1
|
Debarba LK, Jayarathne HS, Stilgenbauer L, dos Santos ALT, Koshko L, Scofield S, Sullivan R, Mandal A, Klueh U, Sadagurski M. Microglia Mediate Metabolic Dysfunction From Common Air Pollutants Through NF-κB Signaling. Diabetes 2024; 73:2065-2077. [PMID: 39320947 PMCID: PMC11579412 DOI: 10.2337/db24-0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 09/08/2024] [Indexed: 09/26/2024]
Abstract
The prevalence of type 2 diabetes (T2D) poses a significant health challenge, yet the contribution of air pollutants to T2D epidemics remains under-studied. Several studies demonstrated a correlation between exposure to volatile organic compounds (VOCs) in indoor/outdoor environments and T2D. Here, we conducted the first meta-analysis, establishing a robust association between exposure to benzene, a prevalent airborne VOC, and insulin resistance in humans across all ages. We used a controlled benzene exposure system, continuous glucose monitoring approach, and indirect calorimetry in mice, to investigate the underlying mechanisms. Following exposure, disruptions in energy homeostasis, accompanied by modifications in the hypothalamic transcriptome and alterations in insulin and immune signaling, were observed exclusively in males, leading to a surge in blood glucose levels. In agreement, RNA sequencing of microglia revealed increased expression of genes associated with immune response and NF-κB signaling. Selective ablation of IKKβ in immune cells (Cx3cr1GFPΔIKK) or exclusively in microglia (Tmem119ERΔIKK) in adult mice alleviated benzene-induced gliosis, restored energy homeostasis and hypothalamic gene expression, and protected against hyperglycemia. We conclude that the microglial NF-κB pathway plays a critical role in chemical-induced metabolic disturbances, revealing a vital pathophysiological mechanism linking exposure to airborne toxicants and the onset of metabolic diseases. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Lucas K. Debarba
- Department of Biological Sciences, Wayne State University, Detroit, MI
| | | | | | | | - Lisa Koshko
- Department of Biological Sciences, Wayne State University, Detroit, MI
| | - Sydney Scofield
- Department of Biological Sciences, Wayne State University, Detroit, MI
| | - Ryan Sullivan
- Department of Biological Sciences, Wayne State University, Detroit, MI
| | - Abhijit Mandal
- Department of Mathematical Sciences, University of Texas at El Paso, El Paso, TX
| | - Ulrike Klueh
- Biomedical Engineering, Wayne State University, Detroit, MI
| | - Marianna Sadagurski
- Department of Biological Sciences, Wayne State University, Detroit, MI
- Institute of Environmental Health Sciences, Integrative Biosciences Center, Wayne State University, Detroit, MI
| |
Collapse
|
2
|
Wang J, Ma Y, Tang L, Li D, Xie J, Sun Y, Tian Y. Long-Term Exposure to Low Concentrations of Ambient Benzene and Mortality in a National English Cohort. Am J Respir Crit Care Med 2024; 209:987-994. [PMID: 38128545 DOI: 10.1164/rccm.202308-1440oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/21/2023] [Indexed: 12/23/2023] Open
Abstract
Background: Benzene affects human health through environmental exposure in addition to occupational contact. However, few studies have examined the associations between long-term exposure to low concentrations of ambient benzene and mortality risks in nonoccupational settings.Methods: This prospective cohort study consists of 393,042 participants without stroke, myocardial infarction, or cancer at baseline from the UK Biobank. Annual average concentrations of benzene for each year during follow-up were measured using air dispersion models. The main outcomes were all-cause mortality and mortality from specific causes. Cox proportional-hazards models with time-varying exposure measurements were used to estimate the hazard ratios and 95% confidence intervals (CIs) for mortality risks. Restricted cubic spline models were used to estimate exposure-response relationships.Measurements and Main Results: With each interquartile range increase in the average annual concentration of benzene, the adjusted hazard ratios of mortality risk from all causes, cardiovascular disease, cancer, and respiratory disease were 1.26 (95% CI, 1.24-1.27), 1.24 (95% CI, 1.21-1.28), 1.27 (95% CI, 1.25-1.29), and 1.25 (95% CI, 1.20-1.30), respectively. The monotonically increasing exposure-response curves showed no threshold and plateau within the observed concentration range. Furthermore, the effect of benzene exposure on mortality persisted across different subgroups and was somewhat stronger in younger and White people (P for interaction < 0.05).Conclusions: Long-term exposure to low concentrations of ambient benzene significantly increases mortality risk in the general population. Ambient benzene represents a potential threat to public health, and further investigations are needed to support timely pollution regulation and health protection.
Collapse
Affiliation(s)
- Jianing Wang
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating)
- Department of Maternal and Child Health, School of Public Health, and
| | - Yudiyang Ma
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating)
- Department of Maternal and Child Health, School of Public Health, and
| | - Linxi Tang
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating)
- Department of Maternal and Child Health, School of Public Health, and
| | - Dankang Li
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating)
- Department of Maternal and Child Health, School of Public Health, and
| | - Junqing Xie
- Center for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, The Botnar Research Centre, Oxford, United Kingdom; and
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaohua Tian
- Ministry of Education Key Laboratory of Environment and Health, State Key Laboratory of Environmental Health (Incubating)
- Department of Maternal and Child Health, School of Public Health, and
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Debarba LK, Jayarathne HSM, Stilgenbauer L, Terra Dos Santos AL, Koshko L, Scofield S, Sullivan R, Mandal A, Klueh U, Sadagurski M. Microglial NF-κB Signaling Deficiency Protects Against Metabolic Disruptions Caused by Volatile Organic Compound via Modulating the Hypothalamic Transcriptome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566279. [PMID: 38014216 PMCID: PMC10680567 DOI: 10.1101/2023.11.08.566279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Prolonged exposure to benzene, a prevalent volatile organic compound (VOC), at concentrations found in smoke, triggers hyperglycemia, and inflammation in mice. Corroborating this with existing epidemiological data, we show a strong correlation between environmental benzene exposure and metabolic impairments in humans. To uncover the underlying mechanisms, we employed a controlled exposure system and continuous glucose monitoring (CGM), revealing rapid blood glucose surges and disturbances in energy homeostasis in mice. These effects were attributed to alterations in the hypothalamic transcriptome, specifically impacting insulin and immune response genes, leading to hypothalamic insulin resistance and neuroinflammation. Moreover, benzene exposure activated microglial transcription characterized by heightened expression of IKKβ/NF-κB-related genes. Remarkably, selective removal of IKKβ in immune cells or adult microglia in mice alleviated benzene-induced hypothalamic gliosis, and protected against hyperglycemia. In summary, our study uncovers a crucial pathophysiological mechanism, establishing a clear link between airborne toxicant exposure and the onset of metabolic diseases.
Collapse
|
4
|
Maxwell A, Adzibolosu N, Hu A, You Y, Stemmer PM, Ruden DM, Petriello MC, Sadagurski M, Debarba LK, Koshko L, Ramadoss J, Nguyen AT, Richards D, Liao A, Mor G, Ding J. Intrinsic sexual dimorphism in the placenta determines the differential response to benzene exposure. iScience 2023; 26:106287. [PMID: 37153445 PMCID: PMC10156617 DOI: 10.1016/j.isci.2023.106287] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/09/2022] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Maternal immune activation (MIA) by environmental challenges is linked to severe developmental complications, such as neurocognitive disorders, autism, and even fetal/maternal death. Benzene is a major toxic compound in air pollution that affects the mother as well as the fetus and has been associated with reproductive complications. Our objective was to elucidate whether benzene exposure during gestation triggers MIA and its impact on fetal development. We report that benzene exposure during pregnancy leads MIA associated with increased fetal resorptions, fetal growth, and abnormal placenta development. Furthermore, we demonstrate the existence of a sexual dimorphic response to benzene exposure in male and female placentas. The sexual dimorphic response is a consequence of inherent differences between male and female placenta. These data provide crucial information on the origins or sexual dimorphism and how exposure to environmental factors can have a differential impact on the development of male and female offspring.
Collapse
Affiliation(s)
- Anthony Maxwell
- C.S Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Nicholas Adzibolosu
- C.S Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Anna Hu
- C.S Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Yuan You
- C.S Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Paul M. Stemmer
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Douglas M. Ruden
- C.S Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Michael C. Petriello
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI, USA
| | - Marianna Sadagurski
- Department of Biological Sciences, Integrative Biosciences Center, Wayne State University, Detroit, MI, USA
| | - Lucas K. Debarba
- Department of Biological Sciences, Integrative Biosciences Center, Wayne State University, Detroit, MI, USA
| | - Lisa Koshko
- Department of Biological Sciences, Integrative Biosciences Center, Wayne State University, Detroit, MI, USA
| | - Jayanth Ramadoss
- C.S Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | | | - Darby Richards
- School of Medicine, Wayne State University, Detroit, MI, USA
| | - Aihua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Gil Mor
- C.S Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Jiahui Ding
- C.S Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
5
|
Li W, Ruan W, Cui X, Lu Z, Wang D. Blood volatile organic aromatic compounds concentrations across adulthood in relation to total and cause specific mortality: A prospective cohort study. CHEMOSPHERE 2022; 286:131590. [PMID: 34293566 DOI: 10.1016/j.chemosphere.2021.131590] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE We aimed to evaluate the relationship between blood volatile organic aromatic compounds (VOACs) across adulthood and mortality. METHODS A total of 16,968 participants from the National health and Nutrition Examination Surveys (NHANES 1988-1994 and 1999-2014) were included in the present study. Cox proportional hazards models were used to explore the associations between VOACs and total or cause-specific mortality. RESULTS A total of 1,282 deaths occurred among 16,968 participants with a median follow-up of 8.06 years. We observed significant positive dose-response relationship between VOACs including benzene, ethylbenzene, o-xylene, m-/p-xylene and BEX (the sum of benzene, ethylbenzene, m-/p-and o-xylene concentrations) and total mortality, the multiple adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) were 1.24 (1.13, 1.36), 1.15 (1.04, 1.27), 1.10 (1.00, 1.23), 1.09 (1.01, 1.19) and 1.21 (1.08, 1.35), respectively. In addition, all VOACs significantly elevated risk of the mortality from cancer, and benzene was associated with risk of the mortality from heart disease and the HRs and 95% CIs was 1.39 (1.09-1.77). For non-smokers, benzene, ethylbenzene and BEX were associated with elevated risk of total mortality and the mortality from cancer, and benzene was associated with risk of the mortality from heart disease. CONCLUSIONS Blood VOACs are associated with increased risks of total and specific-cause mortality, which are also observed among non-smokers.
Collapse
Affiliation(s)
- Wenzhen Li
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Wenyu Ruan
- Shangluo Central Hospital, Shangluo, Shaanxi, 726000, China
| | - Xiuqing Cui
- Institute of Health Surveillance, Analysis and Protection, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei, 430079, China
| | - Zuxun Lu
- Department of Social Medicine and Health Management, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Dongming Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
6
|
Martins Costa Gomes G, de Gouveia Belinelo P, Starkey MR, Murphy VE, Hansbro PM, Sly PD, Robinson PD, Karmaus W, Gibson PG, Mattes J, Collison AM. Cord blood group 2 innate lymphoid cells are associated with lung function at 6 weeks of age. Clin Transl Immunology 2021; 10:e1296. [PMID: 34306680 PMCID: PMC8292948 DOI: 10.1002/cti2.1296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/27/2021] [Accepted: 05/21/2021] [Indexed: 11/21/2022] Open
Abstract
Objective Offspring born to mothers with asthma in pregnancy are known to have lower lung function which tracks with age. Human group 2 innate lymphoid cells (ILC2) accumulate in foetal lungs, at 10‐fold higher levels compared to adult lungs. However, there are no data on foetal ILC2 numbers and the association with respiratory health outcomes such as lung function in early life. We aimed to investigate cord blood immune cell populations from babies born to mothers with asthma in pregnancy. Methods Cord blood from babies born to asthmatic mothers was collected, and cells were stained in whole cord blood. Analyses were done using traditional gating approaches and computational methodologies (t‐distributed stochastic neighbour embedding and PhenoGraph algorithms). At 6 weeks of age, the time to peak tidal expiratory flow as a percentage of total expiratory flow time (tPTEF/tE%) was determined as well as Lung Clearance Index (LCI), during quiet natural sleep. Results Of 110 eligible infants (March 2017 to November 2019), 91 were successfully immunophenotyped (82.7%). Lung function was attempted in 61 infants (67.0%), and 43 of those infants (70.5% of attempted) had technically acceptable tPTEF/tE% measurements. Thirty‐four infants (55.7% of attempted) had acceptable LCI measurements. Foetal ILC2 numbers with increased expression of chemoattractant receptor‐homologous molecule (CRTh2), characterised by two distinct analysis methodologies, were associated with poorer infant lung function at 6 weeks of age.” Conclusion Foetal immune responses may be a surrogate variable for or directly influence lung function outcomes in early life.
Collapse
Affiliation(s)
- Gabriela Martins Costa Gomes
- Priority Research Centre GrowUpWell® - Hunter Medical Research Institute The University of Newcastle Newcastle NSW Australia
| | - Patricia de Gouveia Belinelo
- Priority Research Centre GrowUpWell® - Hunter Medical Research Institute The University of Newcastle Newcastle NSW Australia
| | - Malcolm R Starkey
- Priority Research Centre GrowUpWell® - Hunter Medical Research Institute The University of Newcastle Newcastle NSW Australia.,Priority Research Centre for Healthy Lungs - Hunter Medical Research Institute University of Newcastle Newcastle NSW Australia.,Department of Immunology and Pathology Central Clinical School Monash University Melbourne VIC Australia
| | - Vanessa E Murphy
- Priority Research Centre GrowUpWell® - Hunter Medical Research Institute The University of Newcastle Newcastle NSW Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs - Hunter Medical Research Institute University of Newcastle Newcastle NSW Australia.,Centenary UTS Centre for Inflammation Centenary Institute Sydney NSW Australia
| | - Peter D Sly
- Child Health Research Centre University of Queensland Brisbane QLD Australia
| | - Paul D Robinson
- Department of Respiratory Medicine The Children's Hospital at Westmead Sydney NSW Australia
| | | | - Peter G Gibson
- Priority Research Centre for Healthy Lungs - Hunter Medical Research Institute University of Newcastle Newcastle NSW Australia.,Sleep Medicine Department John Hunter Hospital Newcastle NSW Australia
| | - Joerg Mattes
- Priority Research Centre GrowUpWell® - Hunter Medical Research Institute The University of Newcastle Newcastle NSW Australia.,Paediatric Respiratory & Sleep Medicine Department John Hunter Children's Hospital Newcastle NSW Australia
| | - Adam M Collison
- Priority Research Centre GrowUpWell® - Hunter Medical Research Institute The University of Newcastle Newcastle NSW Australia
| |
Collapse
|
7
|
Martins Costa Gomes G, Karmaus W, Murphy VE, Gibson PG, Percival E, Hansbro PM, Starkey MR, Mattes J, Collison AM. Environmental Air Pollutants Inhaled during Pregnancy Are Associated with Altered Cord Blood Immune Cell Profiles. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18147431. [PMID: 34299892 PMCID: PMC8303567 DOI: 10.3390/ijerph18147431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 12/11/2022]
Abstract
Air pollution exposure during pregnancy may be a risk factor for altered immune maturation in the offspring. We investigated the association between ambient air pollutants during pregnancy and cell populations in cord blood from babies born to mothers with asthma enrolled in the Breathing for Life Trial. For each patient (n = 91), daily mean ambient air pollutant levels were extracted during their entire pregnancy for sulfur dioxide (SO2), nitric oxide, nitrogen dioxide, carbon monoxide, ozone, particulate matter <10 μm (PM10) or <2.5 μm (PM2.5), humidity, and temperature. Ninety-one cord blood samples were collected, stained, and assessed using fluorescence-activated cell sorting (FACS). Principal Component (PC) analyses of both air pollutants and cell types with linear regression were employed to define associations. Considering risk factors and correlations between PCs, only one PC from air pollutants and two from cell types were statistically significant. PCs from air pollutants were characterized by higher PM2.5 and lower SO2 levels. PCs from cell types were characterized by high numbers of CD8 T cells, low numbers of CD4 T cells, and by high numbers of plasmacytoid dendritic cells (pDC) and low numbers of myeloid DCs (mDCs). PM2.5 levels during pregnancy were significantly associated with high numbers of pDCs (p = 0.006), and SO2 with high numbers of CD8 T cells (p = 0.002) and low numbers of CD4 T cells (p = 0.011) and mDCs (p = 4.43 × 10−6) in cord blood. These data suggest that ambient SO2 and PM2.5 exposure are associated with shifts in cord blood cell types that are known to play significant roles in inflammatory respiratory disease in childhood.
Collapse
Affiliation(s)
- Gabriela Martins Costa Gomes
- Priority Research Centre GrowUpWell®, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW 2308, Australia; (G.M.C.G.); (V.E.M.); (E.P.); (J.M.)
| | - Wilfried Karmaus
- School of Public Health, University of Memphis, Memphis, TN 38152, USA;
| | - Vanessa E. Murphy
- Priority Research Centre GrowUpWell®, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW 2308, Australia; (G.M.C.G.); (V.E.M.); (E.P.); (J.M.)
| | - Peter G. Gibson
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW 2308, Australia; (P.G.G.); (P.M.H.)
- Sleep Medicine Department, John Hunter Hospital, Newcastle, NSW 2305, Australia
| | - Elizabeth Percival
- Priority Research Centre GrowUpWell®, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW 2308, Australia; (G.M.C.G.); (V.E.M.); (E.P.); (J.M.)
| | - Philip M. Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW 2308, Australia; (P.G.G.); (P.M.H.)
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW 2007, Australia
| | - Malcolm R. Starkey
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC 3800, Australia;
| | - Joerg Mattes
- Priority Research Centre GrowUpWell®, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW 2308, Australia; (G.M.C.G.); (V.E.M.); (E.P.); (J.M.)
- Paediatric Respiratory & Sleep Medicine Department, John Hunter Children’s Hospital, Newcastle, NSW 2305, Australia
| | - Adam M. Collison
- Priority Research Centre GrowUpWell®, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW 2308, Australia; (G.M.C.G.); (V.E.M.); (E.P.); (J.M.)
- Correspondence: ; Tel.: +61-2-4042-0219
| |
Collapse
|
8
|
Junge KM, Buchenauer L, Elter E, Butter K, Kohajda T, Herberth G, Röder S, Borte M, Kiess W, von Bergen M, Simon JC, Rolle-Kampczyk UE, Lehmann I, Gminski R, Ohlmeyer M, Polte T. Wood emissions and asthma development: Results from an experimental mouse model and a prospective cohort study. ENVIRONMENT INTERNATIONAL 2021; 151:106449. [PMID: 33611105 DOI: 10.1016/j.envint.2021.106449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/22/2020] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Increased use of renewable resources like sustainably produced wood in construction or for all sorts of long-lived products is considered to contribute to reducing society's carbon footprint. However, as a natural, biological material, wood and wood products emit specific volatile organic compounds (VOCs). Therefore, the evaluation of possible health effects due to wood emissions is of major interest. OBJECTIVES We investigated the effects of an exposure to multiple wood-related VOCs on asthma development. METHODS A murine asthma model was used to evaluate possible allergic and inflammatory effects on the lung after short- or long-term and perinatal exposure to pinewood or oriented strand board (OSB). In addition, wood-related VOCs were measured within the German prospective mother-child cohort LINA and their joint effect on early wheezing or asthma development in children until the age of 10 was estimated by Bayesian kernel machine regression (BKMR) stratifying also for family history of atopy (FHA). RESULTS Our experimental data show that neither pinewood nor OSB emissions even at high total VOC levels and a long-lasting exposure period induce significant inflammatory or asthma-promoting effects in sensitized or non-sensitized mice. Moreover, an exposure during the vulnerable time window around birth was also without effect. Consistently, in our mother-child cohort LINA, an exposure to multiple wood-related VOCs during pregnancy or the first year of life was not associated with early wheezing or asthma development in children independent from their FHA. CONCLUSION Our findings indicate that emissions from wood and wood products at levels commonly occurring in the living environment do not exert adverse effects concerning wheezing or asthma development.
Collapse
Affiliation(s)
- Kristin M Junge
- UFZ - Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Environmental Immunology, Leipzig, Germany
| | - Lisa Buchenauer
- UFZ - Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Environmental Immunology, Leipzig, Germany; Department of Dermatology, Venerology and Allergology, Leipzig University Medical Center, University of Leipzig, Leipzig, Germany
| | - Elena Elter
- UFZ - Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Environmental Immunology, Leipzig, Germany; Department of Dermatology, Venerology and Allergology, Leipzig University Medical Center, University of Leipzig, Leipzig, Germany
| | - Katja Butter
- Thünen Institute of Wood Research, Hamburg, Germany
| | - Tibor Kohajda
- UFZ - Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Molecular Systems Biology, Leipzig, Germany
| | - Gunda Herberth
- UFZ - Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Environmental Immunology, Leipzig, Germany
| | - Stefan Röder
- UFZ - Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Environmental Immunology, Leipzig, Germany
| | - Michael Borte
- Children's Hospital, Municipal Hospital "St. Georg", Leipzig, Germany
| | - Wieland Kiess
- University of Leipzig, Hospital for Children and Adolescents - Centre for Pediatric Research, Leipzig, Germany; University of Leipzig, LIFE - Leipzig Research Centre for Civilization Diseases, Leipzig, Germany
| | - Martin von Bergen
- UFZ - Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Molecular Systems Biology, Leipzig, Germany; University of Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Leipzig, Germany
| | - Jan C Simon
- Department of Dermatology, Venerology and Allergology, Leipzig University Medical Center, University of Leipzig, Leipzig, Germany
| | - Ulrike E Rolle-Kampczyk
- UFZ - Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Molecular Systems Biology, Leipzig, Germany
| | - Irina Lehmann
- Charité - Universitätsmedizin Berlin, Environmental Epigenetics and Lung Research Group, Berlin, Germany; Berlin Institute of Health (BIH), Molecular Epidemiology, Berlin, Germany
| | - Richard Gminski
- Institute for Infection Prevention and Hospital Epidemiology, Environmental Medicine, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | | | - Tobias Polte
- UFZ - Helmholtz Centre for Environmental Research Leipzig-Halle, Department of Environmental Immunology, Leipzig, Germany; Department of Dermatology, Venerology and Allergology, Leipzig University Medical Center, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
9
|
Jiang Y, Zhang H, Andrews SV, Arshad H, Ewart S, Holloway JW, Fallin MD, Bakulski KM, Karmaus W. Estimation of Eosinophil Cells in Cord Blood with References Based on Blood in Adults via Bayesian Measurement Error Modeling. Bioinformatics 2019; 36:btz839. [PMID: 31710672 PMCID: PMC10251766 DOI: 10.1093/bioinformatics/btz839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Eosinophils are phagocytic white blood cells with a variety of roles in the immune system. In situations where actual counts are not available, high quality approximations of their cell proportions using indirect markers are critical. RESULTS We develop a Bayesian measurement error model to estimate proportions of eosinophils in cord blood, using the cord blood DNA methylation profiles, based on markers of eosinophil cell heterogeneity in blood of adults. The proposed method can be directly extended to other cells across different reference panels. We demonstrate the method's estimation accuracy using B cells and show that the findings support the proposed approach. The method has been incorporated into the estimateCellCounts function in the minfi package to estimate eosinophil cells proportions in cord blood. AVAILABILITY estimateCellCounts function is implemented and available in Bioconductor package minfi. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yu Jiang
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA
| | - Hongmei Zhang
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA
| | - Shan V Andrews
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Newport, Isle of Wight, PO30 5TG, UK
| | - Susan Ewart
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - M Daniele Fallin
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Kelly M Bakulski
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics and Environmental Health, School of Public Health, University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
10
|
Caesarean delivery, immune function and inflammation in early life among Ecuadorian infants and young children. J Dev Orig Health Dis 2019; 10:555-562. [PMID: 30728087 DOI: 10.1017/s2040174419000047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Caesarean delivery has been linked to a number of inflammatory conditions in childhood and adolescence. Yet the mechanisms underlying these associations and their generalizability across contexts with different postnatal feeding and pathogenic exposures remain unclear. This study tests the association between delivery type and three measures of immune function, inflammation, morbidity and leukocyte proportions, in Ecuadorian infants and children aged 6 months to 2 years. Data were collected from mother-child pairs participating in a nationally representative health and nutrition survey Encuesta Nacional de Salud y Nutricion (ENSANUT-ECU) conducted in 2012. The analytic sample includes 828 mothers and infants with delivery information and measured biomarkers. Poisson regression models were used to examine the association between delivery type and markers of immune function, controlling for maternal and infant characteristics, including age, sex, sociodemographic characteristics and medical indications. 40.8% (n=338) of sample infants and children were delivered by caesarean. Compared to those born vaginally, infants born by caesarean were less likely to have elevated C-reactive protein (CRP) [CRP>2 mg/l; risk ratio (RR): 0.76, 95% confidence interval (CI): 0.58-1.00] and more likely to have illness symptoms (RR: 1.22, 95% CI: 1.01-1.46) and elevated basophils (RR: 1.83, 95% CI: 1.03-3.25). No other immune cell proportions differed by delivery type. The results suggest that differences in the perinatal exposures accompanying caesarean delivery may alter immune development and function, particularly in the inflammatory response to infection and in cells involved in the allergic response, across infancy and early childhood. Understanding the pathways linking perinatal exposures to immune development is important for preventing the development of inflammatory conditions.
Collapse
|
11
|
Gallant MJ, Ellis AK. What can we learn about predictors of atopy from birth cohorts and cord blood biomarkers? Ann Allergy Asthma Immunol 2019; 120:138-144. [PMID: 29413337 DOI: 10.1016/j.anai.2017.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Mallory J Gallant
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Allergy Research Unit, Kingston General Hospital, Kingston, Ontario, Canada
| | - Anne K Ellis
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada; Allergy Research Unit, Kingston General Hospital, Kingston, Ontario, Canada; Department of Medicine, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
12
|
Burbank AJ, Sood AK, Kesic MJ, Peden DB, Hernandez ML. Environmental determinants of allergy and asthma in early life. J Allergy Clin Immunol 2017; 140:1-12. [PMID: 28673399 DOI: 10.1016/j.jaci.2017.05.010] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 12/24/2022]
Abstract
Allergic disease prevalence has increased significantly in recent decades. Primary prevention efforts are being guided by study of the exposome (or collective environmental exposures beginning during the prenatal period) to identify modifiable factors that affect allergic disease risk. In this review we explore the evidence supporting a relationship between key components of the external exposome in the prenatal and early-life periods and their effect on atopy development focused on microbial, allergen, and air pollution exposures. The abundance and diversity of microbial exposures during the first months and years of life have been linked with risk of allergic sensitization and disease. Indoor environmental allergen exposure during early life can also affect disease development, depending on the allergen type, dose, and timing of exposure. Recent evidence supports the role of ambient air pollution in allergic disease inception. The lack of clarity in the literature surrounding the relationship between environment and atopy reflects the complex interplay between cumulative environmental factors and genetic susceptibility, such that no one factor dictates disease development in all subjects. Understanding the effect of the summation of environmental exposures throughout a child's development is needed to identify cost-effective interventions that reduce atopy risk in children.
Collapse
Affiliation(s)
- Allison J Burbank
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Amika K Sood
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Matthew J Kesic
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - David B Peden
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Michelle L Hernandez
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC.
| |
Collapse
|
13
|
Maternal cytokine status may prime the metabolic profile and increase risk of obesity in children. Int J Obes (Lond) 2017; 41:1440-1446. [PMID: 28487553 DOI: 10.1038/ijo.2017.113] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 03/16/2017] [Accepted: 03/26/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND The maternal inflammation status during pregnancy has been associated with metabolic imprinting and obesity development in the child. However, the influence of the maternal Th2 cytokines, interleukin-4 (IL4), IL5 and IL13, has not been studied so far. METHODS We investigated the relationship between maternal innate (IL6, IL8, IL10 and tumor necrosis factor-α (TNFa)) and adaptive (interferon-γ, IL4, IL5 and IL13) blood cytokine levels at 34 weeks of gestation and children's overweight development until the age of 3 years in 407 children of the German longitudinal LINA (Lifestyle and Environmental Factors and their Influence on Newborns Allergy risk) cohort. Children's body weight and height were measured during the annual clinical visits or acquired from questionnaires. Body mass index (BMI) Z-scores were calculated according to the WHO reference data to adjust for child's age and gender. Cytokine secretion was stimulated with phytohemagglutinin or lipopolysaccharide and measured by cytometric bead assay. Furthermore, we assessed metabolic parameter in blood of 318 children at age 1 using the AbsoluteIDQ p180 Kit (Biocrates LIFE Science AG). RESULTS Applying logistic regression models, we found that an increase of maternal IL4 and IL13 was associated with a decreased risk for overweight development in 1- and 2-year-old children. This effect was consistent up to the age of 3 years for IL13 and mainly concerns children without maternal history of atopy. Children's acylcarnitine concentrations at 1 year were positively correlated with maternal IL13 levels and inversely associated with the BMI Z-score at age 1. CONCLUSIONS We were able to show for the first time that the maternal Th2 status may be linked inversely to early childhood overweight development accompanied by an altered metabolic profile of the fetus. However, our data do not support a direct mediating role of acylcarnitines on maternal IL13-induced weight development.
Collapse
|
14
|
The LINA Study: Higher Sensitivity of Infant Compared to Maternal Eosinophil/Basophil Progenitors to Indoor Chemical Exposures. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2016; 2016:5293932. [PMID: 27313631 PMCID: PMC4899584 DOI: 10.1155/2016/5293932] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 03/22/2016] [Accepted: 03/30/2016] [Indexed: 12/16/2022]
Abstract
Purpose. Enhanced eosinophil/basophil (Eo/B) progenitor cell levels are known to be associated with allergic inflammation and atopy risk. The aim of the present study was to investigate the influence of different indoor exposures on the recruitment and differentiation of Eo/B progenitors in mother-child pairs. Methods. In 68 mother-child pairs of the LINA study peripheral blood mononuclear cells were used to assess Eo/B colony forming units (CFUs). Information about disease outcomes and indoor exposures was obtained from questionnaires. Indoor concentrations of volatile organic compounds (VOCs) were measured by passive sampling. Results. Infant's Eo/B CFUs were positively associated with exposure to tobacco smoke, disinfectants, or VOCs. In contrast, for maternal Eo/B CFUs, only a few associations were seen. Higher numbers of infant Eo/B CFUs were observed in children with wheezing symptoms within the second year of life. Conclusions. We demonstrate that infant's hematopoietic cells seem to respond with more sensitivity to environmental exposure compared to maternal cells. At least in infants, an activation of these hematopoietic cells by environmental exposure could contribute to an enhanced risk for the development of respiratory outcomes.
Collapse
|
15
|
Validation of a multi-analyte HPLC-DAD method for determination of uric acid, creatinine, homovanillic acid, niacinamide, hippuric acid, indole-3-acetic acid and 2-methylhippuric acid in human urine. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 998-999:40-4. [PMID: 26151191 DOI: 10.1016/j.jchromb.2015.06.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 01/01/2023]
Abstract
During the last decades exposure sciences and epidemiological studies attracts more attention to unravel the mechanisms for the development of chronic diseases. According to this an existing HPLC-DAD method for determination of creatinine in urine samples was expended for seven analytes and validated. Creatinine, uric acid, homovanillic acid, niacinamide, hippuric acid, indole-3-acetic acid, and 2-methylhippuric acid were separated by gradient elution (formate buffer/methanol) using an Eclipse Plus C18 Rapid Resolution column (4.6mm×100mm). No interfering signals were detected in mobile phase. After injection of blank urine samples signals for the endogenous compounds but no interferences were detected. All analytes were linear in the selected calibration range and a non weighted calibration model was chosen. Bias, intra-day and inter-day precision for all analytes were below 20% for quality control (QC) low and below 10% for QC medium and high. The limits of quantification in mobile phase were in line with reported reference values but had to be adjusted in urine for homovanillic acid (45mg/L), niacinamide 58.5(mg/L), and indole-3-acetic acid (63mg/L). Comparison of creatinine data obtained by the existing method with those of the developed method showing differences from -120mg/L to +110mg/L with a mean of differences of 29.0mg/L for 50 authentic urine samples. Analyzing 50 authentic urine samples, uric acid, creatinine, hippuric acid, and 2-methylhippuric acid were detected in (nearly) all samples. However, homovanillic acid was detected in 40%, niacinamide in 4% and indole-3-acetic acid was never detected within the selected samples.
Collapse
|
16
|
Bolden AL, Kwiatkowski CF, Colborn T. New Look at BTEX: Are Ambient Levels a Problem? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:5261-76. [PMID: 25873211 DOI: 10.1021/es505316f] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Benzene, toluene, ethylbenzene, and xylene (BTEX) are retrieved during fossil fuel extraction and used as solvents in consumer and industrial products, as gasoline additives, and as intermediates in the synthesis of organic compounds for many consumer products. Emissions from the combustion of gasoline and diesel fuels are the largest contributors to atmospheric BTEX concentrations. However, levels indoors (where people spend greater than 83% of their time) can be many times greater than outdoors. In this review we identified epidemiological studies assessing the noncancer health impacts of ambient level BTEX exposure (i.e., nonoccupational) and discussed how the health conditions may be hormonally mediated. Health effects significantly associated with ambient level exposure included sperm abnormalities, reduced fetal growth, cardiovascular disease, respiratory dysfunction, asthma, sensitization to common antigens, and more. Several hormones including estrogens, androgens, glucocorticoids, insulin, and serotonin may be involved in these health outcomes. This analysis suggests that all four chemicals may have endocrine disrupting properties at exposure levels below reference concentrations (i.e., safe levels) issued by the U.S. Environmental Protection Agency. These data should be considered when evaluating the use of BTEX in consumer and industrial products and indicates a need to change how chemicals present at low concentrations are assessed and regulated.
Collapse
Affiliation(s)
- Ashley L Bolden
- †The Endocrine Disruption Exchange (TEDX), Paonia, Colorado 81428, United States
| | - Carol F Kwiatkowski
- †The Endocrine Disruption Exchange (TEDX), Paonia, Colorado 81428, United States
- ‡Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Theo Colborn
- †The Endocrine Disruption Exchange (TEDX), Paonia, Colorado 81428, United States
| |
Collapse
|
17
|
Hoeke H, Roeder S, Bertsche T, Lehmann I, Borte M, von Bergen M, Wissenbach DK. Monitoring of drug intake during pregnancy by questionnaires and LC-MS/MS drug urine screening: evaluation of both monitoring methods. Drug Test Anal 2014; 7:695-702. [PMID: 25545167 DOI: 10.1002/dta.1767] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/11/2014] [Accepted: 11/26/2014] [Indexed: 11/12/2022]
Abstract
Various studies pointed towards a relationship between chronic diseases such as asthma and allergy and environmental risk factors, which are one aspect of the so-called Exposome. These environmental risk factors include also the intake of drugs. One critical step in human development is the prenatal period, in which exposures might have critical impact on the child's health outcome. Thereby, the health effects of drugs taken during gestation are discussed controversially with regard to newborns' disease risk. Due to this, the drug intake of pregnant women in the third trimester was monitored by questionnaire, in addition to biomonitoring using a local birth cohort study, allowing correlations of drug exposure with disease risk. Therefore, 622 urine samples were analyzed by an untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) urine screening and the results were compared to self-administered questionnaires. In total, 48% (n = 296) reported an intake of pharmaceuticals, with analgesics as the most frequent reported drug class in addition to dietary supplements. 182 times compounds were detected by urine screening, with analgesics (42%; n = 66) as the predominantly drug class. A comparison of reported and detected drug intake was performed for three different time spans between completion of the questionnaires and urine sampling. Even if the level of accordance was low in general, similar percentages (~25%, ~19%, and ~ 20%) were found for all groups. This study illustrates that a comprehensive evaluation of drug intake is neither achieved by questionnaires nor by biomonitoring alone. Instead, a combination of both monitoring methods, providing complementary information, should be considered.
Collapse
Affiliation(s)
- Henrike Hoeke
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Leipzig, Leipzig, Germany
| | - Stefan Roeder
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Thilo Bertsche
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Leipzig, Leipzig, Germany
| | - Irina Lehmann
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Michael Borte
- Children's Hospital, Municipal Hospital St. Georg Leipzig, affiliated to the University of Leipzig, Germany
| | - Martin von Bergen
- Department of Metabolomics, Helmholtz Centre for Environmental Research -UFZ, Leipzig, Germany.,Department of Biotechnology, Chemistry and Environmental Engineering Aalborg University, Aalborg, Denmark
| | - Dirk K Wissenbach
- Department of Metabolomics, Helmholtz Centre for Environmental Research -UFZ, Leipzig, Germany
| |
Collapse
|