1
|
Platt JR, Pennycook S, Muthoo CE, Westwood AC, Frood R, Beggs AD, Scarsbrook A, Seligmann JF, Tolan DJM. Colon cancer biology and treatment in the era of precision oncology: A primer for Radiologists. Eur J Radiol 2025; 185:112000. [PMID: 39978239 DOI: 10.1016/j.ejrad.2025.112000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
In the era of precision oncology, systemic therapies for colon cancer are becoming increasingly biomarker-led, with implications for patients in the neoadjuvant, adjuvant and metastatic settings. As the landscape for colon cancer treatment evolves and becomes more complex, it is important that all members of the multidisciplinary team keep abreast of developments to ensure the most effective care is delivered to patients. As core members of the colorectal multidisciplinary team, Radiologists play a central role throughout the patient journey. This review serves as an educational summary of current and emerging treatment pathways in colon cancer, standards for biomarker testing, mechanisms of action for key drugs, important treatment-related complications, relevant tumour biology that underpins patterns of disease and treatment response, and the specific implications systemic therapies have for cancer imaging and Radiologists. We also highlight the increasing role for radiology in patient stratification and the importance of imaging biomarkers. It is crucial that Radiologists understand the current landscape of colon cancer treatment and emerging strategies on the horizon in clinical trials. Only through engagement across the wider multidisciplinary team will we deliver true personalised medicine for patients with colon cancer.
Collapse
Affiliation(s)
- James R Platt
- Division of Oncology, Leeds Institute of Medical Research at St James's, School of Medicine, University of Leeds, Leeds, UK.
| | - Stephanie Pennycook
- Department of Medical Oncology, Leeds Teaching Hospitals NHS Trust, Leeds, UK.
| | - Chand E Muthoo
- Department of Radiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK.
| | - Alice C Westwood
- Division of Pathology and Data Analytics, Leeds Institute of Medical Research at St. James's, School of Medicine, University of Leeds, Leeds, UK.
| | - Russell Frood
- Leeds Institute of Clinical Trials Research, School of Medicine, University of Leeds, Leeds, UK.
| | - Andrew D Beggs
- Department of Cancer and Genomics, University of Birmingham, Birmingham, UK.
| | - Andrew Scarsbrook
- Leeds Institute of Medical Research at St James's, School of Medicine, University of Leeds, Leeds, UK.
| | - Jenny F Seligmann
- Division of Oncology, Leeds Institute of Medical Research at St James's, School of Medicine, University of Leeds, Leeds, UK.
| | - Damian J M Tolan
- Department of Radiology, Leeds Teaching Hospitals NHS Trust, Leeds, UK.
| |
Collapse
|
2
|
Kazmi F, Shrestha N, Liu TFD, Foord T, Heesen P, Booth S, Dodwell D, Lord S, Yeoh KW, Blagden SP. Next-generation sequencing for guiding matched targeted therapies in people with relapsed or metastatic cancer. Cochrane Database Syst Rev 2025; 3:CD014872. [PMID: 40122129 PMCID: PMC11930395 DOI: 10.1002/14651858.cd014872.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
BACKGROUND Matched targeted therapies (MTT) given alone or in combination with systemic anti-cancer therapies have delivered proven survival benefit for many people with newly diagnosed cancer. However, there is little evidence of their effectiveness in the recurrent or late-stage setting. With this uncertainty, alongside the perception that late-stage cancers are too genetically heterogenous or too mutationally diverse to benefit from matched targeted therapies, next-generation sequencing (NGS) of tumours in people with refractory cancer remains a low priority. As a result, next-generation sequencing testing of recurrent or late-stage disease is discouraged. We lack evidence to support the utility of next generation sequencing in guiding matched targeted therapies in this setting. OBJECTIVES To evaluate the benefits and harms of matched targeted therapies in people with advanced cancers in randomised controlled trials. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, ClinicalTrials.gov, and the World Health Organisation International Clinical Trials Registry Platform (WHO-ICTRP) search portal up to 30th October 2024. We also screened reference lists of included studies and also the publications that cited these studies. SELECTION CRITERIA We included randomised controlled trials (RCTs) that had enroled participants with advanced/refractory solid or haematological cancers who had progressed through at least one line of standard anti-cancer systemic therapy. To be eligible, all participants should have received matched targeted therapy based on next-generation sequencing carried out on their tumour (tumour tissue, blood or bone marrow). DATA COLLECTION AND ANALYSIS We systematically searched medical databases (e.g. MEDLINE, Embase) and trial registers for randomised controlled trials (RCTs). Outcomes of interest were progression-free survival (PFS), overall survival (OS), overall response rates (ORR), serious (grade 3 or 4) adverse events (AEs) and quality of life (QOL). We used a random-effects model to pool outcomes across studies and compared predefined subgroups using interaction tests. Grading of Recommendations Assessment, Development and Evaluation (GRADE) assessment of certainty was used to evaluate the quality of evidence. MAIN RESULTS We identified a total of 37 studies, out of which 35 studies (including 9819 participants) were included in the meta-analysis. All included studies compared a matched targeted therapy intervention to standard-of-care treatment, non-matched targeted therapies or no treatment (best supportive care): Matched targeted therapy versus standard-of-care treatment Matched targeted therapy (MTT) compared with standard systematic therapy probably reduces the risk of disease progression by 34% (hazard ratio (HR) = 0.66, 95% confidence interval (CI) 0.59 to 0.74; 14 studies, 3848 participants; moderate-certainty evidence). However, MTT might have little to no difference in risk of death (HR = 0.85, 95% CI 0.75 to 0.97; 14 studies, 3848 participants; low-certainty evidence) and may increase overall response rates (low-certainty evidence). There was no clear evidence of a difference in severe (grade 3/4) adverse events between matched targeted therapy and standard-of-care treatment (low-certainty evidence). There was limited evidence of a difference in quality of life between groups (very low-certainty of evidence). Matched targeted therapy in combination with standard-of-care treatment versus standard-of-care treatment alone Matched targeted therapy in combination with standard-of-care treatment compared with standard-of-care treatment alone probably reduces the risk of disease progression by 39% (HR = 0.61, 95% CI 0.53-0.70, 14 studies, 2,637 participants; moderate-certainty evidence) and risk of death by 21% (HR = 0.79, 95% CI 0.70 to 0.89; 11 studies, 2575 participants, moderate-certainty evidence). The combination of MTT and standard-of-care treatment may also increase overall response rates (low-certainty evidence). There was limited evidence of a difference in the incidence of severe adverse events (very low-certainty evidence) and quality of life between the groups (very low-certainty of evidence). Matched targeted therapy versus non-matched targeted therapy Matched targeted therapy compared with non-matched targeted therapy probably reduces the risk of disease progression by 24% (HR = 0.76, 95% CI 0.64 to 0.89; 3 studies, 1568 participants; moderate-certainty evidence) and may reduce the risk of death by 25% (HR = 0.75, 95% CI 0.65 to 0.86, 1307 participants; low-certainty evidence). There was little to no effect on overall response rates between MTT and non-MTT. There was no clear evidence of a difference in overall response rates (low-certainty evidence) and severe adverse events between MTT and non-MTT (low-certainty evidence). None of the studies comparing MTT and non-MTT reported quality of life. Matched targeted therapy versus best supportive care Matched targeted therapy compared with the best supportive care (BSC) i.e. no active treatment probably reduces the risk of disease progression by 63% (HR 0.37, 95% CI 0.28 to 0.50; 4 studies, 858 participants; moderate-certainty evidence). There was no clear evidence of a difference in overall survival between groups (HR = 0.88, 95% CI 0.73 to 1.06, 3 studies, 783 participants; low-certainty evidence). There was no clear evidence of a difference in overall response rates (very low-certainty of evidence) and incidence of severe adverse events (very low-certainty of evidence) between the groups. Quality of life was reported in a single study but did not provide composite scores. Risk of bias The overall risk of bias was judged low for eight studies, unclear for two studies, and the remaining 27 studies were high risk. AUTHORS' CONCLUSIONS Matched targeted therapies guided by next-generation sequencing in people with advanced cancer prolongs the time before cancer progresses compared to standard therapies. However, there is limited evidence to suggest that it prolongs overall survival, improves the quality of life or increases adverse events. Importantly, this review supports equitable access to next-generation sequencing technology for all people with advanced cancer and offers them the opportunity to access genotype-matched targeted therapies.
Collapse
Affiliation(s)
- Farasat Kazmi
- Department of Oncology, University of Oxford, Oxford, UK
- Department of Oncology, Norfolk and Norwich University Hospital, Norwich, UK
| | - Nipun Shrestha
- Health Evidence Synthesis, Recommendations and Impact (HESRI), School of Public Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Tik Fung Dave Liu
- Department of Oncology, Norfolk and Norwich University Hospital, Norwich, UK
| | | | | | - Stephen Booth
- Department of Haematology, Royal Berkshire Hospital, Reading, UK
| | - David Dodwell
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Simon Lord
- Department of Oncology, University of Oxford, Oxford, UK
| | - Kheng-Wei Yeoh
- Radiation Oncology, National Cancer Centre, Singapore, Singapore
| | | |
Collapse
|
3
|
Piercey O, Chantrill L, Hsu H, Ma B, Price T, Tan IB, Teng H, Tie J, Desai J. Expert consensus on the optimal management of BRAF V600E-mutant metastatic colorectal cancer in the Asia-Pacific region. Asia Pac J Clin Oncol 2025; 21:31-45. [PMID: 39456063 PMCID: PMC11733838 DOI: 10.1111/ajco.14132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/14/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024]
Abstract
The burden of colorectal cancer (CRC) is high in the Asia-Pacific region, and several countries in this region have among the highest and/or fastest growing rates of CRC in the world. A significant proportion of patients will present with or develop metastatic CRC (mCRC), and BRAFV600E-mutant mCRC represents a particularly aggressive phenotype that is less responsive to standard chemotherapies. In light of recent therapeutic advances, an Asia-Pacific expert consensus panel was convened to develop evidence-based recommendations for the diagnosis, treatment, and management of patients with BRAFV600E-mutant mCRC. The expert panel comprised nine medical oncologists from Australia, Hong Kong, Singapore, and Taiwan (the authors), who met to review current literature and develop eight consensus statements that describe the optimal management of BRAFV600E-mutant mCRC in the Asia-Pacific region. As agreed by the expert panel, the consensus statements recommend molecular testing at diagnosis to guide individualized treatment decisions, propose optimal treatment pathways according to microsatellite stability status, advocate for more frequent monitoring of BRAFV600E-mutant mCRC, and discuss local treatment strategies for oligometastatic disease. Together, these expert consensus statements are intended to optimize treatment and improve outcomes for patients with BRAFV600E-mutant mCRC in the Asia-Pacific region.
Collapse
Affiliation(s)
| | - Lorraine Chantrill
- Illawarra Shoalhaven Local Health DistrictIllawarraNew South WalesAustralia
- Faculty of Science, Medicine and HealthUniversity of WollongongWollongongNew South WalesAustralia
| | - Hung‐Chih Hsu
- Division of Hematology OncologyChang Gung Memorial HospitalNew TaipeiTaiwan
- College of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Brigette Ma
- State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Department of Clinical Oncology, Hong Kong Cancer InstituteThe Chinese University of Hong KongHong Kong SARChina
| | - Timothy Price
- The Queen Elizabeth HospitalAdelaideSouth AustraliaAustralia
| | - Iain Beehuat Tan
- Division of Medical OncologyNational Cancer Centre SingaporeSingaporeSingapore
| | - Hao‐Wei Teng
- Department of OncologyTaipei Veterans General HospitalTaipeiTaiwan
| | - Jeanne Tie
- Peter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVictoriaAustralia
| | - Jayesh Desai
- Peter MacCallum Cancer CentreMelbourneVictoriaAustralia
- Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVictoriaAustralia
| |
Collapse
|
4
|
Gallois C, Bergen ES, Auclin É, Pernot S, Higué J, Trouilloud I, Touchefeu Y, Turpin A, Mazard T, Sartore-Bianchi A, Prenen H, Alberti A, Pilla L, Cuissy S, Wookey V, Perret A, Melchior C, Artru P, Dubreuil O, Drouillard A, Doat S, Lavolé J, Basile D, Perkins G, Jary M, Stintzing S, Ros J, Tougeron D, Taieb J. Efficacy and safety of the combination of encorafenib/cetuximab with or without binimetinib in patients with BRAF V600E-mutated metastatic colorectal cancer: an AGEO real-world multicenter study. ESMO Open 2024; 9:103696. [PMID: 39255538 PMCID: PMC11415680 DOI: 10.1016/j.esmoop.2024.103696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND The combination of encorafenib with cetuximab has become the standard of care in patients with BRAF V600E-mutated metastatic colorectal cancer (mCRC) after a prior systemic therapy. This study aims to describe the efficacy and safety of encorafenib/cetuximab +/- binimetinib in patients with BRAF V600E-mutated mCRC in a real-world setting. PATIENTS AND METHODS This retrospective study included patients with BRAF V600E-mutated mCRC who received this combination from January 2020 to June 2022 in 30 centers. RESULTS A total of 201 patients were included, with 55% of women, a median age of 62 years, and an Eastern Cooperative Oncology Group performance status (ECOG-PS) >1 in 20% of cases. The main tumor characteristics were 60% of right-sided primary tumor, 11% of microsatellite instability/mismatch repair deficient phenotype, and liver and peritoneum being the two main metastatic sites (57% and 51%). Encorafenib/cetuximab +/- binimetinib was prescribed in the first, second, third, and beyond third line in 4%, 56%, 29%, and 11%, respectively, of cases, with the encorafenib/cetuximab/binimetinib combination for 21 patients (10%). With encorafenib/cetuximab treatment, 21% of patients experienced grade ≥3 adverse events (AEs), with each type of grade ≥3 AE observed in <5% of patients. The objective response rate was 32.2% and the disease control rate (DCR) was 71.2%. The median progression-free survival (PFS) was 4.5 months [95% confidence interval (CI) 3.9-5.4 months] and the median overall survival (OS) was 9.2 months (95% CI 7.8-10.8 months). In multivariable analysis, factors associated with a shorter PFS were synchronous metastases [hazard ratio (HR) 1.66, P = 0.04] and ECOG-PS >1 (HR 1.88, P = 0.007), and those associated with a shorter OS were the same factors (HR 1.71, P = 0.03 and HR 2.36, P < 0.001, respectively) in addition to treatment beyond the second line (HR 1.74, P = 0.003) and high carcinoembryonic antigen level (HR 1.72, P = 0.003). CONCLUSION This real-world study showed that in patients with BRAF V600E-mutated mCRC treated with encorafenib/cetuximab +/- binimetinib, efficacy and safety data confirm those reported in the BEACON registration trial. The main poor prognostic factors for this treatment are synchronous metastases and ECOG-PS >1.
Collapse
Affiliation(s)
- C Gallois
- Department of Gastroenterology and Digestive Oncology, Paris-Cité University, Georges Pompidou European Hospital, SIRIC CARPEM, Paris, France
| | - E S Bergen
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - É Auclin
- Medical and Thoracic Oncology Department, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - S Pernot
- Department of Medical Oncology, Institut Bergonié, Bordeaux, France
| | - J Higué
- Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - I Trouilloud
- Department of Medical Oncology, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Y Touchefeu
- Digestive Oncology, Institut Des Maladies De l'Appareil Digestif, Centre Hospitalier Universitaire De Nantes, Nantes, France
| | - A Turpin
- Department of Medical Oncology, University Lille, Lille, France; UMR9020 CNRS, UMR-S1277 Inserm, Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, CHU Lille, Lille, France
| | - T Mazard
- Department of Medical Oncology, Montpellier Cancer Institute (ICM), Montpellier, France; Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, University of Montpellier, Montpellier, France
| | - A Sartore-Bianchi
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano and Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - H Prenen
- University Hospital Antwerp, Edegem, Belgium
| | - A Alberti
- Medical Oncology, University of Brescia, ASST-Spedali Civili, Brescia, Italy
| | - L Pilla
- Department of Gastroenterology and Digestive Oncology, Paris-Cité University, Georges Pompidou European Hospital, SIRIC CARPEM, Paris, France
| | - S Cuissy
- Department of Hepatogastroenterology, Rouen University Hospital, Rouen, France
| | - V Wookey
- Department of Oncology, Mayo Clinic, Rochester, USA
| | - A Perret
- Department of Medical Oncology, Gustave Roussy Cancer Centre, Villejuif, France
| | - C Melchior
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| | - P Artru
- Hepatogastroenterology Department, Hôpital Jean-Mermoz, Lyon, France
| | - O Dubreuil
- Department of Digestive Oncology, Groupe hospitalier Diaconesses Croix Saint Simon, Paris, France
| | - A Drouillard
- Department of Hepato-Gastroenterology, Dijon Hospital, Dijon, France
| | - S Doat
- Department of Hepato-Gastroenterology, Pitié-Salpêtrière Hospital, Paris, France
| | - J Lavolé
- Department of Hepato-Gastroenterology, Begin Teaching Military Hospital, Saint-Mandé, France
| | - D Basile
- Department of Medical Oncology, San Giovanni di Dio Hospital, Crotone, Italy
| | - G Perkins
- Department of Gastroenterology, CHRU Pontchaillou, Rennes, France
| | - M Jary
- Department of Surgical and Medical Oncology, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - S Stintzing
- Department of Hematology, Oncology, and Cancer Immunology (CCM), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - J Ros
- Department of Medical Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - D Tougeron
- Department of Gastroenterology and Hepatology, Poitiers University Hospital, Poitiers, France
| | - J Taieb
- Department of Gastroenterology and Digestive Oncology, Paris-Cité University, Georges Pompidou European Hospital, SIRIC CARPEM, Paris, France.
| |
Collapse
|
5
|
O’Donnell CDJ, Hubbard J, Jin Z. Updates on the Management of Colorectal Cancer in Older Adults. Cancers (Basel) 2024; 16:1820. [PMID: 38791899 PMCID: PMC11120096 DOI: 10.3390/cancers16101820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Colorectal cancer (CRC) poses a significant global health challenge. Notably, the risk of CRC escalates with age, with the majority of cases occurring in those over the age of 65. Despite recent progress in tailoring treatments for early and advanced CRC, there is a lack of prospective data to guide the management of older patients, who are frequently underrepresented in clinical trials. This article reviews the contemporary landscape of managing older individuals with CRC, highlighting recent advancements and persisting challenges. The role of comprehensive geriatric assessment is explored. Opportunities for treatment escalation/de-escalation, with consideration of the older adult's fitness level. are reviewed in the neoadjuvant, surgical, adjuvant, and metastatic settings of colon and rectal cancers. Immunotherapy is shown to be an effective treatment option in older adults who have CRC with microsatellite instability. Promising new technologies such as circulating tumor DNA and recent phase III trials adding later-line systemic therapy options are discussed. Clinical recommendations based on the data available are summarized. We conclude that deliberate efforts to include older individuals in future colorectal cancer trials are essential to better guide the management of these patients in this rapidly evolving field.
Collapse
Affiliation(s)
- Conor D. J. O’Donnell
- Mayo Clinic School of Graduate Education, Mayo Clinic College of Medicine and Science, Mayo Building, Rochester, MN 55905, USA;
| | - Joleen Hubbard
- Allina Health Cancer Institute, Minneapolis, MN 55407, USA
| | - Zhaohui Jin
- Division of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
6
|
Tröster A, Jores N, Mineev KS, Sreeramulu S, DiPrima M, Tosato G, Schwalbe H. Targeting EPHA2 with Kinase Inhibitors in Colorectal Cancer. ChemMedChem 2023; 18:e202300420. [PMID: 37736700 PMCID: PMC10843416 DOI: 10.1002/cmdc.202300420] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/23/2023]
Abstract
The ephrin type-A 2 receptor tyrosine kinase (EPHA2) is involved in the development and progression of various cancer types, including colorectal cancer (CRC). There is also evidence that EPHA2 plays a key role in the development of resistance to the endothelial growth factor receptor (EGFR) monoclonal antibody Cetuximab used clinically in CRC. Despite the promising pharmacological potential of EPHA2, only a handful of specific inhibitors are currently available. In this concept paper, general strategies for EPHA2 inhibition with molecules of low molecular weight (small molecules) are described. Furthermore, available examples of inhibiting EPHA2 in CRC using small molecules are summarized, highlighting the potential of this approach.
Collapse
Affiliation(s)
- Alix Tröster
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe University, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Nathalie Jores
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe University, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Konstantin S Mineev
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe University, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Sridhar Sreeramulu
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe University, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Michael DiPrima
- Laboratory of Cellular Oncology, Center for Cancer Research (CCR), National Cancer Institute (NCI), 37 Convent Drive, NIH Bethesda Campus Building 37, Room 4124, Bethesda, MD, 20892, USA
| | - Giovanna Tosato
- Laboratory of Cellular Oncology, Center for Cancer Research (CCR), National Cancer Institute (NCI), 37 Convent Drive, NIH Bethesda Campus Building 37, Room 4124, Bethesda, MD, 20892, USA
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance, Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe University, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| |
Collapse
|
7
|
Zeng C, Wang M, Xie S, Wang N, Wang Z, Yi D, Kong F, Chen L. Clinical research progress on BRAF V600E-mutant advanced colorectal cancer. J Cancer Res Clin Oncol 2023; 149:16111-16121. [PMID: 37639010 DOI: 10.1007/s00432-023-05301-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/15/2023] [Indexed: 08/29/2023]
Abstract
Colorectal cancer is one of the malignant tumors that pose a serious threat to human health. A particularly bad prognosis might be expected for colorectal tumors with the unique molecular subtype BRAF V600E mutation. With the development of precision therapy, the advent of molecularly targeted therapies and immune checkpoint inhibitors has improved the outcome of intermediate to advanced colorectal cancer. However, the duration of drug benefit is usually short, and overall survival and progression-free survival remain suboptimal. Therefore, investigators are exploring more rational, safe, and effective drug combination regimens through clinical trials to provide longer survival for patients with such genetic mutations with metastatic colorectal cancer (mCRC). This article reviews the progress of clinical research on molecularly targeted drugs, immune checkpoint inhibitors, first-line chemotherapeutic agents, and different combination therapy regimens (including different targeted drug combinations, immune combination targeting, and chemotherapy combination targeting) for colorectal cancer patients with BRAF V600E mutation, which provides a reference for further in-depth clinical exploration of the treatment of colorectal cancer patients with BRAF V600E mutation.
Collapse
Affiliation(s)
- Chuanxiu Zeng
- Oncology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center of Chinese Acupuncture and Moxibustion, Tianjin, China
| | - Mengchao Wang
- Oncology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center of Chinese Acupuncture and Moxibustion, Tianjin, China
| | - Shuqi Xie
- Oncology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center of Chinese Acupuncture and Moxibustion, Tianjin, China
| | - Na Wang
- Oncology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center of Chinese Acupuncture and Moxibustion, Tianjin, China
| | - Zhen Wang
- Oncology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center of Chinese Acupuncture and Moxibustion, Tianjin, China
| | - Dan Yi
- Oncology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center of Chinese Acupuncture and Moxibustion, Tianjin, China
| | - Fanming Kong
- Oncology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center of Chinese Acupuncture and Moxibustion, Tianjin, China
| | - Liwei Chen
- Oncology Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
- National Clinical Research Center of Chinese Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
8
|
Russo G, Barbieri MA, Sorbara EE, Cicala G, Franchina T, Santarpia M, Silvestris N, Spina E. Renal Disorders with Oral Tyrosine Kinase Inhibitors in Metastatic Colorectal Cancer: An Analysis from the FDA Adverse Event Reporting System Database. Biomedicines 2023; 11:2311. [PMID: 37626807 PMCID: PMC10452753 DOI: 10.3390/biomedicines11082311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND this study assessed the nephrotoxicity of regorafenib (REG) and encorafenib (ENC) in metastatic colorectal cancer (mCRC) through an analysis of reports from the US Food and Drug Administration's Adverse Event Reporting System (FAERS) database. METHODS descriptive and disproportional analyses were performed for all reports using ENC and REG as the primary suspect. RESULTS A total of 379 reports had at least one renal adverse drug reaction (ADR), and these ADRs were mainly related to REG (93.1%). Potential safety signals for REG included chromaturia (n = 44; ROR = 12.00, CI 95% = 8.92-16.16; IC = 2.36, IC025-IC075 = 2.06-2.66), hydronephrosis (10; 8.70, 4.67-16.19; 1.85, 1.23-2.47), nephrotic syndrome (7; 5.73, 2.73-12.03; 1.47, 0.73-2.21), renal impairment (53; 4.16, 3.17-5.45; 1.39, 1.12-1.66), dysuria (19; 3.06, 1.95-4.81; 1.06, 0.61-1.52), renal failure (38; 1.66, 1.20-2.28; 0.49, 0.17-0.81), and acute kidney injury (AKI) (43; 1.46, 1.08-1.97; 0.37, 0.07-0.67). For ENC, consistent disproportionalities were observed for AKI (n = 11; ROR = 3.79, CI 95% = 2.09-6.90; IC = 1.32, IC025-IC075 = 0.72-1.91) and dysuria (4; 6.50, 2.43-17.39; 1.86, 0.88-2.85). CONCLUSIONS these findings highlight some not extensively reported renal ADRs that require further investigations to better characterize the safety profiles of REG and ENC in patients with mCRC.
Collapse
Affiliation(s)
- Giulia Russo
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (G.R.); (M.A.B.); (E.E.S.); (G.C.)
| | - Maria Antonietta Barbieri
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (G.R.); (M.A.B.); (E.E.S.); (G.C.)
| | - Emanuela Elisa Sorbara
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (G.R.); (M.A.B.); (E.E.S.); (G.C.)
| | - Giuseppe Cicala
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (G.R.); (M.A.B.); (E.E.S.); (G.C.)
| | - Tindara Franchina
- Department of Human Pathology in Adulthood and Childhood Gaetano Barresi, University of Messina, 98125 Messina, Italy; (T.F.); (M.S.); (N.S.)
| | - Mariacarmela Santarpia
- Department of Human Pathology in Adulthood and Childhood Gaetano Barresi, University of Messina, 98125 Messina, Italy; (T.F.); (M.S.); (N.S.)
| | - Nicola Silvestris
- Department of Human Pathology in Adulthood and Childhood Gaetano Barresi, University of Messina, 98125 Messina, Italy; (T.F.); (M.S.); (N.S.)
| | - Edoardo Spina
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (G.R.); (M.A.B.); (E.E.S.); (G.C.)
| |
Collapse
|