1
|
Aoun RJN, Kalady MF. Hereditary Colorectal Cancer: From Diagnosis to Surgical Options. Clin Colon Rectal Surg 2025; 38:179-190. [PMID: 40292001 PMCID: PMC12020645 DOI: 10.1055/s-0044-1787884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Hereditary colorectal cancer (CRC) syndromes account for up to 5% of CRC. Patients have an increased risk of CRC and extracolonic cancers, both of which develop at an early age. The main polyposis syndromes include familial adenomatous polyposis, MYH-associated polyposis, Peutz-Jeghers syndrome, juvenile polyposis syndrome, and PTEN hamartoma syndrome. The non-polyposis syndromes include Lynch syndrome and familial colorectal cancer type X. Each of the syndromes have distinct but sometimes overlapping phenotypes. Clinical evaluation and ultimately the underlying germline genetic pathogenic variants define the syndromes. Each syndrome has polyp, CRC, and extracolonic risks and management is based on early and timely surveillance with therapeutic and often extended prophylactic surgery. Surgical intervention strategies are individualized, considering not only the earlier onset of malignancies and heightened risks for metachronous cancers but also the patient's needs and quality of life. This article reviews the different diagnostic approaches to hereditary CRC and highlights subsequent disease-specific management and surgical decision-making strategies.
Collapse
Affiliation(s)
- Rami James N. Aoun
- Division of Colon and Rectal Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Matthew F. Kalady
- Division of Colon and Rectal Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
2
|
Yamada A, Kondo T. Hereditary Colorectal Cancer: Clinical Implications of Genomic Medicine and Precision Oncology. J Anus Rectum Colon 2025; 9:167-178. [PMID: 40302859 PMCID: PMC12035340 DOI: 10.23922/jarc.2025-001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 01/17/2025] [Indexed: 05/02/2025] Open
Abstract
Approximately 10% of colorectal cancer (CRC) cases occur in the context of hereditary cancer-predisposing conditions caused by germline pathogenic variants (PVs) in cancer predisposition genes, with Lynch syndrome and familial adenomatous polyposis at the top of the list. Although the identification of hereditary CRC has traditionally relied on clinical characteristics, including familial accumulation, multiple and early onset of CRC and other related cancers, and the presence of gastrointestinal polyposis, more comprehensive approaches, such as universal tumor screening and universal germline testing, have recently been employed. From a technical standpoint, next-generation sequencing has enabled genome-wide analysis of genetic alterations in germline and somatic settings. Taking advantage of this technology, germline multigene panel testing has been utilized in genetic testing, which leads to the identification of PVs, not only in well-known hereditary CRC genes but also in rare causal genes, moderate-risk genes, and high-risk genes previously not linked to CRC predisposition. In addition, comprehensive genomic profiling and companion diagnostics for solid tumors occasionally yield unexpected hereditary CRC diagnoses. Thus, more hereditary CRCs have been identified not based on clinical phenotypes but rather by comprehensive approaches or as secondary findings of treatment drug testing. In this review, we discuss the impact of recent advances in genomic medicine on the clinical aspects of hereditary CRC, which has promoted an understanding of the entire landscape of genetic predisposition to CRC.
Collapse
Affiliation(s)
- Atsushi Yamada
- Department of Clinical Oncology, Kyoto University Hospital, Kyoto, Japan
| | - Tomohiro Kondo
- Department of Clinical Oncology, Kyoto University Hospital, Kyoto, Japan
- Department of Real-World Data Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Ji JH, Lee SH, Jeon CI, Jang J, Park J, Park SJ, Park JJ, Cheon JH, Jee SH, Kim TI. Identification of Genetic Factors Related With Nonhereditary Colorectal Polyposis and Its Recurrence Through Genome-Wide Association Study. J Gastroenterol Hepatol 2025; 40:482-490. [PMID: 39629711 DOI: 10.1111/jgh.16840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/20/2024] [Accepted: 11/17/2024] [Indexed: 02/11/2025]
Abstract
BACKGROUND Many patients with colorectal polyposis demonstrate negative results in germline mutation test. This study aimed to uncover genetic variants associated with nonhereditary colorectal polyposis using a genome-wide association study (GWAS). METHODS At a single referral university hospital, between January 2012 and September 2021, 638 patients with ≥ 10 biopsy-proven cumulative polyps on colonoscopy without germline mutations related to hereditary colorectal cancer or polyposis were included. The control group comprised 1863 individuals from the Korea Medical Institute, each having undergone at least two colonoscopies, all of which were normal. This study utilized GWAS to identify susceptibility loci for nonhereditary colorectal polyposis. Genetic differences between patients with and without ≥ 10 polyp recurrences were analyzed using Cox proportional hazards models. RESULTS GWAS revealed 71 novel risk single-nucleotide polymorphisms (SNPs) not seen in previous colorectal cancer and polyp GWAS. Five genes (UPF3A, BICRA, CBWD6, PDE4DIP, and ABCC4) overlapping seven SNPs (rs566295755, rs2770288, rs1012003, rs201270202, rs71264659, rs1699813, and rs149368557), previously linked to colorectal cancer, were identified as significant risk factors for nonhereditary colorectal polyposis. Two novel genes (CNTN4 and CNTNAP3B), not previously associated with colorectal diseases, were identified. Three SNPs (rs149368557, rs12438834, and rs9707935) were significantly associated with higher risk of recurrence of polyposis. The gene overlapping with rs149368557 was ABCC4, which was also significantly associated with an increased risk of nonhereditary colorectal polyposis. CONCLUSION This study identified 71 novel risk variants for nonhereditary colorectal polyposis, with three SNPs (rs149368557, rs12438834, and rs9707935) indicating significant associations with increased risk of polyposis recurrence.
Collapse
Affiliation(s)
- Jung Hyun Ji
- Department of Internal Medicine, Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Su Hyun Lee
- Department of Cancer Control and Population Health, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, South Korea
| | - Chan Il Jeon
- Department of Epidemiology and Health Promotion, Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, South Korea
| | - Jihun Jang
- Department of Internal Medicine, Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Jihye Park
- Department of Internal Medicine, Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Soo Jung Park
- Department of Internal Medicine, Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae Jun Park
- Department of Internal Medicine, Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Yonsei Cancer Prevention Center, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae Hee Cheon
- Department of Internal Medicine, Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Sun Ha Jee
- Department of Epidemiology and Health Promotion, Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, South Korea
| | - Tae Il Kim
- Department of Internal Medicine, Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Yonsei Cancer Prevention Center, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
4
|
Jinda W, Moungthard H, Saelee P, Jumpasri J, Asayut S. Clinical and Molecular Characteristics of a Female Familial Adenomatous Polyposis Patient With Adenomatous Polyposis Coli (APC) p.Arg554* Variant and the Value of Screening Her Relatives. Cureus 2024; 16:e70679. [PMID: 39493133 PMCID: PMC11528398 DOI: 10.7759/cureus.70679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 11/05/2024] Open
Abstract
Familial adenomatous polyposis (FAP) accounts for 1% of all colorectal cancer cases and is an autosomal dominant trait with varying expression of the phenotype caused by a disease-causing variant in the adenomatous polyposis coli (APC) gene. This study aims to investigate the molecular characteristics of a patient with FAP, along with its clinical presentation, diagnosis, and treatment plan. We report a case of a 32-year-old female with a maternal history of FAP who was first diagnosed with stage IV rectal cancer. Next-generation sequencing-based genetic diagnostics using a panel of 36 genes linked to hereditary cancer predisposition revealed a maternally inherited APC pathogenic variant c.1660C>T (p.Arg554*). Variant-specific testing in the patient's first-degree relative demonstrated that her asymptomatic younger sister also carried this variant. A colonoscopy revealed the existence of early colonic polyps in the transverse colon to the rectum, which had spared the ascending colon. This study demonstrates that identifying the disease-causing gene in the proband could be beneficial in providing ongoing genetic counseling to family members. The results of the study can be utilized to identify first-degree relatives who are susceptible to hereditary cancer. This will enable the relatives to modify their lifestyle and reduce their cancer risk, resulting in increased surveillance, monitoring, and treatment planning.
Collapse
Affiliation(s)
- Worapoj Jinda
- Department of Medical Research and Technology Assessment, National Cancer Institute, Bangkok, THA
| | - Hathaiwan Moungthard
- Division of Gastrointestinal and Liver Clinic, National Cancer Institute, Bangkok, THA
| | - Pensri Saelee
- Department of Medical Research and Technology Assessment, National Cancer Institute, Bangkok, THA
| | - Jaruphan Jumpasri
- Department of Medical Research and Technology Assessment, National Cancer Institute, Bangkok, THA
| | - Sutasinee Asayut
- Department of Medical Research and Technology Assessment, National Cancer Institute, Bangkok, THA
| |
Collapse
|
5
|
Mao J, He Y, Chu J, Hu B, Yao Y, Yan Q, Han S. Analysis of clinical characteristics of mismatch repair status in colorectal cancer: a multicenter retrospective study. Int J Colorectal Dis 2024; 39:100. [PMID: 38967814 PMCID: PMC11226506 DOI: 10.1007/s00384-024-04674-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Microsatellite instability (MSI) caused by DNA mismatch repair (MMR) deficiency is of great significance in the occurrence, diagnosis and treatment of colorectal cancer (CRC). AIM This study aimed to analyze the relationship between mismatch repair status and clinical characteristics of CRC. METHODS The histopathological results and clinical characteristics of 2029 patients who suffered from CRC and underwent surgery at two centers from 2018 to 2020 were determined. After screening the importance of clinical characteristics through machine learning algorithms, the patients were divided into deficient mismatch repair (dMMR) and proficient mismatch repair (pMMR) groups based on the immunohistochemistry results and the clinical feature data between the two groups were observed by statistical methods. RESULTS The dMMR and pMMR groups had significant differences in histologic type, TNM stage, maximum tumor diameter, lymph node metastasis, differentiation grade, gross appearance, and vascular invasion. There were significant differences between the MLH1 groups in age, histologic type, TNM stage, lymph node metastasis, tumor location, and depth of invasion. The MSH2 groups were significantly different in age. The MSH6 groups had significant differences in age, histologic type, and TNM stage. There were significant differences between the PMS2 groups in lymph node metastasis and tumor location. CRC was dominated by MLH1 and PMS2 combined expression loss (41.77%). There was a positive correlation between MLH1 and MSH2 and between MSH6 and PMS2 as well. CONCLUSIONS The proportion of mucinous adenocarcinoma, protruding type, and poor differentiation is relatively high in dMMR CRCs, but lymph node metastasis is rare. It is worth noting that the expression of MMR protein has different prognostic significance in different stages of CRC disease.
Collapse
Affiliation(s)
- Jing Mao
- Department of General Surgery, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang, 313000, People's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang, 313000, People's Republic of China
| | - Yang He
- Department of Oncology, The First Affiliated Hospital of Wannan Medical College, No. 92, Zheshan West Road, Jinghu District, Wuhu, Anhui, 241001, People's Republic of China
| | - Jian Chu
- Department of Gastroenterology, The Fifth Affiliated Clinical Medical College of Zhejiang, Chinese Medical University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang, 313000, People's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang, 313000, People's Republic of China
| | - Boyang Hu
- Department of General Surgery, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang, 313000, People's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang, 313000, People's Republic of China
| | - Yanjun Yao
- Department of General Surgery, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang, 313000, People's Republic of China
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang, 313000, People's Republic of China
| | - Qiang Yan
- Department of General Surgery, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang, 313000, People's Republic of China.
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang, 313000, People's Republic of China.
| | - Shuwen Han
- Department of Oncology, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang, 313000, People's Republic of China.
- Key Laboratory of Multiomics Research and Clinical Transformation of Digestive Cancer of Huzhou, No.1558, Sanhuan North Road, Wuxing District, Huzhou, Zhejiang, 313000, People's Republic of China.
| |
Collapse
|
6
|
Chan JM, Clendenning M, Joseland S, Georgeson P, Mahmood K, Joo JE, Walker R, Como J, Preston S, Chai SM, Chu YL, Meyers AL, Pope BJ, Duggan D, Fink JL, Macrae FA, Rosty C, Winship IM, Jenkins MA, Buchanan DD. Inherited BRCA1 and RNF43 pathogenic variants in a familial colorectal cancer type X family. Fam Cancer 2024; 23:9-21. [PMID: 38063999 PMCID: PMC10869370 DOI: 10.1007/s10689-023-00351-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/21/2023] [Indexed: 02/17/2024]
Abstract
Genetic susceptibility to familial colorectal cancer (CRC), including for individuals classified as Familial Colorectal Cancer Type X (FCCTX), remains poorly understood. We describe a multi-generation CRC-affected family segregating pathogenic variants in both BRCA1, a gene associated with breast and ovarian cancer and RNF43, a gene associated with Serrated Polyposis Syndrome (SPS). A single family out of 105 families meeting the criteria for FCCTX (Amsterdam I family history criteria with mismatch repair (MMR)-proficient CRCs) recruited to the Australasian Colorectal Cancer Family Registry (ACCFR; 1998-2008) that underwent whole exome sequencing (WES), was selected for further testing. CRC and polyp tissue from four carriers were molecularly characterized including a single CRC that underwent WES to determine tumor mutational signatures and loss of heterozygosity (LOH) events. Ten carriers of a germline pathogenic variant BRCA1:c.2681_2682delAA p.Lys894ThrfsTer8 and eight carriers of a germline pathogenic variant RNF43:c.988 C > T p.Arg330Ter were identified in this family. Seven members carried both variants, four of which developed CRC. A single carrier of the RNF43 variant met the 2019 World Health Organization (WHO2019) criteria for SPS, developing a BRAF p.V600 wildtype CRC. Loss of the wildtype allele for both BRCA1 and RNF43 variants was observed in three CRC tumors while a LOH event across chromosome 17q encompassing both genes was observed in a CRC. Tumor mutational signature analysis identified the homologous recombination deficiency (HRD)-associated COSMIC signatures SBS3 and ID6 in a CRC for a carrier of both variants. Our findings show digenic inheritance of pathogenic variants in BRCA1 and RNF43 segregating with CRC in a FCCTX family. LOH and evidence of BRCA1-associated HRD supports the importance of both these tumor suppressor genes in CRC tumorigenesis.
Collapse
Affiliation(s)
- James M Chan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Centre for Cancer Research, University of Melbourne, The University of Melbourne, Parkville, VIC, Australia
| | - Mark Clendenning
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Centre for Cancer Research, University of Melbourne, The University of Melbourne, Parkville, VIC, Australia
| | - Sharelle Joseland
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Centre for Cancer Research, University of Melbourne, The University of Melbourne, Parkville, VIC, Australia
| | - Peter Georgeson
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Centre for Cancer Research, University of Melbourne, The University of Melbourne, Parkville, VIC, Australia
| | - Khalid Mahmood
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Centre for Cancer Research, University of Melbourne, The University of Melbourne, Parkville, VIC, Australia
- Melbourne Bioinformatics, The University of Melbourne, Melbourne, VIC, Australia
| | - Jihoon E Joo
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Centre for Cancer Research, University of Melbourne, The University of Melbourne, Parkville, VIC, Australia
| | - Romy Walker
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Centre for Cancer Research, University of Melbourne, The University of Melbourne, Parkville, VIC, Australia
| | - Julia Como
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Centre for Cancer Research, University of Melbourne, The University of Melbourne, Parkville, VIC, Australia
| | - Susan Preston
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Centre for Cancer Research, University of Melbourne, The University of Melbourne, Parkville, VIC, Australia
| | - Shuyi Marci Chai
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Centre for Cancer Research, University of Melbourne, The University of Melbourne, Parkville, VIC, Australia
| | - Yen Lin Chu
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Centre for Cancer Research, University of Melbourne, The University of Melbourne, Parkville, VIC, Australia
| | - Aaron L Meyers
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Centre for Cancer Research, University of Melbourne, The University of Melbourne, Parkville, VIC, Australia
| | - Bernard J Pope
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Centre for Cancer Research, University of Melbourne, The University of Melbourne, Parkville, VIC, Australia
- Melbourne Bioinformatics, The University of Melbourne, Melbourne, VIC, Australia
| | - David Duggan
- Quantitative Medicine and Systems Biology Division, Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | - J Lynn Fink
- Faculty of Medicine, Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
- Australian Translational Genomics Centre, Queensland University of Technology, Brisbane, QLD, Australia
| | - Finlay A Macrae
- Colorectal Medicine and Genetics, Royal Melbourne Hospital, Parkville, VIC, Australia
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Christophe Rosty
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia
- Centre for Cancer Research, University of Melbourne, The University of Melbourne, Parkville, VIC, Australia
- Envoi Pathology, Brisbane, QLD, Australia
- School of Medicine, University of Queensland, Herston, QLD, Australia
| | - Ingrid M Winship
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Mark A Jenkins
- Centre for Cancer Research, University of Melbourne, The University of Melbourne, Parkville, VIC, Australia
- Centre for Epidemiology and Biostatistics, The University of Melbourne, Melbourne, VIC, Australia
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia.
- Centre for Cancer Research, University of Melbourne, The University of Melbourne, Parkville, VIC, Australia.
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, VIC, Australia.
| |
Collapse
|
7
|
Jang J, Park J, Park SJ, Park JJ, Cheon JH, Kim TI. Clinical characteristics and risk factors related to polyposis recurrence and advanced neoplasm development among patients with non-hereditary colorectal polyposis. Intest Res 2023; 21:510-517. [PMID: 37248175 PMCID: PMC10626020 DOI: 10.5217/ir.2022.00139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/12/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND/AIMS Patients with more than 10 cumulative polyps might involve a greater genetic risk of colorectal neoplasia development. However, few studies have investigated the risk factors of polyposis recurrence and development of advanced neoplasms among patients with non-hereditary colorectal polyposis. METHODS This study included patients (n=855) with 10 or more cumulative polyps diagnosed at Severance Hospital from January 2012 to September 2021. Patients with known genetic mutations related to polyposis, known hereditary polyposis syndromes, insufficient information, total colectomy, and less than 3 years of follow-up were excluded. Finally, 169 patients were included for analysis. We collected clinical data, including colonoscopy surveillance results, and performed Cox regression analyses of risk factors for polyposis recurrence and advanced neoplasm development. RESULTS The 169 patients were predominantly male (84.02%), with a mean age of 64.19±9.92 years. The mean number of adenomas on index colonoscopy was 15.33±8.47. Multivariable analysis revealed history of cancer except colon cancer (hazard ratio [HR], 2.23; 95% confidence interval [CI], 1.23-4.01), current smoking (HR, 2.39; 95% CI, 1.17-4.87), and detection of many polyps (≥15) on index colonoscopy (HR, 2.05; 95% CI, 1.21-3.50) were significant risk factors for recurrence of polyposis. We found no statistically significant risk factors for advanced neoplasm development during surveillance among our cohort. CONCLUSIONS The presence of many polyps (≥15) on index colonoscopy, history of cancer except colon cancer, and current smoking state were significant risk factors for polyposis recurrence among patients with non-hereditary colorectal polyposis.
Collapse
Affiliation(s)
- Jihun Jang
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Jihye Park
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Soo Jung Park
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Jun Park
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Cancer Prevention Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Hee Cheon
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Tae Il Kim
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Cancer Prevention Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
8
|
Grot N, Kaczmarek-Ryś M, Lis-Tanaś E, Kryszczyńska A, Nowakowska D, Jakubiuk-Tomaszuk A, Paszkowski J, Banasiewicz T, Hryhorowicz S, Pławski A. NTHL1 Gene Mutations in Polish Polyposis Patients-Weighty Player or Vague Background? Int J Mol Sci 2023; 24:14548. [PMID: 37834005 PMCID: PMC10572874 DOI: 10.3390/ijms241914548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Multiple polyposes are heterogeneous diseases with different underlying molecular backgrounds, sharing a common symptom: the presence of transforming into cancerous intestinal polyps. Recent reports have indicated biallelic mutations in the NTHL1 gene, which is involved in base excision repair (BER), as predisposing to an elevated risk of colorectal cancer (CRC). We aimed to evaluate the significance of the p.Q82* truncating variant in predisposition to intestinal polyposis by assessing its frequency in polyposis patients. We genotyped 644 Polish patients and 634 control DNA samples using high-resolution melting analysis (HRM) and Sanger sequencing. We found the p.Q82* variant in four polyposis patients; in three, it was homozygous (OR = 6.90, p value = 0.202). Moreover, the p.R92C mutation was detected in one patient. We also looked more closely at the disease course in patients carrying NTHL1 mutations. Two homozygous patients also presented other neoplasia. In the family case, we noticed the earlier presence of polyps in the proband and early hepatoblastoma in his brother. We cannot univocally confirm the relationship of p.Q82* with an increased risk of CRC. However, homozygous p.Q82* was more frequent by 10-fold in patients without other mutations identified, which makes NTHL1 gene screening in this group reasonable.
Collapse
Affiliation(s)
- Natalia Grot
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (N.G.); (M.K.-R.); (E.L.-T.); (A.K.); (S.H.)
| | - Marta Kaczmarek-Ryś
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (N.G.); (M.K.-R.); (E.L.-T.); (A.K.); (S.H.)
| | - Emilia Lis-Tanaś
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (N.G.); (M.K.-R.); (E.L.-T.); (A.K.); (S.H.)
| | - Alicja Kryszczyńska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (N.G.); (M.K.-R.); (E.L.-T.); (A.K.); (S.H.)
| | - Dorota Nowakowska
- Cancer Genetics Unit, Cancer Prevention Department, The Maria Sklodowska-Curie National Research Institute of Oncology in Warsaw, 02-781 Warsaw, Poland;
| | - Anna Jakubiuk-Tomaszuk
- Department of Pediatric Neurology, Medical University of Bialystok, 15-089 Bialystok, Poland;
- Medical Genetics Unit, Mastermed Medical Center, 15-089 Bialystok, Poland
| | - Jacek Paszkowski
- Department of General and Endocrine Surgery and Gastroenterological Oncology, Poznań University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznań, Poland; (J.P.); (T.B.)
| | - Tomasz Banasiewicz
- Department of General and Endocrine Surgery and Gastroenterological Oncology, Poznań University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznań, Poland; (J.P.); (T.B.)
| | - Szymon Hryhorowicz
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (N.G.); (M.K.-R.); (E.L.-T.); (A.K.); (S.H.)
| | - Andrzej Pławski
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland; (N.G.); (M.K.-R.); (E.L.-T.); (A.K.); (S.H.)
- Department of General and Endocrine Surgery and Gastroenterological Oncology, Poznań University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznań, Poland; (J.P.); (T.B.)
| |
Collapse
|
9
|
Immunogenomic Biomarkers and Validation in Lynch Syndrome. Cells 2023; 12:cells12030491. [PMID: 36766832 PMCID: PMC9914748 DOI: 10.3390/cells12030491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/15/2023] [Accepted: 01/22/2023] [Indexed: 02/05/2023] Open
Abstract
Lynch syndrome (LS) is an inherited disorder in which affected individuals have a significantly higher-than-average risk of developing colorectal and non-colorectal cancers, often before the age of 50 years. In LS, mutations in DNA repair genes lead to a dysfunctional post-replication repair system. As a result, the unrepaired errors in coding regions of the genome produce novel proteins, called neoantigens. Neoantigens are recognised by the immune system as foreign and trigger an immune response. Due to the invasive nature of cancer screening tests, universal cancer screening guidelines unique for LS (primarily colonoscopy) are poorly adhered to by LS variant heterozygotes (LSVH). Currently, it is unclear whether immunogenomic components produced as a result of neoantigen formation can be used as novel biomarkers in LS. We hypothesise that: (i) LSVH produce measurable and dynamic immunogenomic components in blood, and (ii) these quantifiable immunogenomic components correlate with cancer onset and stage. Here, we discuss the feasibility to: (a) identify personalised novel immunogenomic biomarkers and (b) validate these biomarkers in various clinical scenarios in LSVH.
Collapse
|
10
|
Pan S, Cox H, Willmott J, Mundt E, Gorringe H, Landon M, Bowles KR, Coffee B, Roa BB, Mancini-DiNardo D. Discordance between germline genetic findings and abnormal tumor immunohistochemistry staining of mismatch repair proteins in individuals with suspected Lynch syndrome. Front Oncol 2023; 13:1069467. [PMID: 36793599 PMCID: PMC9923021 DOI: 10.3389/fonc.2023.1069467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/11/2023] [Indexed: 01/31/2023] Open
Abstract
Background and Aims Tumor immunohistochemical staining (IHC) of DNA mismatch repair (MMR) proteins is often used to guide germline genetic testing and variant classification for patients with suspected Lynch syndrome. This analysis examined the spectrum of germline findings in a cohort of individuals showing abnormal tumor IHC. Methods We assessed individuals with reported abnormal IHC findings and referred for testing with a six-gene syndrome-specific panel (n=703). Pathogenic variants (PVs) and variants of uncertain significance (VUS) in MMR genes were designated expected/unexpected relative to IHC results. Results The PV positive rate was 23.2% (163/703; 95% confidence interval [CI], 20.1%-26.5%); 8.0% (13/163; 95% CI, 4.3%-13.3%) of PV carriers had a PV in an unexpected MMR gene. Overall, 121 individuals carried VUS in MMR genes expected to be mutated based on IHC results. Based on independent evidence, in 47.1% (57/121; 95% CI, 38.0%-56.4%) of these individuals the VUSs were later reclassified as benign and in 14.0% (17/121; 95% CI, 8.4%-21.5%) of these individuals the VUSs were reclassified as pathogenic. Conclusions Among patients with abnormal IHC findings, IHC-guided single-gene genetic testing may miss 8% of individuals with Lynch syndrome. In addition, in patients with VUS identified in MMR genes predicted to be mutated by IHC, extreme caution must be taken when the IHC results are considered in variant classification.
Collapse
Affiliation(s)
- Shujuan Pan
- Myriad Genetic Laboratories, Inc., Salt Lake City, UT, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Strong Hereditary Predispositions to Colorectal Cancer. Genes (Basel) 2022; 13:genes13122326. [PMID: 36553592 PMCID: PMC9777620 DOI: 10.3390/genes13122326] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the most common causes of death worldwide. A strong predisposition to cancer is generally only observed in colorectal cancer (5% of cases) and breast cancer (2% of cases). Colorectal cancer is the most common cancer with a strong genetic predisposition, but it includes dozens of various syndromes. This group includes familial adenomatous polyposis, attenuated familial adenomatous polyposis, MUTYH-associated polyposis, NTHL1-associated polyposis, Peutz-Jeghers syndrome, juvenile polyposis syndrome, Cowden syndrome, Lynch syndrome, and Muir-Torre syndrome. The common symptom of all these diseases is a very high risk of colorectal cancer, but depending on the condition, their course is different in terms of age and range of cancer occurrence. The rate of cancer development is determined by its conditioning genes, too. Hereditary predispositions to cancer of the intestine are a group of symptoms of heterogeneous diseases, and their proper diagnosis is crucial for the appropriate management of patients and their successful treatment. Mutations of specific genes cause strong colorectal cancer predispositions. Identifying mutations of predisposing genes will support proper diagnosis and application of appropriate screening programs to avoid malignant neoplasm.
Collapse
|
12
|
Attard TM. Pediatric colon cancer-When enemies collude. Pediatr Blood Cancer 2022; 69:e29914. [PMID: 35925941 DOI: 10.1002/pbc.29914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Thomas M Attard
- Children's Mercy Hospitals and Clinics, Gastroenterology, Kansas, Missouri, USA
| |
Collapse
|
13
|
Chan JM, Clendenning M, Joseland S, Georgeson P, Mahmood K, Walker R, Como J, Joo JE, Preston S, Hutchinson RA, Pope BJ, Metz A, Beard C, Purvis R, Arnold J, Vijay V, Konycheva G, Atkinson N, Parry S, Jenkins MA, Macrae FA, Rosty C, Winship IM, Buchanan DD. Rare germline variants in the AXIN2 gene in families with colonic polyposis and colorectal cancer. Fam Cancer 2022; 21:399-413. [PMID: 34817745 DOI: 10.1007/s10689-021-00283-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/08/2021] [Indexed: 01/07/2023]
Abstract
Germline loss-of-function variants in AXIN2 are associated with oligodontia and ectodermal dysplasia. The association between colorectal cancer (CRC) and colonic polyposis is less clear despite this gene now being included in multi-gene panels for CRC. Study participants were people with genetically unexplained colonic polyposis recruited to the Genetics of Colonic Polyposis Study who had a rare germline AXIN2 gene variant identified from either clinical multi-gene panel testing (n=2) or from whole genome/exome sequencing (n=2). Variant segregation in relatives and characterisation of tumour tissue were performed where possible. Four different germline pathogenic variants in AXIN2 were identified in four families. Five of the seven carriers of the c.1049delC, p.Pro350Leufs*13 variant, two of the six carriers of the c.1994dupG, p.Asn666Glnfs*41 variant, all three carriers of c.1972delA, p.Ser658Alafs*31 variant and the single proband carrier of the c.2405G>C, p.Arg802Thr variant, which creates an alternate splice form resulting in a frameshift mutation (p.Glu763Ilefs*42), were affected by CRC and/or polyposis. Carriers had a mean age at diagnosis of CRC/polyposis of 52.5 ± 9.2 years. Colonic polyps were typically pan colonic with counts ranging from 5 to >100 (median 12.5) comprising predominantly adenomatous polyps but also serrated polyps. Two CRCs from carriers displayed evidence of a second hit via loss of heterozygosity. Oligodontia was observed in carriers from two families. Germline AXIN2 pathogenic variants from four families were associated with CRC and/or polyposis in multiple family members. These findings support the inclusion of AXIN2 in CRC and polyposis multigene panels for clinical testing.
Collapse
Affiliation(s)
- James M Chan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, Australia.,University of Melbourne Centre for Cancer Research, The University of Melbourne, Parkville, Australia
| | - Mark Clendenning
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, Australia.,University of Melbourne Centre for Cancer Research, The University of Melbourne, Parkville, Australia
| | - Sharelle Joseland
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, Australia.,University of Melbourne Centre for Cancer Research, The University of Melbourne, Parkville, Australia
| | - Peter Georgeson
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, Australia.,University of Melbourne Centre for Cancer Research, The University of Melbourne, Parkville, Australia
| | - Khalid Mahmood
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, Australia.,University of Melbourne Centre for Cancer Research, The University of Melbourne, Parkville, Australia.,Melbourne Bioinformatics, The University of Melbourne, Carlton, Australia
| | - Romy Walker
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, Australia.,University of Melbourne Centre for Cancer Research, The University of Melbourne, Parkville, Australia
| | - Julia Como
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, Australia.,University of Melbourne Centre for Cancer Research, The University of Melbourne, Parkville, Australia
| | - Jihoon E Joo
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, Australia.,University of Melbourne Centre for Cancer Research, The University of Melbourne, Parkville, Australia
| | - Susan Preston
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, Australia.,University of Melbourne Centre for Cancer Research, The University of Melbourne, Parkville, Australia
| | - Ryan A Hutchinson
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, Australia.,University of Melbourne Centre for Cancer Research, The University of Melbourne, Parkville, Australia
| | - Bernard J Pope
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, Australia.,University of Melbourne Centre for Cancer Research, The University of Melbourne, Parkville, Australia.,Melbourne Bioinformatics, The University of Melbourne, Carlton, Australia
| | - Andrew Metz
- Department of Gastroenterology, Royal Melbourne Hospital, Parkville, Australia
| | - Catherine Beard
- Parkville Familial Cancer Centre, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Parkville, Australia
| | - Rebecca Purvis
- Parkville Familial Cancer Centre, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Parkville, Australia
| | - Julie Arnold
- New Zealand Familial Gastrointestinal Cancer Service, Auckland, New Zealand
| | - Varnika Vijay
- New Zealand Familial Gastrointestinal Cancer Service, Auckland, New Zealand
| | - Galina Konycheva
- New Zealand Familial Gastrointestinal Cancer Service, Auckland, New Zealand
| | - Nathan Atkinson
- New Zealand Familial Gastrointestinal Cancer Service, Auckland, New Zealand
| | - Susan Parry
- New Zealand Familial Gastrointestinal Cancer Service, Auckland, New Zealand
| | - Mark A Jenkins
- University of Melbourne Centre for Cancer Research, The University of Melbourne, Parkville, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, Australia
| | - Finlay A Macrae
- Colorectal Medicine and Genetics, Royal Melbourne Hospital, Parkville, Australia.,Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Australia.,Department of Medicine, The University of Melbourne, Parkville, Australia
| | - Christophe Rosty
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, Australia.,University of Melbourne Centre for Cancer Research, The University of Melbourne, Parkville, Australia.,Envoi Specialist Pathologists, Brisbane, Australia.,University of Queensland, Brisbane, Australia
| | - Ingrid M Winship
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Australia.,Department of Medicine, The University of Melbourne, Parkville, Australia
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, Australia. .,University of Melbourne Centre for Cancer Research, The University of Melbourne, Parkville, Australia. .,Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Australia. .,Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, 305 Grattan Street, 3010, Parkville, Victoria, Australia.
| |
Collapse
|
14
|
Kabbage M, Ben Aissa-Haj J, Othman H, Jaballah-Gabteni A, Laarayedh S, Elouej S, Medhioub M, Kettiti HT, Khsiba A, Mahmoudi M, BelFekih H, Maaloul A, Touinsi H, Hamzaoui L, Chelbi E, Abdelhak S, Boubaker MS, Azzouz MM. A Rare MSH2 Variant as a Candidate Marker for Lynch Syndrome II Screening in Tunisia: A Case of Diffuse Gastric Carcinoma. Genes (Basel) 2022; 13:genes13081355. [PMID: 36011265 PMCID: PMC9407052 DOI: 10.3390/genes13081355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/17/2022] [Accepted: 07/21/2022] [Indexed: 12/24/2022] Open
Abstract
Several syndromic forms of digestive cancers are known to predispose to early-onset gastric tumors such as Hereditary Diffuse Gastric Cancer (HDGC) and Lynch Syndrome (LS). LSII is an extracolonic cancer syndrome characterized by a tumor spectrum including gastric cancer (GC). In the current work, our main aim was to identify the mutational spectrum underlying the genetic predisposition to diffuse gastric tumors occurring in a Tunisian family suspected of both HDGC and LS II syndromes. We selected the index case “JI-021”, which was a woman diagnosed with a Diffuse Gastric Carcinoma and fulfilling the international guidelines for both HDGC and LSII syndromes. For DNA repair, a custom panel targeting 87 candidate genes recovering the four DNA repair pathways was used. Structural bioinformatics analysis was conducted to predict the effect of the revealed variants on the functional properties of the proteins. DNA repair genes panel screening identified two variants: a rare MSH2 c.728G>A classified as a variant with uncertain significance (VUS) and a novel FANCD2 variant c.1879G>T. The structural prediction model of the MSH2 variant and electrostatic potential calculation showed for the first time that MSH2 c.728G>A is likely pathogenic and is involved in the MSH2-MLH1 complex stability. It appears to affect the MSH2-MLH1 complex as well as DNA-complex stability. The c.1879G>T FANCD2 variant was predicted to destabilize the protein structure. Our results showed that the MSH2 p.R243Q variant is likely pathogenic and is involved in the MSH2-MLH1 complex stability, and molecular modeling analysis highlights a putative impact on the binding with MLH1 by disrupting the electrostatic potential, suggesting the revision of its status from VUS to likely pathogenic. This variant seems to be a shared variant in the Mediterranean region. These findings emphasize the importance of testing DNA repair genes for patients diagnosed with diffuse GC with suspicion of LSII and colorectal cancer allowing better clinical surveillance for more personalized medicine.
Collapse
Affiliation(s)
- Maria Kabbage
- Department of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (J.B.A.-H.); (A.J.-G.); (S.L.); (H.T.K.); (A.M.); (M.S.B.)
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis 1002, Tunisia; (M.M.); (A.K.); (M.M.); (H.B.); (L.H.); (E.C.); (S.A.); (M.M.A.)
- Correspondence:
| | - Jihenne Ben Aissa-Haj
- Department of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (J.B.A.-H.); (A.J.-G.); (S.L.); (H.T.K.); (A.M.); (M.S.B.)
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis 1002, Tunisia; (M.M.); (A.K.); (M.M.); (H.B.); (L.H.); (E.C.); (S.A.); (M.M.A.)
| | - Houcemeddine Othman
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg 2000, South Africa;
| | - Amira Jaballah-Gabteni
- Department of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (J.B.A.-H.); (A.J.-G.); (S.L.); (H.T.K.); (A.M.); (M.S.B.)
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis 1002, Tunisia; (M.M.); (A.K.); (M.M.); (H.B.); (L.H.); (E.C.); (S.A.); (M.M.A.)
| | - Sarra Laarayedh
- Department of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (J.B.A.-H.); (A.J.-G.); (S.L.); (H.T.K.); (A.M.); (M.S.B.)
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis 1002, Tunisia; (M.M.); (A.K.); (M.M.); (H.B.); (L.H.); (E.C.); (S.A.); (M.M.A.)
| | - Sahar Elouej
- Marseille Medical Genetics, Aix Marseille University, INSERM, 13007 Marseille, France;
| | - Mouna Medhioub
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis 1002, Tunisia; (M.M.); (A.K.); (M.M.); (H.B.); (L.H.); (E.C.); (S.A.); (M.M.A.)
- Gastroenterology Department, Mohamed Tahar Maamouri Hospital, Nabeul 8000, Tunisia
| | - Haifa Tounsi Kettiti
- Department of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (J.B.A.-H.); (A.J.-G.); (S.L.); (H.T.K.); (A.M.); (M.S.B.)
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis 1002, Tunisia; (M.M.); (A.K.); (M.M.); (H.B.); (L.H.); (E.C.); (S.A.); (M.M.A.)
| | - Amal Khsiba
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis 1002, Tunisia; (M.M.); (A.K.); (M.M.); (H.B.); (L.H.); (E.C.); (S.A.); (M.M.A.)
- Gastroenterology Department, Mohamed Tahar Maamouri Hospital, Nabeul 8000, Tunisia
| | - Moufida Mahmoudi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis 1002, Tunisia; (M.M.); (A.K.); (M.M.); (H.B.); (L.H.); (E.C.); (S.A.); (M.M.A.)
- Gastroenterology Department, Mohamed Tahar Maamouri Hospital, Nabeul 8000, Tunisia
| | - Houda BelFekih
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis 1002, Tunisia; (M.M.); (A.K.); (M.M.); (H.B.); (L.H.); (E.C.); (S.A.); (M.M.A.)
- Department of Oncology, Mohamed Tahar Maamouri Hospital, Nabeul 8000, Tunisia
| | - Afifa Maaloul
- Department of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (J.B.A.-H.); (A.J.-G.); (S.L.); (H.T.K.); (A.M.); (M.S.B.)
| | - Hassen Touinsi
- Department of Surgery, Mohamed Tahar Maamouri Hospital, Nabeul 8000, Tunisia;
| | - Lamine Hamzaoui
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis 1002, Tunisia; (M.M.); (A.K.); (M.M.); (H.B.); (L.H.); (E.C.); (S.A.); (M.M.A.)
- Gastroenterology Department, Mohamed Tahar Maamouri Hospital, Nabeul 8000, Tunisia
| | - Emna Chelbi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis 1002, Tunisia; (M.M.); (A.K.); (M.M.); (H.B.); (L.H.); (E.C.); (S.A.); (M.M.A.)
- Department of Pathology, Mohamed Tahar Maamouri Hospital, Nabeul 8000, Tunisia
| | - Sonia Abdelhak
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis 1002, Tunisia; (M.M.); (A.K.); (M.M.); (H.B.); (L.H.); (E.C.); (S.A.); (M.M.A.)
| | - Mohamed Samir Boubaker
- Department of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (J.B.A.-H.); (A.J.-G.); (S.L.); (H.T.K.); (A.M.); (M.S.B.)
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis 1002, Tunisia; (M.M.); (A.K.); (M.M.); (H.B.); (L.H.); (E.C.); (S.A.); (M.M.A.)
| | - Mohamed Mousaddak Azzouz
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis 1002, Tunisia; (M.M.); (A.K.); (M.M.); (H.B.); (L.H.); (E.C.); (S.A.); (M.M.A.)
- Gastroenterology Department, Mohamed Tahar Maamouri Hospital, Nabeul 8000, Tunisia
| |
Collapse
|
15
|
Park JS, Park JW, Shin S, Lee ST, Shin SJ, Min BS, Park SJ, Park JJ, Cheon JH, Kim WH, Kim TI. Application of Multigene Panel Testing in Patients With High Risk for Hereditary Colorectal Cancer: A Descriptive Report Focused on Genotype-Phenotype Correlation. Dis Colon Rectum 2022; 65:793-803. [PMID: 34897210 DOI: 10.1097/dcr.0000000000002039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND The genetic test solely based on the clinical features of hereditary colorectal cancer has limitations in clinical practice. OBJECTIVE This study aimed to analyze the results of comprehensive multigene panel tests based on clinical findings. DESIGN This was a cross-sectional study based on a prospectively compiled database. SETTING The study was conducted at a tertiary hospital. PATIENTS A total of 381 patients with high risk for hereditary colorectal cancer syndromes were enrolled between March 2014 and December 2019. MAIN OUTCOME MEASURES The primary outcome was to describe the mutational spectrum based on genotype-phenotype concordance and discordance. RESULTS Germline mutations were identified in 89 patients for polyposis hereditary colorectal cancer genes (76 in APC; 4 in PTEN; 4 in STK11; 3 in BMPR1A; 1 in POLE; 1 in POLD1), 89 patients for nonpolyposis hereditary colorectal cancer genes (41 in MLH1; 40 in MSH2; 6 in MSH6; and 2 in PMS2), and 12 patients for other cancer predisposition genes (1 in ATM; 2 in BRCA1; 1 in BRCA2; 1 in BRIP1; 1 in MLH3; 1 in NBN; 1 in PMS1; 1 in PTCH1; 1 in TP53; and 2 in monoallelic MUTYH). If we had used direct sequencing tests of 1 or 2 major genes based on phenotype, 48 (25.3%) of 190 mutations would not have been detected due to technical differences (12.1%), less frequent genotype (4.2%), unclear phenotype (3.7%), and genotype-phenotype discordance (4.7%). The genotype-phenotype discordance is probably linked to compound heterozygote, less distinctive phenotype, and insufficient information for colorectal cancer risk. LIMITATIONS This study included a small number of patients with insufficient follow-up duration. CONCLUSIONS A comprehensive multigene panel is expected to identify more genetic mutations than phenotype-based direct sequencing, with special utility for unclear phenotype or genotype-phenotype discordance. See Video Abstract at http://links.lww.com/DCR/B844. APLICACIN DE PRUEBAS DE PANEL MULTIGNICO EN PACIENTES CON ALTO RIESGO DE CNCER COLORRECTAL HEREDITARIO INFORME DESCRIPTIVO ENFOCADO EN LA CORRELACIN GENOTIPOFENOTIPO ANTECEDENTES:La prueba genética basada únicamente en la característica clínica del cáncer colorrectal hereditario tiene limitaciones en la práctica clínica.OBJETIVO:Este estudio tuvo como objetivo analizar el resultado de pruebas integrales de panel multigénico basadas en hallazgos clínicos.DISEÑO:Este fue un estudio transversal basado en una base de datos recopilada prospectivamente.AJUSTE:El estudio se realizó en un hospital terciario.PACIENTES:Se inscribió un total de 381 pacientes con alto riesgo de síndromes de cáncer colorrectal hereditario entre marzo del 2014 y diciembre del 2019.PRINCIPALES MEDIDAS DE RESULTADO:El resultado principal fue describir el espectro mutacional basado en la concordancia y discordancia genotipo-fenotipo.RESULTADOS:Se identificaron mutaciones de la línea germinal en 89 pacientes para genes de cáncer colorrectal hereditario con poliposis (76 en APC; 4 en PTEN; 4 en STK11; 3 en BMPR1A; 1 en POLE; 1 en POLD1), 89 pacientes para genes de CCR hereditario sin poliposis (41 en MLH1; 40 en MSH2; 6 en MSH6; y 2 en PMS2) y 12 pacientes por otro gen de predisposición al cáncer (1 en ATM; 2 en BRCA1; 1 en BRCA2; 1 en BRIP1; 1 en MLH3; 1 en NBN; 1 en PMS1; 1 en PTCH1; 1 en TP53; y 2 en MUTYH monoalélico). Si hubiéramos utilizado pruebas de secuenciación directa de uno o dos genes principales basados en el fenotipo, 48 (25,3%) de 190 mutaciones no se habrían detectado debido a diferencias técnicas (12,1%), genotipo menos frecuente (4,2%), fenotipo poco claro (3,7%) y discordancia genotipo-fenotipo (4,7%). La discordancia genotipo-fenotipo probablemente esté relacionada con el heterocigoto compuesto, el fenotipo menos distintivo y la información insuficiente para el riesgo de cáncer colorrectal.LIMITACIONES:Este estudio incluyó una pequeña cantidad de pacientes con una duración de seguimiento insuficiente.CONCLUSIONES:Se espera que un panel multigénico completo identifique más mutaciones genéticas que la secuenciación directa basada en el fenotipo, con especial utilidad para la discordancia de fenotipo o genotipo-fenotipo poco clara. Consulte Video Resumen en http://links.lww.com/DCR/B844. Traducción- Dr. Francisco M. Abarca-Rendon).
Collapse
Affiliation(s)
- Ji Soo Park
- Hereditary Cancer Clinic, Cancer Prevention Center, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung Won Park
- Division of Gastroenterology, Department of Internal Medicine, and Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Saeam Shin
- Hereditary Cancer Clinic, Cancer Prevention Center, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung-Tae Lee
- Hereditary Cancer Clinic, Cancer Prevention Center, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Joon Shin
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Byung Soh Min
- Department of Surgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soo Jung Park
- Division of Gastroenterology, Department of Internal Medicine, and Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Jun Park
- Hereditary Cancer Clinic, Cancer Prevention Center, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
- Division of Gastroenterology, Department of Internal Medicine, and Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Hee Cheon
- Division of Gastroenterology, Department of Internal Medicine, and Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Won Ho Kim
- Division of Gastroenterology, Department of Internal Medicine, and Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae Il Kim
- Hereditary Cancer Clinic, Cancer Prevention Center, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
- Division of Gastroenterology, Department of Internal Medicine, and Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
16
|
Skopelitou D, Srivastava A, Miao B, Kumar A, Dymerska D, Paramasivam N, Schlesner M, Lubinski J, Hemminki K, Försti A, Reddy Bandapalli O. Whole exome sequencing identifies novel germline variants of SLC15A4 gene as potentially cancer predisposing in familial colorectal cancer. Mol Genet Genomics 2022; 297:965-979. [PMID: 35562597 PMCID: PMC9250485 DOI: 10.1007/s00438-022-01896-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 04/02/2022] [Indexed: 11/25/2022]
Abstract
About 15% of colorectal cancer (CRC) patients have first-degree relatives affected by the same malignancy. However, for most families the cause of familial aggregation of CRC is unknown. To identify novel high-to-moderate-penetrance germline variants underlying CRC susceptibility, we performed whole exome sequencing (WES) on four CRC cases and two unaffected members of a Polish family without any mutation in known CRC predisposition genes. After WES, we used our in-house developed Familial Cancer Variant Prioritization Pipeline and identified two novel variants in the solute carrier family 15 member 4 (SLC15A4) gene. The heterozygous missense variant, p. Y444C, was predicted to affect the phylogenetically conserved PTR2/POT domain and to have a deleterious effect on the function of the encoded peptide/histidine transporter. The other variant was located in the upstream region of the same gene (GRCh37.p13, 12_129308531_C_T; 43 bp upstream of transcription start site, ENST00000266771.5) and it was annotated to affect the promoter region of SLC15A4 as well as binding sites of 17 different transcription factors. Our findings of two distinct variants in the same gene may indicate a synergistic up-regulation of SLC15A4 as the underlying genetic cause and implicate this gene for the first time in genetic inheritance of familial CRC.
Collapse
Affiliation(s)
- Diamanto Skopelitou
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Aayushi Srivastava
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Beiping Miao
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Abhishek Kumar
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104 India
| | - Dagmara Dymerska
- Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Nagarajan Paramasivam
- Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Matthias Schlesner
- Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Lubinski
- Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Kari Hemminki
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605 Pilsen, Czech Republic
| | - Asta Försti
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Obul Reddy Bandapalli
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
17
|
Catalano F, Borea R, Puglisi S, Boutros A, Gandini A, Cremante M, Martelli V, Sciallero S, Puccini A. Targeting the DNA Damage Response Pathway as a Novel Therapeutic Strategy in Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14061388. [PMID: 35326540 PMCID: PMC8946235 DOI: 10.3390/cancers14061388] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Defective DNA damage response (DDR) is a hallmark of cancer leading to genomic instability. Up to 15–20% of colorectal cancers carry alterations in DDR. However, the role of DDR alterations as a prognostic factor and as a therapeutic target must be elucidated. To date, disappointing results have been obtained in different clinical trials mainly due to poor molecular selection of patients. Several challenges must be overcome before these compounds may have an impact on colorectal cancer. For instance, although some preclinical evidence showed the vulnerability of a subset of CRCs to PARP inhibitors, no specific clinical or molecular biomarkers have been validated to select patients. Moreover, different DDR alterations may not equally confer platinum sensitivity in CRC patients. Further efforts are needed in both preclinical and clinical settings to exploit DDR alterations as therapeutic targets and to eventually discover PARP or other DDR inhibitors (e.g., Wee1) with clinical benefit on colorectal cancer patients. Abstract Major advances have been made in CRC treatment in recent years, especially in molecularly driven therapies and immunotherapy. Despite this, a large number of advanced colorectal cancer patients do not benefit from these treatments and their prognosis remains poor. The landscape of DNA damage response (DDR) alterations is emerging as a novel target for treatment in different cancer types. PARP inhibitors have been approved for the treatment of ovarian, breast, pancreatic, and prostate cancers carrying deleterious BRCA1/2 pathogenic variants or homologous recombination repair (HRR) deficiency (HRD). Recent research reported on the emerging role of HRD in CRC and showed that alterations in these genes, either germline or somatic, are carried by up to 15–20% of CRCs. However, the role of HRD is still widely unknown, and few data about their clinical impact are available, especially in CRC patients. In this review, we report preclinical and clinical data currently available on DDR inhibitors in CRC. We also emphasize the predictive role of DDR mutations in response to platinum-based chemotherapy and the potential clinical role of DDR inhibitors. More preclinical and clinical trials are required to better understand the impact of DDR alterations in CRC patients and the therapeutic opportunities with novel DDR inhibitors.
Collapse
Affiliation(s)
- Fabio Catalano
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.C.); (R.B.); (S.P.); (A.B.); (A.G.); (M.C.); (V.M.); (S.S.)
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, 16132 Genoa, Italy
| | - Roberto Borea
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.C.); (R.B.); (S.P.); (A.B.); (A.G.); (M.C.); (V.M.); (S.S.)
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, 16132 Genoa, Italy
| | - Silvia Puglisi
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.C.); (R.B.); (S.P.); (A.B.); (A.G.); (M.C.); (V.M.); (S.S.)
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, 16132 Genoa, Italy
| | - Andrea Boutros
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.C.); (R.B.); (S.P.); (A.B.); (A.G.); (M.C.); (V.M.); (S.S.)
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, 16132 Genoa, Italy
| | - Annalice Gandini
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.C.); (R.B.); (S.P.); (A.B.); (A.G.); (M.C.); (V.M.); (S.S.)
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, 16132 Genoa, Italy
| | - Malvina Cremante
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.C.); (R.B.); (S.P.); (A.B.); (A.G.); (M.C.); (V.M.); (S.S.)
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, 16132 Genoa, Italy
| | - Valentino Martelli
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.C.); (R.B.); (S.P.); (A.B.); (A.G.); (M.C.); (V.M.); (S.S.)
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, 16132 Genoa, Italy
| | - Stefania Sciallero
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.C.); (R.B.); (S.P.); (A.B.); (A.G.); (M.C.); (V.M.); (S.S.)
| | - Alberto Puccini
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.C.); (R.B.); (S.P.); (A.B.); (A.G.); (M.C.); (V.M.); (S.S.)
- Department of Internal Medicine and Medical Specialties (DIMI), School of Medicine, University of Genoa, 16132 Genoa, Italy
- Correspondence: ; Tel.: +39-0105553301 (ext.3302); Fax: +39-0105555141
| |
Collapse
|
18
|
Kim H, Lim KY, Park JW, Kang J, Won JK, Lee K, Shim Y, Park CK, Kim SK, Choi SH, Kim TM, Yun H, Park SH. Sporadic and Lynch syndrome-associated mismatch repair-deficient brain tumors. J Transl Med 2022; 102:160-171. [PMID: 34848827 PMCID: PMC8784316 DOI: 10.1038/s41374-021-00694-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 11/09/2022] Open
Abstract
Mismatch repair-deficient (MMRD) brain tumors are rare among primary brain tumors and can be induced by germline or sporadic mutations. Here, we report 13 MMRD-associated (9 sporadic and 4 Lynch syndrome) primary brain tumors to determine clinicopathological and molecular characteristics and biological behavior. Our 13 MMRD brain tumors included glioblastoma (GBM) IDH-wildtype (n = 9) including 1 gliosarcoma, astrocytoma IDH-mutant WHO grade 4 (n = 2), diffuse midline glioma (DMG) H3 K27M-mutant (n = 1), and pleomorphic xanthoastrocytoma (PXA) (n = 1). Next-generation sequencing using a brain tumor-targeted gene panel, microsatellite instability (MSI) testing, Sanger sequencing for germline MMR gene mutation, immunohistochemistry of MMR proteins, and clinicopathological and survival analysis were performed. There were many accompanying mutations, suggesting a high tumor mutational burden (TMB) in 77%, but TMB was absent in one case of GBM, IDH-wildtype, DMG, and PXA, respectively. MSH2, MLH1, MSH6, and PMS2 mutations were found in 31%, 31%, 31% and 7% of patients, respectively. MSI-high and MSI-low were found in 50% and 8% of these gliomas, respectively and 34% was MSI-stable. All Lynch syndrome-associated GBMs had MSI-high. In addition, 77% (10/13) had histopathologically multinucleated giant cells. The progression-free survival tended to be poorer than the patients with no MMRD gliomas, but the number and follow-up duration of our patients were insufficient to get statistical significance. In the present study, we found that the most common MMRD primary brain tumor was GBM IDH-wildtype. The genetic profile of MMRD GBM was different from that of conventional GBM. MMRD gliomas with TMB and MSI-H may be sensitive to immunotherapy but resistant to temozolomide. Our findings can help develop better treatment options.
Collapse
Affiliation(s)
- Hyunhee Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ka Young Lim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin Woo Park
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeongwan Kang
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae Kyung Won
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kwanghoon Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yumi Shim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chul-Kee Park
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung-Ki Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung-Hong Choi
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tae Min Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hongseok Yun
- Department of Genomic Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Institute of Neuroscience, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Miao B, Skopelitou D, Srivastava A, Giangiobbe S, Dymerska D, Paramasivam N, Kumar A, Kuświk M, Kluźniak W, Paszkowska-Szczur K, Schlesner M, Lubinski J, Hemminki K, Försti A, Bandapalli OR. Whole-Exome Sequencing Identifies a Novel Germline Variant in PTK7 Gene in Familial Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23031295. [PMID: 35163215 PMCID: PMC8836109 DOI: 10.3390/ijms23031295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/02/2022] [Accepted: 01/18/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is the third most frequently diagnosed malignancy worldwide. Only 5% of all CRC cases are due to germline mutations in known predisposition genes, and the remaining genetic burden still has to be discovered. In this study, we performed whole-exome sequencing on six members of a Polish family diagnosed with CRC and identified a novel germline variant in the protein tyrosine kinase 7 (inactive) gene (PTK7, ENST00000230419, V354M). Targeted screening of the variant in 1705 familial CRC cases and 1674 healthy elderly individuals identified the variant in an additional familial CRC case. Introduction of this variant in HT-29 cells resulted in increased cell proliferation, migration, and invasion; it also caused down-regulation of CREB, p21 and p53 mRNA and protein levels, and increased AKT phosphorylation. These changes indicated inhibition of apoptosis pathways and activation of AKT signaling. Our study confirmed the oncogenic function of PTK7 and supported its role in genetic predisposition of familial CRC.
Collapse
Affiliation(s)
- Beiping Miao
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (B.M.); (D.S.); (A.S.); (S.G.); (A.K.); (A.F.)
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Diamanto Skopelitou
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (B.M.); (D.S.); (A.S.); (S.G.); (A.K.); (A.F.)
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Aayushi Srivastava
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (B.M.); (D.S.); (A.S.); (S.G.); (A.K.); (A.F.)
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Sara Giangiobbe
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (B.M.); (D.S.); (A.S.); (S.G.); (A.K.); (A.F.)
| | - Dagmara Dymerska
- Department of Genetics and Pathology, Pomeranian Medical University, 71252 Szczecin, Poland; (D.D.); (M.K.); (W.K.); (K.P.-S.); (J.L.)
| | - Nagarajan Paramasivam
- Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany;
| | - Abhishek Kumar
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (B.M.); (D.S.); (A.S.); (S.G.); (A.K.); (A.F.)
- Institute of Bioinformatics, International Technology Park, Bengaluru 560066, India
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Magdalena Kuświk
- Department of Genetics and Pathology, Pomeranian Medical University, 71252 Szczecin, Poland; (D.D.); (M.K.); (W.K.); (K.P.-S.); (J.L.)
| | - Wojciech Kluźniak
- Department of Genetics and Pathology, Pomeranian Medical University, 71252 Szczecin, Poland; (D.D.); (M.K.); (W.K.); (K.P.-S.); (J.L.)
| | - Katarzyna Paszkowska-Szczur
- Department of Genetics and Pathology, Pomeranian Medical University, 71252 Szczecin, Poland; (D.D.); (M.K.); (W.K.); (K.P.-S.); (J.L.)
| | - Matthias Schlesner
- Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
| | - Jan Lubinski
- Department of Genetics and Pathology, Pomeranian Medical University, 71252 Szczecin, Poland; (D.D.); (M.K.); (W.K.); (K.P.-S.); (J.L.)
| | - Kari Hemminki
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (B.M.); (D.S.); (A.S.); (S.G.); (A.K.); (A.F.)
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605 Pilsen, Czech Republic
- Correspondence: (K.H.); (O.R.B.); Tel.: +49-6221-421809 (O.R.B.); Fax: +49-6221-424639 (O.R.B.)
| | - Asta Försti
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (B.M.); (D.S.); (A.S.); (S.G.); (A.K.); (A.F.)
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Obul Reddy Bandapalli
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (B.M.); (D.S.); (A.S.); (S.G.); (A.K.); (A.F.)
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
- Correspondence: (K.H.); (O.R.B.); Tel.: +49-6221-421809 (O.R.B.); Fax: +49-6221-424639 (O.R.B.)
| |
Collapse
|
20
|
Long JM, Powers JM, Katona BW. Evaluation of Classic, Attenuated, and Oligopolyposis of the Colon. Gastrointest Endosc Clin N Am 2022; 32:95-112. [PMID: 34798989 PMCID: PMC8607742 DOI: 10.1016/j.giec.2021.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The goal of this review is to provide an overview of evaluating patients with adenomatous polyposis of the colon, including elements such as generating a differential diagnosis, referral considerations for genetic testing, genetic testing options, and expected outcomes from genetic testing in these individuals. In more recent years, adenomatous colonic polyposis has evolved beyond the more robustly characterized familial adenomatous polyposis (FAP) and MUTYH-associated polyposis (MAP) now encompassing more newly described genes and associated syndromes. Technological innovation, from whole-exome sequencing to multigene panel testing, has dramatically increased the amount of genotypic and phenotypic data amassed in adenomatous polyposis cohorts, which has contributed greatly to informing diagnosis and clinical management of affected individuals and their families.
Collapse
Affiliation(s)
- Jessica M. Long
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jacquelyn M. Powers
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Bryson W. Katona
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
21
|
Mohd Y, Kumar P, Kuchi Bhotla H, Meyyazhagan A, Balasubramanian B, Ramesh Kumar MK, Pappusamy M, Alagamuthu KK, Orlacchio A, Keshavarao S, Sampathkumar P, Arumugam VA. Transmission Jeopardy of Adenomatosis Polyposis Coli and Methylenetetrahydrofolate Reductase in Colorectal Cancer. J Renin Angiotensin Aldosterone Syst 2021; 2021:7010706. [PMID: 34956401 PMCID: PMC8683247 DOI: 10.1155/2021/7010706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/14/2021] [Accepted: 11/18/2021] [Indexed: 11/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the globally prevalent and virulent types of cancer with a distinct alteration in chromosomes. Often, any alterations in the adenomatosis polyposis coli (APC), a tumor suppressor gene, and methylenetetrahydrofolate reductase (MTHFR) gene are related to surmise colorectal cancer significantly. In this study, we have investigated chromosomal and gene variants to discern a new-fangled gene and its expression in the southern populations of India by primarily spotting the screened APC and MTHFR variants in CRC patients. An equal number of CRC patients and healthy control subjects (n = 65) were evaluated to observe a chromosomal alteration in the concerted and singular manner for APC and MTHFR genotypes using standard protocols. The increasing prognosis was observed in persons with higher alcoholism and smoking (P < 0.05) with frequent alterations in chromosomes 1, 5, 12, 13, 15, 17, 18, 21, and 22. The APC Asp 1822Val and MTHFR C677T genotypes provided significant results, while the variant alleles of this polymorphism were linked with an elevated risk of CRC. Chromosomal alterations can be the major cause in inducing carcinogenic outcomes in CRCs and can drive to extreme pathological states.
Collapse
Affiliation(s)
- Younis Mohd
- Medical Genetics and Epigenetics Laboratory, Department of Human Genetics and Molecular Biology, School of Life Sciences, Bharathiar University, 641046 Tamil Nadu, India
| | - Parvinder Kumar
- Department of Zoology, Jammu University, Jammu, 180006 Jammu and Kashmir, India
- Institution of Human Genetics, Jammu University, Jammu, 180006 Jammu and Kashmir, India
| | - Haripriya Kuchi Bhotla
- Human Genetics Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 461046 Tamil Nadu, India
| | - Arun Meyyazhagan
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560029, India
| | | | - Mithun Kumar Ramesh Kumar
- Department of General Surgery, Mahatma Gandhi Medical College and Research Institute, Pillaiyarkuppam, 607403 Pondicherry, India
| | - Manikantan Pappusamy
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560029, India
| | - Karthick Kumar Alagamuthu
- Department of Biotechnology, Selvamm Arts and Science College (Autonomous), Namakkal, Tamil Nadu 637003, India
| | - Antonio Orlacchio
- Laboratorio di Neurogenetica, Centro Europeo di Ricerca sul Cervello (CERC), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa Lucia, Rome, Italy
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Sasikala Keshavarao
- Human Genetics Laboratory, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 461046 Tamil Nadu, India
| | - Palanisamy Sampathkumar
- Department of Chemistry and Biosciences, SASTRA Deemed to be University, Kumbakonam Tamil Nadu 612001, India
| | - Vijaya Anand Arumugam
- Medical Genetics and Epigenetics Laboratory, Department of Human Genetics and Molecular Biology, School of Life Sciences, Bharathiar University, 641046 Tamil Nadu, India
| |
Collapse
|
22
|
Georgeson P, Pope BJ, Rosty C, Clendenning M, Mahmood K, Joo JE, Walker R, Hutchinson R, Preston S, Como J, Joseland S, Win AK, Macrae FA, Hopper JL, Mouradov D, Gibbs P, Sieber OM, O’Sullivan DE, Brenner DR, Gallinger S, Jenkins MA, Winship IM, Buchanan DD. Evaluating the utility of tumour mutational signatures for identifying hereditary colorectal cancer and polyposis syndrome carriers. Gut 2021; 70:2138-2149. [PMID: 33414168 PMCID: PMC8260632 DOI: 10.1136/gutjnl-2019-320462] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/08/2020] [Accepted: 12/12/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Germline pathogenic variants (PVs) in the DNA mismatch repair (MMR) genes and in the base excision repair gene MUTYH underlie hereditary colorectal cancer (CRC) and polyposis syndromes. We evaluated the robustness and discriminatory potential of tumour mutational signatures in CRCs for identifying germline PV carriers. DESIGN Whole-exome sequencing of formalin-fixed paraffin-embedded (FFPE) CRC tissue was performed on 33 MMR germline PV carriers, 12 biallelic MUTYH germline PV carriers, 25 sporadic MLH1 methylated MMR-deficient CRCs (MMRd controls) and 160 sporadic MMR-proficient CRCs (MMRp controls) and included 498 TCGA CRC tumours. COSMIC V3 single base substitution (SBS) and indel (ID) mutational signatures were assessed for their ability to differentiate CRCs that developed in carriers from non-carriers. RESULTS The combination of mutational signatures SBS18 and SBS36 contributing >30% of a CRC's signature profile was able to discriminate biallelic MUTYH carriers from all other non-carrier control CRCs with 100% accuracy (area under the curve (AUC) 1.0). SBS18 and SBS36 were associated with specific MUTYH variants p.Gly396Asp (p=0.025) and p.Tyr179Cys (p=5×10-5), respectively. The combination of ID2 and ID7 could discriminate the 33 MMR PV carrier CRCs from the MMRp control CRCs (AUC 0.99); however, SBS and ID signatures, alone or in combination, could not provide complete discrimination (AUC 0.79) between CRCs from MMR PV carriers and sporadic MMRd controls. CONCLUSION Assessment of SBS and ID signatures can discriminate CRCs from biallelic MUTYH carriers and MMR PV carriers from non-carriers with high accuracy, demonstrating utility as a potential diagnostic and variant classification tool.
Collapse
Affiliation(s)
- Peter Georgeson
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Bernard J. Pope
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia,Melbourne Bioinformatics, The University of Melbourne, Carlton, Victoria, Australia
| | - Christophe Rosty
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia,Envoi Pathology, Brisbane, Queensland, Australia,University of Queensland, School of Medicine, Herston, Queensland, Australia
| | - Mark Clendenning
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Khalid Mahmood
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia,Melbourne Bioinformatics, The University of Melbourne, Carlton, Victoria, Australia
| | - Jihoon E. Joo
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Romy Walker
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Ryan Hutchinson
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Susan Preston
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Julia Como
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Sharelle Joseland
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia
| | - Aung K. Win
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Victoria, Australia,Centre for Epidemiology and Biostatistics, The University of Melbourne, Carlton, Victoria, Australia
| | - Finlay A. Macrae
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Victoria, Australia,Colorectal Medicine and Genetics, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - John L. Hopper
- Centre for Epidemiology and Biostatistics, The University of Melbourne, Carlton, Victoria, Australia
| | - Dmitry Mouradov
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medial Research, Parkville, Victoria, Australia,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Peter Gibbs
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medial Research, Parkville, Victoria, Australia,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia,Department of Medical Oncology, Western Health, Victoria, Australia
| | - Oliver M. Sieber
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medial Research, Parkville, Victoria, Australia,Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia,Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia,Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Dylan E. O’Sullivan
- Department of Oncology, University of Calgary, Calgary, Canada,Department of Community Health Sciences, University of Calgary, Calgary, Canada
| | - Darren R. Brenner
- Department of Oncology, University of Calgary, Calgary, Canada,Department of Community Health Sciences, University of Calgary, Calgary, Canada,Department of Cancer Epidemiology and Prevention Research, Alberta Health Services, Calgary, Canada
| | - Steve Gallinger
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada,Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Mark A. Jenkins
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia,Centre for Epidemiology and Biostatistics, The University of Melbourne, Carlton, Victoria, Australia
| | - Ingrid M. Winship
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Victoria, Australia,Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Daniel D. Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, Victoria, Australia,University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, Victoria, Australia,Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Victoria, Australia
| |
Collapse
|
23
|
Olkinuora AP, Peltomäki PT, Aaltonen LA, Rajamäki K. From APC to the genetics of hereditary and familial colon cancer syndromes. Hum Mol Genet 2021; 30:R206-R224. [PMID: 34329396 PMCID: PMC8490010 DOI: 10.1093/hmg/ddab208] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 11/12/2022] Open
Abstract
Hereditary colorectal cancer (CRC) syndromes attributable to high penetrance mutations represent 9-26% of young-onset CRC cases. The clinical significance of many of these mutations is understood well enough to be used in diagnostics and as an aid in patient care. However, despite the advances made in the field, a significant proportion of familial and early-onset cases remains molecularly uncharacterized and extensive work is still needed to fully understand the genetic nature of CRC susceptibility. With the emergence of next-generation sequencing and associated methods, several predisposition loci have been unraveled, but validation is incomplete. Individuals with cancer-predisposing mutations are currently enrolled in life-long surveillance, but with the development of new treatments, such as cancer vaccinations, this might change in the not so distant future for at least some individuals. For individuals without a known cause for their disease susceptibility, prevention and therapy options are less precise. Herein, we review the progress achieved in the last three decades with a focus on how CRC predisposition genes were discovered. Furthermore, we discuss the clinical implications of these discoveries and anticipate what to expect in the next decade.
Collapse
Affiliation(s)
- Alisa P Olkinuora
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, 00014 Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, 00014 Helsinki, Finland
| | - Päivi T Peltomäki
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, 00014 Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, 00014 Helsinki, Finland
| | - Lauri A Aaltonen
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, 00014 Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, 00014 Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, 00014 Helsinki, Finland
| | - Kristiina Rajamäki
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, 00014 Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
24
|
Playing on the Dark Side: SMYD3 Acts as a Cancer Genome Keeper in Gastrointestinal Malignancies. Cancers (Basel) 2021; 13:cancers13174427. [PMID: 34503239 PMCID: PMC8430692 DOI: 10.3390/cancers13174427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 01/17/2023] Open
Abstract
Simple Summary The activity of SMYD3 in promoting carcinogenesis is currently under debate. Growing evidence seems to confirm that SMYD3 overexpression correlates with poor prognosis, cancer growth and invasion, especially in gastrointestinal tumors. In this review, we dissect the emerging role played by SMYD3 in the regulation of cell cycle and DNA damage response by promoting homologous recombination (HR) repair and hence cancer cell genomic stability. Considering the crucial role of PARP1 in other DNA repair mechanisms, we also discuss a recently evaluated synthetic lethality approach based on the combined use of SMYD3 and PARP inhibitors. Interestingly, a significant proportion of HR-proficient gastrointestinal tumors expressing high levels of SMYD3 from the PanCanAtlas dataset seem to be eligible for this innovative strategy. This promising approach could be taken advantage of for therapeutic applications of SMYD3 inhibitors in cancer treatment. Abstract The SMYD3 methyltransferase has been found overexpressed in several types of cancers of the gastrointestinal (GI) tract. While high levels of SMYD3 have been positively correlated with cancer progression in cellular and advanced mice models, suggesting it as a potential risk and prognosis factor, its activity seems dispensable for autonomous in vitro cancer cell proliferation. Here, we present an in-depth analysis of SMYD3 functional role in the regulation of GI cancer progression. We first describe the oncogenic activity of SMYD3 as a transcriptional activator of genes involved in tumorigenesis, cancer development and transformation and as a co-regulator of key cancer-related pathways. Then, we dissect its role in orchestrating cell cycle regulation and DNA damage response (DDR) to genotoxic stress by promoting homologous recombination (HR) repair, thereby sustaining cancer cell genomic stability and tumor progression. Based on this evidence and on the involvement of PARP1 in other DDR mechanisms, we also outline a synthetic lethality approach consisting of the combined use of SMYD3 and PARP inhibitors, which recently showed promising therapeutic potential in HR-proficient GI tumors expressing high levels of SMYD3. Overall, these findings identify SMYD3 as a promising target for drug discovery.
Collapse
|
25
|
Ando T, Nakajima T, Fukuda R, Nomura K, Niida Y, Sakumura M, Motoo I, Mihara H, Nanjo S, Kajiura S, Fujinami H, Hojo S, Fujii T, Yasuda I. Intensive surveillance endoscopy for multiple gastrointestinal tumors in a patient with constitutional mismatch repair deficiency: case report. BMC Gastroenterol 2021; 21:326. [PMID: 34425783 PMCID: PMC8381554 DOI: 10.1186/s12876-021-01902-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Constitutional mismatch repair deficiency (CMMRD) is an extremely rare autosomal recessive hereditary disease characterized by the absence of mismatch repair gene activity from birth, which results in brain tumors, colonic polyposis, gastrointestinal cancers, and lymphomas later in life. An aggressive approach, including colectomy or proctocolectomy, is recommended for the treatment of colorectal cancer. Additionally, partial colectomy with subsequent endoscopic surveillance may be an alternative strategy due to poor patient's condition, although there is no evidence of surveillance endoscopy after partial colectomy for CMMRD. CASE PRESENTATION A 13-year-old male patient with a history of T-lymphoblastic lymphoma underwent total gastrointestinal endoscopy, which revealed rectal cancer, colorectal polyposis, and duodenal adenoma. Differential diagnosis included constitutional mismatch repair deficiency according to its scoring system and microsatellite instability, and subsequent germline mutation testing for mismatch repair genes confirmed the diagnosis of constitutional mismatch repair deficiency based on a homozygous mutation in mutS homolog 6 (MSH6). The patient and his family refused colectomy due to the high risk of malignancies other than colorectal cancer, which could require radical surgery. Therefore, the patient underwent low anterior resection of the rectosigmoid colon for rectal cancer and intensive surveillance endoscopy for the remaining colon polyposis. During the 3-year period after initial surgery, 130 polyps were removed and the number of polyps gradually decreased during 6-months interval surveillance endoscopies, although only one polyp was diagnosed as invasive adenocarcinoma (pT1). CONCLUSIONS Our experience of short surveillance endoscopy illustrates that this strategy might be one of options according to patient's condition.
Collapse
Affiliation(s)
- Takayuki Ando
- Third Department of Internal Medicine, University of Toyama, 2630 Sugitani, 930-0194, Toyama, Japan.
| | - Takahiko Nakajima
- Department of Diagnostic Pathology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Rei Fukuda
- Department of Clinical Genetics, Toyama University Hospital, Toyama, Japan
| | - Keiko Nomura
- Department of Pediatrics, University of Toyama, Toyama, Toyama, Japan
| | - Yo Niida
- Division of Genomic Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Miho Sakumura
- Third Department of Internal Medicine, University of Toyama, 2630 Sugitani, 930-0194, Toyama, Japan
| | - Iori Motoo
- Third Department of Internal Medicine, University of Toyama, 2630 Sugitani, 930-0194, Toyama, Japan
| | - Hiroshi Mihara
- Third Department of Internal Medicine, University of Toyama, 2630 Sugitani, 930-0194, Toyama, Japan
| | - Sohachi Nanjo
- Third Department of Internal Medicine, University of Toyama, 2630 Sugitani, 930-0194, Toyama, Japan
| | - Shinya Kajiura
- Third Department of Internal Medicine, University of Toyama, 2630 Sugitani, 930-0194, Toyama, Japan
| | - Haruka Fujinami
- Third Department of Internal Medicine, University of Toyama, 2630 Sugitani, 930-0194, Toyama, Japan
| | - Shojo Hojo
- Department of Surgery and Science, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Tsutomu Fujii
- Department of Surgery and Science, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| | - Ichiro Yasuda
- Third Department of Internal Medicine, University of Toyama, 2630 Sugitani, 930-0194, Toyama, Japan
| |
Collapse
|
26
|
Cost-Effectiveness of Colorectal Cancer Genetic Testing. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168330. [PMID: 34444091 PMCID: PMC8394708 DOI: 10.3390/ijerph18168330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) remains the second leading cause of cancer-related deaths worldwide. Approximately 3–5% of CRCs are associated with hereditary cancer syndromes. Individuals who harbor germline mutations are at an increased risk of developing early onset CRC, as well as extracolonic tumors. Genetic testing can identify genes that cause these syndromes. Early detection could facilitate the initiation of targeted prevention strategies and surveillance for CRC patients and their families. The aim of this study was to determine the cost-effectiveness of CRC genetic testing. We utilized a cross-sectional design to determine the cost-effectiveness of CRC genetic testing as compared to the usual screening method (iFOBT) from the provider’s perspective. Data on costs and health-related quality of life (HRQoL) of 200 CRC patients from three specialist general hospitals were collected. A mixed-methods approach of activity-based costing, top-down costing, and extracted information from a clinical pathway was used to estimate provider costs. Patients and family members’ HRQoL were measured using the EQ-5D-5L questionnaire. Data from the Malaysian Study on Cancer Survival (MySCan) were used to calculate patient survival. Cost-effectiveness was measured as cost per life-year (LY) and cost per quality-adjusted life-year (QALY). The provider cost for CRC genetic testing was high as compared to that for the current screening method. The current practice for screening is cost-saving as compared to genetic testing. Using a 10-year survival analysis, the estimated number of LYs gained for CRC patients through genetic testing was 0.92 years, and the number of QALYs gained was 1.53 years. The cost per LY gained and cost per QALY gained were calculated. The incremental cost-effectiveness ratio (ICER) showed that genetic testing dominates iFOBT testing. CRC genetic testing is cost-effective and could be considered as routine CRC screening for clinical practice.
Collapse
|
27
|
A step closer to a personalised approach for Lynch syndrome. Lancet Oncol 2021; 22:899-901. [PMID: 34111420 DOI: 10.1016/s1470-2045(21)00295-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 01/13/2023]
|
28
|
Integrated approaches for precision oncology in colorectal cancer: The more you know, the better. Semin Cancer Biol 2021; 84:199-213. [PMID: 33848627 DOI: 10.1016/j.semcancer.2021.04.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is one of the most common human malignancies accounting for approximately 10 % of worldwide cancer incidence and mortality. While early-stage CRC is mainly a preventable and curable disease, metastatic colorectal cancer (mCRC) remains an unmet clinical need. Moreover, about 25 % of CRC cases are diagnosed only at the metastatic stage. Despite the extensive molecular and functional knowledge on this disease, systemic therapy for mCRC still relies on traditional 5-fluorouracil (5-FU)-based chemotherapy regimens. On the other hand, targeted therapies and immunotherapy have shown effectiveness only in a limited subset of patients. For these reasons, there is a growing need to define the molecular and biological landscape of individual patients to implement novel, rationally driven, tailored therapies. In this review, we explore current and emerging approaches for CRC management such as genomic, transcriptomic and metabolomic analysis, the use of liquid biopsies and the implementation of patients' preclinical avatars. In particular, we discuss the contribution of each of these tools in elucidating patient specific features, with the aim of improving our ability in advancing the diagnosis and treatment of colorectal tumors.
Collapse
|
29
|
A Novel Low-Risk Germline Variant in the SH2 Domain of the SRC Gene Affects Multiple Pathways in Familial Colorectal Cancer. J Pers Med 2021; 11:jpm11040262. [PMID: 33916261 PMCID: PMC8066297 DOI: 10.3390/jpm11040262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 11/16/2022] Open
Abstract
Colorectal cancer (CRC) shows one of the largest proportions of familial cases among different malignancies, but only 5-10% of all CRC cases are linked to mutations in established predisposition genes. Thus, familial CRC constitutes a promising target for the identification of novel, high- to moderate-penetrance germline variants underlying cancer susceptibility by next generation sequencing. In this study, we performed whole genome sequencing on three members of a family with CRC aggregation. Subsequent integrative in silico analysis using our in-house developed variant prioritization pipeline resulted in the identification of a novel germline missense variant in the SRC gene (V177M), a proto-oncogene highly upregulated in CRC. Functional validation experiments in HT-29 cells showed that introduction of SRCV177M resulted in increased cell proliferation and enhanced protein expression of phospho-SRC (Y419), a potential marker for SRC activity. Upregulation of paxillin, β-Catenin, and STAT3 mRNA levels, increased levels of phospho-ERK, CREB, and CCND1 proteins and downregulation of the tumor suppressor p53 further proposed the activation of several pathways due to the SRCV177M variant. The findings of our pedigree-based study contribute to the exploration of the genetic background of familial CRC and bring insights into the molecular basis of upregulated SRC activity and downstream pathways in colorectal carcinogenesis.
Collapse
|
30
|
Ferrer‐Avargues R, Castillejo MI, Dámaso E, Díez‐Obrero V, Garrigos N, Molina T, Codoñer‐Alejos A, Segura Á, Sánchez‐Heras AB, Castillejo A, Soto JL. Co-occurrence of germline pathogenic variants for different hereditary cancer syndromes in patients with Lynch syndrome. Cancer Commun (Lond) 2021; 41:218-228. [PMID: 33630411 PMCID: PMC7968885 DOI: 10.1002/cac2.12134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Lynch syndrome (LS) is a hereditary condition characterized by a high risk of colorectal cancer, endometrial cancer, and other neoplasia associated with germline alterations in DNA mismatch repair genes. The classical genetic diagnostic strategy for LS consists of the Sanger sequencing of genes associated with the suspected syndrome. Next-generation sequencing (NGS) enables the simultaneous sequencing of a large number of hereditary cancer genes. Here, we aimed to study whether other germline pathogenic variants of hereditary cancer genes are present in patients with LS. METHODS A cohort of 84 probands with a previous genetic diagnosis of LS by Sanger sequencing was reanalyzed using NGS via a commercial panel of 94 hereditary cancer genes by hybrid capture. The American College of Medical Genetics and Genomics criteria were used to classify the clinical significance of the variants. The findings of NGS were confirmed by Sanger sequencing. When possible, genetic analyses of the new findings in the proband's relatives were also performed by Sanger sequencing. RESULTS We identified five families (6%), out of 84, with at least two germline pathogenic variants conferring to high or moderate risk in different dominant cancer-predisposing genes: [MLH1-BRCA2-NBN], [MLH1-BRCA1], [MSH2-ATM], [MSH6-NF1], and [MLH1-FANCA]. Interestingly, only one out of these five families exhibited a clinical phenotype associated with the new pathogenic variants. The family with three pathogenic variants of the [MLH1-BRCA2-NBN] genes showed a high aggregation of tumors associated with LS and breast and ovarian cancer syndrome. CONCLUSIONS Our results showed that the co-occurrence of more than one pathogenic variant in cancer-predisposing genes was remarkable among cases of LS. In most cases, no clinicial manifestations were associated with the secondary pathogenic variants. Further studies are needed to confirm these findings and elucidate their clinical impact. Reanalysis of LS families should be considered only in families with mixed clinical phenotypes.
Collapse
Affiliation(s)
- Rosario Ferrer‐Avargues
- Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO)FISABIO‐ Elche Health DepartmentElche032303Spain
| | - María Isabel Castillejo
- Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO)FISABIO‐ Elche Health DepartmentElche032303Spain
- Molecular Genetics Unit. Elche University HospitalElche032303Spain
| | - Estela Dámaso
- Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO)FISABIO‐ Elche Health DepartmentElche032303Spain
- Molecular Genetics Unit. Elche University HospitalElche032303Spain
| | - Virginia Díez‐Obrero
- Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO)FISABIO‐ Elche Health DepartmentElche032303Spain
| | - Noemí Garrigos
- Department of Molecular BiopathologyImmunological Center of AlicanteSan Juan‐Alicante03550Spain
| | - Tatiana Molina
- Department of Molecular BiopathologyImmunological Center of AlicanteSan Juan‐Alicante03550Spain
| | - Alan Codoñer‐Alejos
- Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO)FISABIO‐ Elche Health DepartmentElche032303Spain
- Molecular Genetics Unit. Elche University HospitalElche032303Spain
| | - Ángel Segura
- Medical Oncology DepartmentCancer Genetic Counseling Unit. La Fe University HospitalValencia46026Spain
| | - Ana Beatriz Sánchez‐Heras
- Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO)FISABIO‐ Elche Health DepartmentElche032303Spain
- Medical Oncology DepartmentCancer Genetic Counseling Unit. Elche University HospitalElche03203Spain
| | - Adela Castillejo
- Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO)FISABIO‐ Elche Health DepartmentElche032303Spain
- Molecular Genetics Unit. Elche University HospitalElche032303Spain
| | - José Luis Soto
- Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO)FISABIO‐ Elche Health DepartmentElche032303Spain
- Molecular Genetics Unit. Elche University HospitalElche032303Spain
| |
Collapse
|
31
|
Lerner-Ellis J, Mighton C, Lazaro C, Watkins N, Di Gioacchino V, Wong A, Chang MC, Charames GS. Multigene panel testing for hereditary breast and ovarian cancer in the province of Ontario. J Cancer Res Clin Oncol 2021; 147:871-879. [PMID: 32885271 DOI: 10.1007/s00432-020-03377-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 08/25/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE The aim of this study was to determine the diagnostic yield of multigene panel testing among patients referred with hereditary breast and ovarian cancer (HBOC). METHODS Patients who met provincial eligibility criteria were tested at the Advanced Molecular Diagnostic Laboratory at Mount Sinai Hospital, Toronto. Gene sequencing and exon-level copy number variant (CNV) analysis was performed. The referring physician had the opportunity to choose between several different gene panels based on patient phenotype. Cases were included in the analysis based on personal and family history of cancer and the type of panel ordered. RESULTS 3251 cases that received panel testing were included in this analysis. Overall, 9.1% (295) had a positive (pathogenic or likely pathogenic) result and 27.1% (882) had an inconclusive result (variant of uncertain significance). The genes with the highest prevalence of positive results were in BRCA2 (2.2%, 71/3235), BRCA1 (1.9%, 62/3235), and CHEK2 (1.4%, 40/2916). Of the positive cases, 9.8% (29) had a pathogenic or likely pathogenic variant in a gene associated with Lynch syndrome (MSH6, MSH2, MLH1, or PMS2). CONCLUSIONS Our overall positive yield is similar to that reported in the literature. The yield of inconclusive results was three times that of positive results. By testing more individuals in families with HBOC and through data-sharing efforts, the clinical significance of most variants may eventually be determined and panel testing for monogenic cancer predisposition syndromes will have greater utility.
Collapse
Affiliation(s)
- Jordan Lerner-Ellis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 600 University Avenue, Toronto, ON, M5G 1X5, Canada.
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada.
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada.
| | - Chloe Mighton
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, ON, Canada
- Genomics Health Services Research Program, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Conxi Lazaro
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
- Hereditary Cancer Program, ICO-IDIBELL, Barcelona, Spain
- Women's College Research Institute, Women's College Hospital, Toronto, ON, Canada
| | - Nicholas Watkins
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Vanessa Di Gioacchino
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
| | - Andrew Wong
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
| | - Martin C Chang
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 600 University Avenue, Toronto, ON, M5G 1X5, Canada
- University of Vermont Cancer Center, Burlington, VT, USA
| | - George S Charames
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 600 University Avenue, Toronto, ON, M5G 1X5, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| |
Collapse
|
32
|
Skopelitou D, Miao B, Srivastava A, Kumar A, Kuswick M, Dymerska D, Paramasivam N, Schlesner M, Lubinski J, Hemminki K, Försti A, Bandapalli OR. Whole Exome Sequencing Identifies APCDD1 and HDAC5 Genes as Potentially Cancer Predisposing in Familial Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22041837. [PMID: 33673279 PMCID: PMC7917948 DOI: 10.3390/ijms22041837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/06/2021] [Accepted: 02/07/2021] [Indexed: 01/01/2023] Open
Abstract
Germline mutations in predisposition genes account for only 20% of all familial colorectal cancers (CRC) and the remaining genetic burden may be due to rare high- to moderate-penetrance germline variants that are not explored. With the aim of identifying such potential cancer-predisposing variants, we performed whole exome sequencing on three CRC cases and three unaffected members of a Polish family and identified two novel heterozygous variants: a coding variant in APC downregulated 1 gene (APCDD1, p.R299H) and a non-coding variant in the 5′ untranslated region (UTR) of histone deacetylase 5 gene (HDAC5). Sanger sequencing confirmed the variants segregating with the disease and Taqman assays revealed 8 additional APCDD1 variants in a cohort of 1705 familial CRC patients and no further HDAC5 variants. Proliferation assays indicated an insignificant proliferative impact for the APCDD1 variant. Luciferase reporter assays using the HDAC5 variant resulted in an enhanced promoter activity. Targeting of transcription factor binding sites of SNAI-2 and TCF4 interrupted by the HDAC5 variant showed a significant impact of TCF4 on promoter activity of mutated HDAC5. Our findings contribute not only to the identification of unrecognized genetic causes of familial CRC but also underline the importance of 5’UTR variants affecting transcriptional regulation and the pathogenesis of complex disorders.
Collapse
Affiliation(s)
- Diamanto Skopelitou
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (D.S.); (B.M.); (A.S.); (A.K.); (K.H.); (A.F.)
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Beiping Miao
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (D.S.); (B.M.); (A.S.); (A.K.); (K.H.); (A.F.)
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Aayushi Srivastava
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (D.S.); (B.M.); (A.S.); (A.K.); (K.H.); (A.F.)
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Abhishek Kumar
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (D.S.); (B.M.); (A.S.); (A.K.); (K.H.); (A.F.)
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Magdalena Kuswick
- Department of Genetics and Pathology, Pomeranian Medical University, 71252 Szczecin, Poland; (M.K.); (D.D.); (J.L.)
| | - Dagmara Dymerska
- Department of Genetics and Pathology, Pomeranian Medical University, 71252 Szczecin, Poland; (M.K.); (D.D.); (J.L.)
| | - Nagarajan Paramasivam
- Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany;
| | - Matthias Schlesner
- Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
| | - Jan Lubinski
- Department of Genetics and Pathology, Pomeranian Medical University, 71252 Szczecin, Poland; (M.K.); (D.D.); (J.L.)
| | - Kari Hemminki
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (D.S.); (B.M.); (A.S.); (A.K.); (K.H.); (A.F.)
- Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, 30605 Pilsen, Czech Republic
| | - Asta Försti
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (D.S.); (B.M.); (A.S.); (A.K.); (K.H.); (A.F.)
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Obul Reddy Bandapalli
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (D.S.); (B.M.); (A.S.); (A.K.); (K.H.); (A.F.)
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-6221-421809
| |
Collapse
|
33
|
Pathogenic Germline Mutations of DNA Repair Pathway Components in Early-Onset Sporadic Colorectal Polyp and Cancer Patients. Cancers (Basel) 2020; 12:cancers12123560. [PMID: 33260537 PMCID: PMC7761471 DOI: 10.3390/cancers12123560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Colorectal cancer (CRC) screening by immuno-fecal occult blood tests (iFOBTs) begins at age 50 in average-risk persons. However, the incidence of early-onset CRC has risen; of the cases, at least half are sporadic CRC without a family history. The authors of this study found a high percentage of de novo germline mutation in young sporadic CRC patients, as well as in sporadic colorectal polyp and control groups. All the mutated genes contribute to various DNA-repair pathways, hinting that a loss of genomic integrity play a crucial role in the development of CRC. The early identification of cancer-susceptible individuals by multigene panels in younger individuals who may be missed under current iFOBT screening could contribute to preventing CRC. Abstract Given recent increases in the proportion of early-onset colorectal cancer (CRC), researchers are urgently working to establish a multi-gene screening test for both inherited and sporadic cancer-susceptible individuals. However, the incidence and spectrum of germline mutations in young sporadic CRC patients in East Asian countries and, especially, in sporadic polyp carriers and normal individuals are unknown. Peripheral blood samples were collected from 43 colonoscopy-proved normal controls and from 50 polyp patients and 49 CRC patients with no self-reported family history of cancer. All participants were under 50 years old. Next-generation sequencing with a panel of 30 CRC-associated susceptibility genes was employed to detect pathogenic germline mutations. The germline mutation carrier rates were 2.3%, 4.0%, and 12.2% in the normal, polyp, and cancer groups, respectively. A total of seven different mutations in six DNA repair pathway-related genes (MLH1, BRCA1, BRCA2, CHEK2, BLM, and NTHL1) were detected in nine participants. One frameshift mutation in BRCA2 and one frameshift mutation in the CHEK2 gene were found in a normal control and two colorectal polyp patients, respectively. One young sporadic CRC patient carried two heterozygous mutations, one in MLH1 and one in BRCA1. Three mutations (MLH1 p.Arg265Cys, MLH1 p.Tyr343Ter and CHEK2 p.Ile158TyrfsTer10) were each found in two independent patients and were considered “founder” mutations. This is the first report to demonstrate high percentage of germline mutations in young sporadic colorectal polyp, CRC, and general populations. A multi-gene screening test is warranted for the proactive identification of cancer-predisposed individuals.
Collapse
|
34
|
Ye J, Lin M, Zhang C, Zhu X, Li S, Liu H, Yin J, Yu H, Zhu K. Tissue gene mutation profiles in patients with colorectal cancer and their clinical implications. Biomed Rep 2020; 13:43-48. [PMID: 32440349 DOI: 10.3892/br.2020.1303] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/03/2020] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common types of cancer in the world, and targeted therapy is frequently used in the clinical management of the disease. A complete and accurate picture of tissue gene mutations is therefore critical. Tissue specimens from 117 patients with CRC were used for high throughput DNA next-generation sequencing (NGS) analysis. Hotspots from 50 genes frequently associated with the development and progression of solid tumors were targeted for sequencing. Characterization of tissue gene mutations was performed; the tissue mutation positive rates of KRAS, KIT, PIK3CA, MET and EGFR were 52.1, 19.7, 29.9, 15.4 and 14.5%, respectively. The mutation positive rates of TP53, APC, CDKN2A, STK11 and FBXW7 were 65.8, 39.3, 32.5, 19.7 and 19.7%, respectively. The most frequent KRAS mutations were G12A/C/D/S/V, accounting for 61.2% of all KRAS mutations. The most frequent TP53 mutations were R273C/G/H/L, accounting for 8.5% of all TP53 mutations. The most frequent APC mutation was E1554fs, accounting for 19.7% of all APC mutations. IDH1 R132C/H, KIT M541L, MET N375S, and SMAD4 R361C/H were also frequently identified. TP53 mutations were more common in patients ≥60 years old (P<0.05), and IDH1 mutations were more common in male patients (P<0.05). NGS 50 gene panel sequencing provides a comprehensive tissue gene mutation profile which may significantly improve clinical management.
Collapse
Affiliation(s)
- Jun Ye
- Taizhou People's Hospital, The Center for Translational Medicine, Taizhou, Jiangsu 225300, P.R. China
| | - Mei Lin
- Taizhou People's Hospital, The Center for Translational Medicine, Taizhou, Jiangsu 225300, P.R. China
| | - Chuanmeng Zhang
- Taizhou People's Hospital, The Center for Translational Medicine, Taizhou, Jiangsu 225300, P.R. China
| | - Xiaowei Zhu
- Taizhou People's Hospital, The Center for Translational Medicine, Taizhou, Jiangsu 225300, P.R. China
| | - Sumeng Li
- Taizhou People's Hospital, The Center for Translational Medicine, Taizhou, Jiangsu 225300, P.R. China
| | - Hui Liu
- Xuzhou Medical University, Department of Pathology, Xuzhou, Jiangsu 221000, P.R. China
| | - Jianfeng Yin
- Jianwei Medical Laboratory, Taizhou, Jiangsu 225300, P.R. China
| | - Hong Yu
- Taizhou People's Hospital, The Center for Translational Medicine, Taizhou, Jiangsu 225300, P.R. China
| | - Kuichun Zhu
- R&D Department, Labway Clinical Laboratories, Shanghai 210000, P.R. China.,R&D Department, Wuxi Shenrui Bio-Pharmaceuticals Co., Ltd., Wuxi, Jiangsu 214000, P.R. China
| |
Collapse
|
35
|
DeSouza B, Georgiou D. Advances in Hereditary Colorectal Cancer: Opportunities and Challenges for Clinical Translation. CURRENT GENETIC MEDICINE REPORTS 2020. [DOI: 10.1007/s40142-020-00183-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
36
|
Bradbury AR, Egleston BL, Patrick-Miller LJ, Rustgi N, Brandt A, Brower J, DiGiovanni L, Fetzer D, Berkelbach C, Long JM, Powers J, Stopfer JE, Domchek SM. Longitudinal outcomes with cancer multigene panel testing in previously tested BRCA1/2 negative patients. Clin Genet 2020; 97:601-609. [PMID: 32022897 PMCID: PMC9984207 DOI: 10.1111/cge.13716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/07/2020] [Accepted: 01/23/2020] [Indexed: 01/04/2023]
Abstract
Although multigene panel testing (MGPT) is increasingly utilized in clinical practice, there remain limited data on patient-reported outcomes. BRCA 1/2 negative patients were contacted and offered MGPT. Patients completed pre- and posttest counseling, and surveys assessing cognitive, affective and behavioral outcomes at baseline, postdisclosure and 6 and 12 months. Of 317 eligible BRCA1/2 negative patients who discussed the study with research staff, 249 (79%) enrolled. Decliners were more likely to be older, non-White, and recruited by mail or email. Ninety-five percent of enrolled patients proceeded with MGPT. There were no significant changes in anxiety, depression, cancer specific distress or uncertainty postdisclosure. There were significant but small increases in knowledge, cancer-specific distress and depression at 6-12 months. Uncertainty declined over time. Those with a VUS had significant decreases in uncertainty but also small increases in cancer specific distress at 6 and 12 months. Among those with a positive result, medical management recommendations changed in 26% of cases and 2.6% of all tested. Most BRCA1/2 negative patients have favorable psychosocial outcomes after receipt of MGPT results, although small increases in depression and cancer-specific worry may exist and may vary by result. Medical management changed in few patients.
Collapse
Affiliation(s)
- Angela R. Bradbury
- Department of Medicine, Division of Hematology-Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Department of Medical Ethics and Health Policy, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brian L. Egleston
- Fox Chase Cancer Center, Temple University Health System, Biostatistics and Bioinformatics Facility, Philadelphia, Pennsylvania, USA
| | - Linda J. Patrick-Miller
- Division of Hematology-Oncology, Department of Medicine, The University of Chicago, Chicago, Illinois, USA
| | - Neil Rustgi
- Department of Medicine, Division of Hematology-Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Amanda Brandt
- Department of Medicine, Division of Hematology-Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jamie Brower
- Department of Medicine, Division of Hematology-Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Laura DiGiovanni
- Department of Medicine, Division of Hematology-Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dominique Fetzer
- Department of Medicine, Division of Hematology-Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christopher Berkelbach
- Department of Medicine, Division of Hematology-Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jessica M. Long
- Department of Medicine, Division of Hematology-Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jacquelyn Powers
- Department of Medicine, Division of Hematology-Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jill E. Stopfer
- Department of Medicine, Division of Hematology-Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Susan M. Domchek
- Department of Medicine, Division of Hematology-Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
37
|
Huyghe N, Baldin P, Van den Eynde M. Immunotherapy with immune checkpoint inhibitors in colorectal cancer: what is the future beyond deficient mismatch-repair tumours? Gastroenterol Rep (Oxf) 2020; 8:11-24. [PMID: 32104582 PMCID: PMC7034232 DOI: 10.1093/gastro/goz061] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/25/2019] [Accepted: 10/22/2019] [Indexed: 12/17/2022] Open
Abstract
Following initial success in melanoma and lung tumours, immune checkpoint inhibitors (ICIs) are now well recognized as a major immunotherapy treatment modality for multiple types of solid cancers. In colorectal cancer (CRC), the small subset that is mismatch-repair-deficient and microsatellite-instability-high (dMMR/MSI-H) derive benefit from immunotherapy; however, the vast majority of patients with proficient MMR (pMMR) or with microsatellite stable (MSS) CRC do not. Immunoscore and the consensus molecular subtype classifications are promising biomarkers in predicting therapeutic efficacy in selected CRC. In pMRR/MSS CRC, biomarkers are also needed to understand the molecular mechanisms governing immune reactivity and to predict their relationship to treatment. The continuous development of such biomarkers would offer new perspectives and more personalized treatments by targeting oncological options, including ICIs, which modify the tumour-immune microenvironment. In this review, we focus on CRC and discuss the current status of ICIs, the role of biomarkers to predict response to immunotherapy, and the approaches being explored to render pMMR/MSS CRC more immunogenic through the use of combined therapies.
Collapse
Affiliation(s)
- Nicolas Huyghe
- Institut de Recherche Clinique et Expérimentale (Pole MIRO), UCLouvain, Brussels, Belgium
| | - Paméla Baldin
- Department of Pathology, Cliniques Universitaires St-Luc, Institut Roi Albert II, Brussels, Belgium
| | - Marc Van den Eynde
- Institut de Recherche Clinique et Expérimentale (Pole MIRO), UCLouvain, Brussels, Belgium
- Department of Medical Oncology, Cliniques Universitaires St-Luc, Institut Roi Albert II, Brussels, Belgium
| |
Collapse
|
38
|
Guillén-Ponce C, Lastra E, Lorenzo-Lorenzo I, Martín Gómez T, Morales Chamorro R, Sánchez-Heras AB, Serrano R, Soriano Rodríguez MC, Soto JL, Robles L. SEOM clinical guideline on hereditary colorectal cancer (2019). Clin Transl Oncol 2020; 22:201-212. [PMID: 31981079 DOI: 10.1007/s12094-019-02272-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 12/21/2022]
Abstract
In the last 2 decades, clinical genetics on hereditary colorectal syndromes has shifted from just a molecular characterization of the different syndromes to the estimation of the individual risk of cancer and appropriate risk reduction strategies. In the last years, new specific therapies for some subgroups of patients have emerged as very effective alternatives. At the same time, germline multigene panel testing by next-generation sequencing (NGS) technology has become the new gold standard for molecular genetics.
Collapse
Affiliation(s)
- C Guillén-Ponce
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, IRYCIS, Carretera de Colmenar Viejo, Km 9,100, 28034, Madrid, Spain.
| | - E Lastra
- Medical Oncology Department, Hospital Universitario de Burgos, Burgos, Spain
| | - I Lorenzo-Lorenzo
- Medical Oncology Department, Complejo Hospitalario Universitario de Vigo (CHUVI), Pontevedra, Spain
| | - T Martín Gómez
- Medical Oncology Department, Hospital Universitario de Salamanca, Salamanca, Spain
| | - R Morales Chamorro
- Medical Oncology Department, Hospital General La Mancha Centro, Alcázar de San Juan, Ciudad Real, Spain
| | - A B Sánchez-Heras
- Medical Oncology Department, Hospital General Universitario de Elche, Elche, Alicante, Spain
| | - R Serrano
- Medical Oncology Department, Hospital Universitario Reina Sofía, IMIBIC, CIBERONC, Córdoba, Spain
| | | | - J L Soto
- Molecular Genetics Laboratory, Hospital General Universitario de Elche, Elche, Alicante, Spain
| | - L Robles
- Medical Oncology Department, Hospital Universitario Doce de Octubre, Madrid, Spain.
| |
Collapse
|
39
|
Powers JM, Ebrahimzadeh JE, Katona BW. Genetic testing for hereditary gastrointestinal cancer syndromes: Interpreting results in today's practice. CURRENT TREATMENT OPTIONS IN GASTROENTEROLOGY 2019; 17:636-649. [PMID: 31761969 PMCID: PMC6926154 DOI: 10.1007/s11938-019-00253-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Advances in genomics have led to the discovery of multiple predisposition genes linked to increased risk for gastrointestinal (GI) cancer. The goal of this review is to assist physicians and allied health care professionals in understanding the current paradigm shift in clinical genetic testing for hereditary GI cancer predisposition syndromes; with a focus on multigene panel testing (MGPT) and test results interpretation. Additionally, this review introduces direct-to-consumer and at-home genetic testing. Both delivery models are increasing in popularity and clinicians will be expected to address results from patients who utilize these approaches. RECENT FINDINGS Technological advancement and reduced costs have transformed the genetic testing approach from single syndrome genetic testing to broad-based MGPT. MGPT has the benefit of aiding in efficient genetic diagnosis; however, clinicians should be knowledgeable of possible results including variants of uncertain significance, secondary findings, and pathogenic variants within high- and low-to-moderate risk genes, as well as genes for which risks are ill-defined. The landscape of clinical cancer genetics continues to evolve rapidly. Timely updates are critical to ensure the medical community is familiar with current considerations and ongoing challenges regarding genetic testing for hereditary GI cancer susceptibility.
Collapse
Affiliation(s)
- Jacquelyn M Powers
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jessica E Ebrahimzadeh
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Bryson W Katona
- Division of Gastroenterology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
40
|
Staninova-Stojovska M, Matevska-Geskovska N, Panovski M, Angelovska B, Mitrevski N, Ristevski M, Jovanovic R, Dimovski AJ. Molecular Basis of Inherited Colorectal Carcinomas in the Macedonian Population: An Update. Balkan J Med Genet 2019; 22:5-16. [PMID: 31942411 PMCID: PMC6956642 DOI: 10.2478/bjmg-2019-0027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hereditary factors are assumed to play a role in ~35.0-45.0% of all colorectal cancers (CRCs) with about 5.0-10.0% associated with high penetrant disease-causing mutations in genes correlated to hereditary polyposis (HP) or hereditary non polyposis syndromes (HNPCC). Although inherited germline mutations in mismatch repair (MMR) and the APC genes contribute significantly to CRC, genetic diagnosis cannot yet be obtained in more than 50.0% of familial cases. We present updated data of 107 probands from the Macedonian population with clinically diagnosed HP (n = 41) or HNPCC (n = 66) obtained by next generation sequencing (NGS) with three different gene panels covering the coding, flanking and promoter regions of 114 cancer predisposition genes. Using this approach, we were able to detect deleterious mutations in 65/107 (60.7%) patients, 50.4% of which were in known well-established CRC susceptibility genes and 10.2% in DNA repair genes (DRG). As expected, the highest frequencies of deleterious variants were detected in familial adenomatous polyposis (FAP) and in HNPCC patients with microsatellite instability (MSI) tumors (93.8 and 87.1%, respectively). Variants of unknown significance (VUS) were detected in 24/107 (22.4%) patients, mainly in HNPCC patients with microsatellite stable (MSS) tumors or patients with oligopolyposis. The majority of VUS were also found in DRG genes, indicating the potential role of a doble-strand brake DNA repair pathway deficiency in colorectal cancerogenesis. We could not detect any variant in 18/107 (16.8%) patients, which supports the genetic heterogeneity of hereditary CRC, particularly in HNPCC families with MSS tumors and in families with oligopolyposis.
Collapse
Affiliation(s)
- M Staninova-Stojovska
- Center for Biomolecular Pharmaceutical Analyses, UKIM Faculty of Pharmacy, University "Ss. Cyril and Methodius", Skopje, RN Macedonia
| | - N Matevska-Geskovska
- Center for Biomolecular Pharmaceutical Analyses, UKIM Faculty of Pharmacy, University "Ss. Cyril and Methodius", Skopje, RN Macedonia
| | - M Panovski
- University Clinic for Abdominal Surgery, UKIM Faculty of Medicine, University "Ss. Cyril and Methodius", Skopje, RN Macedonia
| | - B Angelovska
- University Clinic for Radiotherapy and Oncology, UKIM Faculty of Medicine, University "Ss. Cyril and Methodius", Skopje, RN Macedonia
| | - N Mitrevski
- University Clinic for Radiotherapy and Oncology, UKIM Faculty of Medicine, University "Ss. Cyril and Methodius", Skopje, RN Macedonia
| | - M Ristevski
- University Clinic for Radiotherapy and Oncology, UKIM Faculty of Medicine, University "Ss. Cyril and Methodius", Skopje, RN Macedonia
| | - R Jovanovic
- Institute for Pathology, UKIM Faculty of Medicine, University "Ss. Cyril and Methodius", Skopje, RN Macedonia
| | - AJ Dimovski
- Center for Biomolecular Pharmaceutical Analyses, UKIM Faculty of Pharmacy, University "Ss. Cyril and Methodius", Skopje, RN Macedonia
- Research Center for Genetic Engineering and Biotechnology "Georgi D. Efremov", Macedonian Academy of Sciences and Arts, Skopje, RN Macedonia
| |
Collapse
|
41
|
Chang SC, Lan YT, Lin PC, Yang SH, Lin CH, Liang WY, Chen WS, Jiang JK, Lin JK. Patterns of germline and somatic mutations in 16 genes associated with mismatch repair function or containing tandem repeat sequences. Cancer Med 2019; 9:476-486. [PMID: 31769227 PMCID: PMC6970039 DOI: 10.1002/cam4.2702] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/19/2019] [Accepted: 10/28/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND We assumed that targeted next-generation sequencing (NGS) of mismatch repair-associated genes could improve the detection of driving mutations in colorectal cancers (CRC) with microsatellite instability (MSI) and microsatellite alterations at selected tetranucleotide repeats (EMAST) and clarify the somatic mutation patterns of CRC subtypes. MATERIAL AND METHODS DNAs from tumors and white blood cells were obtained from 81 patients with EMAST(+)/MSI-high (MSI-H), 78 patients with EMAST(+)/microsatellite stable (MSS), and 72 patients with EMAST(-)/MSI-H. The germline and somatic mutations were analyzed with a 16-genes NGS panel. RESULTS In total, 284 germline mutations were identified in 161 patients. The most common mutations were in EPCAM (24.8%), MSH6 (24.2%), MLH1 (21.7%), and AXIN2 (21.7%). Germline mutations of AXIN2, POLE, POLD1, and TGFBR2 also resulted in EMAST and MSI. EMAST(+)/MSI-H tumors had a significant higher mutation number (205.9 ± 95.2 mut/MB) than tumors that were only EMAST(+) or MSI-H (118.6 ± 64.2 and 106.2 ± 54.5 mut/MB, respectively; both P < .001). In patients with AXIN2 germline mutations, the number of pathological somatic mutations in the tumors was significantly higher than those without AXIN2 germline mutations (176.7 ± 94.2 mut/MB vs 139.6 ± 85.0 mut/MB, P = .002). CONCLUSION Next-generation sequencing could enhance the detection of familial CRC. The somatic mutation burden might result from not only the affected genes in germline mutations but also through the dysfunction of downstream effectors. The AXIN2 gene might associate with hypermutation in tumors. Further in vitro experiments to confirm the causal relationship is deserved.
Collapse
Affiliation(s)
- Shih-Ching Chang
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yuan-Tzu Lan
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Ching Lin
- Department of Clinical Pathology, Yang-Ming Branch, Taipei City Hospital, Taipei, Taiwan.,Department of Health and Welfare, University of Taipei, Taipei, Taiwan
| | - Shung-Haur Yang
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,National Yang-Ming University Hospital, Yilan, Taiwan
| | - Chien-Hsing Lin
- Division of Genomic Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Wen-Yi Liang
- Department of Pathology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wei-Shone Chen
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jeng-Kai Jiang
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jen-Kou Lin
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Surgery, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
42
|
Incorporating Colorectal Cancer Genetic Risk Assessment into Gastroenterology Practice. ACTA ACUST UNITED AC 2019; 17:702-715. [DOI: 10.1007/s11938-019-00267-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
43
|
Grady MC, Kolla KA, Peshkin BN. Multigene Cancer Panels: Implications for Pre- and Post-test Genetic Counseling. CURRENT GENETIC MEDICINE REPORTS 2019. [DOI: 10.1007/s40142-019-00173-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
Kim JY, Byeon JS. Genetic Counseling and Surveillance Focused on Lynch Syndrome. JOURNAL OF THE ANUS RECTUM AND COLON 2019; 3:60-68. [PMID: 31559369 PMCID: PMC6752118 DOI: 10.23922/jarc.2019-002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 02/08/2019] [Indexed: 12/20/2022]
Abstract
Lynch syndrome is a hereditary cancer syndrome caused by germline mutations in one of several DNA mismatch repair genes. Lynch syndrome leads to an increased lifetime risk of various cancers, particularly colorectal, and endometrial cancers. After identifying patients suspected of having Lynch syndrome by clinical criteria, computational prediction models, and/or universal tumor testing, genetic testing is performed to confirm the diagnosis. Before and after genetic testing, genetic counseling should be provided. Genetic counseling should involve a detailed personal and family history, information on the disorder and genetic tests, discussion of the management and surveillance of the disease, career plan, family plan, and psychosocial support. Surveillance of colorectal cancer and other malignancies is of paramount importance for properly managing Lynch syndrome. This review focuses on important considerations in genetic counseling and the latest insights into the surveillance of individuals and families with Lynch syndrome.
Collapse
Affiliation(s)
- Jin Yong Kim
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jeong-Sik Byeon
- Department of Gastroenterology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
45
|
Tamura K, Kaneda M, Futagawa M, Takeshita M, Kim S, Nakama M, Kawashita N, Tatsumi-Miyajima J. Genetic and genomic basis of the mismatch repair system involved in Lynch syndrome. Int J Clin Oncol 2019; 24:999-1011. [PMID: 31273487 DOI: 10.1007/s10147-019-01494-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/17/2019] [Indexed: 12/11/2022]
Abstract
Lynch syndrome is a cancer-predisposing syndrome inherited in an autosomal-dominant manner, wherein colon cancer and endometrial cancer develop frequently in the family, it results from a loss-of-function mutation in one of four different genes (MLH1, MSH2, MSH6, and PMS2) encoding mismatch repair proteins. Being located immediately upstream of the MSH2 gene, EPCAM abnormalities can affect MSH2 and cause Lynch syndrome. Mismatch repair proteins are involved in repairing of incorrect pairing (point mutations and deletion/insertion of simple repetitive sequences, so-called microsatellites) that can arise during DNA replication. MSH2 forms heterodimers with MSH6 or MSH3 (MutSα, MutSβ, respectively) and is involved in mismatch-pair recognition and initiation of repair. MLH1 forms a complex with PMS2, and functions as an endonuclease. If the mismatch repair system is thoroughly working, genome integrity is maintained completely. Lynch syndrome is a state of mismatch repair deficiency due to a monoallelic abnormality of any mismatch repair genes. The phenotype indicating the mismatch repair deficiency can be frequently shown as a microsatellite instability in tumors. Children with germline biallelic mismatch repair gene abnormalities were reported to develop conditions such as gastrointestinal polyposis, colorectal cancer, brain cancer, leukemia, etc., and so on, demonstrating the need to respond with new concepts in genetic counseling. In promoting cancer genome medicine in a new era, such as by utilizing immune checkpoints, it is important to understand the genetic and genomic molecular background, including the status of mismatch repair deficiency.
Collapse
Affiliation(s)
- Kazuo Tamura
- Division of Medical Genetics, Master of Science, Graduate School of Science and Engineering Research, Kindai University, Higashiosaka, Japan.
| | - Motohide Kaneda
- Division of Medical Genetics, Master of Science, Graduate School of Science and Engineering Research, Kindai University, Higashiosaka, Japan
| | - Mashu Futagawa
- Division of Medical Genetics, Master of Science, Graduate School of Science and Engineering Research, Kindai University, Higashiosaka, Japan
| | - Miho Takeshita
- Division of Medical Genetics, Master of Science, Graduate School of Science and Engineering Research, Kindai University, Higashiosaka, Japan
| | - Sanghyuk Kim
- Division of Medical Genetics, Master of Science, Graduate School of Science and Engineering Research, Kindai University, Higashiosaka, Japan
| | - Mina Nakama
- Division of Clinical Genetics, Gifu University Hospital, Gifu, Japan
| | - Norihito Kawashita
- Division of Medical Genetics, Master of Science, Graduate School of Science and Engineering Research, Kindai University, Higashiosaka, Japan
| | - Junko Tatsumi-Miyajima
- Division of Medical Genetics, Master of Science, Graduate School of Science and Engineering Research, Kindai University, Higashiosaka, Japan
| |
Collapse
|
46
|
Jaballah-Gabteni A, Tounsi H, Kabbage M, Hamdi Y, Elouej S, Ben Ayed I, Medhioub M, Mahmoudi M, Dallali H, Yaiche H, Ben Jemii N, Maaloul A, Mezghani N, Abdelhak S, Hamzaoui L, Azzouz M, Boubaker S. Identification of novel pathogenic MSH2 mutation and new DNA repair genes variants: investigation of a Tunisian Lynch syndrome family with discordant twins. J Transl Med 2019; 17:212. [PMID: 31248416 PMCID: PMC6598283 DOI: 10.1186/s12967-019-1961-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 06/21/2019] [Indexed: 02/08/2023] Open
Abstract
Background Lynch syndrome (LS) is a highly penetrant inherited cancer predisposition syndrome, characterized by autosomal dominant inheritance and germline mutations in DNA mismatch repair genes. Despite several genetic variations that have been identified in various populations, the penetrance is highly variable and the reasons for this have not been fully elucidated. This study investigates whether, besides pathogenic mutations, environment and low penetrance genetic risk factors may result in phenotype modification in a Tunisian LS family. Patients and methods A Tunisian family with strong colorectal cancer (CRC) history that fulfill the Amsterdam I criteria for the diagnosis of Lynch syndrome was proposed for oncogenetic counseling. The index case was a man, diagnosed at the age of 33 years with CRC. He has a monozygotic twin diagnosed at the age of 35 years with crohn disease. Forty-seven years-old was the onset age of his paternal uncle withCRC. An immunohistochemical (IHC) labeling for the four proteins (MLH1, MSH2, MSH6 and PMS2) of the MisMatchRepair (MMR) system was performed for the index case. A targeted sequencing of MSH2, MLH1 and a panel of 85 DNA repair genes was performed for the index case and for his unaffected father. Results The IHC results showed a loss of MSH2 but not MLH1, MSH6 and PMS2 proteins expression. Genomic DNA screening, by targeted DNA repair genes sequencing, revealed an MSH2 pathogenic mutation (c.1552C>T; p.Q518X), confirmed by Sanger sequencing. This mutation was suspected to be a causal mutation associated to the loss of MSH2 expression and it was found in first and second degree relatives. The index case has smoking and alcohol consumption habits. Moreover, he harbors extensive genetic variations in other DNA-repair genes not shared with his unaffected father. Conclusion In our investigated Tunisian family, we confirmed the LS by IHC, molecular and in silico investigations. We identified a novel pathogenic mutation described for the first time in Tunisia. These results come enriching the previously reported pathogenic mutations in LS families. Our study brings new arguments to the interpretation of MMR expression pattern and highlights new risk modifiers genes eventually implicated in CRC. Twins discordance reported in this work underscore that disease penetrance could be influenced by both genetic background and environmental factors. Electronic supplementary material The online version of this article (10.1186/s12967-019-1961-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amira Jaballah-Gabteni
- Laboratory of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis, Tunisia. .,Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis, Tunisia.
| | - Haifa Tounsi
- Laboratory of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis, Tunisia.,Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis, Tunisia
| | - Maria Kabbage
- Laboratory of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis, Tunisia.,Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis, Tunisia
| | - Yosr Hamdi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis, Tunisia
| | - Sahar Elouej
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis, Tunisia.,Marseille Medical Genetics, Aix Marseille University, INSERM, Marseille, France
| | - Ines Ben Ayed
- Laboratory of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis, Tunisia.,Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis, Tunisia
| | - Mouna Medhioub
- Gastroenterology Department, Mohamed Tahar Maamouri Hospital, 8000, Nabeul, Tunisia
| | - Moufida Mahmoudi
- Gastroenterology Department, Mohamed Tahar Maamouri Hospital, 8000, Nabeul, Tunisia
| | - Hamza Dallali
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis, Tunisia
| | - Hamza Yaiche
- Laboratory of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis, Tunisia.,Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis, Tunisia
| | - Nadia Ben Jemii
- Laboratory of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis, Tunisia.,Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis, Tunisia
| | - Afifa Maaloul
- Laboratory of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Najla Mezghani
- Laboratory of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis, Tunisia.,Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis, Tunisia
| | - Sonia Abdelhak
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis, Tunisia
| | - Lamine Hamzaoui
- Gastroenterology Department, Mohamed Tahar Maamouri Hospital, 8000, Nabeul, Tunisia
| | - Mousaddak Azzouz
- Gastroenterology Department, Mohamed Tahar Maamouri Hospital, 8000, Nabeul, Tunisia
| | - Samir Boubaker
- Laboratory of Human and Experimental Pathology, Institut Pasteur de Tunis, Tunis, Tunisia.,Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis EL Manar University, Tunis, Tunisia
| |
Collapse
|
47
|
Gong R, He Y, Liu XY, Wang HY, Sun LY, Yang XH, Li B, Cao XK, Ye ZL, Kong LH, Zhang DD, Li YH, Xu RH, Shao JY. Mutation spectrum of germline cancer susceptibility genes among unselected Chinese colorectal cancer patients. Cancer Manag Res 2019; 11:3721-3739. [PMID: 31118792 PMCID: PMC6500872 DOI: 10.2147/cmar.s193985] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/15/2019] [Indexed: 01/20/2023] Open
Abstract
Background: Genetic factors play an important role in colorectal cancer (CRC) risk, yet the prevalence and spectrum of germline cancer susceptibility gene mutations among unselected Chinese CRC patients is largely undetermined. Methods: We performed next-generation sequencing with a 73-genes panel and analyzed the prevalence and spectrum of germline mutations in 618 unselected Chinese CRC patients. We classified all identified germline alterations for pathogenicity and calculated the frequencies of pathogenic mutations. Clinical characteristics were assessed by age and mutation status. Protein expressions and interactions of MLH1 missense variants were evaluated by western blot and co- immunoprecipitation. Results: Overall, 112 (18.1%) of 618 unselected Chinese CRC patients were found to carry at least one pathogenic or likely pathogenic variant (totaling 97 variants), including 70 (11.3%) Lynch syndrome (LS) mutation carriers and 42 (6.8%) non-LS mutation carriers. LS mutation carriers were significantly younger at CRC diagnosis and were more likely to have right-sided, poorly differentiated, early stage, high-frequency microsatellite instability (MSI-H) or dMMR CRC and a family history of cancer compared with noncarriers. Non-LS mutation carriers were more likely to be proficient mismatch repair (pMMR) than noncarriers (p=0.039). We found four clinical variables (gender, tumor histological stage, cancer stage and mutation status) that showed significant differences between patients younger and older than 50 years old. Higher mutation rates were found in patients under 50 years old (p=0.017). Thirty-three novel variants were discovered and evaluated as pathogenic mutations by our study. Conclusion: Given the high frequency and wide spectrum of mutations, genetic testing with a multigene panel should be considered for all Chinese CRC patients under 50 years old and is also needed to determine whether a gene is associated with CRC susceptibility and to promote clinical translation.
Collapse
Affiliation(s)
- Rui Gong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China.,Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Yuan He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China.,Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Xiao-Yun Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China.,Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Hai-Yun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China.,Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Li-Yue Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China.,Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Xin-Hua Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China.,Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Bin Li
- Research and Development Institute of Precision Medicine, 3D Medicine Inc., Shanghai, 201114, People's Republic of China
| | - Xin-Kai Cao
- Research and Development Institute of Precision Medicine, 3D Medicine Inc., Shanghai, 201114, People's Republic of China
| | - Zu-Lu Ye
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China.,Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
| | - Ling-Heng Kong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China.,Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Da-Dong Zhang
- Research and Development Institute of Precision Medicine, 3D Medicine Inc., Shanghai, 201114, People's Republic of China
| | - Yu-Hong Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Rui-Hua Xu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jian-Yong Shao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China.,Department of Molecular Diagnostics, Sun Yat-sen University Cancer Center, Guangzhou 510060, People's Republic of China
| |
Collapse
|
48
|
Valle L, Vilar E, Tavtigian SV, Stoffel EM. Genetic predisposition to colorectal cancer: syndromes, genes, classification of genetic variants and implications for precision medicine. J Pathol 2019; 247:574-588. [PMID: 30584801 PMCID: PMC6747691 DOI: 10.1002/path.5229] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/21/2018] [Accepted: 12/23/2018] [Indexed: 12/15/2022]
Abstract
This article reviews genes and syndromes associated with predisposition to colorectal cancer (CRC), with an overview of gene variant classification. We include updates on the application of preventive and therapeutic measures, focusing on the use of non-steroidal anti-inflammatory drugs (NSAIDs) and immunotherapy. Germline pathogenic variants in genes conferring high or moderate risk to cancer are detected in 6-10% of all CRCs and 20% of those diagnosed before age 50. CRC syndromes can be subdivided into nonpolyposis and polyposis entities, the most common of which are Lynch syndrome and familial adenomatous polyposis, respectively. In addition to known and novel genes associated with highly penetrant CRC risk, identification of pathogenic germline variants in genes associated with moderate-penetrance cancer risk and/or hereditary cancer syndromes not traditionally linked to CRC may have an impact on genetic testing, counseling, and surveillance. The use of multigene panels in genetic testing has exposed challenges in the classification of variants of uncertain significance. We provide an overview of the main classification systems and strategies for improving these. Finally, we highlight approaches for integrating chemoprevention in the care of individuals with genetic predisposition to CRC and use of targeted agents and immunotherapy for treatment of mismatch repair-deficient and hypermutant tumors. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Barcelona, Spain
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Eduardo Vilar
- Departments of Clinical Cancer Prevention, GI Medical Oncology and Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sean V. Tavtigian
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT, United States
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| | - Elena M. Stoffel
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
49
|
Reilly NM, Novara L, Di Nicolantonio F, Bardelli A. Exploiting DNA repair defects in colorectal cancer. Mol Oncol 2019; 13:681-700. [PMID: 30714316 PMCID: PMC6441925 DOI: 10.1002/1878-0261.12467] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/11/2019] [Accepted: 01/19/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related deaths worldwide. Therapies that take advantage of defects in DNA repair pathways have been explored in the context of breast, ovarian, and other tumor types, but not yet systematically in CRC. At present, only immune checkpoint blockade therapies have been FDA approved for use in mismatch repair-deficient colorectal tumors. Here, we discuss how systematic identification of alterations in DNA repair genes could provide new therapeutic opportunities for CRCs. Analysis of The Cancer Genome Atlas Colon Adenocarcinoma (TCGA-COAD) and Rectal Adenocarcinoma (TCGA-READ) PanCancer Atlas datasets identified 141 (out of 528) cases with putative driver mutations in 29 genes associated with DNA damage response and repair, including the mismatch repair and homologous recombination pathways. Genetic defects in these pathways might confer repair-deficient characteristics, such as genomic instability in the absence of homologous recombination, which can be exploited. For example, inhibitors of poly(ADP)-ribose polymerase are effectively used to treat cancers that carry mutations in BRCA1 and/or BRCA2 and have shown promising results in CRC preclinical studies. HR deficiency can also occur in cells with no detectable BRCA1/BRCA2 mutations but exhibiting BRCA-like phenotypes. DNA repair-targeting therapies, such as ATR and CHK1 inhibitors (which are most effective against cancers carrying ATM mutations), can be used in combination with current genotoxic chemotherapies in CRCs to further improve therapy response. Finally, therapies that target alternative DNA repair mechanisms, such as thiopurines, also have the potential to confer increased sensitivity to current chemotherapy regimens, thus expanding the spectrum of therapy options and potentially improving clinical outcomes for CRC patients.
Collapse
Affiliation(s)
- Nicole M. Reilly
- Fondazione Piemontese per la Ricerca sul Cancro ONLUSCandioloItaly
| | - Luca Novara
- Candiolo Cancer InstituteFPO‐IRCCSCandioloItaly
| | - Federica Di Nicolantonio
- Candiolo Cancer InstituteFPO‐IRCCSCandioloItaly
- Department of OncologyUniversity of TorinoCandioloItaly
| | - Alberto Bardelli
- Candiolo Cancer InstituteFPO‐IRCCSCandioloItaly
- Department of OncologyUniversity of TorinoCandioloItaly
| |
Collapse
|
50
|
Effective sustained release of 5-FU-loaded PLGA implant for improving therapeutic index of 5-FU in colon tumor. Int J Pharm 2018; 550:380-387. [DOI: 10.1016/j.ijpharm.2018.07.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/04/2018] [Accepted: 07/20/2018] [Indexed: 02/06/2023]
|