1
|
Woodworth KE, Froom ZSCS, Osborne ND, Rempe CN, Wheeler B, Medd K, Callaghan NI, Qian H, Acharya AP, Charron C, Davenport Huyer L. Development of Itaconate Polymers Microparticles for Intracellular Regulation of Pro-Inflammatory Macrophage Activation. Adv Healthc Mater 2025; 14:e2405257. [PMID: 40183748 DOI: 10.1002/adhm.202405257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/12/2025] [Indexed: 04/05/2025]
Abstract
Itaconate (IA) is an endogenous metabolite and a potent regulator of the innate immune system. It's use in immunomodulatory therapies has faced limitations due to challenges in controlled delivery and requirements of high extracellular concentrations for internalization of the highly polar small molecule to achieve its intracellular therapeutic activity. Microparticle (MP)-based delivery strategies are a promising approach for intracellular delivery of small molecule metabolites through macrophage phagocytosis and subsequent intracellular polymer degradation-based delivery. Toward the goal of intracellular delivery of IA, degradable polyester polymer- (poly(dodecyl itaconate)) based IA polymer microparticles (IA-MPs) are generated using an emulsion method, forming micron-scale (≈1.5 µm) degradable microspheres. IA-MPs are characterized with respect to their material properties and IA release kinetics to inform particle fabrication. Treatment of murine bone marrow-derived macrophages with an optimized particle concentration of 0.1 mg million-1 cells enables phagocytosis-mediated internalization and low levels of cytotoxicity. Flow cytometry demonstrates IA-MP-specific regulation of IA-sensitive inflammatory targets. Metabolic analyses demonstrate that IA-MP internalization inhibits oxidative metabolism and induced glycolytic reliance, consistent with the established mechanism of IA-associated inhibition of succinate dehydrogenase. This development of IA-based polymer microparticles provides a basis for additional innovative metabolite-based microparticle drug delivery systems for the treatment of inflammatory disease.
Collapse
Affiliation(s)
- Kaitlyn E Woodworth
- School of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Zachary S C S Froom
- School of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Natasha D Osborne
- Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Christian N Rempe
- Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Brenden Wheeler
- School of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Kyle Medd
- School of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Neal I Callaghan
- Faculty of Medicine, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Huikang Qian
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Abhinav P Acharya
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Carlie Charron
- Department of Chemistry, Faculty of Science, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Locke Davenport Huyer
- School of Biomedical Engineering, Faculties of Medicine and Engineering, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- Department of Microbiology & Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- Department of Biomaterials & Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- Department of Surgery, Nova Scotia Health, Halifax, NS, B3H 4R2, Canada
| |
Collapse
|
2
|
Wang H, Li Y, Qiu D, Pan Q, Xu Y, Liu Y, Wu Y. Personalized Nanomedicine-Mediated immune regulation for Anti-Rejection in organ transplantation. Int J Pharm 2025; 674:125450. [PMID: 40122222 DOI: 10.1016/j.ijpharm.2025.125450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/20/2025] [Accepted: 03/07/2025] [Indexed: 03/25/2025]
Abstract
The advent of personalized medicine and nanomedicine has led to significant advancements in organ transplantation. Personalized medicine leverages individual patient profiles, including genetic, epigenetic, and immune characteristics, to tailor treatment regimens. Nanomedicine, involving the use of nanoparticles and nanotechnology, offers precise drug delivery and innovative diagnostic tools. The integration of personalized nanomedicine into these fields has the potential to revolutionize transplantation by enhancing graft survival, minimizing adverse effects, and achieving immune tolerance. This review explores the current landscape of personalized nanomedicine for organ transplantation, focusing on immune modulation and therapeutic strategies tailored to individual patient profiles. We also discuss future research directions, including large-scale clinical trials, and regulatory considerations. This review concludes by examining the potential of personalized nanomedicine in improving long-term transplant outcomes and enhancing patient quality of life.
Collapse
Affiliation(s)
- Haitao Wang
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; The School of Clinical Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Yutong Li
- The School of Clinical Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Dan Qiu
- The School of Clinical Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Qinyu Pan
- The School of Clinical Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Yong Xu
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Department of Endocrinology and Metabolism, The Affiliated Hospital, Southwest Medical University, Luzhou 646000 Sichuan, China.
| | - Yong Liu
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.
| | - Ya Wu
- Department of Vascular Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
3
|
Woodworth KE, Froom ZSCS, Osborne ND, Rempe CN, Wheeler B, Medd K, Callaghan NI, Qian H, Acharya AP, Charron C, Huyer LD. Development of itaconate polymer microparticles for intracellular regulation of pro-inflammatory macrophage activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.30.635692. [PMID: 39974988 PMCID: PMC11838496 DOI: 10.1101/2025.01.30.635692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Itaconate (IA) is an endogenous metabolite and a potent regulator of the innate immune system. Its use in immunomodulatory therapies has faced limitations due to inherent challenges in achieving controlled delivery and requirements for high extracellular concentrations to achieve internalization of the highly polar small molecule to achieve its intracellular therapeutic activity. Microparticle (MP)-based delivery strategies are a promising approach for intracellular delivery of small molecule metabolites through macrophage phagocytosis and subsequent intracellular polymer degradation-based delivery. Toward the goal of intracellular delivery of IA, degradable polyester polymer-(poly(itaconate-co-dodecanediol)) based IA polymer microparticles (IA-MPs) were generated using an emulsion method, forming micron-scale (∼ 1.5 µm) degradable microspheres. IA-MPs were characterized with respect to their material properties and IA release kinetics to inform particle fabrication. Treatment of murine bone marrow-derived macrophages with an optimized particle concentration of 0.1 mg/million cells enabled phagocytosis-mediated internalization and low levels of cytotoxicity. Flow cytometry demonstrated IA-MP-specific regulation of IA-sensitive inflammatory targets. Metabolic analyses demonstrated that IA-MP internalization inhibited oxidative metabolism and induced glycolytic reliance, consistent with the established mechanism of IA-associated inhibition of succinate dehydrogenase. This development of IA-based polymer microparticles provides a basis for additional innovative metabolite-based microparticle drug delivery systems for the treatment of inflammatory disease.
Collapse
|
4
|
Syed Altaf RR, Mohan A, Palani N, Mendonce KC, Monisha P, Rajadesingu S. A review of innovative design strategies: Artificial antigen presenting cells in cancer immunotherapy. Int J Pharm 2025; 669:125053. [PMID: 39667594 DOI: 10.1016/j.ijpharm.2024.125053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/07/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Developing nanocarriers that can carry medications directly to tumors is an exciting development in cancer nanomedicine. The efficacy of this intriguing therapeutic approach is, however, compromised by intricate and immunosuppressive circumstances that arise concurrently with the onset of cancer. The artificial antigen presenting cell (aAPC), a micro or nanoparticle based device that mimics an antigen presenting cell by providing crucial signal proteins to T lymphocytes to activate them against cancer, is one cutting-edge method for cancer immunotherapy. This review delves into the critical design considerations for aAPCs, particularly focusing on particle size, shape, and the non-uniform distribution of T cell activating proteins on their surfaces. Adequate surface contact between T cells and aAPCs is essential for activation, prompting engineers to develop nano-aAPCs with microscale contact areas through techniques such as shape modification and nanoparticle clustering. Additionally, we explore recommendations for future advancements in this field.
Collapse
Affiliation(s)
- Rabiya Riffath Syed Altaf
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India; Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Agilandeswari Mohan
- Department of BioChemistry, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India; Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Naveen Palani
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India; Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - Keren Celestina Mendonce
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India; Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India
| | - P Monisha
- PG & Research Department of Physics, Sri Sarada College for Women, Salem - 636016, Tamil Nadu, India
| | - Suriyaprakash Rajadesingu
- Centre for Research in Environment, Sustainability Advocacy and Climate CHange (REACH), Directorate of Research, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
5
|
Naaz A, Turnquist HR, Gorantla VS, Little SR. Drug delivery strategies for local immunomodulation in transplantation: Bridging the translational gap. Adv Drug Deliv Rev 2024; 213:115429. [PMID: 39142608 DOI: 10.1016/j.addr.2024.115429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/07/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Drug delivery strategies for local immunomodulation hold tremendous promise compared to current clinical gold-standard systemic immunosuppression as they could improve the benefit to risk ratio of life-saving or life-enhancing transplants. Such strategies have facilitated prolonged graft survival in animal models at lower drug doses while minimizing off-target effects. Despite the promising outcomes in preclinical animal studies, progression of these strategies to clinical trials has faced challenges. A comprehensive understanding of the translational barriers is a critical first step towards clinical validation of effective immunomodulatory drug delivery protocols proven for safety and tolerability in pre-clinical animal models. This review overviews the current state-of-the-art in local immunomodulatory strategies for transplantation and outlines the key challenges hindering their clinical translation.
Collapse
Affiliation(s)
- Afsana Naaz
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States; Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, 15213, United States.
| | - Heth R Turnquist
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, 15213, United States; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, United States; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15213, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, United States.
| | - Vijay S Gorantla
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, United States; Departments of Surgery, Ophthalmology and Bioengineering, Wake Forest School of Medicine, Wake Forest Institute of Regenerative Medicine, Winston Salem, NC, 27101, United States.
| | - Steven R Little
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA 15261, United States; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, 15213, United States; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15213, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, United States; Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, United States; Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, United States.
| |
Collapse
|
6
|
Xu X, Wu Y, Gu R, Zhang Z, Liu X, Hu Y, Li X, Lin D, Bao Z. Nanoparticle-hydrogel composite as dual-drug delivery system for the potential application of corneal graft rejection. Eur J Pharm Biopharm 2024; 201:114351. [PMID: 38851460 DOI: 10.1016/j.ejpb.2024.114351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/10/2024]
Abstract
Immune rejection remains the major cause of corneal graft failure. Immunosuppressants (such as rapamycin; RAPA) adjunctive to antibiotics (such as levofloxacin hydrochloride; Lev) are a clinical mainstay after corneal grafts but suffer from poor ocular bioavailability associated with severe side effects. In this study, we fabricated a Lev@RAPA micelle loaded cationic peptide-based hydrogel (NapFFKK) as a dual-drug delivery system by integrating RAPA micelles with Lev into a cationic NapFFKK hydrogel to potentially reduced the risk of corneal graft rejection. The properties of the resulting hydrogels were characterized using transmission electronmicroscopy and rheometer. Lev@RAPA micelles loaded NapFFKK hydrogel provided sustained in vitro drug release without compromising their inherent pharmacological activities. Topical instillation of Lev@RAPA micelles loaded NapFFKK hydrogel resulted in the great ocular tolerance and extended precorneal retention over 60 min, thus significantly enhancing the ocular bioavailability of both Lev and RAPA. Overall, such dual-drug delivery system might be a promising formulation for the suppression of corneal graft failure.
Collapse
Affiliation(s)
- Xiaoning Xu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yuqin Wu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Ruiling Gu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Zhaoliang Zhang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Xiangyi Liu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yuhan Hu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Xingyi Li
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| | - Deqing Lin
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| | - Zhishu Bao
- National Clinical Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
7
|
Ding M, Gao T, Song Y, Yi L, Li W, Deng C, Zhou W, Xie M, Zhang L. Nanoparticle-based T cell immunoimaging and immunomodulatory for diagnosing and treating transplant rejection. Heliyon 2024; 10:e24203. [PMID: 38312645 PMCID: PMC10835187 DOI: 10.1016/j.heliyon.2024.e24203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/06/2024] Open
Abstract
T cells serve a pivotal role in the rejection of transplants, both by directly attacking the graft and by recruiting other immune cells, which intensifies the rejection process. Therefore, monitoring T cells becomes crucial for early detection of transplant rejection, while targeted drug delivery specifically to T cells can significantly enhance the effectiveness of rejection therapy. However, regulating the activity of T cells within transplanted organs is challenging, and the prolonged use of immunosuppressive drugs is associated with notable side effects and complications. Functionalized nanoparticles offer a potential solution by targeting T cells within transplants or lymph nodes, thereby reducing the off-target effects and improving the long-term survival of the graft. In this review, we will provide an overview of recent advancements in T cell-targeted imaging molecular probes for diagnosing transplant rejection and the progress of T cell-regulating nanomedicines for treating transplant rejection. Additionally, we will discuss future directions and the challenges in clinical translation.
Collapse
Affiliation(s)
- Mengdan Ding
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Tang Gao
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yishu Song
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Luyang Yi
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Wenqu Li
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Cheng Deng
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Wuqi Zhou
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Li Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Medical Imaging, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| |
Collapse
|
8
|
Rhodes KR, Tzeng SY, Iglesias M, Lee D, Storm K, Neshat SY, VanDyke D, Lowmaster SM, Spangler JB, Raimondi G, Green JJ. Bioengineered particles expand myelin-specific regulatory T cells and reverse autoreactivity in a mouse model of multiple sclerosis. SCIENCE ADVANCES 2023; 9:eadd8693. [PMID: 37267370 PMCID: PMC10413683 DOI: 10.1126/sciadv.add8693] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 04/27/2023] [Indexed: 06/04/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune disease characterized by autoreactive immune cells damaging myelinated nerves, impairing brain function. Treatments aim for tolerance induction to reeducate the immune system to recognize myelin as "self" rather than "foreign." As peripheral immune tolerance is primarily mediated by regulatory T cells (Tregs), we developed a therapy to support Treg expansion and activity in vivo. To target, engage, and activate myelin-specific Tregs, we designed a biodegradable microparticle (MP) loaded with rapamycin and functionalized with a biased interleukin-2 (IL-2) fusion protein and a major histocompatibility complex (MHC) class II loaded with a myelin peptide. These tolerogenic MPs (Tol-MPs) were validated in vitro and then evaluated in a mouse model of MS, experimental autoimmune encephalomyelitis (EAE). Tol-MPs promoted sustained disease reversal in 100% of mice and full recovery in 38% of mice with symptomatic EAE. Tol-MPs are a promising platform for treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Kelly R. Rhodes
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Stephany Y. Tzeng
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Marcos Iglesias
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Dongwoo Lee
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Kaitlyn Storm
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Sarah Y. Neshat
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Derek VanDyke
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Shirley M. Lowmaster
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jamie B. Spangler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
- Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center and the Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Public Health, Baltimore, MD 21231, USA
| | - Giorgio Raimondi
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jordan J. Green
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
- Institute for NanoBioTechnology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center and the Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
9
|
Roberton VH, Gregory HN, Angkawinitwong U, Mokrane O, Boyd AS, Shipley RJ, Williams GR, Phillips JB. Local delivery of tacrolimus using electrospun poly-ϵ-caprolactone nanofibres suppresses the T-cell response to peripheral nerve allografts. J Neural Eng 2023; 20. [PMID: 36538818 DOI: 10.1088/1741-2552/acad2a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Objective.Repair of nerve gap injuries can be achieved through nerve autografting, but this approach is restricted by limited tissue supply and donor site morbidity. The use of living nerve allografts would provide an abundant tissue source, improving outcomes following peripheral nerve injury. Currently this approach is not used due to the requirement for systemic immunosuppression, to prevent donor-derived cells within the transplanted nerve causing an immune response, which is associated with severe adverse effects. The aim of this study was to develop a method for delivering immunosuppression locally, then to test its effectiveness in reducing the immune response to transplanted tissue in a rat model of nerve allograft repair.Approach.A coaxial electrospinning approach was used to produce poly-ϵ-caprolactone fibre sheets loaded with the immunosuppressant tacrolimus. The material was characterised in terms of structure and tacrolimus release, then testedin vivothrough implantation in a rat sciatic nerve allograft model with immunologically mismatched host and donor tissue.Main results.Following successful drug encapsulation, the fibre sheets showed nanofibrous structure and controlled release of tacrolimus over several weeks. Materials containing tacrolimus (and blank material controls) were implanted around the nerve graft at the time of allograft or autograft repair. The fibre sheets were well tolerated by the animals and tacrolimus release resulted in a significant reduction in lymphocyte infiltration at 3 weeks post-transplantation.Significance.These findings demonstrate proof of concept for a novel nanofibrous biomaterial-based targeted drug delivery strategy for immunosuppression in peripheral nerve allografting.
Collapse
Affiliation(s)
- V H Roberton
- UCL School of Pharmacy, University College London, London, United Kingdom
- UCL Centre for Nerve Engineering, London, United Kingdom
| | - H N Gregory
- UCL School of Pharmacy, University College London, London, United Kingdom
- UCL Centre for Nerve Engineering, London, United Kingdom
| | - U Angkawinitwong
- UCL School of Pharmacy, University College London, London, United Kingdom
| | - O Mokrane
- UCL School of Pharmacy, University College London, London, United Kingdom
| | - A S Boyd
- UCL Centre for Nerve Engineering, London, United Kingdom
- UCL Institute of Immunity and Transplantation, Royal Free Hospital, London, United Kingdom
| | - R J Shipley
- UCL Centre for Nerve Engineering, London, United Kingdom
- Department of Mechanical Engineering, UCL, London, United Kingdom
| | - G R Williams
- UCL School of Pharmacy, University College London, London, United Kingdom
| | - J B Phillips
- UCL School of Pharmacy, University College London, London, United Kingdom
- UCL Centre for Nerve Engineering, London, United Kingdom
| |
Collapse
|
10
|
Gong Y, Liu H, Ke S, Zhuo L, Wang H. Latest advances in biomimetic nanomaterials for diagnosis and treatment of cardiovascular disease. Front Cardiovasc Med 2023; 9:1037741. [PMID: 36684578 PMCID: PMC9846151 DOI: 10.3389/fcvm.2022.1037741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023] Open
Abstract
Cardiovascular disease remains one of the leading causes of death in China, with increasingly serious negative effects on people and society. Despite significant advances in preventing and treating cardiovascular diseases, such as atrial fibrillation/flutter and heart failure over the last few years, much more remains to be done. Therefore, developing innovative methods for identifying and managing cardiovascular disorders is critical. Nanomaterials provide multiple benefits in biomedicine, primarily better catalytic activity, drug loading, targeting, and imaging. Biomimetic materials and nanoparticles are specially combined to synthesize biomimetic nanoparticles that successfully reduce the nanoparticles' toxicity and immunogenicity while enhancing histocompatibility. Additionally, the biological targeting capability of nanoparticles facilitates the diagnosis and therapy of cardiovascular disease. Nowadays, nanomedicine still faces numerous challenges, which necessitates creating nanoparticles that are highly selective, toxic-free, and better clinically applicable. This study reviews the scientific accomplishments in this field over the past few years covering the classification, applications, and prospects of noble metal biomimetic nanozymes and biomimetic nanocarriers.
Collapse
Affiliation(s)
- Yuxuan Gong
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China
| | - Huaying Liu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China
| | - Shen Ke
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China
| | - Li Zhuo
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China,Li Zhuo,
| | - Haibin Wang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China,*Correspondence: Haibin Wang,
| |
Collapse
|
11
|
Mangal JL, Inamdar S, Suresh AP, Jaggarapu MMCS, Esrafili A, Ng ND, Acharya AP. Short term, low dose alpha-ketoglutarate based polymeric nanoparticles with methotrexate reverse rheumatoid arthritis symptoms in mice and modulate T helper cell responses. Biomater Sci 2022; 10:6688-6697. [PMID: 36190458 PMCID: PMC9691612 DOI: 10.1039/d2bm00415a] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Activated effector T cells induce pro-inflammatory responses in rheumatoid arthritis (RA) which then lead to inflammation of the joints. In this report, we demonstrate that polymeric nanoparticles with alpha keto-glutarate (aKG) in their polymer backbone (termed as paKG NPs) modulate T cell responses in vitro and in vivo. Impressively, a low dose of only three administrations of methotrexate, a clinically and chronically administered drug for RA, in conjunction with two doses of paKG NPs, reversed arthritis symptoms in collagen-induced arthritis (CIA) mice. This was further followed by significant decreases in pro-inflammatory antigen-specific T helper type 17 (TH17) responses and a significant increase in anti-inflammatory regulatory T cell (TREG) responses when CIA treated splenic cells were isolated and re-exposed to the CIA self-antigen. Overall, this study supports the concurrent and short term, low dose of paKG NPs and methotrexate for the reversal of RA symptoms.
Collapse
Affiliation(s)
- Joslyn L Mangal
- Department of Biological Design, Arizona State University, Tempe, AZ, 85281, USA.
| | - Sahil Inamdar
- Department of Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA
| | - Abhirami P Suresh
- Department of Biological Design, Arizona State University, Tempe, AZ, 85281, USA.
| | | | - Arezoo Esrafili
- Department of Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA
| | - Nathan D Ng
- Molecular Biosciences and Biotechnology, The College of Liberal Arts and Sciences, Arizona State University, Tempe, AZ, 85281, USA
| | - Abhinav P Acharya
- Department of Biological Design, Arizona State University, Tempe, AZ, 85281, USA.
- Department of Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA
- Department of Biomedical Engineering, School of Biological and Health System Engineering, Arizona State University, Tempe, AZ, 85281, USA
- Department of Materials Science and Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA
- Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, 85281, USA
| |
Collapse
|
12
|
Talaśka K, Wojtkowiak D, Wilczyński D, Ferreira A. Computational methodology for drug delivery to the inner ear using magnetic nanoparticle aggregates. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 221:106860. [PMID: 35576687 DOI: 10.1016/j.cmpb.2022.106860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/16/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVE The main goal of the proposed study is to improve the efficiency of the ear treatment via targeted drug delivery to the inner ear, i.e. the cochlea. Although pharmacotherapy has been proposed as a solution to prevent damage or restore functionality to hair cells, the main challenge in such treatments is ensuring adequate drug delivery to the cells. To this end, we present a methodology for the evaluation of the magnetic forces needed to move magnetic particle nanorobots (abbreviated as MNP) and their aggregates through the cochlea round window membrane (RWM). METHODS The FEM - Lagrangian-Eulerian approach (Abaqus software) was used to determine the specific parameters of movement of the nanoparticles crossing the RWM. This method results in a high consistency of FEM simulations and in-vivo experimental results in regards to the required magnetic force during the movement of spherical nanoparticles with a given viscosity ηave. Based on the analysis of the experimental studies found in subject literature, the sizes of the MNPs and their aggregates able to cross RWM with and without the application of magnetic force FM have been determined. RESULTS The present work accounts for both the experimental and theoretical aspects of these investigations. Presented research confirms the definite usability of the Lagrange-Euler method for the precise determination of the required magnetic force value FM to control the accelerated motion of MNP aggregates of complex shapes through RWM. It is possible to determine the predominant parameters with a precision of less than 5% for single-layer aggregates and spatial aggregates crossing the RWM. It can be concluded that the MNPs and their aggregates should not be larger than 500-750 nm to cross the RWM with high velocities of penetration close to 800 nm/s for magnetic forces of hundreds 10-14 Newtons. CONCLUSIONS The proposed Lagrangian-Eulerian approach is capable of accurately predicting the movement parameters of MNP aggregates of irregular shape that are close to the experimental test cases. The presented method can serve as a supplementary tool for the design of drug delivery systems to the inner ear using MNPs.
Collapse
Affiliation(s)
- Krzysztof Talaśka
- Institute of Machine Design, Poznan University of Technology, Piotrowo 3, Poznań 61-138, Poland.
| | - Dominik Wojtkowiak
- Institute of Machine Design, Poznan University of Technology, Piotrowo 3, Poznań 61-138, Poland
| | - Dominik Wilczyński
- Institute of Machine Design, Poznan University of Technology, Piotrowo 3, Poznań 61-138, Poland
| | - Antoine Ferreira
- Laboratoire PRISME, Institut National des Sciences Appliquées (INSA) Centre Val de Loire, Bourges, France.
| |
Collapse
|
13
|
Garello F, Svenskaya Y, Parakhonskiy B, Filippi M. Micro/Nanosystems for Magnetic Targeted Delivery of Bioagents. Pharmaceutics 2022; 14:pharmaceutics14061132. [PMID: 35745705 PMCID: PMC9230665 DOI: 10.3390/pharmaceutics14061132] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 01/09/2023] Open
Abstract
Targeted delivery of pharmaceuticals is promising for efficient disease treatment and reduction in adverse effects. Nano or microstructured magnetic materials with strong magnetic momentum can be noninvasively controlled via magnetic forces within living beings. These magnetic carriers open perspectives in controlling the delivery of different types of bioagents in humans, including small molecules, nucleic acids, and cells. In the present review, we describe different types of magnetic carriers that can serve as drug delivery platforms, and we show different ways to apply them to magnetic targeted delivery of bioagents. We discuss the magnetic guidance of nano/microsystems or labeled cells upon injection into the systemic circulation or in the tissue; we then highlight emergent applications in tissue engineering, and finally, we show how magnetic targeting can integrate with imaging technologies that serve to assist drug delivery.
Collapse
Affiliation(s)
- Francesca Garello
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy;
| | - Yulia Svenskaya
- Science Medical Center, Saratov State University, 410012 Saratov, Russia;
| | - Bogdan Parakhonskiy
- Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium;
| | - Miriam Filippi
- Soft Robotics Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
- Correspondence:
| |
Collapse
|
14
|
Kazmi S, Khan MA, Shamma T, Altuhami A, Assiri AM, Broering DC. Therapeutic nexus of T cell immunometabolism in improving transplantation immunotherapy. Int Immunopharmacol 2022; 106:108621. [PMID: 35189469 DOI: 10.1016/j.intimp.2022.108621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 11/26/2022]
Abstract
Immunometabolism is a therapeutic strategy to tune immune cells through metabolic reprogramming, which allows immune cells to be differentiated according to their energy requirements. Recent therapeutic strategies targeting immunometabolism suggest that intracellular metabolic reprogramming controls T cell activation, proliferation, and differentiation into effector (Teff) or regulatory (Treg) cells. Immunometabolism is being studied for the treatment of inflammatory diseases, including those associated with solid organ transplantation (SOT). Here, we review immunometabolic regulation of immune cells, with a particular focus on Treg metabolic regulation and liver kinase B1 (LKB1) signaling, which stabilize Tregs and prevent inflammation-associated tissue injuries. All in all, here we discussed how targeting T cell immunometabolism modulates Teff and Treg-mediated immune responses, which can be used to boost Treg differentiation, stability, and ultimately favor immunotolerance in clinical transplants.
Collapse
Affiliation(s)
- Shadab Kazmi
- Transplant Research and Innovation Department, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia.
| | - Mohammad Afzal Khan
- Transplant Research and Innovation Department, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia.
| | - Talal Shamma
- Transplant Research and Innovation Department, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia.
| | - Abdullah Altuhami
- Transplant Research and Innovation Department, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia.
| | - Abdullah Mohammed Assiri
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia.
| | - Dieter Clemens Broering
- Transplant Research and Innovation Department, Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia.
| |
Collapse
|
15
|
Plumblee L, Atkinson C, Jaishankar D, Scott E, Tietjen GT, Nadig SN. Nanotherapeutics in transplantation: How do we get to clinical implementation? Am J Transplant 2022; 22:1293-1298. [PMID: 35224837 PMCID: PMC9081154 DOI: 10.1111/ajt.17012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 01/25/2023]
Abstract
Patients undergoing organ transplantation transition from one life-altering issue (organ dysfunction) to a lifelong commitment-immunosuppression. Regimens of immunosuppressive agents (ISAs) come with significant side effects and comorbidities. Recently, the use of nanoparticles (NPs) as a solution to the problems associated with the long-term and systemic use of ISAs in transplantation has emerged. This minireview describes the role of NPs in organ transplantation and discusses obstacles to clinical implementation and pathways to clinical translation.
Collapse
Affiliation(s)
- Leah Plumblee
- Department of Microbiology and ImmunologyMedical University of South CarolinaCharlestonSouth Carolina
- Department of SurgeryDivision of Transplant SurgeryMedical University of South CarolinaCharlestonSouth Carolina
| | - Carl Atkinson
- Department of Microbiology and ImmunologyMedical University of South CarolinaCharlestonSouth Carolina
- Division of Pulmonary, Critical Care, and Sleep MedicineUniversity of FloridaGainesvilleFlorida
| | - Dinesh Jaishankar
- Department of SurgeryDivision of Transplant SurgeryMedical University of South CarolinaCharlestonSouth Carolina
| | - Evan Scott
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIllinois
- Department of Microbiology‐ImmunologyFeinberg School of MedicineNorthwestern UniversityChicagoIllinois
- Simpson Querrey InstituteNorthwestern UniversityChicagoIllinois
| | - Gregory T. Tietjen
- Department of SurgeryDepartment of Biomedical EngineeringYale School of MedicineYale UniversityNew HavenConnecticut
| | - Satish N. Nadig
- Department of Microbiology‐ImmunologyFeinberg School of MedicineNorthwestern UniversityChicagoIllinois
- Simpson Querrey InstituteNorthwestern UniversityChicagoIllinois
- Department of SurgeryDepartment of PediatricsComprehensive Transplant CenterFeinberg School of MedicineNorthwestern UniversityChicagoIllinois
| |
Collapse
|
16
|
Tran DT, Sundararaj K, Atkinson C, Nadig SN. T-cell Immunometabolism: Therapeutic Implications in Organ Transplantation. Transplantation 2021; 105:e191-e201. [PMID: 33795597 PMCID: PMC8464628 DOI: 10.1097/tp.0000000000003767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although solid-organ transplantation has evolved steadily with many breakthroughs in the past 110 y, many problems remain to be addressed, and advanced therapeutic strategies need to be considered. T-cell immunometabolism is a rapidly advancing field that has gathered much attention recently, providing ample mechanistic insight from which many novel therapeutic approaches have been developed. Applications from the field include antitumor and antimicrobial therapies, as well as for reversing graft-versus-host disease and autoimmune diseases. However, the immunometabolism of T cells remains underexplored in solid-organ transplantation. In this review, we will highlight key findings from hallmark studies centered around various metabolic modes preferred by different T-cell subtypes (categorized into naive, effector, regulatory, and memory T cells), including glycolysis, glutaminolysis, oxidative phosphorylation, fatty acid synthesis, and oxidation. This review will discuss the underlying cellular signaling components that affect these processes, including the transcription factors myelocytomatosis oncogene, hypoxia-inducible factor 1-alpha, estrogen-related receptor alpha, and sterol regulatory element-binding proteins, along with the mechanistic target of rapamycin and adenosine monophosphate-activated protein kinase signaling. We will also explore potential therapeutic strategies targeting these pathways, as applied to the potential for tolerance induction in solid-organ transplantation.
Collapse
Affiliation(s)
- Danh T. Tran
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
- Department of Surgery, Division of Transplant Surgery, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, Charleston, SC
| | - Kamala Sundararaj
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
- Department of Surgery, Division of Transplant Surgery, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, Charleston, SC
- South Carolina Investigators in Transplantation, Department of Surgery, Medical University of South Carolina, Charleston, SC
| | - Carl Atkinson
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
- Department of Surgery, Division of Transplant Surgery, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, Charleston, SC
- South Carolina Investigators in Transplantation, Department of Surgery, Medical University of South Carolina, Charleston, SC
| | - Satish N. Nadig
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
- Department of Surgery, Division of Transplant Surgery, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, Charleston, SC
- South Carolina Investigators in Transplantation, Department of Surgery, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
17
|
Bentley ER, Little SR. Local delivery strategies to restore immune homeostasis in the context of inflammation. Adv Drug Deliv Rev 2021; 178:113971. [PMID: 34530013 PMCID: PMC8556365 DOI: 10.1016/j.addr.2021.113971] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022]
Abstract
Immune homeostasis is maintained by a precise balance between effector immune cells and regulatory immune cells. Chronic deviations from immune homeostasis, driven by a greater ratio of effector to regulatory cues, can promote the development and propagation of inflammatory diseases/conditions (i.e., autoimmune diseases, transplant rejection, etc.). Current methods to treat chronic inflammation rely upon systemic administration of non-specific small molecules, resulting in broad immunosuppression with unwanted side effects. Consequently, recent studies have developed more localized and specific immunomodulatory approaches to treat inflammation through the use of local biomaterial-based delivery systems. In particular, this review focuses on (1) local biomaterial-based delivery systems, (2) common materials used for polymeric-delivery systems and (3) emerging immunomodulatory trends used to treat inflammation with increased specificity.
Collapse
Affiliation(s)
- Elizabeth R Bentley
- Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15260, United States.
| | - Steven R Little
- Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15260, United States; Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15213, United States; Department of Clinical and Translational Science, University of Pittsburgh, Forbes Tower, Suite 7057, Pittsburgh, PA 15213, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219, United States; Department of Immunology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, United States; Department of Pharmaceutical Sciences, University of Pittsburgh, 3501 Terrace Street, Pittsburgh, PA 15213, United States; Department of Ophthalmology, University of Pittsburgh, 203 Lothrop Street, Pittsburgh, PA 15213, United States.
| |
Collapse
|
18
|
Mangal JL, Inamdar S, Le T, Shi X, Curtis M, Gu H, Acharya AP. Inhibition of glycolysis in the presence of antigen generates suppressive antigen-specific responses and restrains rheumatoid arthritis in mice. Biomaterials 2021; 277:121079. [PMID: 34454372 DOI: 10.1016/j.biomaterials.2021.121079] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 12/16/2022]
Abstract
Dendritic cells (DCs) rely on glycolysis for their energy needs to induce pro-inflammatory antigen-specific immune responses. Therefore, inhibiting DC glycolysis, while presenting the self-antigen, may prevent pro-inflammatory antigen-specific immune responses. Previously we demonstrated that microparticles with alpha-ketoglutarate (aKG) in the polymer backbone (paKG MPs) were able to generate anti-inflammatory DCs by sustained delivery of the aKG metabolite, and by modulating energy metabolism of DCs. Herein, we demonstrate that paKG MPs-based delivery of a glycolytic inhibitor, PFK15, using paKG MPs induces anti-inflammatory DCs (CD86LoMHCII+) by down-regulating glycolysis, CD86, tnf and IL-6 genes, while upregulating oxidative phosphorylation (OXPHOS) and mitochondrial genes. Furthermore, paKG MPs delivering PFK15 and a self-antigen, collagen type II (bc2), in vivo, in a collagen-induced autoimmune arthritis (CIA) mouse model, normalized paw inflammation and arthritis score, by generating antigen-specific immune responses. Specifically, these formulations were able to reduce activation of DCs in draining lymph nodes and impressively generated proliferating bc2-specific anti-inflammatory regulatory T cells in joint-associated popliteal lymph nodes. These data strongly suggest that sustained glycolytic inhibition of DCs in the presence of an antigen can induce antigen-specific immunosuppressive responses, therefore, generating a technology that can be applicable for treating autoimmune diseases.
Collapse
Affiliation(s)
- Joslyn L Mangal
- Biological Design, Arizona State University, Tempe, AZ, 85281, USA
| | - Sahil Inamdar
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA
| | - Tien Le
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA
| | - Xiaojian Shi
- College of Health Solutions, Arizona State University, Phoenix, AZ, 85281, USA
| | - Marion Curtis
- Mayo Clinic, Department of Immunology, Scottsdale, AZ, 85259, USA
| | - Haiwei Gu
- College of Health Solutions, Arizona State University, Phoenix, AZ, 85281, USA
| | - Abhinav P Acharya
- Biological Design, Arizona State University, Tempe, AZ, 85281, USA; Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA; Materials Science and Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA; Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, 85281, USA; Biomedical Engineering, School of Biological and Health System Engineering, Arizona State University, Tempe, AZ, 85281, USA.
| |
Collapse
|
19
|
Acharya AP, Tang Y, Bertero T, Tai Y, Harvey LD, Woodcock CC, Sun W, Pineda R, Mitash N, Königshoff M, Little SR, Chan SY. Simultaneous Pharmacologic Inhibition of Yes-Associated Protein 1 and Glutaminase 1 via Inhaled Poly(Lactic-co-Glycolic) Acid-Encapsulated Microparticles Improves Pulmonary Hypertension. J Am Heart Assoc 2021; 10:e019091. [PMID: 34056915 PMCID: PMC8477870 DOI: 10.1161/jaha.120.019091] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 04/12/2021] [Indexed: 12/19/2022]
Abstract
Background Pulmonary hypertension (PH) is a deadly disease characterized by vascular stiffness and altered cellular metabolism. Current treatments focus on vasodilation and not other root causes of pathogenesis. Previously, it was demonstrated that glutamine metabolism, as catalyzed by GLS1 (glutaminase 1) activity, is mechanoactivated by matrix stiffening and the transcriptional coactivators YAP1 (yes-associated protein 1) and transcriptional coactivator with PDZ-binding motif (TAZ), resulting in pulmonary vascular proliferation and PH. Pharmacologic inhibition of YAP1 (by verteporfin) or glutaminase (by CB-839) improved PH in vivo. However, systemic delivery of these agents, particularly YAP1 inhibitors, may have adverse chronic effects. Furthermore, simultaneous use of pharmacologic blockers may offer additive or synergistic benefits. Therefore, a strategy that delivers these drugs in combination to local lung tissue, thus avoiding systemic toxicity and driving more robust improvement, was investigated. Methods and Results We used poly(lactic-co-glycolic) acid polymer-based microparticles for delivery of verteporfin and CB-839 simultaneously to the lungs of rats suffering from monocrotaline-induced PH. Microparticles released these drugs in a sustained fashion and delivered their payload in the lungs for 7 days. When given orotracheally to the rats weekly for 3 weeks, microparticles carrying this drug combination improved hemodynamic (right ventricular systolic pressure and right ventricle/left ventricle+septum mass ratio), histologic (vascular remodeling), and molecular markers (vascular proliferation and stiffening) of PH. Importantly, only the combination of drug delivery, but neither verteporfin nor CB-839 alone, displayed significant improvement across all indexes of PH. Conclusions Simultaneous, lung-specific, and controlled release of drugs targeting YAP1 and GLS1 improved PH in rats, addressing unmet needs for the treatment of this deadly disease.
Collapse
MESH Headings
- Administration, Inhalation
- Animals
- Benzeneacetamides/administration & dosage
- Benzeneacetamides/chemistry
- Cells, Cultured
- Delayed-Action Preparations
- Disease Models, Animal
- Drug Carriers
- Drug Combinations
- Drug Compounding
- Enzyme Inhibitors/administration & dosage
- Enzyme Inhibitors/chemistry
- Glutaminase/antagonists & inhibitors
- Glutaminase/metabolism
- Hemodynamics/drug effects
- Humans
- Hypertension, Pulmonary/chemically induced
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/physiopathology
- Intracellular Signaling Peptides and Proteins/antagonists & inhibitors
- Intracellular Signaling Peptides and Proteins/metabolism
- Lung/drug effects
- Lung/metabolism
- Lung/physiopathology
- Male
- Mechanotransduction, Cellular
- Monocrotaline
- Particle Size
- Polylactic Acid-Polyglycolic Acid Copolymer/chemistry
- Rats, Sprague-Dawley
- Thiadiazoles/administration & dosage
- Thiadiazoles/chemistry
- Time Factors
- Vascular Remodeling/drug effects
- Ventricular Function, Right/drug effects
- Verteporfin/administration & dosage
- Verteporfin/chemistry
- YAP-Signaling Proteins
- Rats
Collapse
Affiliation(s)
- Abhinav P. Acharya
- Department of Chemical and Petroleum EngineeringUniversity of PittsburghPA
- Biological Design Graduate ProgramSchool for the Engineering of Matter, Transport, and EnergyArizona State UniversityTempeAZ
- Chemical EngineeringSchool for the Engineering of Matter, Transport, and EnergyArizona State UniversityTempeAZ
| | - Ying Tang
- Center for Pulmonary Vascular Biology and MedicinePittsburgh Heart, Lung, and Blood Vascular Medicine InstituteDivision of CardiologyDepartment of MedicineUniversity of Pittsburgh School of MedicinePA
| | - Thomas Bertero
- Université Côte d'AzurCentre national de la recherche scientifique (CNRS) Bienvenue à l'Institut de Pharmacologie Moléculaire et Cellulaire (IPMC)ValbonneFrance
| | - Yi‐Yin Tai
- Center for Pulmonary Vascular Biology and MedicinePittsburgh Heart, Lung, and Blood Vascular Medicine InstituteDivision of CardiologyDepartment of MedicineUniversity of Pittsburgh School of MedicinePA
| | - Lloyd D. Harvey
- Center for Pulmonary Vascular Biology and MedicinePittsburgh Heart, Lung, and Blood Vascular Medicine InstituteDivision of CardiologyDepartment of MedicineUniversity of Pittsburgh School of MedicinePA
| | - Chen‐Shan C. Woodcock
- Center for Pulmonary Vascular Biology and MedicinePittsburgh Heart, Lung, and Blood Vascular Medicine InstituteDivision of CardiologyDepartment of MedicineUniversity of Pittsburgh School of MedicinePA
| | - Wei Sun
- Center for Pulmonary Vascular Biology and MedicinePittsburgh Heart, Lung, and Blood Vascular Medicine InstituteDivision of CardiologyDepartment of MedicineUniversity of Pittsburgh School of MedicinePA
| | - Ricardo Pineda
- Division of Pulmonary, Allergy, and Critical Care MedicineDepartment of MedicineUniversity of Pittsburgh School of MedicinePA
| | - Nilay Mitash
- Division of Pulmonary, Allergy, and Critical Care MedicineDepartment of MedicineUniversity of Pittsburgh School of MedicinePA
| | - Melanie Königshoff
- Division of Pulmonary, Allergy, and Critical Care MedicineDepartment of MedicineUniversity of Pittsburgh School of MedicinePA
| | - Steven R. Little
- Department of Chemical and Petroleum EngineeringUniversity of PittsburghPA
- Department of ImmunologyUniversity of Pittsburgh School of MedicinePA
- Department of BioengineeringUniversity of PittsburghPA
- Department of Pharmaceutical SciencesUniversity of PittsburghPA
- Department of OphthalmologyUniversity of PittsburghPA
- McGowan Institute for Regenerative MedicineUniversity of PittsburghPA
| | - Stephen Y. Chan
- Center for Pulmonary Vascular Biology and MedicinePittsburgh Heart, Lung, and Blood Vascular Medicine InstituteDivision of CardiologyDepartment of MedicineUniversity of Pittsburgh School of MedicinePA
| |
Collapse
|
20
|
Safi AF, Kauke M, Nelms L, Palmer WJ, Tchiloemba B, Kollar B, Haug V, Pomahač B. Local immunosuppression in vascularized composite allotransplantation (VCA): A systematic review. J Plast Reconstr Aesthet Surg 2020; 74:327-335. [PMID: 33229219 DOI: 10.1016/j.bjps.2020.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/07/2020] [Accepted: 10/11/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Local immunosuppression in vascularized composite allotransplantation (VCA) aims to minimize immunosuppressant-related toxic and malignant side effects. Promising allograft survival data have been published by multiple workgroups. In this systematic review, we examine preclinical animal studies that investigated local immunosuppression in VCA. MATERIAL AND METHODS We conducted a systematic review of manuscripts listed in the MEDLINE and PubMed database concerning preclinical VCA models. Papers included had to be available as full-text and written in English. Non-VCA studies, human trials, and studies using cell-based therapy strategies were excluded. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. RESULTS Literature research retrieved 980 articles. Ten studies published between 2010 and 2019 met the inclusion and exclusion criteria. Seven out of ten articles demonstrated a significant prolongation of allograft survival by using local immunosuppression. Five articles employed tacrolimus (TAC) as the main immunosuppressive agent. Seven studies performed hind-limb VCA in a rat model. CONCLUSION The easily accessible location of skin containing VCAs makes it an ideal candidate for local immunosuppression. Published preclinical data are very promising in terms of improved allograft survival and reduced systemic toxicity.
Collapse
Affiliation(s)
- Ali-Farid Safi
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| | - Martin Kauke
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Laurel Nelms
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - William Jackson Palmer
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Bianief Tchiloemba
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Branislav Kollar
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Valentin Haug
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA; Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Bohdan Pomahač
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
21
|
Majumder P, Zhang Y, Iglesias M, Fan L, Kelley JA, Andrews C, Patel N, Stagno JR, Oh BC, Furtmüller GJ, Lai CC, Wang YX, Brandacher G, Raimondi G, Schneider JP. Multiphase Assembly of Small Molecule Microcrystalline Peptide Hydrogel Allows Immunomodulatory Combination Therapy for Long-Term Heart Transplant Survival. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002791. [PMID: 32812339 PMCID: PMC7686956 DOI: 10.1002/smll.202002791] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Combination therapies that target multiple pathways involved in immune rejection of transplants hold promise for patients in need of restorative surgery. Herein, a noninteracting multiphase molecular assembly approach is developed to crystallize tofacitinib, a potent JAK1/3 inhibitor, within a shear-thinning self-assembled fibrillar peptide hydrogel network. The resulting microcrystalline tofacitinib hydrogel (MTH) can be syringe-injected directly to the grafting site during surgery to locally deliver the small molecule. The rate of drug delivered from MTH is largely controlled by the dissolution of the encapsulated microcrystals. A single application of MTH, in combination with systemically delivered CTLA4-Ig, a co-stimulation inhibitor, affords significant graft survival in mice receiving heterotopic heart transplants. Locoregional studies indicate that the local delivery of tofacitinib at the graft site enabled by MTH is required for the observed enhanced graft survival.
Collapse
Affiliation(s)
- Poulami Majumder
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Building 376, Boyles St, Frederick, MD, 21702, USA
| | - Yichuan Zhang
- Vascularized Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Marcos Iglesias
- Vascularized Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Lixin Fan
- Basic Science Program, Frederick National Laboratory for Cancer Research, SAXS Core Facility of the National Cancer Institute, Frederick, MD, 21702, USA
| | - James A Kelley
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Building 376, Boyles St, Frederick, MD, 21702, USA
| | - Caroline Andrews
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Nimit Patel
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Jason R Stagno
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Byoung Chol Oh
- Vascularized Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Georg J Furtmüller
- Vascularized Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Christopher C Lai
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Building 376, Boyles St, Frederick, MD, 21702, USA
| | - Yun-Xing Wang
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Gerald Brandacher
- Vascularized Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Giorgio Raimondi
- Vascularized Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Joel P Schneider
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Building 376, Boyles St, Frederick, MD, 21702, USA
| |
Collapse
|
22
|
Colazo JM, Evans BC, Farinas AF, Al-Kassis S, Duvall CL, Thayer WP. Applied Bioengineering in Tissue Reconstruction, Replacement, and Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2020; 25:259-290. [PMID: 30896342 DOI: 10.1089/ten.teb.2018.0325] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IMPACT STATEMENT The use of autologous tissue in the reconstruction of tissue defects has been the gold standard. However, current standards still face many limitations and complications. Improving patient outcomes and quality of life by addressing these barriers remain imperative. This article provides historical perspective, covers the major limitations of current standards of care, and reviews recent advances and future prospects in applied bioengineering in the context of tissue reconstruction, replacement, and regeneration.
Collapse
Affiliation(s)
- Juan M Colazo
- 1Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,2Medical Scientist Training Program, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Brian C Evans
- 3Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Angel F Farinas
- 4Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Salam Al-Kassis
- 4Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Craig L Duvall
- 3Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Wesley P Thayer
- 3Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee.,4Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
23
|
Keshavarz Shahbaz S, Foroughi F, Soltaninezhad E, Jamialahmadi T, Penson PE, Sahebkar A. Application of PLGA nano/microparticle delivery systems for immunomodulation and prevention of allotransplant rejection. Expert Opin Drug Deliv 2020; 17:767-780. [PMID: 32223341 DOI: 10.1080/17425247.2020.1748006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Allograft transplantation is an effective end-point therapy to replace the function of an impaired organ. The main problem associated with allotransplantation is the induction of immune responses that results in acute and chronic graft rejection. To modulate the response of the immune system, transplant recipients generally take high dose immunosuppressant drugs for life. These drugs are associated with serious side effects such as infection with opportunistic pathogens and the development of neoplasia. AREAS COVERED We reviewed the obstacles to successful transplantation and PLGA-based strategies to reduce immune-mediated allograft rejection. EXPERT OPINION Biomaterial-based approaches using micro- and nanoparticles such as poly (lactic-co-glycolic acid) (PLGA) can be used to achieve controlled release of drugs. This approach decreases the required effective dose of drugs and enables local delivery of these agents to specific tissues and cells, whilst decreasing systemic effects.
Collapse
Affiliation(s)
- Sanaz Keshavarz Shahbaz
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences , Mashhad, Iran
| | - Farshad Foroughi
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences , Qazvin, Iran
| | - Ehsan Soltaninezhad
- Department of Immunology, Faculty of Medical Science, Tarbiat Modares University , Tehran, Iran
| | - Tannaz Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences , Mashhad, Iran.,Department of Nutrition, Mashhad University of Medical Sciences , Mashhad, Iran
| | - Peter E Penson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University , Liverpool, UK
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA , Tehran, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences , Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences , Mashhad, Iran
| |
Collapse
|
24
|
Khan MS, Kim JS, Hwang J, Choi Y, Lee K, Kwon Y, Jang J, Yoon S, Yang CS, Choi J. Effective delivery of mycophenolic acid by oxygen nanobubbles for modulating immunosuppression. Theranostics 2020; 10:3892-3904. [PMID: 32226527 PMCID: PMC7086369 DOI: 10.7150/thno.41850] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/19/2020] [Indexed: 12/11/2022] Open
Abstract
Immunosuppressive drugs are crucial for preventing acute graft rejection or autoimmune diseases. They are generally small molecules that require suitable drug carriers for ensuring stability, bioavailability, and longer half-life. Mycophenolic acid (MPA) is an extensively studied immunosuppressive drug. However, it requires suitable carriers for overcoming clinical limitations. Currently, lipid-shelled micro- and nanobubbles are being thoroughly investigated for diagnostic and therapeutic applications, as they possess essential properties, such as injectability, smaller size, gaseous core, high surface area, higher drug payload, and enhanced cellular penetration. Phospholipids are biocompatible and biodegradable molecules, and can be functionalized according to specific requirements. Methods: In this study, we synthesized oxygen nanobubbles (ONBs) and loaded the hydrophobic MPA within the ONBs to generate ONB/MPA. Peripheral blood mononuclear cells (PBMCs) were treated with ONB/MPA to determine the suppression of immune response by measuring cytokine release. In vivo murine experiments were performed to evaluate the effectiveness of ONB/MPA in the presence of inflammatory stimulants. Results: Our results suggest that ONBs successfully delivered MPA and reduced the release of cytokines, thereby controlling inflammation and significantly increasing the survival rate of animals. Conclusion: This method can be potentially used for implantation and for treating autoimmune diseases, wherein immunosuppression is desired.
Collapse
|
25
|
Costa C, Liu Z, Martins JP, Correia A, Figueiredo P, Rahikkala A, Li W, Seitsonen J, Ruokolainen J, Hirvonen SP, Aguiar-Ricardo A, Corvo ML, Santos HA. All-in-one microfluidic assembly of insulin-loaded pH-responsive nano-in-microparticles for oral insulin delivery. Biomater Sci 2020; 8:3270-3277. [DOI: 10.1039/d0bm00743a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Here, a continuous two-step glass-capillary microfluidic technique to produce a multistage oral insulin delivery system is reported. This system represents a promising alternative for the common protein/peptide-loaded liposome formulations.
Collapse
|
26
|
Anfray C, Mainini F, Andón FT. Nanoparticles for immunotherapy. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/b978-0-08-102828-5.00011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
27
|
Shahzad KA, Naeem M, Zhang L, Wan X, Song S, Pei W, Zhao C, Jin X, Shen C. Design and Optimization of PLGA Particles to Deliver Immunomodulatory Drugs for the Prevention of Skin Allograft Rejection. Immunol Invest 2019; 49:840-857. [PMID: 31809611 DOI: 10.1080/08820139.2019.1695134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Background: Recent advancements in therapeutic strategies have attracted considerable attention to control the acute organs and tissues rejection, which is the main cause of mortality in transplant recipients. The long-term usage of immunosuppressive drugs compromises the body immunity against simple infections and decrease the patients' quality of life. Tolerance of allograft in recipients without harming the rest of host immune system is the basic idea to develop the therapeutic approaches after induction of donor-specific transplant. Methods: Controlled and targeted delivery system by using biomimetic micro and nanoparticles as carriers is an effective strategy to deplete the immune cells in response to allograft in an antigen-specific manner. Polylactic-co-glycolic acid (PLGA) is a biocompatible and biodegradable polymer, which has frequently being used as drug delivery vehicle. Results: This review focuses on the biomedical applications of PLGA based biomimetic micro and nano-sized particles in drug delivery systems to prolong the survival of alloskin graft. Conclusion: We will discuss the mediating factors for rejection of alloskin graft, selective depletion of immune cells, controlled release mechanism, physiochemical properties, size-based body distribution of PLGA particles and their effect on overall host immune system.
Collapse
Affiliation(s)
- Khawar Ali Shahzad
- Department of Microbiology and Immunology, Medical School, Southeast University , Nanjing, Jiangsu, China.,School of Pharmacy, Taizhou Polytechnic College , Taizhou, Jiangsu, China
| | - Muhammad Naeem
- Institute of Pure and Applied Biology, Zoology Division, Bahauddin Zakariya University , Multan, Pakistan
| | - Lei Zhang
- Department of Microbiology and Immunology, Medical School, Southeast University , Nanjing, Jiangsu, China.,Department of Clinical Laboratory, Lishui District People's Hospital of Nanjing , Nanjing, Jiangsu, China
| | - Xin Wan
- Department of Microbiology and Immunology, Medical School, Southeast University , Nanjing, Jiangsu, China
| | - Shilong Song
- Department of Microbiology and Immunology, Medical School, Southeast University , Nanjing, Jiangsu, China
| | - Weiya Pei
- Department of Microbiology and Immunology, Medical School, Southeast University , Nanjing, Jiangsu, China
| | - Chen Zhao
- Department of Microbiology and Immunology, Medical School, Southeast University , Nanjing, Jiangsu, China
| | - Xiaoxiao Jin
- Department of Microbiology and Immunology, Medical School, Southeast University , Nanjing, Jiangsu, China
| | - Chuanlai Shen
- Department of Microbiology and Immunology, Medical School, Southeast University , Nanjing, Jiangsu, China
| |
Collapse
|
28
|
Covvey JR, Mancl EE. Pharmaceutical care in transplantation: current challenges and future opportunities. Nanomedicine (Lond) 2019; 14:2651-2658. [PMID: 31610735 DOI: 10.2217/nnm-2019-0106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Jordan R Covvey
- Assistant Professor in Pharmacy Administration, Division of Pharmaceutical, Administrative & Social Sciences, Duquesne University School of Pharmacy, 600 Forbes Ave, 418 Mellon Hall, PA 15282, USA
| | - Erin E Mancl
- Medical Science Liaison, Mallinckrodt Pharmaceuticals, Somerset Center, 1425 US Route 206, NJ 07921, USA
| |
Collapse
|
29
|
Tajdaran K, Chan K, Gordon T, Borschel GH. Matrices, scaffolds, and carriers for protein and molecule delivery in peripheral nerve regeneration. Exp Neurol 2019; 319:112817. [DOI: 10.1016/j.expneurol.2018.08.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/12/2018] [Accepted: 08/29/2018] [Indexed: 01/04/2023]
|
30
|
Abstract
PURPOSE OF REVIEW Normothermic machine perfusion (NMP) is an emerging technology for liver preservation. Early clinical results demonstrate beneficial effects in reconditioning high-risk grafts. This review discusses the role of normothermic perfusion as a tool to assess graft viability and as a platform for graft intervention and modification. RECENT FINDINGS The potential benefits of NMP extend far beyond organ reconditioning. Recent pilot studies have identified clinically relevant viability criteria, which now require validation in large randomized control trials prior to implementation. Furthermore, preclinical studies demonstrate tremendous potential for NMP as a method to extend the preservation period, thus improving transplant logistics as well as serve as a platform for graft-targeted interventions to optimize the preservation period. SUMMARY NMP is a multifunctional tool with potential to transform liver preservation and the field of transplantation. Large clinical trials are necessary to optimize perfusion protocols, clarify indications for NMP therapy and justify use as the standard preservation modality.
Collapse
|
31
|
Ernst AU, Bowers DT, Wang LH, Shariati K, Plesser MD, Brown NK, Mehrabyan T, Ma M. Nanotechnology in cell replacement therapies for type 1 diabetes. Adv Drug Deliv Rev 2019; 139:116-138. [PMID: 30716349 PMCID: PMC6677642 DOI: 10.1016/j.addr.2019.01.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/17/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022]
Abstract
Islet transplantation is a promising long-term, compliance-free, complication-preventing treatment for type 1 diabetes. However, islet transplantation is currently limited to a narrow set of patients due to the shortage of donor islets and side effects from immunosuppression. Encapsulating cells in an immunoisolating membrane can allow for their transplantation without the need for immunosuppression. Alternatively, "open" systems may improve islet health and function by allowing vascular ingrowth at clinically attractive sites. Many processes that enable graft success in both approaches occur at the nanoscale level-in this review we thus consider nanotechnology in cell replacement therapies for type 1 diabetes. A variety of biomaterial-based strategies at the nanometer range have emerged to promote immune-isolation or modulation, proangiogenic, or insulinotropic effects. Additionally, coating islets with nano-thin polymer films has burgeoned as an islet protection modality. Materials approaches that utilize nanoscale features manipulate biology at the molecular scale, offering unique solutions to the enduring challenges of islet transplantation.
Collapse
Affiliation(s)
- Alexander U Ernst
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Daniel T Bowers
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Long-Hai Wang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Kaavian Shariati
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Mitchell D Plesser
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Natalie K Brown
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Tigran Mehrabyan
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
32
|
Amodio G, Cichy J, Conde P, Matteoli G, Moreau A, Ochando J, Oral BH, Pekarova M, Ryan EJ, Roth J, Sohrabi Y, Cuturi MC, Gregori S. Role of myeloid regulatory cells (MRCs) in maintaining tissue homeostasis and promoting tolerance in autoimmunity, inflammatory disease and transplantation. Cancer Immunol Immunother 2018; 68:661-672. [PMID: 30357490 PMCID: PMC6447499 DOI: 10.1007/s00262-018-2264-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 10/16/2018] [Indexed: 12/29/2022]
Abstract
Myeloid cells play a pivotal role in regulating innate and adaptive immune responses. In inflammation, autoimmunity, and after transplantation, myeloid cells have contrasting roles: on the one hand they initiate the immune response, promoting activation and expansion of effector T-cells, and on the other, they counter-regulate inflammation, maintain tissue homeostasis, and promote tolerance. The latter activities are mediated by several myeloid cells including polymorphonuclear neutrophils, macrophages, myeloid-derived suppressor cells, and dendritic cells. Since these cells have been associated with immune suppression and tolerance, they will be further referred to as myeloid regulatory cells (MRCs). In recent years, MRCs have emerged as a therapeutic target or have been regarded as a potential cellular therapeutic product for tolerance induction. However, several open questions must be addressed to enable the therapeutic application of MRCs including: how do they function at the site of inflammation, how to best target these cells to modulate their activities, and how to isolate or to generate pure populations for adoptive cell therapies. In this review, we will give an overview of the current knowledge on MRCs in inflammation, autoimmunity, and transplantation. We will discuss current strategies to target MRCs and to exploit their tolerogenic potential as a cell-based therapy.
Collapse
Affiliation(s)
- Giada Amodio
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Scientific Institute IRCCS, Via Olgettina, 58, 20132, Milan, Italy
| | - Joanna Cichy
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Patricia Conde
- Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Majadahonda, 28220, , Madrid, Spain
| | - Gianluca Matteoli
- Translational Research in Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Aurélie Moreau
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Nephrologie (ITUN), CHU Nantes, Nantes, France
| | - Jordi Ochando
- Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Majadahonda, 28220, , Madrid, Spain
| | - Barbaros H Oral
- Department of Immunology, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Michaela Pekarova
- Institute of Biophysics, The Czech Academy of Sciences, Brno, Czech Republic
| | - Elizabeth J Ryan
- Department of Biological Sciences, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Johannes Roth
- Institute of Immunology, University of Münster, Münster, Germany
| | - Yahya Sohrabi
- Molecular and Translational Cardiology, Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany
| | - Maria-Cristina Cuturi
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Nephrologie (ITUN), CHU Nantes, Nantes, France
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Scientific Institute IRCCS, Via Olgettina, 58, 20132, Milan, Italy.
| |
Collapse
|
33
|
Shahzad KA, Wan X, Zhang L, Pei W, Zhang A, Younis M, Wang W, Shen C. On-target and direct modulation of alloreactive T cells by a nanoparticle carrying MHC alloantigen, regulatory molecules and CD47 in a murine model of alloskin transplantation. Drug Deliv 2018; 25:703-715. [PMID: 29508634 PMCID: PMC6058602 DOI: 10.1080/10717544.2018.1447049] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Biomimetic nanoparticles have been reported as immune modulators in autoimmune diseases and allograft rejections by numerous researchers. However, most of the therapeutics carrying antigens, toxins or cytokines underlay the mechanism of antigen presentation by cellular uptake of NPs through pinocytosis and phagocytosis. Few researches focus on the direct and antigen-specific modulation on T cells by NPs and combined use of multiple regulatory molecules. Here, polylactic-co-glycolic acid nanoparticles (PLGA-NPs) were fabricated as scaffold to cocoupling H-2Kb-Ig dimer, anti-Fas mAb, PD-L1-Fc, TGF-β and CD47-Fc for the generation of alloantigen-presenting and tolerance-inducing NPs, termed killer NPs and followed by i.v. injection into a single MHC-mismatched murine model of alloskin transplantation. Three infusions prolonged alloskin graft survival for 45 days; depleted most of H-2Kb alloreactive CD8+ T cells in peripheral blood, spleen and local graft, in an antigen-specific manner. The killer NPs circulated throughout vasculature into various organs and local allograft, with a retention time up to 30 h. They made contacts with CD8+ T cells to facilitate vigorous apoptosis, inhibit the activation and proliferation of alloreactive CD8+ T cells and induce regulatory T cells in secondary lymphoid organs, with the greatly minimized uptake by phagocytes. More importantly, the impairment of host overall immune function and visible organ toxicity were not found. Our results provide the first experimental evidence for the direct and on-target modulation on alloreactive T cells by the biodegradable 200-nm killer NPs via co-presentation of alloantigen and multiple regulatory molecules, thus suggest a novel antigen-specific immune modulator for allograft rejections.
Collapse
Affiliation(s)
- Khawar Ali Shahzad
- a Department of Microbiology and Immunology, Medical School , Southeast University , Nanjing , Jiangsu , China
| | - Xin Wan
- a Department of Microbiology and Immunology, Medical School , Southeast University , Nanjing , Jiangsu , China
| | - Lei Zhang
- a Department of Microbiology and Immunology, Medical School , Southeast University , Nanjing , Jiangsu , China
| | - Weiya Pei
- a Department of Microbiology and Immunology, Medical School , Southeast University , Nanjing , Jiangsu , China
| | - Aifeng Zhang
- b Department of Pathology, Medical School , Southeast University , Nanjing , Jiangsu , China
| | - Muhammad Younis
- c State Education Ministry's Key Laboratory of Development Genes and Human Disease, Institute of Life Sciences , Southeast University , Nanjing , Jiangsu , China
| | - Wei Wang
- a Department of Microbiology and Immunology, Medical School , Southeast University , Nanjing , Jiangsu , China
| | - Chuanlai Shen
- a Department of Microbiology and Immunology, Medical School , Southeast University , Nanjing , Jiangsu , China
| |
Collapse
|
34
|
Karabin NB, Allen S, Kwon HK, Bobbala S, Firlar E, Shokuhfar T, Shull KR, Scott EA. Sustained micellar delivery via inducible transitions in nanostructure morphology. Nat Commun 2018; 9:624. [PMID: 29434200 PMCID: PMC5809489 DOI: 10.1038/s41467-018-03001-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 01/12/2018] [Indexed: 11/13/2022] Open
Abstract
Nanocarrier administration has primarily been restricted to intermittent bolus injections with limited available options for sustained delivery in vivo. Here, we demonstrate that cylinder-to-sphere transitions of self-assembled filomicelle (FM) scaffolds can be employed for sustained delivery of monodisperse micellar nanocarriers with improved bioresorptive capacity and modularity for customization. Modular assembly of FMs from diverse block copolymer (BCP) chemistries allows in situ gelation into hydrogel scaffolds following subcutaneous injection into mice. Upon photo-oxidation or physiological oxidation, molecular payloads within FMs transfer to micellar vehicles during the morphological transition, as verified in vitro by electron microscopy and in vivo by flow cytometry. FMs composed of multiple distinct BCP fluorescent conjugates permit multimodal analysis of the scaffold's non-inflammatory bioresorption and micellar delivery to immune cell populations for one month. These scaffolds exhibit highly efficient bioresorption wherein all components participate in retention and transport of therapeutics, presenting previously unexplored mechanisms for controlled nanocarrier delivery.
Collapse
Affiliation(s)
- Nicholas B Karabin
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Sean Allen
- Interdisciplinary Biological Sciences, Northwestern University, 2205 Tech Drive, Evanston, IL, 60208, USA
| | - Ha-Kyung Kwon
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208, USA
| | - Sharan Bobbala
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Emre Firlar
- Department of Bioengineering, University of Illinois at Chicago, 851 South Morgan Street, Chicago, IL, 60607, USA
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 West Taylor Street, Chicago, IL, 60607, USA
| | - Tolou Shokuhfar
- Department of Bioengineering, University of Illinois at Chicago, 851 South Morgan Street, Chicago, IL, 60607, USA
| | - Kenneth R Shull
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, IL, 60208, USA
| | - Evan A Scott
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.
- Interdisciplinary Biological Sciences, Northwestern University, 2205 Tech Drive, Evanston, IL, 60208, USA.
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL, 60208, USA.
- Simpson Querrey Institute, Northwestern University, 303 East Superior Street, Chicago, IL, 60611, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 303 East Superior Street, Chicago, IL, 60611, USA.
| |
Collapse
|
35
|
Zhu P, Atkinson C, Dixit S, Cheng Q, Tran D, Patel K, Jiang YL, Esckilsen S, Miller K, Bazzle G, Allen P, Moore A, Broome AM, Nadig SN. Organ preservation with targeted rapamycin nanoparticles: a pre-treatment strategy preventing chronic rejection in vivo. RSC Adv 2018; 8:25909-25919. [PMID: 30220998 PMCID: PMC6124302 DOI: 10.1039/c8ra01555d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/24/2018] [Indexed: 12/20/2022] Open
Abstract
Hypothermic preservation is the standard of care for storing organs prior to transplantation. Endothelial and epithelial injury associated with hypothermic storage causes downstream graft injury and, as such, the choice of an ideal donor organ preservation solution remains controversial. Cold storage solutions, by design, minimize cellular necrosis and optimize cellular osmotic potential, but do little to assuage immunological cell activation or immune cell priming post transplantation. Thus, here we explore the efficacy of our previously described novel Targeted Rapamycin Micelles (TRaM) as an additive to standard-of-care University of Wisconsin preservation solution as a means to alter the immunological microenvironment post transplantation using in vivo models of tracheal and aortic allograft transplantation. In all models of transplantation, grafts pre-treated with 100 ng mL-1 of TRaM augmented preservation solution ex vivo showed a significant inhibition of chronic rejection post-transplantation, as compared to UW augmented with free rapamycin at a ten-fold higher dose. Here, for the first time, we present a novel method of organ pretreatment using a nanotherapeutic-based cellular targeted delivery system that enables donor administration of rapamycin, at a ten-fold decreased dose during cold storage. Clinically, these pretreatment strategies may positively impact post-transplant outcomes and can be readily translated to clinical scenarios.
Collapse
Affiliation(s)
- Peng Zhu
- Department of Surgery, Division of Transplant Surgery, Medical University of South Carolina, USA. .,Department of Microbiology and Immunology, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, USA.,Institute of Organ Transplantation, Department of Surgery, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Carl Atkinson
- Department of Surgery, Division of Transplant Surgery, Medical University of South Carolina, USA. .,Department of Microbiology and Immunology, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, USA
| | - Suraj Dixit
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, USA.
| | - Qi Cheng
- Department of Surgery, Division of Transplant Surgery, Medical University of South Carolina, USA. .,Department of Microbiology and Immunology, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, USA.,Institute of Organ Transplantation, Department of Surgery, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danh Tran
- Department of Microbiology and Immunology, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, USA
| | - Kunal Patel
- Department of Surgery, Division of Transplant Surgery, Medical University of South Carolina, USA. .,Department of Microbiology and Immunology, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, USA
| | - Yu-Lin Jiang
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, USA.
| | - Scott Esckilsen
- Department of Surgery, Division of Transplant Surgery, Medical University of South Carolina, USA. .,Department of Microbiology and Immunology, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, USA
| | - Kayla Miller
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, USA.
| | - Grace Bazzle
- Department of Microbiology and Immunology, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, USA
| | - Patterson Allen
- Department of Surgery, Division of Transplant Surgery, Medical University of South Carolina, USA. .,Department of Microbiology and Immunology, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, USA
| | - Alfred Moore
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, USA.
| | - Ann-Marie Broome
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, USA. .,Department of Bioengineering, Clemson University, USA
| | - Satish N Nadig
- Department of Surgery, Division of Transplant Surgery, Medical University of South Carolina, USA. .,Department of Microbiology and Immunology, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, USA
| |
Collapse
|
36
|
Ratay ML, Bellotti E, Gottardi R, Little SR. Modern Therapeutic Approaches for Noninfectious Ocular Diseases Involving Inflammation. Adv Healthc Mater 2017; 6:10.1002/adhm.201700733. [PMID: 29034584 PMCID: PMC5915344 DOI: 10.1002/adhm.201700733] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/25/2017] [Indexed: 12/12/2022]
Abstract
Dry eye disease, age-related macular degeneration, and uveitis are ocular diseases that significantly affect the quality of life of millions of people each year. In these diseases, the action of chemokines, proinflammatory cytokines, and immune cells drives a local inflammatory response that results in ocular tissue damage. Multiple therapeutic strategies are developed to either address the symptoms or abate the underlying cause of these diseases. Herein, the challenges to deliver drugs to the relevant location in the eye for each of these diseases are reviewed along with current and innovative therapeutic approaches that attempt to restore homeostasis within the ocular microenvironment.
Collapse
Affiliation(s)
- Michelle L. Ratay
- Department of Bioengineering, University of Pittsburgh, 427 Benedum Hall 3700 O’Hara Street Pittsburgh, Pa 15261
| | - Elena Bellotti
- Department of Chemical Engineering, University of Pittsburgh, 427 Benedum Hall 3700 O’Hara Street Pittsburgh, Pa 15261
| | - Riccardo Gottardi
- Department of Chemical Engineering, Department of Orthopedic Surgery, Ri.MED Foundation, 427 Benedum Hall 3700 O’Hara Street Pittsburgh, Pa 15261
| | - Steven R. Little
- Department of Chemical Engineering, Department of Bioengineering, Department of Ophthalmology, Department of Immunology, Department of Pharmaceutical Sciences, The McGowan Institute for Regenerative Medicine, 940 Benedum Hall 3700 O’Hara Street Pittsburgh Pa 15261
| |
Collapse
|
37
|
Yeh WI, Seay HR, Newby B, Posgai AL, Moniz FB, Michels A, Mathews CE, Bluestone JA, Brusko TM. Avidity and Bystander Suppressive Capacity of Human Regulatory T Cells Expressing De Novo Autoreactive T-Cell Receptors in Type 1 Diabetes. Front Immunol 2017; 8:1313. [PMID: 29123516 PMCID: PMC5662552 DOI: 10.3389/fimmu.2017.01313] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/28/2017] [Indexed: 12/12/2022] Open
Abstract
The ability to alter antigen specificity by T-cell receptor (TCR) or chimeric antigen receptor (CAR) gene transfer has facilitated personalized cellular immune therapies in cancer. Inversely, this approach can be harnessed in autoimmune settings to attenuate inflammation by redirecting the specificity of regulatory T cells (Tregs). Herein, we demonstrate efficient protocols for lentiviral gene transfer of TCRs that recognize type 1 diabetes-related autoantigens with the goal of tissue-targeted induction of antigen-specific tolerance to halt β-cell destruction. We generated human Tregs expressing a high-affinity GAD555–567-reactive TCR (clone R164), as well as the lower affinity clone 4.13 specific for the same peptide. We demonstrated that de novo Treg avatars potently suppress antigen-specific and bystander responder T-cell (Tresp) proliferation in vitro in a process that requires Treg activation (P < 0.001 versus unactivated Tregs). When Tresp were also glutamic acid decarboxylase (GAD)-reactive, the high-affinity R164 Tregs exhibited increased suppression (P < 0.01) with lower Tresp-division index (P < 0.01) than the lower affinity 4.13 Tregs. These data demonstrate the feasibility of rapid expansion of antigen-specific Tregs for applications in attenuating β-cell autoimmunity and emphasize further opportunities for engineering cellular specificities, affinities, and phenotypes to tailor Treg activity in adoptive cell therapies for the treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Wen-I Yeh
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Howard R Seay
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Brittney Newby
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Amanda L Posgai
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Filipa Botelho Moniz
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Aaron Michels
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
| | - Clayton E Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Jeffrey A Bluestone
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, United States
| | - Todd M Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
38
|
Qiu J, You X, Wu G. Effects of Tripterygium glycoside treatment on experimental autoimmune encephalomyelitis. Mol Med Rep 2017; 16:8283-8288. [PMID: 28983582 DOI: 10.3892/mmr.2017.7627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 07/17/2017] [Indexed: 11/06/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is an autoimmune disease mediated by CD4+ T cells. It is characterized by mononuclear cell infiltration around the small blood vessels in the central nervous system (CNS). Previous investigations have found that apoptosis is associated with the occurrence and development of autoimmune disease, and that mononuclear cell apoptosis and clearance from the CNS is one of the repair mechanisms of EAE. Tripterygium wilfordii glycoside (TWP) is an organic matter isolated from Tripterygium wilfordii, which has anti‑inflammatory and immunosuppressive effects. In the present study, male Lewis rats were randomly divided into a normal control, EAE and TWP groups. Rats in EAE and TWP groups received injections of emulsified EAE antigen (myelin protein) at two points on the footpad while control group received PBS. The TWP group was then treated with TWP daily for 21 days. Symptoms and nerve function scores were observed and evaluated. Specimens of blood, brain and spinal cord were collected for further pathological examination, Tunel assay, ELISA and immunohistochemistry were performed to examine the effect of TWP on the onset of EAE, and changes in CNS inflammatory infiltration, cell apoptosis, and the expression of nuclear factor (NF)‑κB P65 and interleukin (IL)‑2. The results showed that the TWP treatment group exhibited decreased EAE and delayed onset, compared with the control. The clinical symptoms were significantly reduced and alleviation of inflammatory cell infiltration was observed. Compared with the EAE group, a higher inflammatory cell apoptotic rate, and reduced serum levels of IL‑2 and NF‑κB p65‑positive cells were observed in the TWP treatment group. Therefore, TWP effectively inhibited EAE via the inhibition of CNS inflammatory cell infiltration, enhancement of inflammatory cell apoptosis, and downregulation of the expression of NF‑κB and IL‑2.
Collapse
Affiliation(s)
- Jianmin Qiu
- Department of Internal Medicine Neurology, Fujian Putian First Hospital, Putian, Fujian 351100, P.R. China
| | - Xuelian You
- Department of Internal Medicine Neurology, Fujian Putian First Hospital, Putian, Fujian 351100, P.R. China
| | - Gang Wu
- Department of Internal Medicine Neurology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| |
Collapse
|
39
|
Solhjou Z, Uehara M, Bahmani B, Maarouf OH, Ichimura T, Brooks CR, Xu W, Yilmaz M, Elkhal A, Tullius SG, Guleria I, McGrath M, Abdi R. Novel Application of Localized Nanodelivery of Anti-Interleukin-6 Protects Organ Transplant From Ischemia-Reperfusion Injuries. Am J Transplant 2017; 17:2326-2337. [PMID: 28296000 PMCID: PMC5573642 DOI: 10.1111/ajt.14266] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 02/03/2017] [Accepted: 02/25/2017] [Indexed: 01/25/2023]
Abstract
Ischemia-reperfusion injury (IRI) evokes intragraft inflammatory responses, which markedly augment alloimmune responses against the graft. Understanding the mechanisms underlying these responses is fundamental to develop therapeutic regimens to prevent/ameliorate organ IRI. Here, we demonstrate that IRI results in a marked increase in mitochondrial damage and autophagy in dendritic cells (DCs). While autophagy is a survival mechanism for ischemic DCs, it also augments their production of interleukin (IL)-6. Allograft-derived dendritic cells (ADDCs) lacking autophagy-related gene 5 (Atg5) showed higher death rates posttransplantation. Transplanted ischemic hearts from CD11cCre/Atg5 conditional knockout mice showed marked reduction in intragraft expression of IL-6 compared with controls. To antagonize the effect of IL-6 locally in the heart, we synthesized novel anti-IL-6 nanoparticles with capacity for controlled release of anti-IL-6 over time. Compared with systemic delivery of anti-IL-6, localized delivery of anti-IL-6 significantly reduced chronic rejection with a markedly lower amount administered. Despite improved allograft histology, there were no changes to splenic T cell populations, illustrating the importance of local IL-6 in driving chronic rejection after IRI. These data carry potential clinical significance by identifying an innovative, targeted strategy to manipulate organs before transplantation to diminish inflammation, leading to improved long-term outcomes.
Collapse
Affiliation(s)
- Zhabiz Solhjou
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mayuko Uehara
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Baharak Bahmani
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Omar H. Maarouf
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Takaharu Ichimura
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Craig R. Brooks
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wanlong Xu
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mine Yilmaz
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Abdala Elkhal
- Division of Transplant Surgery and Transplantation Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stefan G. Tullius
- Division of Transplant Surgery and Transplantation Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Indira Guleria
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Martina McGrath
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA,Address correspondence to: Reza Abdi, MD, Transplant Research Center, Brigham and Women's Hospital, 221 Longwood Ave, Boston MA 02115, USA, Tel: 617-732-5259, Fax: 617-732-5254,
| |
Collapse
|
40
|
Wang W, Shahzad KA, Li M, Zhang A, Zhang L, Xu T, Wan X, Shen C. An Antigen-Presenting and Apoptosis-Inducing Polymer Microparticle Prolongs Alloskin Graft Survival by Selectively and Markedly Depleting Alloreactive CD8 + T Cells. Front Immunol 2017. [PMID: 28649247 PMCID: PMC5465244 DOI: 10.3389/fimmu.2017.00657] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Selectively depleting the pathogenic T cells is a fundamental strategy for the treatment of allograft rejection and autoimmune disease since it retains the overall immune function of host. The concept of killer artificial antigen-presenting cells (KaAPCs) has been developed by co-coupling peptide–major histocompatibility complex (pMHC) multimer and anti-Fas monoclonal antibody (mAb) onto the polymeric microparticles (MPs) to induce the apoptosis of antigen-specific T cells. But little information is available about its in vivo therapeutic potential and mechanism. In this study, polyethylenimine (PEI)-coated poly lactic-co-glycolic acid microparticle (PLGA MP) was fabricated as a cell-sized scaffold to covalently co-couple H-2Kb-Ig dimer and anti-Fas mAb for the generation of alloantigen-presenting and apoptosis-inducing MPs. Intravenous infusions of the biodegradable KaAPCs prolonged the alloskin graft survival for 43 days in a single MHC-mismatched murine model, depleted the most of H-2Kb-alloreactive CD8+ T cells in peripheral blood, spleen, and alloskin graft in an antigen-specific manner and anti-Fas-dependent fashion. The cell-sized KaAPCs circulated throughout vasculature into liver, kidney, spleen, lymph nodes, lung, and heart, but few ones into local allograft at early stage, with a retention time up to 36 h in vivo. They colocalized with CD8+ T cells in secondary lymphoid organs while few ones contacted with CD4+ T cells, B cells, macrophage, and dendritic cells, or internalized by phagocytes. Importantly, the KaAPC treatment did not significantly impair the native T cell repertoire or non-pathogenic immune cells, did not obviously suppress the overall immune function of host, and did not lead to visible organ toxicity. Our results strongly document the high potential of PLGA MP-based KaAPCs as a novel antigen-specific immunotherapy for allograft rejection and autoimmune disorder. The in vivo mechanism of alloinhibition, tissue distribution, and biosafety were also initially characterized, which will facilitate its translational studies from bench to bedside.
Collapse
Affiliation(s)
- Wei Wang
- Department of Microbiology and Immunology, Southeast University Medical School, Nanjing, China
| | - Khawar Ali Shahzad
- Department of Microbiology and Immunology, Southeast University Medical School, Nanjing, China
| | - Miaochen Li
- Department of Microbiology and Immunology, Southeast University Medical School, Nanjing, China
| | - Aifeng Zhang
- Department of Pathology, Southeast University Medical School, Nanjing, China
| | - Lei Zhang
- Department of Microbiology and Immunology, Southeast University Medical School, Nanjing, China
| | - Tao Xu
- Department of Microbiology and Immunology, Southeast University Medical School, Nanjing, China
| | - Xin Wan
- Department of Microbiology and Immunology, Southeast University Medical School, Nanjing, China
| | - Chuanlai Shen
- Department of Microbiology and Immunology, Southeast University Medical School, Nanjing, China
| |
Collapse
|
41
|
Pearson RM, Casey LM, Hughes KR, Miller SD, Shea LD. In vivo reprogramming of immune cells: Technologies for induction of antigen-specific tolerance. Adv Drug Deliv Rev 2017; 114:240-255. [PMID: 28414079 PMCID: PMC5582017 DOI: 10.1016/j.addr.2017.04.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/01/2017] [Accepted: 04/11/2017] [Indexed: 02/07/2023]
Abstract
Technologies that induce antigen-specific immune tolerance by mimicking naturally occurring mechanisms have the potential to revolutionize the treatment of many immune-mediated pathologies such as autoimmunity, allograft rejection, and allergy. The immune system intrinsically has central and peripheral tolerance pathways for eliminating or modulating antigen-specific responses, which are being exploited through emerging technologies. Antigen-specific tolerogenic responses have been achieved through the functional reprogramming of antigen-presenting cells or lymphocytes. Alternatively, immune privileged sites have been mimicked using biomaterial scaffolds to locally suppress immune responses and promote long-term allograft survival. This review describes natural mechanisms of peripheral tolerance induction and the various technologies being developed to achieve antigen-specific immune tolerance in vivo. As currently approved therapies are non-specific and carry significant associated risks, these therapies offer significant progress towards replacing systemic immune suppression with antigen-specific therapies to curb aberrant immune responses.
Collapse
Affiliation(s)
- Ryan M Pearson
- Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI 48109-2099, USA
| | - Liam M Casey
- Department of Chemical Engineering, University of Michigan, 2300 Hayward Ave., Ann Arbor, MI 48105, USA
| | - Kevin R Hughes
- Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI 48109-2099, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 6-713 Tarry Building, 303 E. Chicago Avenue, Chicago, IL 60611, USA; Chemistry of Life Processes Institute (CLP), Northwestern University, Evanston, IL 60208, USA; The Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA.
| | - Lonnie D Shea
- Department of Biomedical Engineering, University of Michigan, 1119 Carl A. Gerstacker Building, 2200 Bonisteel Boulevard, Ann Arbor, MI 48109-2099, USA; Department of Chemical Engineering, University of Michigan, 2300 Hayward Ave., Ann Arbor, MI 48105, USA.
| |
Collapse
|
42
|
Vercellino M, Ceccarelli G, Cristofaro F, Balli M, Bertoglio F, Bruni G, Benedetti L, Avanzini MA, Imbriani M, Visai L. Nanostructured TiO₂ Surfaces Promote Human Bone Marrow Mesenchymal Stem Cells Differentiation to Osteoblasts. NANOMATERIALS 2016; 6:nano6070124. [PMID: 28335251 PMCID: PMC5224601 DOI: 10.3390/nano6070124] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/13/2016] [Accepted: 06/15/2016] [Indexed: 11/24/2022]
Abstract
Micro- and nano-patterning/modification are emerging strategies to improve surfaces properties that may influence critically cells adherence and differentiation. Aim of this work was to study the in vitro biological reactivity of human bone marrow mesenchymal stem cells (hBMSCs) to a nanostructured titanium dioxide (TiO2) surface in comparison to a coverglass (Glass) in two different culture conditions: with (osteogenic medium (OM)) and without (proliferative medium (PM)) osteogenic factors. To evaluate cell adhesion, hBMSCs phosphorylated focal adhesion kinase (pFAK) foci were analyzed by confocal laser scanning microscopy (CLSM) at 24 h: the TiO2 surface showed a higher number of pFAK foci with respect to Glass. The hBMSCs differentiation to osteoblasts was evaluated in both PM and OM culture conditions by enzyme-linked immunosorbent assay (ELISA), CLSM and real-time quantitative reverse transcription PCR (qRT-PCR) at 28 days. In comparison with Glass, TiO2 surface in combination with OM conditions increased the content of extracellular bone proteins, calcium deposition and alkaline phosphatase activity. The qRT-PCR analysis revealed, both in PM and OM, that TiO2 surface increased at seven and 28 days the expression of osteogenic genes. All together, these results demonstrate the capability of TiO2 nanostructured surface to promote hBMSCs osteoblast differentiation and its potentiality in biomedical applications.
Collapse
Affiliation(s)
- Marco Vercellino
- Department of Molecular Medicine, Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Viale Taramelli 3/b, Pavia 27100, Italy.
| | - Gabriele Ceccarelli
- Department of Public Health, Experimental Medicine and Forensic, Human Anatomy Unit, Center of Health Technologies (CHT), University of Pavia, Viale Forlanini 8, Pavia 27100, Italy.
| | - Francesco Cristofaro
- Department of Molecular Medicine, Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Viale Taramelli 3/b, Pavia 27100, Italy.
| | - Martina Balli
- Department of Public Health, Experimental Medicine and Forensic, Human Anatomy Unit, Center of Health Technologies (CHT), University of Pavia, Viale Forlanini 8, Pavia 27100, Italy.
| | - Federico Bertoglio
- Department of Molecular Medicine, Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Viale Taramelli 3/b, Pavia 27100, Italy.
| | - Gianna Bruni
- Department of Chemistry-Physical-Chemistry Section, University of Pavia, Viale Taramelli 16, Pavia 27100, Italy.
| | - Laura Benedetti
- Department of Public Health, Experimental Medicine and Forensic, Human Anatomy Unit, Center of Health Technologies (CHT), University of Pavia, Viale Forlanini 8, Pavia 27100, Italy.
| | - Maria Antonietta Avanzini
- Laboratory of Transplant Immunology/Cell Factory, Fondazione IRCCS Policlinico "San Matteo", P.le Golgi 19, Pavia 27100, Italy.
| | - Marcello Imbriani
- Department of Public Health, Experimental Medicine and Forensic, Human Anatomy Unit, Center of Health Technologies (CHT), University of Pavia, Viale Forlanini 8, Pavia 27100, Italy.
- Department of Occupational Medicine, Toxicology and Environmental Risks, S. Maugeri Foundation, IRCCS, Via S.Boezio 28, Pavia 27100, Italy.
| | - Livia Visai
- Department of Molecular Medicine, Center for Health Technologies (CHT), UdR INSTM, University of Pavia, Viale Taramelli 3/b, Pavia 27100, Italy.
- Department of Occupational Medicine, Toxicology and Environmental Risks, S. Maugeri Foundation, IRCCS, Via S.Boezio 28, Pavia 27100, Italy.
| |
Collapse
|
43
|
Utilization of Machine Perfusion and Nanotechnology for Liver Transplantation. CURRENT TRANSPLANTATION REPORTS 2015. [DOI: 10.1007/s40472-015-0076-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
44
|
Siebert JR, Eade AM, Osterhout DJ. Biomaterial Approaches to Enhancing Neurorestoration after Spinal Cord Injury: Strategies for Overcoming Inherent Biological Obstacles. BIOMED RESEARCH INTERNATIONAL 2015; 2015:752572. [PMID: 26491685 PMCID: PMC4600545 DOI: 10.1155/2015/752572] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/22/2015] [Indexed: 01/14/2023]
Abstract
While advances in technology and medicine have improved both longevity and quality of life in patients living with a spinal cord injury, restoration of full motor function is not often achieved. This is due to the failure of repair and regeneration of neuronal connections in the spinal cord after injury. In this review, the complicated nature of spinal cord injury is described, noting the numerous cellular and molecular events that occur in the central nervous system following a traumatic lesion. In short, postinjury tissue changes create a complex and dynamic environment that is highly inhibitory to the process of neural regeneration. Strategies for repair are outlined with a particular focus on the important role of biomaterials in designing a therapeutic treatment that can overcome this inhibitory environment. The importance of considering the inherent biological response of the central nervous system to both injury and subsequent therapeutic interventions is highlighted as a key consideration for all attempts at improving functional recovery.
Collapse
Affiliation(s)
- Justin R. Siebert
- Lake Erie College of Osteopathic Medicine at Seton Hill, Greensburg, PA 15601, USA
| | - Amber M. Eade
- Lake Erie College of Osteopathic Medicine at Seton Hill, Greensburg, PA 15601, USA
| | - Donna J. Osterhout
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|