1
|
Foddai ACG, Wilhelmsson P, Lindgren PE, Sternberg JM, Bowman AS. A novel panel of peptides with diagnostic potential for serological identification of Borrelia burgdorferi sensu stricto, B. garinii and B. afzelii in human sera. J Immunol Methods 2025; 536:113802. [PMID: 39793694 DOI: 10.1016/j.jim.2025.113802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
A novel panel of peptide for serological identification of Borrelia burgdoferi sensu stricto, Borrelia garinii and Borrelia afzelii was developed and assessed in this study. The diagnostic algorithm of the novel test was initially trained testing 10 US human sera including 3 early-stage and 3 late-stage Lyme disease positive sera, 2 sera positive for Babesia and 2 sera positive for Syphilis, all purchased from a private biorepository. Findings were then corroborated testing (a) 33 additional EU follow-up positive sera from seroconverted patients bitten by ticks that tested positive for B. burgdorferi sensu stricto (No 2), Borrelia garinii (No 14), Borrelia afzelii (No 15) Borrelia valaisiana (No 2), and (b) 40 negative sera from US healthy donors. Results of preliminary US sera testing showed successful detection of IgM and IgG antibodies and correct identification of Borrelia burgdorferi sensu stricto in all the samples tested. Analysis of EU follow-up sera showed much higher sensitivity and accuracy when IgM and IgG were tested combined together rather than separately. Sensitivity and accuracy in species identification of the anti-IgM + IgG multiplex peptide ELISA was 93.5 % and 96.5 % respectively; lower test performance was observed when IgM (i.e. sensitivity = 58.1 %; correct identification = 88.8 %) and IgG testing (i.e. sensitivity = 74.1 %; correct identification = 96.5 %) were carried out separately. Overall specificity of the anti-IgM, anti-IgG and anti-IgM + IgG multiplex peptide ELISA calculated on a total number of 46 negative sera included in this study was 91.3 %, 95.6 and 93.4 %, respectively.
Collapse
Affiliation(s)
- Antonio C G Foddai
- School of Health and Life Sciences, Teesside University, Middlesbrough, Tees Valley, TS1 3BX, UK.
| | - Peter Wilhelmsson
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Division of Clinical Microbiology, Laboratory Medicine, Region Jönköping County, Jönköping, Sweden
| | - Per-Eric Lindgren
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Division of Clinical Microbiology, Laboratory Medicine, Region Jönköping County, Jönköping, Sweden
| | - Jeremy M Sternberg
- School of Biological Sciences, University of Aberdeen, Scotland, Zoology Building, Tillydrone Avenue, AB24 2TZ Aberdeen, Scotland, United Kingdom
| | - Alan S Bowman
- School of Biological Sciences, University of Aberdeen, Scotland, Zoology Building, Tillydrone Avenue, AB24 2TZ Aberdeen, Scotland, United Kingdom
| |
Collapse
|
2
|
Tokarz R, Guo C, Sanchez-Vicente S, Horn E, Eschman A, Turk SP, Lipkin WI, Marques A. Identification of reactive Borrelia burgdorferi peptides associated with Lyme disease. mBio 2024; 15:e0236024. [PMID: 39248571 PMCID: PMC11481556 DOI: 10.1128/mbio.02360-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024] Open
Abstract
Borrelia burgdorferi, the agent of Lyme disease, is estimated to cause >400,000 annual infections in the United States. Serology is the primary laboratory method to support the diagnosis of Lyme disease, but current methods have intrinsic limitations that require alternative approaches or targets. We used a high-density peptide array that contains >90,000 short overlapping peptides to catalog immunoreactive linear epitopes from >60 primary antigens of B. burgdorferi. We then pursued a machine learning approach to identify immunoreactive peptide panels that provide optimal Lyme disease serodiagnosis and can differentiate antibody responses at various stages of disease. We examined 226 serum samples from the Lyme Biobank and the National Institutes of Health, which included sera from 110 individuals diagnosed with Lyme disease, 31 probable cases from symptomatic individuals, and 85 healthy controls. Cases were grouped based on disease stage and presentation and included individuals with early localized, early disseminated, and late Lyme disease. We identified a peptide panel originating from 14 different epitopes that differentiated cases versus controls, whereas another peptide panel built from 12 unique epitopes differentiated subjects with various disease manifestations. Our method demonstrated an improvement in B. burgdorferi antibody detection over the current two-tiered testing approach and confirmed the key diagnostic role of VlsE and FlaB antigens at all stages of Lyme disease. We also uncovered epitopes that triggered a temporal antibody response that was useful for differentiation of early and late disease. Our findings can be used to streamline serologic targets and improve antibody-based diagnosis of Lyme disease. IMPORTANCE Serology is the primary method of Lyme disease diagnosis, but this approach has limitations, particularly early in disease. Currently employed antibody detection assays can be improved by the identification of alternative immunodominant epitopes and the selection of optimal diagnostic targets. We employed high-density peptide arrays that enabled precise epitope mapping for a wide range of B. burgdorferi antigens. In combination with machine learning, this approach facilitated the selection of serologic targets early in disease and the identification of serological indicators associated with different manifestations of Lyme disease. This study provides insights into differential antibody responses during infection and outlines a new approach for improved serologic diagnosis of Lyme disease.
Collapse
Affiliation(s)
- Rafal Tokarz
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Cheng Guo
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Santiago Sanchez-Vicente
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, USA
| | | | - Aleah Eschman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Siu Ping Turk
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - W. Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Adriana Marques
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Li L, Di L, Akther S, Zeglis BM, Qiu W. Evolution of the vls Antigenic Variability Locus of the Lyme Disease Pathogen and Development of Recombinant Monoclonal Antibodies Targeting Conserved VlsE Epitopes. Microbiol Spectr 2022; 10:e0174322. [PMID: 36150043 PMCID: PMC9604149 DOI: 10.1128/spectrum.01743-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/02/2022] [Indexed: 01/12/2023] Open
Abstract
VlsE (variable major protein-like sequence, expressed) is an outer surface protein of the Lyme disease pathogen (Borreliella species) responsible for its within-host antigenic variation and a key diagnostic biomarker of Lyme disease. However, the high sequence variability of VlsE poses a challenge to the development of consistent VlsE-based diagnostics and therapeutics. In addition, the standard diagnostic protocols detect immunoglobins elicited by the Lyme pathogen, not the presence of the pathogen or its derived antigens. Here, we described the development of recombinant monoclonal antibodies (rMAbs) that bound specifically to conserved epitopes on VlsE. We first quantified amino-acid sequence variability encoded by the vls genes from 13 B. burgdorferi genomes by evolutionary analyses. We showed broad inconsistencies of the sequence phylogeny with the genome phylogeny, indicating rapid gene duplications, losses, and recombination at the vls locus. To identify conserved epitopes, we synthesized peptides representing five long conserved invariant regions (IRs) on VlsE. We tested the antigenicity of these five IR peptides using sera from three mammalian host species including human patients, the natural reservoir white-footed mouse (Peromyscus leucopus), and VlsE-immunized New Zealand rabbits (Oryctolagus cuniculus). The IR4 and IR6 peptides emerged as the most antigenic and reacted strongly with both the human and rabbit sera, while all IR peptides reacted poorly with sera from natural hosts. Four rMAbs binding specifically to the IR4 and IR6 peptides were identified, cloned, and purified. Given their specific recognition of the conserved epitopes on VlsE, these IR-specific rMAbs are potential novel diagnostic and research agents for direct detection of Lyme disease pathogens regardless of strain heterogeneity. IMPORTANCE Current diagnostic protocols of Lyme disease indirectly detect the presence of antibodies produced by the patient upon infection by the bacterial pathogen, not the pathogen itself. These diagnostic tests tend to underestimate early-stage bacterial infections before the patients develop robust immune responses. Further, the indirect tests do not distinguish between active or past infections by the Lyme disease bacteria in a patient sample. Here, we described novel monoclonal antibodies that have the potential to become the basis of direct and definitive diagnostic detection of the Lyme disease pathogen, regardless of its genetic heterogeneity.
Collapse
Affiliation(s)
- Li Li
- Graduate Center, City University of New York, New York, New York, USA
| | - Lia Di
- Department of Biological Sciences, Hunter College, City University of New York, New York, New York, USA
| | - Saymon Akther
- Graduate Center, City University of New York, New York, New York, USA
| | - Brian M. Zeglis
- Graduate Center, City University of New York, New York, New York, USA
- Department of Chemistry, Hunter College, City University of New York, New York, New York, USA
- Department of Radiology, Weill Cornell Medical College, New York, New York, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Weigang Qiu
- Graduate Center, City University of New York, New York, New York, USA
- Department of Biological Sciences, Hunter College, City University of New York, New York, New York, USA
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, USA
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
4
|
Abstract
Most patients with Lyme disease will fully recover with recommended antibiotic therapy. However, some patients report persisting nonspecific symptoms after treatment, referred to as posttreatment Lyme disease symptoms (PTLDs) or syndrome (PTLDS), depending on the degree to which the individual's symptoms impact their quality of life. PTLDs occur in a portion of patients diagnosed with chronic Lyme disease (CLD), a controversial term describing different patient populations, diagnosed based on unvalidated tests and criteria. Practitioners should review the evidence for the Lyme disease diagnosis and not overlook unrelated conditions. Current evidence shows that prolonged antibiotic therapy provides little benefit and carries significant risk. Further research to elucidate the mechanisms underlying persistent symptoms after Lyme disease and to understand CLD is needed.
Collapse
Affiliation(s)
- Adriana Marques
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, BG 10 RM 12C118 MSC 1888 10 Center, Bethesda, MD 20892-1888, USA.
| |
Collapse
|
5
|
Paris G, Heidepriem J, Tsouka A, Liu Y, Mattes DS, Pinzón Martín S, Dallabernardina P, Mende M, Lindner C, Wawrzinek R, Rademacher C, Seeberger PH, Breitling F, Bischoff FR, Wolf T, Loeffler FF. Automated Laser-Transfer Synthesis of High-Density Microarrays for Infectious Disease Screening. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200359. [PMID: 35429012 DOI: 10.1002/adma.202200359] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Laser-induced forward transfer (LIFT) is a rapid laser-patterning technique for high-throughput combinatorial synthesis directly on glass slides. A lack of automation and precision limits LIFT applications to simple proof-of-concept syntheses of fewer than 100 compounds. Here, an automated synthesis instrument is reported that combines laser transfer and robotics for parallel synthesis in a microarray format with up to 10 000 individual reactions cm- 2 . An optimized pipeline for amide bond formation is the basis for preparing complex peptide microarrays with thousands of different sequences in high yield with high reproducibility. The resulting peptide arrays are of higher quality than commercial peptide arrays. More than 4800 15-residue peptides resembling the entire Ebola virus proteome on a microarray are synthesized to study the antibody response of an Ebola virus infection survivor. Known and unknown epitopes that serve now as a basis for Ebola diagnostic development are identified. The versatility and precision of the synthesizer is demonstrated by in situ synthesis of fluorescent molecules via Schiff base reaction and multi-step patterning of precisely definable amounts of fluorophores. This automated laser transfer synthesis approach opens new avenues for high-throughput chemical synthesis and biological screening.
Collapse
Affiliation(s)
- Grigori Paris
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
- Department of System Dynamics and Friction Physics, Institute of Mechanics, Technical University of Berlin, Str. des 17. Juni 135, 10623, Berlin, Germany
| | - Jasmin Heidepriem
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Alexandra Tsouka
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Yuxin Liu
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Daniela S Mattes
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafe, Germany
| | - Sandra Pinzón Martín
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Pietro Dallabernardina
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Marco Mende
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Celina Lindner
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Robert Wawrzinek
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Christoph Rademacher
- Department of Pharmaceutical Sciences, University of Vienna, Althanstr. 14, Vienna, 1090, Austria
- Department of Microbiology and Immunobiology, Max F. Perutz Laboratories GmbH, Dr.-Bohr-Gasse 9, Vienna, 1030, Austria
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Frank Breitling
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafe, Germany
| | - Frank Ralf Bischoff
- Department of Functional Genome Analysis, German Cancer Research Center, Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Timo Wolf
- Infectious Diseases Unit, Department of Medicine, Goethe University Hospital, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Felix F Loeffler
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
6
|
Wojciechowska-Koszko I, Mnichowska-Polanowska M, Kwiatkowski P, Roszkowska P, Sienkiewicz M, Dołęgowska B. Immunoreactivity of Polish Lyme Disease Patient Sera to Specific Borrelia Antigens-Part 1. Diagnostics (Basel) 2021; 11:diagnostics11112157. [PMID: 34829504 PMCID: PMC8625222 DOI: 10.3390/diagnostics11112157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 12/22/2022] Open
Abstract
The diverse clinical picture and the non-specificity of symptoms in Lyme disease (LD) require the implementation of effective diagnostics, which should take into account the heterogeneity of Borrelia antigens. According to available guidelines, laboratories should use a two-tier serological diagnosis based on the enzyme-linked immunosorbent (ELISA) screening test and confirmation of the immunoblot (IB). The aim of the study was to investigate the immunoreactivity of LD patient sera to Borrelia antigens and to attempt to identify the genospecies responsible for LD using an ELISA–IB assay combination. Eighty patients with suspected LD and 22 healthy people participated in the study. All samples were tested with ELISA and IB assays in both IgM and IgG antibodies. In the case of the ELISA assay, more positive results were obtained in the IgM class than in the IgG class. In the case of the IB assay, positive results dominated in the IgG class. Positive results obtained in the IB assay most often showed IgM antibodies against the OspC and flagellin antigens, whereas the IgG antibodies were against VlsE, BmpA, OspC, p41, and p83 antigens. The IB assay is an important part of LD serodiagnosis and should be mandatory in diagnostic laboratories.
Collapse
Affiliation(s)
- Iwona Wojciechowska-Koszko
- Department of Diagnostic Immunology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (P.K.); (P.R.)
- Correspondence: ; Tel.: +48-91-466-12-59
| | - Magdalena Mnichowska-Polanowska
- Department of Medical Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Paweł Kwiatkowski
- Department of Diagnostic Immunology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (P.K.); (P.R.)
| | - Paulina Roszkowska
- Department of Diagnostic Immunology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (P.K.); (P.R.)
| | - Monika Sienkiewicz
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Muszynskiego St. 1, 90-151 Lodz, Poland;
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland;
| |
Collapse
|
7
|
Abstract
Lyme borreliosis is caused by a growing list of related, yet distinct, spirochetes with complex biology and sophisticated immune evasion mechanisms. It may result in a range of clinical manifestations involving different organ systems, and can lead to persistent sequelae in a subset of cases. The pathogenesis of Lyme borreliosis is incompletely understood, and laboratory diagnosis, the focus of this review, requires considerable understanding to interpret the results correctly. Direct detection of the infectious agent is usually not possible or practical, necessitating a continued reliance on serologic testing. Still, some important advances have been made in the area of diagnostics, and there are many promising ideas for future assay development. This review summarizes the state of the art in laboratory diagnostics for Lyme borreliosis, provides guidance in test selection and interpretation, and highlights future directions.
Collapse
|
8
|
Heiss K, Heidepriem J, Fischer N, Weber LK, Dahlke C, Jaenisch T, Loeffler FF. Rapid Response to Pandemic Threats: Immunogenic Epitope Detection of Pandemic Pathogens for Diagnostics and Vaccine Development Using Peptide Microarrays. J Proteome Res 2020; 19:4339-4354. [PMID: 32892628 PMCID: PMC7640972 DOI: 10.1021/acs.jproteome.0c00484] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Indexed: 12/18/2022]
Abstract
Emergence and re-emergence of pathogens bearing the risk of becoming a pandemic threat are on the rise. Increased travel and trade, growing population density, changes in urbanization, and climate have a critical impact on infectious disease spread. Currently, the world is confronted with the emergence of a novel coronavirus SARS-CoV-2, responsible for yet more than 800 000 deaths globally. Outbreaks caused by viruses, such as SARS-CoV-2, HIV, Ebola, influenza, and Zika, have increased over the past decade, underlining the need for a rapid development of diagnostics and vaccines. Hence, the rational identification of biomarkers for diagnostic measures on the one hand, and antigenic targets for vaccine development on the other, are of utmost importance. Peptide microarrays can display large numbers of putative target proteins translated into overlapping linear (and cyclic) peptides for a multiplexed, high-throughput antibody analysis. This enabled for example the identification of discriminant/diagnostic epitopes in Zika or influenza and mapping epitope evolution in natural infections versus vaccinations. In this review, we highlight synthesis platforms that facilitate fast and flexible generation of high-density peptide microarrays. We further outline the multifaceted applications of these peptide array platforms for the development of serological tests and vaccines to quickly encounter pandemic threats.
Collapse
Affiliation(s)
- Kirsten Heiss
- PEPperPRINT
GmbH, Rischerstrasse
12, 69123 Heidelberg, Germany
| | - Jasmin Heidepriem
- Max
Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Nico Fischer
- Section
Clinical Tropical Medicine, Department of Infectious Diseases, Heidelberg University Hospital, INF 324, 69120 Heidelberg, Germany
| | - Laura K. Weber
- PEPperPRINT
GmbH, Rischerstrasse
12, 69123 Heidelberg, Germany
- Institute
of Microstructure Technology, Karlsruhe
Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Christine Dahlke
- Division
of Infectious Diseases, First Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Department
of Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- German
Center for Infection Research, Partner Site
Hamburg-Lübeck-Borstel-Riems, 38124 Braunschweig, Germany
| | - Thomas Jaenisch
- Heidelberg
Institute of Global Health (HIGH), Heidelberg
University Hospital, Im Neuenheimer Feld 130, 69120 Heidelberg, Germany
- Center
for Global Health, Colorado School of Public Health, University of Colorado, Aurora, Colorado 80045, United States
- Department
of Epidemiology, Colorado School of Public Health, University of Colorado, Aurora, Colorado 80045, United States
| | - Felix F. Loeffler
- Max
Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Am Muehlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
9
|
Jayaraman V, Krishna K, Yang Y, Rajasekaran KJ, Ou Y, Wang T, Bei K, Krishnamurthy HK, Rajasekaran JJ, Rai AJ, Green DA. An ultra-high-density protein microarray for high throughput single-tier serological detection of Lyme disease. Sci Rep 2020; 10:18085. [PMID: 33093502 PMCID: PMC7581523 DOI: 10.1038/s41598-020-75036-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 10/09/2020] [Indexed: 11/14/2022] Open
Abstract
Current serological immunoassays have inherent limitations for certain infectious diseases such as Lyme disease, a bacterial infection caused by Borrelia burgdorferi in North America. Here we report a novel method of manufacturing high-density multiplexed protein microarrays with the capacity to detect low levels of antibodies accurately from small blood volumes in a fully automated system. A panel of multiple serological markers for Lyme disease are measured using a protein microarray system, Lyme Immunochip, in a single step but interpreted adhering to the standard two-tiered testing algorithm (enzyme immunoassay followed by Western blot). Furthermore, an enhanced IgM assay was supplemented to improve the test's detection sensitivity for early Lyme disease. With a training cohort (n = 40) and a blinded validation cohort (n = 90) acquired from CDC, the Lyme Immunochip identified a higher proportion of Lyme disease patients than the two-tiered testing (82.4% vs 70.6% in the training set, 66.7% vs 60.0% in the validation set, respectively). Additionally, the Immunochip improved sensitivity to 100% while having a lower specificity of 95.2% using a set of investigational antigens which are being further evaluated with a large cohort of blinded samples from the CDC and Columbia University. This universal microarray platform provides an unprecedented opportunity to resolve a broad range of issues with diagnostic tests, including multiplexing, workflow simplicity, and reduced turnaround time and cost.
Collapse
Affiliation(s)
| | | | | | | | - Yuzheng Ou
- Vibrant America LLC., San Carlos, CA, USA
| | | | - Kang Bei
- Vibrant Sciences LLC., San Carlos, CA, USA
| | | | | | - Alex J Rai
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Daniel A Green
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
10
|
Berek K, Hegen H, Auer M, Zinganell A, Di Pauli F, Deisenhammer F. Cerebrospinal fluid oligoclonal bands in Neuroborreliosis are specific for Borrelia burgdorferi. PLoS One 2020; 15:e0239453. [PMID: 32977328 PMCID: PMC7518929 DOI: 10.1371/journal.pone.0239453] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 09/07/2020] [Indexed: 11/18/2022] Open
Abstract
Background Cerebrospinal fluid (CSF) oligoclonal bands (OCB) occur in chronic or post-acute phase of inflammatory diseases of the central nervous system. Objective To determine whether CSF OCB in patients with neuroborreliosis (NB) are specific for borrelia burgdorferi senso lato. Methods We performed isoelectric focusing followed by immunoblotting in CSF of 10 NB patients and 11 controls (7 patients with multiple sclerosis, 2 patients with neuromyelitis optica spectrum disease, 1 patient with dementia and 1 patient with monoclonal gammopathy). Immunoblotting was performed using an uncoated as well as a borrelia antigen pre-coated nitrocellulose membrane (NCM). OCB were counted by visual inspection and photometric analysis. OCB were compared between uncoated und pre-coated NCM both in the NB and control group. For validation purposes inter-assay precision was determined by calculating the coefficient of variation (CV) Results Borrelia-specific OCB were found in the CSF of 9 NB patients and in none of the control subjects resulting in a sensitivity of 90% and a specificity of 100%. Number of NB specific OCB were 11±7 bands by photometric analyses compared to 9±5 bands by visual inspection. Validation experiments revealed an inconsistent inter-assay precision between visual and photometric analyses (NB uncoated: visual 28% versus photometric 14%, control subject uncoated: visual 16% versus photometric 24%). Conclusions In CSF samples with positive OCB, Borrelia-specific bands were detected in almost all NB patients and in none of the control subjects. Inconsistent inter-assay precision may be explained by a poor comparability of visual and photometric approach.
Collapse
Affiliation(s)
- Klaus Berek
- Department of Neurology, Neuroimmunology Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - Harald Hegen
- Department of Neurology, Neuroimmunology Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Auer
- Department of Neurology, Neuroimmunology Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - Anne Zinganell
- Department of Neurology, Neuroimmunology Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - Franziska Di Pauli
- Department of Neurology, Neuroimmunology Laboratory, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Deisenhammer
- Department of Neurology, Neuroimmunology Laboratory, Medical University of Innsbruck, Innsbruck, Austria
- * E-mail:
| |
Collapse
|
11
|
Comparison of motif-based and whole-unique-sequence-based analyses of phage display library datasets generated by biopanning of anti-Borrelia burgdorferi immune sera. PLoS One 2020; 15:e0226378. [PMID: 31940357 PMCID: PMC6961823 DOI: 10.1371/journal.pone.0226378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/25/2019] [Indexed: 11/19/2022] Open
Abstract
Detection of protection-associated epitopes via reverse vaccinology is the first step for development of subunit vaccines against microbial pathogens. Mapping subunit vaccine targets requires high throughput methods, which would allow delineation of epitopes recognized by protective antibodies on a large scale. Phage displayed random peptide library coupled to Next Generation Sequencing (PDRPL/NGS) is the universal platform that enables high-yield identification of peptides that mimic epitopes (mimotopes). Despite being unsurpassed as a tool for discovery of polyclonal serum mimotopes, the PDRPL/NGS is far inferior as a quantitative method of immune response. Difficult-to-control fluctuations in amounts of antibody-bound phages after rounds of selection and amplification diminish the quantitative capacity of the PDRPL/NGS. In an attempt to improve the accuracy of the PDRPL/NGS method, we compared the discriminating capacity of two approaches for PDRPL/NGS data analysis. The whole-unique-sequence-based analysis (WUSA) involved generation of 7-mer peptide profiles and comparison of the numbers of sequencing reads for unique peptide sequences between serum samples. The motif-based analysis (MA) included identification of 4-mer consensus motifs unifying unique 7-mer sequences and comparison of motifs between serum samples. The motif comparison was based not on the numbers of sequencing reads, but on the numbers of distinct 7-mers constituting the motifs. Our PDRPL/NGS datasets generated from biopanning of protective and non-protective anti-Borrelia burgdorferi sera of New Zealand rabbits were used to contrast the two approaches. As a result, the principle component analyses (PCA) showed that the discriminating powers of the WUSA and MA were similar. In contrast, the unsupervised hierarchical clustering obtained via the MA classified the preimmune, non-protective, and protective sera better than the WUSA-based clustering. Also, a total number of discriminating motifs was higher than that of discriminating 7-mers. In sum, our results indicate that MA approach improves the accuracy and quantitative capacity of the PDRPL/NGS method.
Collapse
|
12
|
Arumugam S, Nayak S, Williams T, di Santa Maria FS, Guedes MS, Chaves RC, Linder V, Marques AR, Horn EJ, Wong SJ, Sia SK, Gomes-Solecki M. A Multiplexed Serologic Test for Diagnosis of Lyme Disease for Point-of-Care Use. J Clin Microbiol 2019; 57:e01142-19. [PMID: 31597750 PMCID: PMC6879297 DOI: 10.1128/jcm.01142-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 09/27/2019] [Indexed: 12/24/2022] Open
Abstract
Single multiplexed assays could replace the standard 2-tiered (STT) algorithm recommended for the laboratory diagnosis of Lyme disease if they perform with a specificity and a sensitivity superior or equal to those of the STT algorithm. We used human serum rigorously characterized to be sera from patients with acute- and convalescent-phase early Lyme disease, Lyme arthritis, and posttreatment Lyme disease syndrome, as well as the necessary controls (n = 241 samples), to select the best of 12 Borrelia burgdorferi proteins to improve our microfluidic assay (mChip-Ld). We then evaluated its serodiagnostic performance in comparison to that of a first-tier enzyme immunoassay and the STT algorithm. We observed that more antigens became positive as Lyme disease progressed from early to late stages. We selected three antigens (3Ag) to include in the mChip-Ld: VlsE and a proprietary synthetic 33-mer peptide (PepVF) to capture sensitivity in all disease stages and OspC for early Lyme disease. With the specificity set at 95%, the sensitivity of the mChip-Ld with 3Ag ranged from 80% (95% confidence interval [CI], 56% to 94%) and 85% (95% CI, 74% to 96%) for two panels of serum from patients with early Lyme disease and was 100% (95% CI, 83% to 100%) for serum from patients with Lyme arthritis; the STT algorithm detected early Lyme disease in the same two panels of serum from patients with early Lyme disease with a sensitivity of 48.5% and 75% and Lyme arthritis in serum from patients with Lyme arthritis with a sensitivity of 100%, and the specificity was 97.5% to 100%. The mChip-Ld platform outperformed the STT algorithm according to sensitivity. These results open the door for the development of a single, rapid, multiplexed diagnostic test for point-of-care use that can be designed to identify the Lyme disease stage.
Collapse
Affiliation(s)
- Siddarth Arumugam
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Samiksha Nayak
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | | | | | - Mariana Soares Guedes
- Immuno Technologies Inc., Memphis, Tennessee, USA
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | | | | - Adriana R Marques
- Lyme Disease Studies Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Susan J Wong
- Wadsworth Center, New York State Department of Health, Axelrod Institute, Albany, New York, USA
| | - Samuel K Sia
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Maria Gomes-Solecki
- Immuno Technologies Inc., Memphis, Tennessee, USA
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
13
|
New Zealand White Rabbits Effectively Clear Borrelia burgdorferi B31 despite the Bacterium's Functional vlsE Antigenic Variation System. Infect Immun 2019; 87:IAI.00164-19. [PMID: 30988058 DOI: 10.1128/iai.00164-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/11/2019] [Indexed: 12/20/2022] Open
Abstract
Borrelia burgdorferi is a tick-borne bacterium responsible for approximately 300,000 annual cases of Lyme disease (LD) in the United States, with increasing incidences in other parts of the world. The debilitating nature of LD is mainly attributed to the ability of B. burgdorferi to persist in patients for many years despite strong anti-Borrelia antibody responses. Antimicrobial treatment of persistent infection is challenging. Similar to infection of humans, B. burgdorferi establishes long-term infection in various experimental animal models except for New Zealand White (NZW) rabbits, which clear the spirochete within 4 to 12 weeks. LD spirochetes have a highly evolved antigenic variation vls system, on the lp28-1 plasmid, where gene conversion results in surface expression of the antigenically variable VlsE protein. VlsE is required for B. burgdorferi to establish persistent infection by continually evading otherwise potent antibodies. Since the clearance of B. burgdorferi is mediated by humoral immunity in NZW rabbits, the previously reported results that LD spirochetes lose lp28-1 during rabbit infection could potentially explain the failure of B. burgdorferi to persist. However, the present study unequivocally disproves that previous finding by demonstrating that LD spirochetes retain the vls system. However, despite the vls system being fully functional, the spirochete fails to evade anti-Borrelia antibodies of NZW rabbits. In addition to being protective against homologous and heterologous challenges, the rabbit antibodies significantly ameliorate LD-induced arthritis in persistently infected mice. Overall, the current data indicate that NZW rabbits develop a protective antibody repertoire, whose specificities, once defined, will identify potential candidates for a much-anticipated LD vaccine.
Collapse
|
14
|
Weber LK, Isse A, Rentschler S, Kneusel RE, Palermo A, Hubbuch J, Nesterov-Mueller A, Breitling F, Loeffler FF. Antibody fingerprints in lyme disease deciphered with high density peptide arrays. Eng Life Sci 2017; 17:1078-1087. [PMID: 32624735 DOI: 10.1002/elsc.201700062] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 03/15/2017] [Accepted: 06/16/2017] [Indexed: 12/15/2022] Open
Abstract
Lyme disease is the most common tick-borne infectious disease in Europe and North America. Previous studies discovered the immunogenic role of a surface-exposed lipoprotein (VlsE) of Borreliella burgdorferi. We employed high density peptide arrays to investigate the antibody response to the VlsE protein in VlsE-positive patients by mapping the protein as overlapping peptides and subsequent in-depth epitope substitution analyses. These investigations led to the identification of antibody fingerprints represented by a number of key residues that are indispensable for the binding of the respective antibody. This approach allows us to compare the antibody specificities of different patients to the resolution of single amino acids. Our study revealed that the sera of VlsE-positive patients recognize different epitopes on the protein. Remarkably, in those cases where the same epitope is targeted, the antibody fingerprint is almost identical. Furthermore, we could correlate two fingerprints with human autoantigens and an Epstein-Barr virus epitope; yet, the link to autoimmune disorders seems unlikely and must be investigated in further studies. The other three fingerprints are much more specific for B. burgdorferi. Since antibody fingerprints of longer sequences have proven to be highly disease specific, our findings suggest that the fingerprints could function as diagnostic markers that can reduce false positive test results.
Collapse
Affiliation(s)
- Laura K Weber
- Institute of Microstructure Technology Karlsruhe Institute of Technology Karlsruhe Germany
| | - Awale Isse
- Institute of Microstructure Technology Karlsruhe Institute of Technology Karlsruhe Germany
| | - Simone Rentschler
- Institute of Microstructure Technology Karlsruhe Institute of Technology Karlsruhe Germany
| | | | - Andrea Palermo
- Institute of Microstructure Technology Karlsruhe Institute of Technology Karlsruhe Germany
| | - Jürgen Hubbuch
- Institute of Process Engineering in Life Sciences Section IV: Biomolecular Separation Engineering Karlsruhe Institute of Technology Karlsruhe Germany
| | | | - Frank Breitling
- Institute of Microstructure Technology Karlsruhe Institute of Technology Karlsruhe Germany
| | - Felix F Loeffler
- Institute of Microstructure Technology Karlsruhe Institute of Technology Karlsruhe Germany.,HEiKA-Heidelberg Karlsruhe Research Partnership Heidelberg University Karlsruhe Institute of Technology (KIT) Karlsruhe Germany.,Department of Biomolecular Systems Max Planck Institute of Colloids and Interfaces Potsdam Germany
| |
Collapse
|
15
|
Antibody Response to Lyme Disease Spirochetes in the Context of VlsE-Mediated Immune Evasion. Infect Immun 2016; 85:IAI.00890-16. [PMID: 27799330 DOI: 10.1128/iai.00890-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 12/31/2022] Open
Abstract
Lyme disease (LD), the most prevalent tick-borne illness in North America, is caused by Borrelia burgdorferi The long-term survival of B. burgdorferi spirochetes in the mammalian host is achieved though VlsE-mediated antigenic variation. It is mathematically predicted that a highly variable surface antigen prolongs bacterial infection sufficiently to exhaust the immune response directed toward invariant surface antigens. If the prediction is correct, it is expected that the antibody response to B. burgdorferi invariant antigens will become nonprotective as B. burgdorferi infection progresses. To test this assumption, changes in the protective efficacy of the immune response to B. burgdorferi surface antigens were monitored via a superinfection model over the course of 70 days. B. burgdorferi-infected mice were subjected to secondary challenge by heterologous B. burgdorferi at different time points postinfection (p.i.). When the infected mice were superinfected with a VlsE-deficient clone (ΔVlsE) at day 28 p.i., the active anti-B. burgdorferi immune response did not prevent ΔVlsE-induced spirochetemia. In contrast, most mice blocked culture-detectable spirochetemia induced by wild-type B. burgdorferi (WT), indicating that VlsE was likely the primary target of the antibody response. As the B. burgdorferi infection further progressed, however, reversed outcomes were observed. At day 70 p.i. the host immune response to non-VlsE antigens became sufficiently potent to clear spirochetemia induced by ΔVlsE and yet failed to prevent WT-induced spirochetemia. To test if any significant changes in the anti-B. burgdorferi antibody repertoire accounted for the observed outcomes, global profiles of antibody specificities were determined. However, comparison of mimotopes revealed no major difference between day 28 and day 70 antibody repertoires.
Collapse
|
16
|
The Past, Present, and (Possible) Future of Serologic Testing for Lyme Disease. J Clin Microbiol 2016; 54:1191-6. [PMID: 26865690 DOI: 10.1128/jcm.03394-15] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lyme disease prevails as the most commonly transmitted tick-borne infection in the United States, and serologic evaluation for antibodies to Borrelia burgdorferi remains the recommended modality for diagnosis. This review presents a brief historical perspective on the evolution of serologic assays for Lyme disease and provides a summary of the performance characteristics for the currently recommended two-tiered testing algorithm (TTTA). Additionally, a recently proposed alternative to the traditional TTTA is discussed, and novel methodologies, including immuno-PCR and metabolic profiling for Lyme disease, are outlined.
Collapse
|
17
|
Abstract
The majority of laboratory tests performed for the diagnosis of Lyme disease are based on detection of the antibody responses against B burgdorferi in serum. The sensitivity of antibody-based tests increases with the duration of the infection. Patients early in their illness are more likely to have a negative result. There is a need to simplify the testing algorithm for Lyme disease, improving sensitivity in early disease while still maintaining high specificity and providing information about the stage of infection. The development of a point of care assay and biomarkers for active infection would be major advances for the field.
Collapse
Affiliation(s)
- Adriana R Marques
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10/12C118 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
18
|
Jacek E, Tang KS, Komorowski L, Ajamian M, Probst C, Stevenson B, Wormser GP, Marques AR, Alaedini A. Epitope-Specific Evolution of Human B Cell Responses to Borrelia burgdorferi VlsE Protein from Early to Late Stages of Lyme Disease. THE JOURNAL OF IMMUNOLOGY 2015; 196:1036-43. [PMID: 26718339 DOI: 10.4049/jimmunol.1501861] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/17/2015] [Indexed: 12/20/2022]
Abstract
Most immunogenic proteins of Borrelia burgdorferi, the causative agent of Lyme disease, are known or expected to contain multiple B cell epitopes. However, the kinetics of the development of human B cell responses toward the various epitopes of individual proteins during the course of Lyme disease has not been examined. Using the highly immunogenic VlsE as a model Ag, we investigated the evolution of humoral immune responses toward its immunodominant sequences in 90 patients with a range of early to late manifestations of Lyme disease. The results demonstrate the existence of asynchronous, independently developing, Ab responses against the two major immunogenic regions of the VlsE molecule in the human host. Despite their strong immunogenicity, the target epitopes were inaccessible to Abs on intact spirochetes, suggesting a lack of direct immunoprotective effect. These observations document the association of immune reactivity toward specific VlsE sequences with different phases of Lyme disease, demonstrating the potential use of detailed epitope mapping of Ags for staging of the infection, and offer insights regarding the pathogen's possible immune evasion mechanisms.
Collapse
Affiliation(s)
- Elzbieta Jacek
- Department of Medicine, Columbia University Medical Center, New York, NY 10032
| | - Kevin S Tang
- Department of Medicine, Columbia University Medical Center, New York, NY 10032
| | - Lars Komorowski
- Institute for Experimental Immunology, Euroimmun AG, D-23560 Lubeck, Germany
| | - Mary Ajamian
- Department of Medicine, Columbia University Medical Center, New York, NY 10032
| | - Christian Probst
- Institute for Experimental Immunology, Euroimmun AG, D-23560 Lubeck, Germany
| | - Brian Stevenson
- University of Kentucky College of Medicine, Lexington, KY 40536
| | - Gary P Wormser
- Division of Infectious Diseases, Department of Medicine, New York Medical College, Valhalla, NY 10595; and
| | - Adriana R Marques
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814
| | - Armin Alaedini
- Department of Medicine, Columbia University Medical Center, New York, NY 10032;
| |
Collapse
|
19
|
Development of a Multiantigen Panel for Improved Detection of Borrelia burgdorferi Infection in Early Lyme Disease. J Clin Microbiol 2015; 53:3834-41. [PMID: 26447113 DOI: 10.1128/jcm.02111-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/29/2015] [Indexed: 01/08/2023] Open
Abstract
The current standard for laboratory diagnosis of Lyme disease in the United States is serologic detection of antibodies against Borrelia burgdorferi. The Centers for Disease Control and Prevention recommends a two-tiered testing algorithm; however, this scheme has limited sensitivity for detecting early Lyme disease. Thus, there is a need to improve diagnostics for Lyme disease at the early stage, when antibiotic treatment is highly efficacious. We examined novel and established antigen markers to develop a multiplex panel that identifies early infection using the combined sensitivity of multiple markers while simultaneously maintaining high specificity by requiring positive results for two markers to designate a positive test. Ten markers were selected from our initial analysis of 62 B. burgdorferi surface proteins and synthetic peptides by assessing binding of IgG and IgM to each in a training set of Lyme disease patient samples and controls. In a validation set, this 10-antigen panel identified a higher proportion of early-Lyme-disease patients as positive at the baseline or posttreatment visit than two-tiered testing (87.5% and 67.5%, respectively; P < 0.05). Equivalent specificities of 100% were observed in 26 healthy controls. Upon further analysis, positivity on the novel 10-antigen panel was associated with longer illness duration and multiple erythema migrans. The improved sensitivity and comparable specificity of our 10-antigen panel compared to two-tiered testing in detecting early B. burgdorferi infection indicates that multiplex analysis, featuring the next generation of markers, could advance diagnostic technology to better aid clinicians in diagnosing and treating early Lyme disease.
Collapse
|
20
|
|
21
|
Ajamian M, Kosofsky BE, Wormser GP, Rajadhyaksha AM, Alaedini A. Serologic markers of Lyme disease in children with autism. JAMA 2013; 309:1771-3. [PMID: 23632714 PMCID: PMC3956119 DOI: 10.1001/jama.2013.618] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Mary Ajamian
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Barry E. Kosofsky
- Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA
| | - Gary P. Wormser
- Division of Infectious Diseases, New York Medical College, Valhalla, NY, USA
| | | | - Armin Alaedini
- Department of Medicine, Columbia University Medical Center, New York, NY, USA
- Corresponding author: Armin Alaedini; Columbia University Medical Center; 1130 Saint Nicholas Ave., 9 Floor; New York, NY 10032; Tel: 212-851-4582;
| |
Collapse
|
22
|
Jacek E, Fallon BA, Chandra A, Crow MK, Wormser GP, Alaedini A. Increased IFNα activity and differential antibody response in patients with a history of Lyme disease and persistent cognitive deficits. J Neuroimmunol 2012; 255:85-91. [PMID: 23141748 DOI: 10.1016/j.jneuroim.2012.10.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 10/12/2012] [Accepted: 10/18/2012] [Indexed: 11/29/2022]
Abstract
Following antibiotic treatment for Lyme disease, some patients report persistent or relapsing symptoms of pain, fatigue, and/or cognitive deficits. Factors other than active infection, including immune abnormalities, have been suggested, but few clues regarding mechanism have emerged. Furthermore, the effect of antibiotic treatment on immune response in affected individuals remains unknown. In this study, a longitudinal analysis of specific immune markers of interest was carried out in patients with a history of Lyme disease and persistent objective memory impairment, prior to and following treatment with either ceftriaxone or placebo. IFNα activity was measured by detection of serum-induced changes in specific target genes, using a functional cell-based assay and quantitative real-time PCR. Level and pattern of antibody reactivity to brain antigens and to Borrelia burgdorferi proteins were analyzed by ELISA and immunoblotting. Sera from the patient cohort induced significantly higher expression of IFIT1 and IFI44 target genes than those from healthy controls, indicating increased IFNα activity. Antibody reactivity to specific brain and borrelial proteins was significantly elevated in affected patients. IFNα activity and antibody profile did not change significantly in response to ceftriaxone. The heightened antibody response implies enhanced immune stimulation, possibly due to prolonged exposure to the organism prior to the initial diagnosis and antibiotic treatment of Lyme disease. The increase in IFNα activity is suggestive of a mechanism contributing to the ongoing neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Elzbieta Jacek
- Division of Rheumatology, Hospital for Special Surgery, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
23
|
Maxmen A. Antibodies linked to long-term Lyme symptoms. Nature 2011. [DOI: 10.1038/news.2011.463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|