1
|
Ferrario CM, Groban L, Wang H, Sun X, VonCannon JL, Wright KN, Ahmad S. The renin–angiotensin system biomolecular cascade: a 2022 update of newer insights and concepts. Kidney Int Suppl (2011) 2022; 12:36-47. [DOI: 10.1016/j.kisu.2021.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/14/2021] [Accepted: 11/08/2021] [Indexed: 12/30/2022] Open
|
2
|
Mogus AT, Liu L, Jia M, Ajayi DT, Xu K, Kong R, Huang J, Yu J, Kwong PD, Mascola JR, Ho DD, Tsuji M, Chackerian B. Virus-Like Particle Based Vaccines Elicit Neutralizing Antibodies against the HIV-1 Fusion Peptide. Vaccines (Basel) 2020; 8:vaccines8040765. [PMID: 33333740 PMCID: PMC7765226 DOI: 10.3390/vaccines8040765] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 01/01/2023] Open
Abstract
Broadly neutralizing antibodies (bnAbs) isolated from HIV-infected individuals delineate vulnerable sites on the HIV envelope glycoprotein that are potential vaccine targets. A linear epitope within the N-terminal region of the HIV-1 fusion peptide (FP8) is the primary target of VRC34.01, a bnAb that neutralizes ~50% of primary HIV isolates. FP8 has attracted attention as a potential HIV vaccine target because it is a simple linear epitope. Here, platform technologies based on RNA bacteriophage virus-like particles (VLPs) were used to develop multivalent vaccines targeting the FP8 epitope. Both recombinant MS2 VLPs displaying the FP8 peptide and Qβ VLPs displaying chemically conjugated FP8 peptide induced high titers of FP8-specific antibodies in mice. Moreover, a heterologous prime-boost-boost regimen employing the two FP8-VLP vaccines and native envelope trimer was the most effective approach for eliciting HIV-1 neutralizing antibodies. Given the potent immunogenicity of VLP-based vaccines, this vaccination strategy-inspired by bnAb-guided epitope mapping, VLP bioengineering, and prime-boost immunization approaches-may be a useful strategy for eliciting bnAb responses against HIV.
Collapse
Affiliation(s)
- Alemu Tekewe Mogus
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, USA; (A.T.M.); (D.T.A.)
| | - Lihong Liu
- Aaron Diamond AIDS Research Center, New York, NY 10016, USA; (L.L.); (M.J.); (J.H.); (J.Y.); (D.D.H.)
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Manxue Jia
- Aaron Diamond AIDS Research Center, New York, NY 10016, USA; (L.L.); (M.J.); (J.H.); (J.Y.); (D.D.H.)
| | - Diane T. Ajayi
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, USA; (A.T.M.); (D.T.A.)
| | - Kai Xu
- Vaccine Research Center, NIAID, NIH, 40 Convent Drive, Bethesda, MD 20892, USA; (K.X.); (R.K.); (P.D.K.); (J.R.M.)
| | - Rui Kong
- Vaccine Research Center, NIAID, NIH, 40 Convent Drive, Bethesda, MD 20892, USA; (K.X.); (R.K.); (P.D.K.); (J.R.M.)
| | - Jing Huang
- Aaron Diamond AIDS Research Center, New York, NY 10016, USA; (L.L.); (M.J.); (J.H.); (J.Y.); (D.D.H.)
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jian Yu
- Aaron Diamond AIDS Research Center, New York, NY 10016, USA; (L.L.); (M.J.); (J.H.); (J.Y.); (D.D.H.)
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter D. Kwong
- Vaccine Research Center, NIAID, NIH, 40 Convent Drive, Bethesda, MD 20892, USA; (K.X.); (R.K.); (P.D.K.); (J.R.M.)
| | - John R. Mascola
- Vaccine Research Center, NIAID, NIH, 40 Convent Drive, Bethesda, MD 20892, USA; (K.X.); (R.K.); (P.D.K.); (J.R.M.)
| | - David D. Ho
- Aaron Diamond AIDS Research Center, New York, NY 10016, USA; (L.L.); (M.J.); (J.H.); (J.Y.); (D.D.H.)
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, New York, NY 10016, USA; (L.L.); (M.J.); (J.H.); (J.Y.); (D.D.H.)
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Correspondence: (M.T.); (B.C.); Tel.: +1-212-304-6165 (M.T.); +1-505-272-0269 (B.C.)
| | - Bryce Chackerian
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, USA; (A.T.M.); (D.T.A.)
- Correspondence: (M.T.); (B.C.); Tel.: +1-212-304-6165 (M.T.); +1-505-272-0269 (B.C.)
| |
Collapse
|
3
|
Garay-Gutiérrez NF, Hernandez-Fuentes CP, García-Rivas G, Lavandero S, Guerrero-Beltrán CE. Vaccines against components of the renin-angiotensin system. Heart Fail Rev 2020; 26:711-726. [PMID: 32995973 PMCID: PMC7524378 DOI: 10.1007/s10741-020-10033-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/21/2020] [Indexed: 12/26/2022]
Abstract
Even though effective drugs for treating hypertension are available, a great percentage of patients have inadequate control of their blood pressure. Unwanted side effects and inappropriate oral drug adherence are important factors that contribute to the global problem of uncontrolled hypertension. Vaccination could provide a revolutionary therapy with long-lasting effects, increasing patient compliance and therefore better control of high blood pressure. Nowadays, current immunization approaches against hypertension target renin, angiotensin I, angiotensin II, and angiotensin II type 1 receptor, key elements of the renin–angiotensin system. This article reviews the different vaccination attempts with proteins and peptides against the different molecules of the renin–angiotensin system in the last two decades, safety issues, and other novel prospects biomarkers in hypertension, and summarizes the potential of this immunomodulatory approach in clinical practice.
Collapse
Affiliation(s)
- Noé Francisco Garay-Gutiérrez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Medicina Cardiovascular y Metabolómica, Tecnologico de Monterrey, Monterrey, NL, Mexico
| | - Carolina Paz Hernandez-Fuentes
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Gerardo García-Rivas
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Medicina Cardiovascular y Metabolómica, Tecnologico de Monterrey, Monterrey, NL, Mexico.,Hospital Zambrano Hellion, TecSalud, Centro de Investigación Biomédica, Tecnologico de Monterrey, San Pedro Garza García, NL, Mexico
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Department of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Carlos Enrique Guerrero-Beltrán
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Medicina Cardiovascular y Metabolómica, Tecnologico de Monterrey, Monterrey, NL, Mexico. .,Hospital Zambrano Hellion, TecSalud, Centro de Investigación Biomédica, Tecnologico de Monterrey, San Pedro Garza García, NL, Mexico.
| |
Collapse
|
4
|
Chackerian B, Peabody DS. Factors That Govern the Induction of Long-Lived Antibody Responses. Viruses 2020; 12:v12010074. [PMID: 31936163 PMCID: PMC7019776 DOI: 10.3390/v12010074] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/30/2019] [Accepted: 01/04/2020] [Indexed: 12/14/2022] Open
Abstract
The induction of long-lasting, high-titer antibody responses is critical to the efficacy of many vaccines. The ability to produce durable antibody responses is governed by the generation of the terminally differentiated antibody-secreting B cells known as long-lived plasma cells (LLPCs). Once induced, LLPCs likely persist for decades, providing long-term protection against infection. The factors that control the generation of this important class of B cells are beginning to emerge. In particular, antigens with highly dense, multivalent structures are especially effective. Here we describe some pathogens for which the induction of long-lived antibodies is particularly important, and discuss the basis for the extraordinary ability of multivalent antigens to drive differentiation of naïve B cells to LLPCs.
Collapse
|
5
|
Lu K, Su B, Meng X. Recent Advances in the Development of Vaccines for Diabetes, Hypertension, and Atherosclerosis. J Diabetes Res 2018; 2018:1638462. [PMID: 30345314 PMCID: PMC6174738 DOI: 10.1155/2018/1638462] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/13/2018] [Indexed: 01/13/2023] Open
Abstract
Vaccines are commonly used in the prevention of infectious diseases. The basic principle of vaccination is to use specific antigens, endogenous or exogenous to stimulate immunity against the specific antigens or cells producing them. Autoantigen or oligo vaccination has been used for disease animal models. More recently humanized monoclonal antibodies have been successfully used for the treatment of neoplastic disorders or familial hypercholesterolemia. Humanized monoclonal antibody therapy needs repeated injection, and the therapy is expensive. Therapeutic vaccination can lead to persistent immunized or immune tolerant against the therapeutic molecule(s) or site. However, immunization against those endogenous substances may also elicit persistent autoimmune reaction or destruction that do harm to health. Therefore, rigorous studies are needed before any clinical application. In this review, we briefly reviewed vaccines used in protection against common metabolic diseases including atherosclerosis, hypertension, and diabetes mellitus.
Collapse
Affiliation(s)
- Kongye Lu
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Benli Su
- Department of Clinical Endocrinology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116027, China
| | - Xiuxiang Meng
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning 116044, China
| |
Collapse
|
6
|
A peptide vaccine targeting angiotensin II attenuates the cardiac dysfunction induced by myocardial infarction. Sci Rep 2017; 7:43920. [PMID: 28266578 PMCID: PMC5339733 DOI: 10.1038/srep43920] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 02/01/2017] [Indexed: 12/24/2022] Open
Abstract
A peptide vaccine targeting angiotensin II (Ang II) was recently developed as a novel treatment for hypertension to resolve the problem of noncompliance with pharmacotherapy. Ang II plays a crucial role in the pathogenesis of cardiac remodeling after myocardial infarction (MI), which causes heart failure. In the present study, we examined whether the Ang II vaccine is effective in preventing heart failure. The injection of the Ang II vaccine in a rat model of MI attenuated cardiac dysfunction in association with an elevation in the serum anti-Ang II antibody titer. Furthermore, any detrimental effects of the Ang II vaccine were not observed in the rats that underwent sham operations. Treatment with immunized serum from Ang II vaccine-injected rats significantly suppressed post-MI cardiac dysfunction in MI rats and Ang II-induced remodeling-associated signaling in cardiac fibroblasts. Thus, our present study demonstrates that the Ang II vaccine may provide a promising novel therapeutic strategy for preventing heart failure.
Collapse
|
7
|
Licari A, Castagnoli R, De Sando E, Marseglia GL. Development of a peptide conjugate vaccine for inducing therapeutic anti-IgE antibodies. Expert Opin Biol Ther 2017; 17:429-434. [PMID: 28132528 DOI: 10.1080/14712598.2017.1289172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Given the multifaceted effector functions of IgE in immediate hypersensitivity, late-phase reactions, regulation of IgE receptor expression and immune modulation, IgE antibodies have long represented an attractive target for therapeutic agents in asthma and other allergic diseases. Effective pharmacologic blockade of the binding of IgE to its receptors has become one of most innovative therapeutic strategies in the field of allergic diseases in the last 10 years. Areas covered: The latest strategies targeting IgE include the development of a therapeutic vaccine, able to trigger our own immune systems to produce therapeutic anti-IgE antibodies, potentially providing a further step forward in the treatment of allergic diseases. The aim of this review is to discuss the discovery strategy, preclinical and early clinical development of a peptide conjugate vaccine for inducing therapeutic anti-IgE antibodies. Expert opinion: Outside the area of development of humanized anti-IgE monoclonal antibodies, the research field of therapeutic IgE-targeted vaccines holds potential benefits for the treatment of allergic diseases. However, most of the experimental observations in animal models have not yet been translated into new treatments and evidence of human efficacy and safety of this new therapeutic strategy are still lacking.
Collapse
Affiliation(s)
- Amelia Licari
- a Department of Pediatrics , Foundation IRCCS Policlinico San Matteo, University of Pavia , Pavia , Italy
| | - Riccardo Castagnoli
- a Department of Pediatrics , Foundation IRCCS Policlinico San Matteo, University of Pavia , Pavia , Italy
| | - Elisabetta De Sando
- a Department of Pediatrics , Foundation IRCCS Policlinico San Matteo, University of Pavia , Pavia , Italy
| | - Gian Luigi Marseglia
- a Department of Pediatrics , Foundation IRCCS Policlinico San Matteo, University of Pavia , Pavia , Italy
| |
Collapse
|
8
|
Weeratna RD, Chikh G, Zhang L, Fraser JD, Thorn JM, Merson JR, McCluskie MJ, Champion BR, Davis HL. Immunogenicity of a peptide-based anti-IgE conjugate vaccine in non-human primates. Immun Inflamm Dis 2016; 4:135-147. [PMID: 27957325 PMCID: PMC4879460 DOI: 10.1002/iid3.98] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 01/06/2016] [Accepted: 01/12/2016] [Indexed: 01/02/2023] Open
Abstract
The anti-human immunoglobulin E (IgE) monoclonal antibody, omalizumab (Xolair®, Genentech, South San Fransisco, CA), is effective in the treatment of poorly controlled moderate to severe allergic asthma and chronic idiopathic urticaria. It acts by specifically binding to the constant domain (Cϵ3) of free human IgE in the blood and interstitial fluid. Although efficacious, use of omalizumab is limited due to restrictions on patient weight and pre-existing IgE levels, and frequent dosing (q2-4 weeks). A vaccine inducing anti-IgE antibodies has the potential for similar clinical benefits with less frequent dosing and relatively lower cost of goods. We developed a vaccine containing two IgE peptide-conjugates targeting the Cϵ3 domain of human IgE. As part of preclinical evaluation of the vaccine to optimize formulation and dose prior to initiating clinical studies, we evaluated the vaccine in non-human primates, and demonstrate the induction of anti-peptide antibodies that can bind to conformationally intact human IgE and are capable, at least in some animals, of substantial lowering circulating IgE levels.
Collapse
Affiliation(s)
| | - Ghania Chikh
- Pfizer Vaccine ImmunotherapeuticsOttawa LaboratoriesOttawaOntarioCanada
| | - Lu Zhang
- Pfizer Vaccine ImmunotherapeuticsOttawa LaboratoriesOttawaOntarioCanada
| | | | | | - James R. Merson
- Pfizer Biotherapeutics Pharmaceutical SciencesSt. LouisMissouriUSA
| | | | | | - Heather L. Davis
- Pfizer Vaccine ImmunotherapeuticsOttawa LaboratoriesOttawaOntarioCanada
| |
Collapse
|
9
|
McCluskie MJ, Evans DM, Zhang N, Benoit M, McElhiney SP, Unnithan M, DeMarco SC, Clay B, Huber C, Deora A, Thorn JM, Stead DR, Merson JR, Davis HL. The effect of preexisting anti-carrier immunity on subsequent responses to CRM197 or Qb-VLP conjugate vaccines. Immunopharmacol Immunotoxicol 2016; 38:184-96. [PMID: 27121368 DOI: 10.3109/08923973.2016.1165246] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CONTEXT Certain antigens, such as haptens (small molecules), short peptides, and carbohydrates (e.g. bacterial polysaccharides) are non- or poorly immunogenic unless conjugated to a carrier molecule that provides a structural scaffold for antigen presentation as well as T cell help required for B-cell activation and maturation. However, the carriers themselves are immunogenic and resulting carrier-specific immune responses may impact the immunogenicity of other conjugate vaccines using the same carrier that are administered subsequently. OBJECTIVE Herein, using two different carriers (cross-reactive material 197, CRM and Qb-VLP), we examined in mice the impact that preexisting anti-carrier antibodies (Ab) had on subsequent immune responses to conjugates with either the same or a different carrier. METHOD For this purpose, we used two nicotine hapten conjugates (NIC7-CRM or NIC-Qb), two IgE peptide conjugates (Y-CRM or Y-Qb), and a pneumococcal polysaccharide conjugate (Prevnar 13(®)). RESULTS Prior exposure to CRM or Qb-VLP significantly reduced subsequent responses to the conjugated antigen having the homologous carrier, with the exception of Prevnar 13® where anti-polysaccharide responses were similar to those in animals without preexisting anti-carrier Ab. CONCLUSION Collectively, the data suggest that the relative sizes of the antigen and carrier, as well as the conjugation density for a given conjugate impact the extent of anti-carrier suppression. All animals developed anti-carrier responses with repeat vaccination and the differences in Ab titer between groups with and without preexisting anti-carrier responses became less apparent; however, anti-carrier effects were more durable for Ab function.
Collapse
Affiliation(s)
- Michael J McCluskie
- a Pfizer Vaccine Immunotherapeutics , Ottawa Laboratories , Ottawa , ON , Canada
| | - Dana M Evans
- a Pfizer Vaccine Immunotherapeutics , Ottawa Laboratories , Ottawa , ON , Canada
| | - Ningli Zhang
- a Pfizer Vaccine Immunotherapeutics , Ottawa Laboratories , Ottawa , ON , Canada
| | - Michelle Benoit
- a Pfizer Vaccine Immunotherapeutics , Ottawa Laboratories , Ottawa , ON , Canada
| | - Susan P McElhiney
- b Pfizer Vaccine Research and Early Development , Pearl River , NY , USA
| | - Manu Unnithan
- b Pfizer Vaccine Research and Early Development , Pearl River , NY , USA
| | - Suzanne C DeMarco
- c Pfizer Biotherapeutics Pharmaceutical Sciences , St. Louis , MO , USA
| | - Bryan Clay
- d Pfizer Vaccine Immunotherapeutics , La Jolla , CA , USA
| | | | - Aparna Deora
- c Pfizer Biotherapeutics Pharmaceutical Sciences , St. Louis , MO , USA
| | - Jennifer M Thorn
- c Pfizer Biotherapeutics Pharmaceutical Sciences , St. Louis , MO , USA
| | - David R Stead
- d Pfizer Vaccine Immunotherapeutics , La Jolla , CA , USA
| | - James R Merson
- d Pfizer Vaccine Immunotherapeutics , La Jolla , CA , USA
| | - Heather L Davis
- a Pfizer Vaccine Immunotherapeutics , Ottawa Laboratories , Ottawa , ON , Canada
| |
Collapse
|
10
|
Abstract
Virus-like particles (VLPs) are an effective means of establishing both prophylactic and therapeutic immunity against their source virus or heterologous antigens. The particulate nature and repetitive structure of VLPs makes them ideal for stimulating potent immune responses. Epitopes delivered by VLPs can be presented on MHC-II for stimulation of a humoral immune response, or cross-presented onto MHC-I leading to cell-mediated immunity. VLPs as particulate subunit vaccine carriers are showing promise in preclinical and clinical trials for the treatment of many conditions including cancer, autoimmunity, allergies and addiction. Supporting the delivery of almost any form of antigenic material, VLPs are ideal candidate vectors for development of future vaccines.
Collapse
|
11
|
Affinity selection of epitope-based vaccines using a bacteriophage virus-like particle platform. Curr Opin Virol 2015; 11:76-82. [PMID: 25829254 DOI: 10.1016/j.coviro.2015.03.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 03/06/2015] [Accepted: 03/10/2015] [Indexed: 11/21/2022]
Abstract
Display of epitopes on virus-like particles (VLPs) is a highly effective technique for enhancing the immunogenicity of antigens that are poorly immunogenic in their native context. VLP-based vaccines can be used to elicit long-lasting, high-titer antibody responses against diverse target antigens, even self-antigens. Most VLP platform-based vaccines are rationally engineered; specific target epitopes or domains are arrayed so that they are displayed at high-valency on the surface of VLPs. In this review, we describe an alternate technique for vaccine discovery using VLPs. This strategy, analogous to filamentous phage display, allows bacteriophage VLP-based vaccines to be identified from a vast library of potential vaccines by affinity selection. This technology integrates epitope discovery and immunization functions into a single platform.
Collapse
|
12
|
Foged C, Rades T, Perrie Y, Hook S, Ward V, Young S. Virus-Like Particles, a Versatile Subunit Vaccine Platform. SUBUNIT VACCINE DELIVERY 2014. [PMCID: PMC7121566 DOI: 10.1007/978-1-4939-1417-3_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Virus-like particles (VLPs) can be spontaneously formed after expression of self-polymerising viral capsid proteins. VLPs structurally resemble their native source virus, maintaining immunological relevance by retaining formation of immunogenic motifs with natural conformation. The absence of the virus genome renders VLPs safe for administration as a subunit vaccine. VLPs can target both arms of the immune response, with some VLPs initiating production of specific antibodies and others activating cytotoxic T cells. VLPs are also exceptionally versatile, conferring protection against the host virus or acting as a scaffold for antigenic molecules. In addition, VLP can support intraparticulate encapsulation for immunomodulation and gene delivery. VLP vaccines have been developed for prophylactic protection against infectious organisms, and therapeutic treatment of conditions such as Alzheimer’s disease, hypertension, and cancer. With an expanding list of vaccine candidates, VLP vaccines are a promising field with a wide range of applications.
Collapse
Affiliation(s)
- Camilla Foged
- Department of Pharmacy, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | | | - Yvonne Perrie
- Pharmacy School, Aston University, School of Life and Health Sciences, Birmingham, United Kingdom
| | - Sarah Hook
- Division of Health Sciences, University of Otago, School of Pharmacy, Dunedin, New Zealand
| | | | | |
Collapse
|
13
|
Antibodies in the pathogenesis of hypertension. BIOMED RESEARCH INTERNATIONAL 2014; 2014:504045. [PMID: 25050352 PMCID: PMC4090532 DOI: 10.1155/2014/504045] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/21/2014] [Accepted: 06/04/2014] [Indexed: 12/22/2022]
Abstract
It has long been known that circulating levels of IgG and IgM antibodies are elevated in patients with essential and pregnancy-related hypertension. Recent studies indicate these antibodies target, and in many cases activate, G-protein coupled receptors and ion channels. Prominent among these protein targets are AT1 receptors, α1-adrenoceptors, β1-adrenoceptors, and L-type voltage operated Ca2+ channels, all of which are known to play key roles in the regulation of blood pressure through modulation of vascular tone, cardiac output, and/or Na+/water reabsorption in the kidneys. This suggests that elevated antibody production may be a causal mechanism in at least some cases of hypertension. In this brief review, we will further describe the protein targets of the antibodies that are elevated in individuals with essential and pregnancy-related hypertension and the likely pathophysiological consequences of antibody binding to these targets. We will speculate on the potential mechanisms that underlie elevated antibody levels in hypertensive individuals and, finally, we will outline the therapeutic opportunities that could arise with a better understanding of how and why antibodies are produced in hypertension.
Collapse
|
14
|
McCarthy DP, Hunter ZN, Chackerian B, Shea LD, Miller SD. Targeted immunomodulation using antigen-conjugated nanoparticles. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 6:298-315. [PMID: 24616452 DOI: 10.1002/wnan.1263] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/23/2014] [Accepted: 02/01/2014] [Indexed: 12/20/2022]
Abstract
The growing prevalence of nanotechnology in the fields of biology, medicine, and the pharmaceutical industry is confounded by the relatively small amount of data on the impact of these materials on the immune system. In addition to concerns surrounding the potential toxicity of nanoparticle (NP)-based delivery systems, there is also a demand for a better understanding of the mechanisms governing interactions of NPs with the immune system. Nanoparticles can be tailored to suppress, enhance, or subvert recognition by the immune system. This 'targeted immunomodulation' can be achieved by delivery of unmodified particles, or by modifying particles to deliver drugs, proteins/peptides, or genes to a specific site. In order to elicit the desired, beneficial immune response, considerations should be made at every step of the design process: the NP platform itself, ligands, and other modifiers, the delivery route, and the immune cells that will encounter the conjugated NPs can all impact host immune responses.
Collapse
Affiliation(s)
- Derrick P McCarthy
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | | | | | |
Collapse
|
15
|
Kemppainen RJ. Inoculation of dogs with a recombinant ACTH vaccine. Am J Vet Res 2013; 74:1499-505. [PMID: 24274887 DOI: 10.2460/ajvr.74.12.1499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine whether inoculation of healthy dogs with a recombinant peptide containing 3 copies of ACTH would result in the production of antibodies against ACTH and whether this would affect pituitary-adrenocortical function. ANIMALS 8 healthy dogs. PROCEDURES A recombinant peptide consisting of 3 copies of ACTH fused to a T-helper cell epitope was produced in Escherichia coli. The protein was inoculated into 4 dogs at 4-week intervals (total of 3 inoculations/dog). Four control dogs received inoculations of PBS solution mixed with adjuvant. Blood samples were collected for determination of antibody titers against ACTH and for measurement of basal and ACTH-stimulated plasma cortisol concentrations. RESULTS Inoculation with the ACTH vaccine resulted in production of anti-ACTH antibodies in all 4 dogs. Titers were initially high but declined by 15 weeks after the initial inoculation. Basal cortisol concentrations were unaffected by inoculation with the ACTH vaccine. Plasma cortisol concentrations in response to ACTH stimulation were reduced at 12 weeks, but not at 15 weeks, after the first inoculation. CONCLUSIONS AND CLINICAL RELEVANCE Inoculation of dogs with a recombinant ACTH vaccine resulted in the production of antibodies against the hormone. Anti-ACTH titers were initially high but were not sustained. The only detectable endocrine effect in treated dogs was a reduction in cortisol concentration in response to ACTH stimulation in 2 of 4 dogs at 12 weeks after the first inoculation. The effect of vaccine administration on the pituitary-adrenal system was subtle and transient.
Collapse
Affiliation(s)
- Robert J Kemppainen
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849
| |
Collapse
|
16
|
Noninfectious disease vaccines. Vaccines (Basel) 2013. [DOI: 10.1016/b978-1-4557-0090-5.00057-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
17
|
Tousoulis D, Androulakis E, Papageorgiou N, Stefanadis C. Novel therapeutic strategies in the management of arterial hypertension. Pharmacol Ther 2012; 135:168-175. [PMID: 22609833 DOI: 10.1016/j.pharmthera.2012.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 04/26/2012] [Indexed: 02/05/2023]
Abstract
Essential hypertension is a disease with a major impact on health worldwide, thus control of blood pressure seems to be a key component of cardiovascular disease prevention. Despite considerable advances in the treatment of hypertension, effective management remains poor and new strategies to control high blood pressure and cardiovascular risk reduction are required. These seem to be divided into two major categories: those seeking to advance blood pressure-lowering efficacy of already existing agents, and others related to novel approaches, both pharmacological and non-pharmacological. Moreover, numerous clinical trials have evaluated the use of nutritional supplements in the prevention of cardiovascular diseases and in achievement of optimal blood pressure control. Additionally, the advent of interventional techniques, such as carotid baroreceptor stimulation and renal ablation of sympathetic nerve activity, seems to be proved effective in cases where medical management and lifestyle modifications are insufficient. Genetic technology, which has advanced tremendously over the past few years, could assist novel treatment options in hypertensive patients, such as RNA interference targeting hypertension-related genes. However, continued efforts must progress in these areas and the effects of therapeutic strategies in hypertensive patients need to be further explored in larger trials over a longer period of time.
Collapse
Affiliation(s)
- Dimitris Tousoulis
- 1st Cardiology Unit, Hippokration Hospital, Athens University Medical School, Athens, Greece.
| | | | | | | |
Collapse
|
18
|
|
19
|
Abstract
Despite ongoing medical advances, cardiovascular disease continues to be a leading health concern. The renin-angiotensin system (RAS) plays an important role in regulating cardiovascular function, and is, therefore, the subject of extensive study. Several drugs currently used to treat hypertension and heart failure are designed to target angiotensin II synthesis and function, but thus far, none have been able to completely block the effects of RAS signaling. This review discusses current and emerging approaches towards inhibiting cardiac RAS function in order to further improve cardiovascular disease outcomes.
Collapse
Affiliation(s)
- Daniela Zablocki
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, NJ USA
| | - Junichi Sadoshima
- Cardiovascular Research Institute, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Medical Science Building G-609, Newark, NJ 07103 USA
| |
Collapse
|
20
|
|