT2 inhibitor dapagliflozin on cardiac remodeling, myocardial function, energy metabolism, and metabolomics in rats with Type 1 DM. METHODS Male Wistar rats were divided into groups: Control (C, n = 15); DM (n = 15); and DM treated with dapagliflozin (DM + DAPA, n = 15) for 30 weeks. DM was induced by streptozotocin. Dapagliflozin 5 mg/kg/day was added to chow. STATISTICAL ANALYSIS ANOVA and Tukey or Kruskal-Wallis and Dunn. RESULTS DM + DAPA presented lower glycemia and higher body weight than DM. Echocardiogram showed DM with left atrium dilation and left ventricular (LV) hypertrophy, dilation, and systolic and diastolic dysfunction. In LV isolated papillary muscles, DM had reduced developed tension, +dT/dt and -dT/dt in basal condition and after inotropic stimulation. All functional changes were attenuated by dapagliflozin. Hexokinase (HK), phosphofructokinase (PFK) and pyruvate kinase (PK) activity was lower in DM than C, and PFK and PK activity higher in DM + DAPA than DM. Metabolomics revealed 21 and 5 metabolites positively regulated in DM vs. C and DM + DAPA vs. DM, respectively; 6 and 3 metabolites were negatively regulated in DM vs. C and DM + DAPA vs. DM, respectively. Five metabolites that participate in cell membrane ultrastructure were higher in DM than C. Metabolites levels of N-oleoyl glutamic acid, chlorocresol and N-oleoyl-L-serine were lower and phosphatidylethanolamine and ceramide higher in DM + DAPA than DM. CONCLUSION Long-term treatment with dapagliflozin attenuates cardiac remodeling, myocardial dysfunction, and contractile reserve impairment in Type 1 diabetic rats. The functional improvement is combined with restored pyruvate kinase and phosphofructokinase activity and attenuated metabolomics changes.
Collapse
Affiliation(s)
- Eder Anderson Rodrigues
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Camila Moreno Rosa
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Dijon Henrique Salome Campos
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Felipe Cesar Damatto
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Gilson Masahiro Murata
- LIM29, Division of Nephrology, Medical School, University of Sao Paulo, USP, Sao Paulo, SP, Brazil
| | - Lidiane Moreira Souza
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Luana Urbano Pagan
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Mariana Gatto
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Jessica Yumi Brosler
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Hebreia Oliveira Almeida Souza
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Mario Machado Martins
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Luciana Machado Bastos
- Laboratory of Nanobiotechnology Prof. Dr. Luiz Ricardo Goulart, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Suzana Erico Tanni
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Katashi Okoshi
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Marina Politi Okoshi
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
14
|
Wu T, Qu Y, Xu S, Wang Y, Liu X, Ma D. SIRT6: A potential therapeutic target for diabetic cardiomyopathy. FASEB J 2023; 37:e23099. [PMID: 37462453 DOI: 10.1096/fj.202301012r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023]
Abstract
The abnormal lipid metabolism in diabetic cardiomyopathy can cause myocardial mitochondrial dysfunction, lipotoxicity, abnormal death of myocardial cells, and myocardial remodeling. Mitochondrial homeostasis and normal lipid metabolism can effectively slow down the development of diabetic cardiomyopathy. Recent studies have shown that SIRT6 may play an important role in the pathological changes of diabetic cardiomyopathy such as myocardial cell death, myocardial hypertrophy, and myocardial fibrosis by regulating mitochondrial oxidative stress and glucose and lipid metabolism. Therefore, understanding the function of SIRT6 and its role in the pathogenesis of diabetic cardiomyopathy is of great significance for exploring and developing new targets and drugs for the treatment of diabetic cardiomyopathy. This article reviews the latest findings of SIRT6 in the pathogenesis of diabetic cardiomyopathy, focusing on the regulation of mitochondria and lipid metabolism by SIRT6 to explore potential clinical treatments.
Collapse
Affiliation(s)
- Tao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yiwei Qu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shengjie Xu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yong Wang
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Xue Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dufang Ma
- Department of Cardiology, Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| |
Collapse
|
15
|
Pei Z, Zhou R, Yao W, Dong S, Liu Y, Gao Z. Different exercise training intensities prevent type 2 diabetes mellitus-induced myocardial injury in male mice. iScience 2023; 26:107080. [PMID: 37416463 PMCID: PMC10320508 DOI: 10.1016/j.isci.2023.107080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/29/2023] [Accepted: 06/06/2023] [Indexed: 07/08/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) usually develop myocardial injury and that exercise may have a positive effect on cardiac function. However, the effect of exercise intensity on cardiac function has not yet been fully examined. This study aimed to explore different exercise intensities on T2DM-induced myocardial injury. 18-week-old male mice were randomly divided into four groups: a control group, the T2DM, T2DM + medium-intensity continuous training (T2DM + MICT), and T2DM + high-intensity interval training (T2DM + HIIT) groups. In the experimental group, mice were given high-fat foods and streptozotocin for six weeks and then divided into two exercise training groups, in which mice were subjected to exercise five days per week for 24 consecutive weeks. Finally, metabolic characteristics, cardiac function, myocardial remodeling, myocardial fibrosis, oxidative stress, and apoptosis were analyzed. HIIT treatment improved cardiac function and improved myocardial injury. In conclusion, HIIT may be an effective means to guard against T2DM-induced myocardial injury.
Collapse
Affiliation(s)
- Zuowei Pei
- Department of Cardiology, Central Hospital of Dalian University of Technology, Dalian, China
- Department of Central Laboratory, Central Hospital of Dalian University of Technology, Dalian, China
| | - Rui Zhou
- Department of Internal Medicine, Affiliated Zhong Shan Hospital of Dalian University, Dalian, China
| | - Wei Yao
- Department of Internal Medicine, Affiliated Zhong Shan Hospital of Dalian University, Dalian, China
| | - Shuang Dong
- Department of Cardiology, Central Hospital of Dalian University of Technology, Dalian, China
| | - Yingshu Liu
- Department of Endocrinology, Central Hospital of Dalian University of Technology, Dalian, China
| | - Zhengnan Gao
- Department of Endocrinology, Central Hospital of Dalian University of Technology, Dalian, China
| |
Collapse
|
16
|
Proulx F, Ostinelli G, Biertho L, Tchernof A. Pathophysiology of the Cardiometabolic Alterations in Obesity. DUODENAL SWITCH AND ITS DERIVATIVES IN BARIATRIC AND METABOLIC SURGERY 2023:69-83. [DOI: 10.1007/978-3-031-25828-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
17
|
We are what we eat: The role of lipids in metabolic diseases. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023. [PMID: 37516463 DOI: 10.1016/bs.afnr.2022.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Lipids play a fundamental role, both structurally and functionally, for the correct functioning of the organism. In the last two decades, they have evolved from molecules involved only in energy storage to compounds that play an important role as components of cell membranes and signaling molecules that regulate cell homeostasis. For this reason, their interest as compounds involved in human health has been gaining weight. Indeed, lipids derived from dietary sources and endogenous biosynthesis are relevant for the pathophysiology of numerous diseases. There exist pathological conditions that are characterized by alterations in lipid metabolism. This is particularly true for metabolic diseases, such as liver steatosis, type 2 diabetes, cancer and cardiovascular diseases. The main issue to be considered is lipid homeostasis. A precise control of fat homeostasis is required for a correct regulation of metabolic pathways and safe and efficient energy storage in adipocytes. When this fails, a deregulation occurs in the maintenance of systemic metabolism. This happens because an increased concentrations of lipids impair cellular homeostasis and disrupt tissue function, giving rise to lipotoxicity. Fat accumulation results in many alterations in the physiology of the affected organs, mainly in metabolic tissues. These alterations include the activation of oxidative and endoplasmic reticulum stress, mitochondrial dysfunction, increased inflammation, accumulation of bioactive molecules and modification of gene expression. In this chapter, we review the main metabolic diseases in which alterations in lipid homeostasis are involved and discuss their pathogenic mechanisms.
Collapse
|
18
|
Suffee N, Baptista E, Piquereau J, Ponnaiah M, Doisne N, Ichou F, Lhomme M, Pichard C, Galand V, Mougenot N, Dilanian G, Lucats L, Balse E, Mericskay M, Le Goff W, Hatem SN. Impacts of a high-fat diet on the metabolic profile and the phenotype of atrial myocardium in mice. Cardiovasc Res 2022; 118:3126-3139. [PMID: 34971360 DOI: 10.1093/cvr/cvab367] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 12/27/2021] [Indexed: 12/16/2022] Open
Abstract
AIMS Obesity, diabetes, and metabolic syndromes are risk factors of atrial fibrillation (AF). We tested the hypothesis that metabolic disorders have a direct impact on the atria favouring the formation of the substrate of AF. METHODS AND RESULTS Untargeted metabolomic and lipidomic analysis was used to investigate the consequences of a prolonged high-fat diet (HFD) on mouse atria. Atrial properties were characterized by measuring mitochondria respiration in saponin-permeabilized trabeculae, by recording action potential (AP) with glass microelectrodes in trabeculae and ionic currents in myocytes using the perforated configuration of patch clamp technique and by several immuno-histological and biochemical approaches. After 16 weeks of HFD, obesogenic mice showed a vulnerability to AF. The atrial myocardium acquired an adipogenic and inflammatory phenotypes. Metabolomic and lipidomic analysis revealed a profound transformation of atrial energy metabolism with a predominance of long-chain lipid accumulation and beta-oxidation activation in the obese mice. Mitochondria respiration showed an increased use of palmitoyl-CoA as energy substrate. APs were short duration and sensitive to the K-ATP-dependent channel inhibitor, whereas K-ATP current was enhanced in isolated atrial myocytes of obese mouse. CONCLUSION HFD transforms energy metabolism, causes fat accumulation, and induces electrical remodelling of the atrial myocardium of mice that become vulnerable to AF.
Collapse
Affiliation(s)
- Nadine Suffee
- INSERM UMRS1166, ICAN-Institute of Cardiometabolism and Nutrition, Sorbonne University, Paris, France
| | - Elodie Baptista
- INSERM UMRS1166, ICAN-Institute of Cardiometabolism and Nutrition, Sorbonne University, Paris, France
| | - Jérôme Piquereau
- ICANalytics, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Maharajah Ponnaiah
- ICANalytics, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Nicolas Doisne
- INSERM UMRS1166, ICAN-Institute of Cardiometabolism and Nutrition, Sorbonne University, Paris, France
| | - Farid Ichou
- ICANalytics, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Marie Lhomme
- Paris-Saclay University, Inserm UMRS 1180 Signaling and Cardiovascular Pathophysiology, Châtenay-Malabry, France
| | - Camille Pichard
- INSERM UMRS1166, ICAN-Institute of Cardiometabolism and Nutrition, Sorbonne University, Paris, France
| | - Vincent Galand
- INSERM UMRS1166, ICAN-Institute of Cardiometabolism and Nutrition, Sorbonne University, Paris, France
| | - Nathalie Mougenot
- INSERM UMR_S28, Faculté de médecine Sorbonne University, Paris, France
| | - Gilles Dilanian
- INSERM UMRS1166, ICAN-Institute of Cardiometabolism and Nutrition, Sorbonne University, Paris, France
| | - Laurence Lucats
- Sanofi-Aventis R&D, Cardiovascular and Metabolism Research, Chilly-Mazarin, France
| | - Elise Balse
- INSERM UMRS1166, ICAN-Institute of Cardiometabolism and Nutrition, Sorbonne University, Paris, France
| | - Mathias Mericskay
- Paris-Saclay University, Inserm UMRS 1180 Signaling and Cardiovascular Pathophysiology, Châtenay-Malabry, France
| | - Wilfried Le Goff
- INSERM UMRS1166, ICAN-Institute of Cardiometabolism and Nutrition, Sorbonne University, Paris, France
| | - Stéphane N Hatem
- INSERM UMRS1166, ICAN-Institute of Cardiometabolism and Nutrition, Sorbonne University, Institute of Cardiology, Pitié-Salpêtrière Hospital, Paris, France
| |
Collapse
|
19
|
Yaribeygi H, Maleki M, Reiner Ž, Jamialahmadi T, Sahebkar A. Mechanistic View on the Effects of SGLT2 Inhibitors on Lipid Metabolism in Diabetic Milieu. J Clin Med 2022; 11:6544. [PMID: 36362772 PMCID: PMC9653639 DOI: 10.3390/jcm11216544] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 08/30/2023] Open
Abstract
Chronic hyperglycemia induces pathophysiologic pathways with negative effects on the metabolism of most substrates as well as lipids and lipoproteins, and thereby induces dyslipidemia. Thus, the diabetic milieu is commonly accompanied by different levels of atherogenic dyslipidemia, which is per se a major risk factor for subsequent complications such as atherosclerosis, coronary heart disease, acute myocardial infarction, ischemic stroke, and nephropathy. Therefore, readjusting lipid metabolism in the diabetic milieu is a major goal for preventing dyslipidemia-induced complications. Sodium-glucose cotransporter-2 (SGLT2) inhibitors are a class of relatively newly introduced antidiabetes drugs (including empagliflozin, canagliflozin, dapagliflozin, etc.) with potent hypoglycemic effects and can reduce blood glucose by inducing glycosuria. However, recent evidence suggests that they could also provide extra-glycemic benefits in lipid metabolism. It seems that they can increase fat burning and lipolysis, normalizing the lipid metabolism and preventing or improving dyslipidemia. Nevertheless, the exact mechanisms involved in this process are not well-understood. In this review, we tried to explain how these drugs could regulate lipid homeostasis and we presented the possible involved cellular pathways supported by clinical evidence.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mina Maleki
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Center Zagreb, 1000 Zagreb, Croatia
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
20
|
Hu T, Wu Q, Yao Q, Jiang K, Yu J, Tang Q. Short-chain fatty acid metabolism and multiple effects on cardiovascular diseases. Ageing Res Rev 2022; 81:101706. [PMID: 35932976 DOI: 10.1016/j.arr.2022.101706] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/10/2022] [Accepted: 08/01/2022] [Indexed: 01/31/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide, and fatty acid metabolism has been well studied. Short-chain fatty acids (SCFAs) have been less discussed than long-chain fatty acids (LCFAs) in CVDs. However, increasing evidence indicates the importance of SCFAs in regulating cardiac function. Here, we summarize the current understanding of SCFAs in hypertension, ischaemic reperfusion, myocardial infarction, atherosclerosis and heart failure. Most SCFAs exert positive effects in regulating related diseases. Butyrate and propionate can reduce blood pressure, improve I/R injury and decrease the risk of coronary artery disease (CAD) and atherosclerosis. Acetate can also play a positive role in regulating hypertension and preventing atherosclerosis, and malonate can improve cardiac function after MI. They affect these diseases by regulating inflammation, the immune system and related G protein-coupled receptors, with multiple neurohumoural regulation participation. In contrast, succinate can accelerate IR injury, increasing mitochondrial ROS production. SCFAs ultimately affect the regulation of different pathophysiological processes in heart failure. Here, we clarified the importance of short-chain fatty acids in the cardiovascular system and their multiple effects in various pathophysiological processes, providing new insights into their promising clinical application. More research should be conducted to further elucidate the underlying mechanism and different effects of single or multiple SCFA supplementation on the cardiovascular system.
Collapse
Affiliation(s)
- Tongtong Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Qingqing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Qi Yao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Kebing Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Jiabin Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan 430060, PR China.
| |
Collapse
|
21
|
Hayat R. Dynamics of metabolism and regulation of epigenetics during cardiomyocytes maturation. Cell Biol Int 2022; 47:30-40. [PMID: 36208083 DOI: 10.1002/cbin.11931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 11/09/2022]
Abstract
Maturation is the last step of heart growth that prepares the organ over the lifetime of the mammal for powerful, effective, and sustained pumping. Structural, gene expression, physiological, and functional specialties of cardiomyocytes describe this mechanism as the heart transits from fetus to adult phases. The main cornerstones of maturation of cardiomyocytes are reviewed and primary regulatory mechanisms are summarized to facilitate and organize these cellular activities. During embryonic development, cardiomyocytes proliferate rigorously but leave the cell cycle permanently immediately after the parturition of the child and experience terminal differentiation. The activation of a host of genes specific for the mature heart is correlated with the exit from the cell cycle. Even when exposed to mitogenic stimuli, the bulk of mature cardiomyocytes do not re-join the cell cycle. The reason for this permanent exit from the cell cycle is shown to be linked with stable switching off of the genes of the cell cycle directly involved in the G2/M transition phase and cytokinesis development. Researchers also trying to explain the molecular mechanism involved in stable inhibition of the gene and described structural changes (epigenetic and chromatin) in this mechanism. Substantial developments in the future with advances in the scientific platforms used for cardiomyocyte maturation research will broaden our understanding of this mechanism and result in better maturation of cardiomyocyte-derived pluripotent stem cells and effective treatment approaches for cardiovascular diseases.
Collapse
Affiliation(s)
- Rabia Hayat
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| |
Collapse
|
22
|
Ye RZ, Montastier É, Noll C, Frisch F, Fortin M, Bouffard L, Phoenix S, Guérin B, Turcotte ÉE, Carpentier AC. Total Postprandial Hepatic Nonesterified and Dietary Fatty Acid Uptake Is Increased and Insufficiently Curbed by Adipose Tissue Fatty Acid Trapping in Prediabetes With Overweight. Diabetes 2022; 71:1891-1901. [PMID: 35748318 PMCID: PMC9862339 DOI: 10.2337/db21-1097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/14/2022] [Indexed: 02/05/2023]
Abstract
Excessive lean tissue uptake of fatty acids (FAs) is important in the development of insulin resistance and may be caused by impaired dietary FA (DFA) storage and/or increased nonesterified FA (NEFA) flux from adipose tissue intracellular lipolysis. Cardiac and hepatic total postprandial FA uptake of NEFA+DFA has, however, never been reported in prediabetes with overweight. In this study, 20 individuals with impaired glucose tolerance (IGT) and 19 participants with normal glucose tolerance (NGT) and normal fasting glucose underwent postprandial studies with whole-body positron emission tomography/computed tomography (PET/CT) with oral [18F]fluoro-thia-heptadecanoic acid and dynamic PET/CT with intravenous [11C]palmitate. Hepatic (97 [range 36-215] mmol/6 h vs. 68 [23-132] mmol/6 h, P = 0.03) but not cardiac (11 [range 4-24] mmol/6 h vs. 8 [3-20] mmol/6 h, P = 0.09) uptake of most sources of postprandial FA (NEFA + DFA uptake) integrated over 6 h was higher in IGT versus NGT. DFA accounted for lower fractions of total cardiac (21% [5-47] vs. 25% [9-39], P = 0.08) and hepatic (19% [6-52] vs. 28% [14-50], P = 0.04) uptake in IGT versus NGT. Increased adipose tissue DFA trapping predicted lower hepatic DFA uptake and was associated with higher total cardiac FA uptake. Hence, enhanced adipose tissue DFA trapping in the face of increased postprandial NEFA flux is insufficient to fully curb increased postprandial lean organ FA uptake in prediabetes with overweight (ClinicalTrials.gov; NCT02808182).
Collapse
Affiliation(s)
- Run Zhou Ye
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Émilie Montastier
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Christophe Noll
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Frédérique Frisch
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Mélanie Fortin
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Lucie Bouffard
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Serge Phoenix
- Department of Nuclear Medicine and Radiobiology, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Brigitte Guérin
- Department of Nuclear Medicine and Radiobiology, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Éric E. Turcotte
- Department of Nuclear Medicine and Radiobiology, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - André C. Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Corresponding author: André C. Carpentier,
| |
Collapse
|
23
|
Rong Z, Chen H, Zhang Z, Zhang Y, Ge L, Lv Z, Zou Y, Lv J, He Y, Li W, Chen L. Identification of cardiomyopathy-related core genes through human metabolic networks and expression data. BMC Genomics 2022; 23:47. [PMID: 35016605 PMCID: PMC8753885 DOI: 10.1186/s12864-021-08271-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 12/15/2021] [Indexed: 12/27/2022] Open
Abstract
Abstract
Background
Cardiomyopathy is a complex type of myocardial disease, and its incidence has increased significantly in recent years. Dilated cardiomyopathy (DCM) and ischemic cardiomyopathy (ICM) are two common and indistinguishable types of cardiomyopathy.
Results
Here, a systematic multi-omics integration approach was proposed to identify cardiomyopathy-related core genes that could distinguish normal, DCM and ICM samples using cardiomyopathy expression profile data based on a human metabolic network. First, according to the differentially expressed genes between different states (DCM/ICM and normal, or DCM and ICM) of samples, three sets of initial modules were obtained from the human metabolic network. Two permutation tests were used to evaluate the significance of the Pearson correlation coefficient difference score of the initial modules, and three candidate modules were screened out. Then, a cardiomyopathy risk module that was significantly related to DCM and ICM was determined according to the significance of the module score based on Markov random field. Finally, based on the shortest path between cardiomyopathy known genes, 13 core genes related to cardiomyopathy were identified. These core genes were enriched in pathways and functions significantly related to cardiomyopathy and could distinguish between samples of different states.
Conclusion
The identified core genes might serve as potential biomarkers of cardiomyopathy. This research will contribute to identifying potential biomarkers of cardiomyopathy and to distinguishing different types of cardiomyopathy.
Collapse
|
24
|
Ye RZ, Richard G, Gévry N, Tchernof A, Carpentier AC. Fat Cell Size: Measurement Methods, Pathophysiological Origins, and Relationships With Metabolic Dysregulations. Endocr Rev 2022; 43:35-60. [PMID: 34100954 PMCID: PMC8755996 DOI: 10.1210/endrev/bnab018] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Indexed: 11/19/2022]
Abstract
The obesity pandemic increasingly causes morbidity and mortality from type 2 diabetes, cardiovascular diseases and many other chronic diseases. Fat cell size (FCS) predicts numerous obesity-related complications such as lipid dysmetabolism, ectopic fat accumulation, insulin resistance, and cardiovascular disorders. Nevertheless, the scarcity of systematic literature reviews on this subject is compounded by the use of different methods by which FCS measurements are determined and reported. In this paper, we provide a systematic review of the current literature on the relationship between adipocyte hypertrophy and obesity-related glucose and lipid dysmetabolism, ectopic fat accumulation, and cardiovascular disorders. We also review the numerous mechanistic origins of adipocyte hypertrophy and its relationship with metabolic dysregulation, including changes in adipogenesis, cell senescence, collagen deposition, systemic inflammation, adipokine secretion, and energy balance. To quantify the effect of different FCS measurement methods, we performed statistical analyses across published data while controlling for body mass index, age, and sex.
Collapse
Affiliation(s)
- Run Zhou Ye
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Gabriel Richard
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Nicolas Gévry
- Department of Biology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - André Tchernof
- Québec Heart and Lung Research Institute, Laval University, Québec, Québec, Canada
| | - André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
25
|
Zhang C, Han M, Zhang X, Tong H, Sun X, Sun G. Ginsenoside Rb1 Protects Against Diabetic Cardiomyopathy by Regulating the Adipocytokine Pathway. J Inflamm Res 2022; 15:71-83. [PMID: 35023944 PMCID: PMC8743619 DOI: 10.2147/jir.s348866] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/24/2021] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Obesity and diabetes are often accompanied by chronic inflammation and insulin resistance, which lead to complications such as diabetic cardiomyopathy. Ginsenoside Rb1 has been used to treat diabetes and obesity and reduce inflammation as well as risk of heart diseases. However, the role of ginsenoside Rb1 in treating diabetic cardiomyopathy remains unclear. METHODS Diabetic mice were administered ginsenoside Rb1 for 12 weeks, and their body weight, body fat, and blood glucose levels as well as and serum insulin, lipids, and adipocytokine levels were assessed. Lipid accumulation, pathological morphology of the adipose tissue, liver, and heart were examined. Western blot and qRT-PCR were performed to investigate the molecular changes in response to ginsenoside Rb1 treatment. RESULTS Ginsenoside Rb1 treatment significantly reduced body weight and body fat, attenuated hyperglycemia and hyperlipidemia, and ameliorated insulin resistance and abnormal levels of adipocytokines in diabetic mice. In addition, lipid accumulation and inflammation reduced while the functions of heart improved in the ginsenoside Rb1-treated group. Furthermore, antioxidant function improved in the ginsenoside Rb1-treated diabetic hearts. PCR and Western blotting analyses revealed that the lipid-lowering effect of ginsenoside Rb1 and the resulting improvement of cardiac function could be attributed to the adipocytokine pathway, which promoted energy homeostasis and alleviated cardiac dysfunction. CONCLUSION Ginsenoside Rb1 lowered lipid levels in a adipocytokine-mediated manner and attenuated hyperglycemia/hyperlipidemia-induced oxidative stress, hypertrophy, inflammation, fibrosis, and apoptosis in cardiomyocytes.
Collapse
Affiliation(s)
- Chenyang Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Meixin Han
- College of Pharmacy, Harbin University of Commerce, Harbin, People’s Republic of China
| | - Xuelian Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Hongna Tong
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
26
|
Yan A, Xie G, Ding X, Wang Y, Guo L. Effects of Lipid Overload on Heart in Metabolic Diseases. Horm Metab Res 2021; 53:771-778. [PMID: 34891207 PMCID: PMC8664556 DOI: 10.1055/a-1693-8356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Metabolic diseases are often associated with lipid and glucose metabolism abnormalities, which increase the risk of cardiovascular disease. Diabetic cardiomyopathy (DCM) is an important development of metabolic diseases and a major cause of death. Lipids are the main fuel for energy metabolism in the heart. The increase of circulating lipids affects the uptake and utilization of fatty acids and glucose in the heart, and also affects mitochondrial function. In this paper, the mechanism of lipid overload in metabolic diseases leading to cardiac energy metabolism disorder is discussed.
Collapse
Affiliation(s)
- An Yan
- Tianjin University of Traditional Chinese Medicine, Tianjin,
China
| | - Guinan Xie
- Tianjin University of Traditional Chinese Medicine, Tianjin,
China
| | - Xinya Ding
- Tianjin University of Traditional Chinese Medicine, Tianjin,
China
| | - Yi Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin,
China
- Correspondence Yi Wang Institute of Traditional Chinese MedicineTianjin University of Traditional Chinese Medicine300193 TianjinChina+86-22-59596555
| | - Liping Guo
- Tianjin Academy of Traditional Chinese Medicine, Tianjin,
China
- Liping Guo Tianjin Academy of Traditional Chinese Medicine300120 TianjinChina
| |
Collapse
|
27
|
Hydrogen sulfide plays a potential alternative for the treatment of metabolic disorders of diabetic cardiomyopathy. Mol Cell Biochem 2021; 477:255-265. [PMID: 34687394 DOI: 10.1007/s11010-021-04278-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/13/2021] [Indexed: 12/16/2022]
Abstract
Diabetic cardiomyopathy (DCM) is a cardiovascular complication that tends to occur in patients with diabetes, obesity, or insulin resistance, with a higher late mortality rate. Sustained hyperglycemia, increased free fatty acids, or insulin resistance induces metabolic disorders in cardiac tissues and cells, leading to myocardial fibrosis, left ventricular hypertrophy, diastolic and/or systolic dysfunction, and finally develop into congestive heart failure. The close connection between all signaling pathways and the complex pathogenesis of DCM cause difficulties in finding effective targets for the treatment of DCM. It reported that hydrogen sulfide (H2S) could regulate cell energy substrate metabolism, reduce insulin resistance, protect cardiomyocytes, and improve myocardial function by acting on related key proteins such as differentiation cluster 36 (CD36) and glucose transporter 4 (GLUT4). In this article, the relative mechanisms of H2S in alleviating metabolic disorders of DCM were reviewed, and how H2S can better prevent and treat DCM in clinical practice will be discussed.
Collapse
|
28
|
Klassen A, Faccio AT, Picossi CRC, Derogis PBMC, Dos Santos Ferreira CE, Lopes AS, Sussulini A, Cruz ECS, Bastos RT, Fontoura SC, Neto AMF, Tavares MFM, Izar MC, Fonseca FAH. Evaluation of two highly effective lipid-lowering therapies in subjects with acute myocardial infarction. Sci Rep 2021; 11:15973. [PMID: 34354179 PMCID: PMC8342504 DOI: 10.1038/s41598-021-95455-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 07/23/2021] [Indexed: 01/07/2023] Open
Abstract
For cardiovascular disease prevention, statins alone or combined with ezetimibe have been recommended to achieve low-density lipoprotein cholesterol targets, but their effects on other lipids are less reported. This study was designed to examine lipid changes in subjects with ST-segment elevation myocardial infarction (STEMI) after two highly effective lipid-lowering therapies. Twenty patients with STEMI were randomized to be treated with rosuvastatin 20 mg QD or simvastatin 40 mg combined with ezetimibe 10 mg QD for 30 days. Fasting blood samples were collected on the first day (D1) and after 30 days (D30). Lipidomic analysis was performed using the Lipidyzer platform. Similar classic lipid profile was obtained in both groups of lipid-lowering therapies. However, differences with the lipidomic analysis were observed between D30 and D1 for most of the analyzed classes. Differences were noted with lipid-lowering therapies for lipids such as FA, LPC, PC, PE, CE, Cer, and SM, notably in patients treated with rosuvastatin. Correlation studies between classic lipid profiles and lipidomic results showed different information. These findings seem relevant, due to the involvement of these lipid classes in crucial mechanisms of atherosclerosis, and may account for residual cardiovascular risk. Randomized clinical trial: ClinicalTrials.gov, NCT02428374, registered on 28/09/2014.
Collapse
Affiliation(s)
- Aline Klassen
- Department of Chemistry, Federal University of Sao Paulo (UNIFESP), Diadema, SP, Brazil.
| | - Andrea Tedesco Faccio
- Center for Multiplatform Metabolomics Studies (CEMM), Institute of Chemistry, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Carolina Raissa Costa Picossi
- Center for Multiplatform Metabolomics Studies (CEMM), Institute of Chemistry, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | | | | | - Aline Soriano Lopes
- Department of Chemistry, Federal University of Sao Paulo (UNIFESP), Diadema, SP, Brazil
| | - Alessandra Sussulini
- Department of Analytical Chemistry, Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, Campinas, SP, 13083-970, Brazil
| | - Elisa Castañeda Santa Cruz
- Department of Analytical Chemistry, Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, Campinas, SP, 13083-970, Brazil
| | - Rafaela Tudela Bastos
- Department of Chemistry, Federal University of Sao Paulo (UNIFESP), Diadema, SP, Brazil
| | | | | | - Marina Franco Maggi Tavares
- Center for Multiplatform Metabolomics Studies (CEMM), Institute of Chemistry, University of Sao Paulo (USP), Sao Paulo, SP, Brazil
| | - Maria Cristina Izar
- Division of Cardiology, Department of Medicine, Federal University of Sao Paulo (UNIFESP), Rua Loefgren 1350, São Paulo, SP, CEP 04040-001, Brazil
| | | |
Collapse
|
29
|
Després JP, Carpentier AC, Tchernof A, Neeland IJ, Poirier P. Management of Obesity in Cardiovascular Practice: JACC Focus Seminar. J Am Coll Cardiol 2021; 78:513-531. [PMID: 34325840 PMCID: PMC8609918 DOI: 10.1016/j.jacc.2021.05.035] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022]
Abstract
Obesity contributes to reduced life expectancy because of its link with type 2 diabetes and cardiovascular disease. Yet, targeting this poorly diagnosed, ill-defined, and underaddressed modifiable risk factor remains a challenge. In this review, we emphasize that the tendency among health care professionals to amalgam all forms of obesity altogether as a single entity may contribute to such difficulties and discrepancies. Obesity is a heterogeneous condition both in terms of causes and health consequences. Attention should be given to 2 prevalent subgroups of individuals: 1) patients who are overweight or moderately obese with excess visceral adipose tissue; and 2) patients with severe obesity, the latter group having distinct additional health issues related to their large body fat mass. The challenge of tackling high-cardiovascular-risk forms of obesity through a combination of personalized clinical approaches and population-based solutions is compounded by the current obesogenic environment and economy.
Collapse
Affiliation(s)
- Jean-Pierre Després
- VITAM-Centre de recherche en santé durable, CIUSSS de la Capitale-Nationale, Québec, Québec, Canada; Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec, Québec, Canada; Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Québec, Canada.
| | - André C Carpentier
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Sherbrooke, Québec, Canada; Department of Medicine, Division of Endocrinology, Université de Sherbrooke, Sherbrooke, Québec, Canada. https://twitter.com/CarpentierAndr3
| | - André Tchernof
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec, Québec, Canada; School of Nutrition, Université Laval, Québec, Québec, Canada
| | - Ian J Neeland
- University Hospitals Harrington Heart and Vascular Institute and Case Western Reserve University, Cleveland, Ohio, USA
| | - Paul Poirier
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval, Québec, Québec, Canada; Faculty of Pharmacy, Université Laval, Québec, Québec, Canada
| |
Collapse
|
30
|
Abstract
OBJECTIVE The aim of this study was to define the influence of trauma on cardiac glucose and fatty acid transport. The effects were investigated in vivo in a porcine mono- and polytrauma model and in vitro in human cardiomyocytes, which were treated simultaneously with different inflammatory substances, mimicking posttraumatic inflammatory conditions. METHODS AND RESULTS In the porcine fracture- and polytrauma model, blood glucose concentrations were measured by blood gas analysis during an observation period of 72 h. The expression of cardiac glucose and fatty acid transporters in the left ventricle was determined by RT-qPCR and immunofluorescence. Cardiac and hepatic glycogen storage was examined. Furthermore, human cardiomyocytes were exposed to a defined trauma-cocktail and the expression levels of glucose- and fatty acid transporters were determined. Early after polytrauma, hyperglycemia was observed. After 48 and 72 h, pigs with fracture- and polytrauma developed hypoglycemia. The propofol demand significantly increased posttrauma. The hepatic glycogen concentration was reduced 72 h after trauma. Cardiac glucose and fatty acid transporters changed in both trauma models in vivo as well as in vitro in human cardiomyocytes in presence of proinflammatory mediators. CONCLUSIONS Monotrauma as well as polytrauma changed the cardiac energy transport by altering the expression of glucose and fatty acid transporters. In vitro data suggest that human cardiomyocytes shift to a state alike myocardial hibernation preferring glucose as primary energy source to maintain cardiac function.
Collapse
|
31
|
Free fatty acids and heart failure in the Multi-Ethnic Study of Atherosclerosis (MESA). J Clin Lipidol 2021; 15:608-617. [PMID: 34244123 DOI: 10.1016/j.jacl.2021.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND Free fatty acids (FFAs) may be associated with heart failure (HF) risk, but prospective research is lacking. OBJECTIVE This study investigated associations between fasting FFAs and HF incidence overall and by ejection fraction (EF) subtypes [HF with preserved EF (HFpEF) and HF with reduced EF (HFrEF)] to evaluate FFAs as a potential biomarker for HF risk prediction. METHODS This study was conducted in the Multi-Ethnic Study of Atherosclerosis (MESA) prospective cohort among 6,667 participants with complete baseline (2000-2002) FFAs and HF follow-up (through 2015). Associations between FFAs and HF incidence were evaluated with Cox proportional hazards regression. Cross-sectional associations between FFAs and HF risk markers were also evaluated using linear regression [N-terminal pro-B-type natriuretic peptide (NT-proBNP), left ventricular (LV) mass index] and logistic regression [LV hypertrophy (LVH)]. Stratification and cross-product terms were utilized to evaluate differences by age, sex, race/ethnicity and diabetes. RESULTS FFAs were not associated with HF overall or with HFrEF. FFAs were not associated with HFpEF in the overall population or among males, but were borderline positively associated with risk among females (fully-adjusted tertile 3 vs. 1 HR=2.17, 95% CI: 1.06, 4.42) (sex P-interaction=0.05). FFAs were not associated with NT-proBNP, but were inversely associated with LV mass index and LVH with stronger associations among females (P-interaction≥0.10). Associations did not differ by age, race/ethnicity or diabetes status. CONCLUSIONS FFAs generally do not appear to be an independent predictor for HF risk. Additional research is needed to confirm findings particularly studies evaluating associations by sex and EF subtypes.
Collapse
|
32
|
Carpentier AC. 100 th anniversary of the discovery of insulin perspective: insulin and adipose tissue fatty acid metabolism. Am J Physiol Endocrinol Metab 2021; 320:E653-E670. [PMID: 33522398 DOI: 10.1152/ajpendo.00620.2020] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Insulin inhibits systemic nonesterified fatty acid (NEFA) flux to a greater degree than glucose or any other metabolite. This remarkable effect is mainly due to insulin-mediated inhibition of intracellular triglyceride (TG) lipolysis in adipose tissues and is essential to prevent diabetic ketoacidosis, but also to limit the potential lipotoxic effects of NEFA in lean tissues that contribute to the development of diabetes complications. Insulin also regulates adipose tissue fatty acid esterification, glycerol and TG synthesis, lipogenesis, and possibly oxidation, contributing to the trapping of dietary fatty acids in the postprandial state. Excess NEFA flux at a given insulin level has been used to define in vivo adipose tissue insulin resistance. Adipose tissue insulin resistance defined in this fashion has been associated with several dysmetabolic features and complications of diabetes, but the mechanistic significance of this concept is not fully understood. This review focusses on the in vivo regulation of adipose tissue fatty acid metabolism by insulin and the mechanistic significance of the current definition of adipose tissue insulin resistance. One hundred years after the discovery of insulin and despite decades of investigations, much is still to be understood about the multifaceted in vivo actions of this hormone on adipose tissue fatty acid metabolism.
Collapse
Affiliation(s)
- André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
33
|
Ivanova YM, Blondin DP. Examining the benefits of cold exposure as a therapeutic strategy for obesity and type 2 diabetes. J Appl Physiol (1985) 2021; 130:1448-1459. [PMID: 33764169 DOI: 10.1152/japplphysiol.00934.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of metabolic diseases such as obesity and type 2 diabetes are characterized by a progressive dysregulation in energy partitioning, often leading to end-organ complications. One emerging approach proposed to target this metabolic dysregulation is the application of mild cold exposure. In healthy individuals, cold exposure can increase energy expenditure and whole body glucose and fatty acid utilization. Repeated exposures can lower fasting glucose and insulin levels and improve dietary fatty acid handling, even in healthy individuals. Despite its apparent therapeutic potential, little is known regarding the effects of cold exposure in populations for which this stimulation could benefit the most. The few studies available have shown that both acute and repeated exposures to the cold can improve insulin sensitivity and reduce fasting glycemia in individuals with type 2 diabetes. However, critical gaps remain in understanding the prolonged effects of repeated cold exposures on glucose regulation and whole body insulin sensitivity in individuals with metabolic syndrome. Much of the metabolic benefits appear to be attributable to the recruitment of shivering skeletal muscles. However, further work is required to determine whether the broader recruitment of skeletal muscles observed during cold exposure can confer metabolic benefits that surpass what has been historically observed from endurance exercise. In addition, although cold exposure offers unique cardiovascular responses for a physiological stimulus that increases energy expenditure, further work is required to determine how acute and repeated cold exposure can impact cardiovascular responses and myocardial function across a broader scope of individuals.
Collapse
Affiliation(s)
- Yoanna M Ivanova
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada.,Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Denis P Blondin
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada.,Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
34
|
Ying F, Liu H, Ching Tang EH, Lakhani I, Liu N, Xia Z, Liu S. Prostaglandin E receptor subtype 4 protects against diabetic cardiomyopathy by modulating cardiac fatty acid metabolism via FOXO1/CD36 signalling. Biochem Biophys Res Commun 2021; 548:196-203. [PMID: 33647796 DOI: 10.1016/j.bbrc.2021.01.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Cardiac fatty acid metabolism is essential for maintaining normal cardiac function at baseline and in response to various disease stress, like diabetes. EP4 is widely expressed in cardiomyocytes and has been demonstrated to play a role in cardio function. However, its function in regulating cardiac fatty acid metabolism is remained unknown. METHODS Mice were fed with standard chow or high-fat for eight weeks. The effects of EP4 deficiency on cardiac function, cardiomyocytes hypertrophy and myocardial fibrosis were studied. The possible regulatory mechanisms were further investigated. RESULTS EP4-/- mice exhibited concentric hypertrophy and myocardial fibrosis with cardiac energy deprivation due to reduction of fatty acid uptake and inhibition of ATP generation mediated by FOXO1/CD36 signalling. Moreover, pharmacologically activated EP4 alleviated impaired fatty acid transport and insufficient ATP generation in cardiomyocytes. CONCLUSION EP4 tightly coordinates the rates of cardiac fatty acid uptake and ATP generation via FOXO1/CD36 signalling axis. Our study provides evidences for the link between EP4 and cardiac fatty acid transport and further pointed out that EP4 could be a potential target for modulating fatty acid metabolism and curbing cardiac tissue-specific impairment of function following diabetes.
Collapse
Affiliation(s)
- Fan Ying
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, PR China
| | - Hao Liu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, PR China
| | - Eva Hoi Ching Tang
- Department of Pharmacology and Pharmacy and State Key Laboratory of Pharmaceutical Biotechnology, Department of Physiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ishan Lakhani
- Cardiovascular Analytics Group, Laboratory of Cardiovascular Physiology, Hong Kong, China
| | - Ningning Liu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, PR China
| | - Zhengyuan Xia
- Department of Anesthesiology, State Key Laboratory of Pharmaceutical Biotechnology, the University of Hong Kong, Hong Kong, China
| | - Shiming Liu
- Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, PR China.
| |
Collapse
|
35
|
Wang H, Zhang Y, Han Q, Xu Y, Hu G, Xing H. The inflammatory injury of heart caused by ammonia is realized by oxidative stress and abnormal energy metabolism activating inflammatory pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140532. [PMID: 32623172 DOI: 10.1016/j.scitotenv.2020.140532] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/04/2020] [Accepted: 06/24/2020] [Indexed: 06/11/2023]
Abstract
Inflammation is an essential biological process for maintaining homeostasis in the body. However, excessive inflammatory response is closely related to many chronic diseases. Ammonia is a known environmental pollutant and a main harmful gas in the environment of livestock house. It causes deterioration of air quality and poses a threat to human and animal health. Chickens are very sensitive to ammonia. In order to assess the toxicity of ammonia to the heart, the pathology, ATPase activities, markers of oxidative stress, inflammatory pathways and inflammation markers were investigated in the hearts of chickens exposed to ammonia. The results showed that the cardiac pathological structure, oxidative stress index, and ATPase activity changed significantly in ammonia-treated chickens. In addition, the inflammation pathways (JAK/STAT and MAPK) were activated in the ammonia group, and the inflammatory markers (COX-2, TNF-α, NF-κB and PPAR-γ) were significantly altered at both mRNA and protein levels. In conclusion, excess ammonia can activate inflammatory pathways through oxidative stress and abnormal energy metabolism, and induce cardiac inflammatory injury. Our findings will provide a new insight for better assessing the toxicity mechanism of ammonia on the heart.
Collapse
Affiliation(s)
- Huan Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yu Zhang
- Heilongjiang Agricultural and Rural Department, 4-1 Wenfu Street, Harbin 150060, China
| | - Qi Han
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yanmin Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Guanghui Hu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Houjuan Xing
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
36
|
Shu H, Peng Y, Hang W, Nie J, Zhou N, Wang DW. The role of CD36 in cardiovascular disease. Cardiovasc Res 2020; 118:115-129. [PMID: 33210138 PMCID: PMC8752351 DOI: 10.1093/cvr/cvaa319] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
CD36, also known as the scavenger receptor B2, is a multifunctional receptor widely expressed in various organs. CD36 plays a crucial role in the uptake of long-chain fatty acids, the main metabolic substrate in myocardial tissue. The maturation and transportation of CD36 is regulated by post-translational modifications, including phosphorylation, ubiquitination, glycosylation, and palmitoylation. CD36 is decreased in pathological cardiac hypertrophy caused by ischaemia-reperfusion and pressure overload, and increased in diabetic cardiomyopathy and atherosclerosis. Deficiency of CD36 alleviates diabetic cardiomyopathy and atherosclerosis, while overexpression of CD36 eliminates ischaemia-reperfusion damage, together suggesting that CD36 is closely associated with the progression of cardiovascular diseases and may be a new therapeutic target. This review summarizes the regulation and post-translational modifications of CD36 and evaluates its role in cardiovascular diseases and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Hongyang Shu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yizhong Peng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Weijian Hang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jiali Nie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Ning Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China
| |
Collapse
|
37
|
Taurine with combined aerobic and resistance exercise training alleviates myocardium apoptosis in STZ-induced diabetes rats via Akt signaling pathway. Life Sci 2020; 258:118225. [PMID: 32771557 DOI: 10.1016/j.lfs.2020.118225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 11/21/2022]
Abstract
AIM The aim of this study was considering the effects of taurine supplementation with combined aerobic and resistance training (CARE) on myocardial apoptosis and Protein Kinase B (akt) level changes in diabetic rat. MAIN METHODS Forty male Wistar rats were randomly divided in to 5 groups of 8 animals in each: 1) control, 2) Diabetes Mellitus (DM), 3) DM with taurine supplementation (DM/T), 4) DM with CARE (DM/CARE), and 5) DM with combination of taurine and CARE (DM/T/CARE). DM was induced by injection of streptozotocin (STZ) and nicotine amid (NA) for 2, 3, 4 and 5 groups. Supplement groups received taurine in gavage, 100 mg/kg of body weight, 6 day per weeks, 8 weeks. CARE was performed at maximal speed and 1RM (40-60% of maximum for both). KEY FINDINGS The results of this study showed that DM significantly increased blood glucose and caspase 3, caspase 9 expressions and apoptosis cells in heart tissue and reduced Akt expression (p < 0.001). However, taurine and CARE interventions significantly decreased apoptosis markers (caspase 3 and caspase 9) and significantly increased Akt in heart of diabetic rats compare to DM groups (p < 0.05). The highest improvement observed in DM/T/CARE group (p < 0.05). SIGNIFICANCE Based on these results, it seems that the use of taurine with combined aerobic and exercise training minimize the cardiac damage caused by diabetes (especially apoptosis) trough increasing protein kinase Akt expression. This could improve cardiac remodeling after diabetes. However, more research is needed, especially on the human samples.
Collapse
|
38
|
Carreau AM, Noll C, Blondin DP, Frisch F, Nadeau M, Pelletier M, Phoenix S, Cunnane SC, Guérin B, Turcotte EE, Lebel S, Biertho L, Tchernof A, Carpentier AC. Bariatric Surgery Rapidly Decreases Cardiac Dietary Fatty Acid Partitioning and Hepatic Insulin Resistance Through Increased Intra-abdominal Adipose Tissue Storage and Reduced Spillover in Type 2 Diabetes. Diabetes 2020; 69:567-577. [PMID: 31915151 DOI: 10.2337/db19-0773] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/01/2020] [Indexed: 11/13/2022]
Abstract
Reduced storage of dietary fatty acids (DFAs) in abdominal adipose tissues with enhanced cardiac partitioning has been shown in subjects with type 2 diabetes (T2D) and prediabetes. We measured DFA metabolism and organ partitioning using positron emission tomography with oral and intravenous long-chain fatty acid and glucose tracers during a standard liquid meal in 12 obese subjects with T2D before and 8-12 days after bariatric surgery (sleeve gastrectomy or sleeve gastrectomy and biliopancreatic diversion with duodenal switch). Bariatric surgery reduced cardiac DFA uptake from a median (standard uptake value [SUV]) 1.75 (interquartile range 1.39-2.57) before to 1.09 (1.04-1.53) after surgery (P = 0.01) and systemic DFA spillover from 56.7 mmol before to 24.7 mmol over 6 h after meal intake after surgery (P = 0.01), with a significant increase in intra-abdominal adipose tissue DFA uptake from 0.15 (0.04-0.31] before to 0.49 (0.20-0.59) SUV after surgery (P = 0.008). Hepatic insulin resistance was significantly reduced in close association with increased DFA storage in intra-abdominal adipose tissues (r = -0.79, P = 0.05) and reduced DFA spillover (r = 0.76, P = 0.01). We conclude that bariatric surgery in subjects with T2D rapidly reduces cardiac DFA partitioning and hepatic insulin resistance at least in part through increased intra-abdominal DFA storage and reduced spillover.
Collapse
Affiliation(s)
- Anne-Marie Carreau
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHU de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Christophe Noll
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHU de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Denis P Blondin
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHU de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Frédérique Frisch
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHU de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Mélanie Nadeau
- Centre de recherche de l'Institut universitaire de cardiologie et pneumologie de Québec, Québec, Québec, Canada
| | - Mélissa Pelletier
- Centre de recherche de l'Institut universitaire de cardiologie et pneumologie de Québec, Québec, Québec, Canada
| | - Serge Phoenix
- Department of Nuclear Medicine and Radiobiology, Centre de recherche du CHU de Sherbrooke, Université de Sherbrooke, Québec, Canada
| | - Stephen C Cunnane
- Research Center on Aging, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Brigitte Guérin
- Department of Nuclear Medicine and Radiobiology, Centre de recherche du CHU de Sherbrooke, Université de Sherbrooke, Québec, Canada
| | - Eric E Turcotte
- Department of Nuclear Medicine and Radiobiology, Centre de recherche du CHU de Sherbrooke, Université de Sherbrooke, Québec, Canada
| | - Stéfane Lebel
- Centre de recherche de l'Institut universitaire de cardiologie et pneumologie de Québec, Québec, Québec, Canada
| | - Laurent Biertho
- Centre de recherche de l'Institut universitaire de cardiologie et pneumologie de Québec, Québec, Québec, Canada
| | - André Tchernof
- Centre de recherche de l'Institut universitaire de cardiologie et pneumologie de Québec, Québec, Québec, Canada
- School of Nutrition, Université Laval, Québec, Québec, Canada
| | - André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHU de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
39
|
Wang Z, Zhu Y, Zhang Y, Zhang J, Ji T, Li W, Li W. Protective effects of AS-IV on diabetic cardiomyopathy by improving myocardial lipid metabolism in rat models of T2DM. Biomed Pharmacother 2020; 127:110081. [PMID: 32244194 DOI: 10.1016/j.biopha.2020.110081] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/24/2020] [Accepted: 03/05/2020] [Indexed: 12/15/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is one of the main complications of type 2 diabetes mellitus (T2DM), and it is also one of the main causes of heart failure and death in advanced diabetes. The myocardial lipotoxic injury induced by abnormal lipid metabolism plays an important role in the occurrence and development of DCM, such as myocardial inflammation and fibrosis, ultimately leading to myocardial remodeling and cardiac insufficiency. Astragaloside IV (AS-IV) has many pharmacological effects such as anti-oxidation, anti-inflammatory, immune regulation, and anti-ischemic brain damage. This study was performed to investigate whether AS-IV could prevent T2DM-induced cardiomyopathy and regulate the abnormal myocardial lipid metabolism in diabetes. In this study, the T2DM model was induced by feeding with high-fat food and injected with low-dose STZ in rats. Then the model rats were treated with AS-IV and metformin (Met) for 8 weeks. The results showed that AS-IV improved cardiac systolic and diastolic function, and ameliorated the cardiac histopathological changes in the T2DM rats. Moreover, AS-IV significantly improved circulating TC, TG and HDL levels and cardiac lipid accumulation in T2DM rats as well as in high-fat diet (HFD) rats. Furthermore, AS-IV significantly inhibited the expressions of TNF-α, IL-6 and IL-1β and myocardial fibrosis in T2DM rats, which might be attributed to the improvement of myocardial lipid metabolism, ultimately improving cardiac function in T2DM rats. Taken together, these data suggested that AS-IV has protective effects on T2DM-induced myocardial injury in rats, and its mechanism may be related to the improvement of lipid metabolism in cardiomyocytes.
Collapse
Affiliation(s)
- Zhongyuan Wang
- Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University. Hefei, 230032, Anhui, China
| | - Yunfeng Zhu
- Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University. Hefei, 230032, Anhui, China
| | - Yanhua Zhang
- Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University. Hefei, 230032, Anhui, China
| | - Jie Zhang
- Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University. Hefei, 230032, Anhui, China
| | - Tianjiao Ji
- Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University. Hefei, 230032, Anhui, China
| | - Weizu Li
- Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University. Hefei, 230032, Anhui, China.
| | - Weiping Li
- Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Department of Pharmacology, Basic Medicine College, Anhui Medical University. Hefei, 230032, Anhui, China; Anqing Medical and Pharmaceutical College, Anqing, 246052, Anhui, China.
| |
Collapse
|
40
|
Noll C, Montastier É, Amrani M, Kunach M, Frisch F, Fortin M, Bouffard L, Dubreuil S, Phoenix S, Cunnane SC, Guérin B, Turcotte EE, Laville M, Carpentier AC. Seven-day overfeeding enhances adipose tissue dietary fatty acid storage and decreases myocardial and skeletal muscle dietary fatty acid partitioning in healthy subjects. Am J Physiol Endocrinol Metab 2020; 318:E286-E296. [PMID: 31891539 DOI: 10.1152/ajpendo.00474.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Increased myocardial partitioning of dietary fatty acids (DFA) and decreased left ventricular (LV) function is associated with insulin resistance in prediabetes. We hypothesized that enhanced myocardial DFA partitioning and reduced LV function might be induced concomitantly with reduced insulin sensitivity upon a 7-day hypercaloric (+50% in caloric intake), high-saturated fat (~11%energy), and simple carbohydrates (~54%energy) diet (HIGHCAL) versus an isocaloric diet (ISOCAL) with a moderate amount of saturated fat (~8%energy) and carbohydrates (~50%energy). Thirteen healthy subjects (7 men/6 women) underwent HIGHCAL versus ISOCAL in a randomized crossover design, with organ-specific DFA partitioning and LV function measured using the oral 14(R,S)-[18F]fluoro-6-thia-heptadecanoic acid and [11C]acetate positron emission tomography methods at the end of both interventions. HIGHCAL induced a decrease in insulin sensitivity indexes with no significant change in body composition. HIGHCAL led to increased subcutaneous abdominal (+4.2 ± 1.6%, P < 0.04) and thigh (+2.4 ± 1.2%, P < 0.08) adipose tissue storage and reduced cardiac (-0.31 ± 0.11 mean standard uptake value [(SUV), P < 0.03] and skeletal muscle (-0.17 ± 0.08 SUV, P < 0.05) DFA partitioning without change in LV function. We conclude that early increase in adipose tissue DFA storage protects the heart and skeletal muscles from potential deleterious effects of DFA.
Collapse
Affiliation(s)
- Christophe Noll
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Émilie Montastier
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Mehdi Amrani
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Margaret Kunach
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Frédérique Frisch
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Mélanie Fortin
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Lucie Bouffard
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Stéphanie Dubreuil
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Serge Phoenix
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Stephen C Cunnane
- Research Center on Aging, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Brigitte Guérin
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Eric E Turcotte
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Martine Laville
- Department of Endocrinology, Diabetology and Nutrition, Groupement Hospitalier Lyon Sud, Fédération Hospitalo-Universitaire DO-IT, Hospices Civils de Lyon, Pierre Bénite, France
| | - André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
41
|
Sobczak AIS, Stewart AJ. Coagulatory Defects in Type-1 and Type-2 Diabetes. Int J Mol Sci 2019; 20:E6345. [PMID: 31888259 PMCID: PMC6940903 DOI: 10.3390/ijms20246345] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/06/2019] [Accepted: 12/12/2019] [Indexed: 12/16/2022] Open
Abstract
Diabetes (both type-1 and type-2) affects millions of individuals worldwide. A major cause of death for individuals with diabetes is cardiovascular diseases, in part since both types of diabetes lead to physiological changes that affect haemostasis. Those changes include altered concentrations of coagulatory proteins, hyper-activation of platelets, changes in metal ion homeostasis, alterations in lipid metabolism (leading to lipotoxicity in the heart and atherosclerosis), the presence of pro-coagulatory microparticles and endothelial dysfunction. In this review, we explore the different mechanisms by which diabetes leads to an increased risk of developing coagulatory disorders and how this differs between type-1 and type-2 diabetes.
Collapse
Affiliation(s)
| | - Alan J. Stewart
- Medical and Biological Sciences Building, School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK;
| |
Collapse
|
42
|
Changes in Plasma Free Fatty Acids Associated with Type-2 Diabetes. Nutrients 2019; 11:nu11092022. [PMID: 31466350 PMCID: PMC6770316 DOI: 10.3390/nu11092022] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/22/2019] [Accepted: 08/24/2019] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is associated with increased total plasma free fatty acid (FFA) concentrations and an elevated risk of cardiovascular disease. The exact mechanisms by which the plasma FFA profile of subjects with T2DM changes is unclear, but it is thought that dietary fats and changes to lipid metabolism are likely to contribute. Therefore, establishing the changes in concentrations of specific FFAs in an individual’s plasma is important. Each type of FFA has different effects on physiological processes, including the regulation of lipolysis and lipogenesis in adipose tissue, inflammation, endocrine signalling and the composition and properties of cellular membranes. Alterations in such processes due to altered plasma FFA concentrations/profiles can potentially result in the development of insulin resistance and coagulatory defects. Finally, fibrates and statins, lipid-regulating drugs prescribed to subjects with T2DM, are also thought to exert part of their beneficial effects by impacting on plasma FFA concentrations. Thus, it is also interesting to consider their effects on the concentration of FFAs in plasma. Collectively, we review how FFAs are altered in T2DM and explore the likely downstream physiological and pathological implications of such changes.
Collapse
|
43
|
Wang Z, Wang Z, Gao L, Xiao L, Yao R, Du B, Li Y, Wu L, Liang C, Huang Z, Li P, Zhang Y. miR-222 inhibits cardiac fibrosis in diabetic mice heart via regulating Wnt/β-catenin-mediated endothelium to mesenchymal transition. J Cell Physiol 2019; 235:2149-2160. [PMID: 31389030 DOI: 10.1002/jcp.29119] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/05/2019] [Indexed: 12/13/2022]
Abstract
miR-222 participates in many cardiovascular diseases, but its effect on cardiac remodeling induced by diabetes is unclear. This study evaluated the functional role of miR-222 in cardiac fibrosis in diabetic mice. Streptozotocin (STZ) was used to establish a type 1 diabetic mouse model. After 10 weeks of STZ injection, mice were intravenously injected with Ad-miR-222 to induce the overexpression of miR-222. miR-222 overexpression reduced cardiac fibrosis and improved cardiac function in diabetic mice. Mechanistically, miR-222 inhibited the endothelium to mesenchymal transition (EndMT) in diabetic mouse hearts. Mouse heart fibroblasts and endothelial cells were isolated and cultured with high glucose (HG). An miR-222 mimic did not affect HG-induced fibroblast activation and function but did suppress the HG-induced EndMT process. The antagonism of miR-222 by antagomir inhibited HG-induced EndMT. miR-222 regulated the promoter region of β-catenin, thus negatively regulating the Wnt/β-catenin pathway, which was confirmed by β-catenin siRNA. Taken together, our results indicated that miR-222 inhibited cardiac fibrosis in diabetic mice via negatively regulating Wnt/β-catenin-mediated EndMT.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhongmin Wang
- Cardiology Department, Fuwai Central China Cardiovascular Hospital, Zhengzhou, China
| | - Lu Gao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lili Xiao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Rui Yao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Binbin Du
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yapeng Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Leiming Wu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Cui Liang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhen Huang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengcheng Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanzhou Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
44
|
Bailcalin Protects against Diabetic Cardiomyopathy through Keap1/Nrf2/AMPK-Mediated Antioxidative and Lipid-Lowering Effects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3206542. [PMID: 31354905 PMCID: PMC6636513 DOI: 10.1155/2019/3206542] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/15/2019] [Accepted: 03/04/2019] [Indexed: 12/16/2022]
Abstract
Previous studies demonstrated that Bailcalin (BAI) prevented cardiac injuries under different disease models. Whether BAI protected against type 2 diabetes mellitus- (T2DM-) associated cardiomyopathy was investigated in this study. T2DM was established by the combination of streptozotocin injection and high-fat diet in mice. BAI was administered daily for 6 months. After evaluating cardiac functions, mice hearts were removed and processed for morphological, biochemical, and molecular mechanism analyses. Neonatal rat cardiomyocytes (NRCM) were isolated and treated with high glucose and palmitate (HG/Pal) for in vitro investigation. BAI significantly ameliorated T2DM-induced cardiomyocyte hypertrophy, interstitial fibrosis, and lipid accumulation accompanied by markedly improved cardiac functions in diabetic mice. Mechanically, BAI restored decreased phosphorylation of AMPK and enhanced expression and nuclei translocation of Nrf2. In in vitro experiments, BAI also prevented NRCM from HG/Pal-induced apoptosis and oxidative stress injuries by increasing p-AMPK and Nrf2 accumulation. The means by which BAI restored p-AMPK seemed to be related to the antioxidative effects of Nrf2 after silencing AMPK or Nrf2 in NRCM. Furthermore, BAI regulated Nrf2 by inhibiting Nrf2 ubiquitination and consequent degradation mediated by Keap1. This study showed that BAI alleviated diabetes-associated cardiac dysfunction and cardiomyocyte injuries in vivo and in vitro via Keap1/Nrf2/AMPK-mediated antioxidation and lipid-lowering effects. BAI might be a potential adjuvant drug for diabetes cardiomyopathy treatment.
Collapse
|
45
|
Zhang J, Wang Y, Bao C, Liu T, Li S, Huang J, Wan Y, Li J. Curcumin‑loaded PEG‑PDLLA nanoparticles for attenuating palmitate‑induced oxidative stress and cardiomyocyte apoptosis through AMPK pathway. Int J Mol Med 2019; 44:672-682. [PMID: 31173176 PMCID: PMC6605976 DOI: 10.3892/ijmm.2019.4228] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 06/04/2019] [Indexed: 12/20/2022] Open
Abstract
Curcumin (CUR) has the ability to attenuate oxidative stress in the myocardium and to protect the myocardium from lipotoxic injury owing to its lipid-reducing properties. However, the use of CUR is limited due to its hydrophobicity and instability. In this study, CUR-loaded nanoparticles (CUR NPs) were developed using an amphiphilic copolymer, monomethoxy poly (ethylene glycol)-b-poly (DL-lactide), as a vehicle material. CUR NPs with high drug loading and small size were prepared under optimized conditions. The effects of CUR NPs on palmitate-induced cardiomyocyte injury were investigated and the possible protective mechanism of CUR NPs was also examined. It was found that CUR NPs were able to control the release of CUR and to deliver CUR to H9C2 cells, and they could prevent palmitate-treated H9C2 cells from apoptosis. In addition, CUR NPs could regulate the Bax and Bcl-2 levels of palmitate-treated H9C2 cells back to their respective normal levels. A prospective mechanism for the function of CUR NPs is that they may activate the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin complex-1/p-p70 ribosomal protein S6 kinase signaling pathway, regulate the expression of downstream proteins and resist the palmitate-induced cardiomyocyte injury. Results suggest that CUR NPs can attenuate palmitate-induced oxidative stress in cardiomyocytes and protect cardiomyocytes from apoptosis through the AMPK pathway. In view of the safety and efficiency of these CUR NPs, they have potential for application in protecting the myocardium from lipotoxic injury.
Collapse
Affiliation(s)
- Jingyi Zhang
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular and Metabolic Disorders, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Ying Wang
- Changchun People's Hospital, Changchun, Jilin 130021, P.R. China
| | - Cuiyu Bao
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular and Metabolic Disorders, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Tao Liu
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular and Metabolic Disorders, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Shuai Li
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular and Metabolic Disorders, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Jiaxi Huang
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular and Metabolic Disorders, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| | - Ying Wan
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
| | - Jing Li
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular and Metabolic Disorders, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China
| |
Collapse
|
46
|
A new hyperpolarized 13C ketone body probe reveals an increase in acetoacetate utilization in the diabetic rat heart. Sci Rep 2019; 9:5532. [PMID: 30940842 PMCID: PMC6445118 DOI: 10.1038/s41598-019-39378-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 01/17/2019] [Indexed: 12/27/2022] Open
Abstract
Emerging studies have recently shown the potential importance of ketone bodies in cardio-metabolic health. However, techniques to determine myocardial ketone body utilization in vivo are lacking. In this work, we developed a novel method to assess myocardial ketone body utilization in vivo using hyperpolarized [3-13C]acetoacetate and investigated the alterations in myocardial ketone body metabolism in diabetic rats. Within a minute upon injection of [3-13C]acetoacetate, the production of [5-13C]glutamate and [1-13C] acetylcarnitine can be observed real time in vivo. In diabetic rats, the production of [5-13C]glutamate was elevated compared to controls, while [1-13C]acetylcarnitine was not different. This suggests an increase in ketone body utilization in the diabetic heart, with the produced acetyl-CoA channelled into the tricarboxylic acid cycle. This observation was corroborated by an increase activity of succinyl-CoA:3-ketoacid-CoA transferase (SCOT) activity, the rate-limiting enzyme of ketone body utilization, in the diabetic heart. The increased ketone body oxidation in the diabetic hearts correlated with cardiac hypertrophy and dysfunction, suggesting a potential coupling between ketone body metabolism and cardiac function. Hyperpolarized [3-13C]acetoacetate is a new probe with potential for non-invasive and real time monitoring of myocardial ketone body oxidation in vivo, which offers a powerful tool to follow disease progression or therapeutic interventions.
Collapse
|
47
|
Jensen CF, Bartels ED, Braunstein TH, Nielsen LB, Holstein‐Rathlou N, Axelsen LN, Nielsen MS. Acute intramyocardial lipid accumulation in rats does not slow cardiac conduction per se. Physiol Rep 2019; 7:e14049. [PMID: 30968589 PMCID: PMC6456446 DOI: 10.14814/phy2.14049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 01/14/2023] Open
Abstract
Diabetic patients suffer from both cardiac lipid accumulation and an increased risk of arrhythmias and sudden cardiac death. This correlation suggests a link between diabetes induced cardiac steatosis and electrical abnormalities, however, the underlying mechanism remains unknown. We previously showed that cardiac conduction velocity slows in Zucker diabetic fatty rats and in fructose-fat fed rats, models that both exhibit prominent cardiac steatosis. The aim of this study was to investigate whether acute cardiac lipid accumulation reduces conduction velocity per se. Cardiac lipid accumulation was induced acutely by perfusing isolated rat hearts with palmitate-glucose buffer, or subacutely by fasting rats overnight. Subsequently, longitudinal cardiac conduction velocity was measured in right ventricular tissue strips, and intramyocardial triglyceride and lipid droplet content was determined by thin layer chromatography and BODIPY staining, respectively. Perfusion with palmitate-glucose buffer significantly increased intramyocardial triglyceride levels compared to perfusion with glucose (2.16 ± 0.17 (n = 10) vs. 0.92 ± 0.33 nmol/mg WW (n = 9), P < 0.01), but the number of lipid droplets was very low in both groups. Fasting of rats, however, resulted in both significantly elevated intramyocardial triglyceride levels compared to fed rats (3.27 ± 0.43 (n = 10) vs. 1.45 ± 0.24 nmol/mg WW (n = 10)), as well as a larger volume of lipid droplets (0.60 ± 0.13 (n = 10) vs. 0.21 ± 0.06% (n = 10), P < 0.05). There was no significant difference in longitudinal conduction velocity between palmitate-glucose perfused and control hearts (0.77 ± 0.025 (n = 10) vs. 0.75 m/sec ± 0.029 (n = 9)), or between fed and fasted rats (0.75 ± 0.042 m/sec (n = 10) vs. 0.79 ± 0.047 (n = 10)). In conclusion, intramyocardial lipid accumulation does not slow cardiac longitudinal conduction velocity per se. This is true for both increased intramyocardial triglyceride content, induced by palmitate-glucose perfusion, and increased intramyocardial triglyceride and lipid droplet content, generated by fasting.
Collapse
Affiliation(s)
- Christa F. Jensen
- Department of Biomedical SciencesFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Emil D. Bartels
- Department of Clinical BiochemistryCopenhagen University Hospital RigshospitaletCopenhagenDenmark
| | - Thomas H. Braunstein
- Department of Biomedical SciencesFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Lars B. Nielsen
- Department of Clinical BiochemistryCopenhagen University Hospital RigshospitaletCopenhagenDenmark
| | | | - Lene N. Axelsen
- Department of Biomedical SciencesFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Morten Schak Nielsen
- Department of Biomedical SciencesFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
48
|
Rodriguez-Ramos MA. Diabetic Cardiomyopathy: Five Major Questions with Simple Answers. US CARDIOLOGY REVIEW 2019. [DOI: 10.15420/usc.2018.18.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Diabetes is a major risk factor for heart disease. Diabetic cardiomyopathy is a long-lasting process that affects the myocardium in patients who have no other cardiac conditions. The condition has a complex physiopathology which can be subdivided into processes that cause diastolic and/or systolic dysfunction. It is believed to be more common than reported, but this has not been confirmed by a large study. Diagnosis can involve imaging; biomarkers cannot be used to identify diabetic cardiomyopathy at an early stage. In people with diabetes, there should be a focus on prevention and, if diabetic cardiomyopathy develops, the objective is to delay disease progression. Further studies into identifying and managing diabetic cardiomyopathy are essential to reduce the risk of heart failure in people with diabetes.
Collapse
|
49
|
Yin L, Fang Y, Song T, Lv D, Wang Z, Zhu L, Zhao Z, Yin X. FBXL10 regulates cardiac dysfunction in diabetic cardiomyopathy via the PKC β2 pathway. J Cell Mol Med 2019; 23:2558-2567. [PMID: 30701683 PMCID: PMC6433654 DOI: 10.1111/jcmm.14146] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/16/2018] [Accepted: 12/18/2018] [Indexed: 12/14/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is a condition associated with significant structural changes including cardiac tissue necrosis, localized fibrosis, and cardiomyocyte hypertrophy. This study sought to assess whether and how FBXL10 can attenuate DCM using a rat streptozotocin (STZ)‐induced DCM model system. In the current study, we found that FBXL10 expression was significantly decreased in diabetic rat hearts. FBXL10 protected cells from high glucose (HG)‐induced inflammation, oxidative stress, and apoptosis in vitro. In addition, FBXL10 significantly activated PKC β2 signaling pathway in H9c2 cells and rat model. The cardiomyocyte‐specific overexpression of FBXL10 at 12 weeks after the initial STZ administration attenuated oxidative stress and inflammation, thereby reducing cardiomyocyte death and preserving cardiac function in these animals. Moreover, FBXL10 protected against DCM via activation of the PKC β2 pathway. In conclusion, FBXL has the therapeutic potential for the treatment of DCM.
Collapse
Affiliation(s)
- Leilei Yin
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yingying Fang
- Department of Digestive, Heilongjiang Institute of traditional Chinese Medicine, Harbin, China
| | - Tao Song
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dan Lv
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zheng Wang
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Li Zhu
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zihui Zhao
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinhua Yin
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
50
|
Li N, Wu H, Geng R, Tang Q. Identification of Core Gene Biomarkers in Patients with Diabetic Cardiomyopathy. DISEASE MARKERS 2018; 2018:6025061. [PMID: 30662576 PMCID: PMC6313979 DOI: 10.1155/2018/6025061] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/30/2018] [Accepted: 09/06/2018] [Indexed: 02/06/2023]
Abstract
Diabetic cardiomyopathy (DCM) is a disorder of the myocardium in diabetic patients, which is one of the critical complications of diabetes giving rise to an increased mortality. However, the underlying mechanisms of DCM remain incompletely understood presently. This study was designed to screen the potential molecules and pathways implicated with DCM. GSE26887 involving 5 control individuals and 7 DCM patients was selected from the GEO database to identify the differentially expressed genes (DEGs). DAVID was applied to perform gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. A protein-protein interaction (PPI) network was also constructed to visualize the interactions among these DEGs. To further validate significant genes and pathways, quantitative real-time PCR (qPCR) and Western blot were performed. A total of 236 DEGs were captured, including 134 upregulated and 102 downregulated genes. GO, KEGG, and the PPI network disclosed that inflammation, immune disorders, metabolic disturbance, and mitochondrial dysfunction were significantly enriched in the development of DCM. Notably, IL6 was an upregulated hub gene with the highest connectivity degree, suggesting that it may interact with a great many molecules and pathways. Meanwhile, SOCS3 was also one of the top 15 hub genes in the PPI network. Herein, we detected the protein level of STAT3 and SOCS3 in a mouse model with DCM. Western blot results showed that the protein level of SOCS3 was significantly lower while phosphorylated-STAT3 (P-STAT3) was activated in mice with DCM. In vitro results also uncovered the similar alterations of SOCS3 and P-STAT3 in cardiomyocytes and cardiac fibroblasts induced by high glucose (HG). However, overexpression of SOCS3 could significantly reverse HG-induced cardiomyocyte hypertrophy and collagen synthesis of cardiac fibroblasts. Taken together, our analysis unveiled potential biomarkers and molecular mechanisms in DCM, which could be helpful to the diagnosis and treatment of DCM.
Collapse
Affiliation(s)
- Ning Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Haiming Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Rongxin Geng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|